Stat 130 – Intro to Math Stat for CS Chapter 3 Reviewer
Random Variable - A function from Ί into the set ___ of real #s - A function whose value is a real number - Domain: Ί - Counter domain: ____ - X (random var.) Ί - X (elements of the range)
Cumulative Distribution Function (CDF) -> đ??šđ?&#x2018;Ľ (.) - Function defined for any ____ x as đ??šđ?&#x2018;Ľ (đ?&#x2018;Ľ) = đ?&#x2018;&#x192;(đ?&#x2018;&#x2039; â&#x2030;¤ đ?&#x2018;Ľ) - Possibility ___ [0, 1] - Non-decreasing ___ - Every RV will have one & any one CDF - If đ??šđ?&#x2018;Ľ (.) is the cdf of a RV X, then for any _____ a and b, đ?&#x2018;&#x17D; < đ?&#x2018;?: 1) đ?&#x2018;&#x192;(đ?&#x2018;&#x17D; < đ?&#x2018;&#x2039; â&#x2030;¤ đ?&#x2018;?) = đ??šđ?&#x2018;Ľ (đ?&#x2018;?) â&#x2C6;&#x2019; đ??šđ?&#x2018;Ľ (đ?&#x2018;&#x17D;) 2) đ?&#x2018;&#x192;(đ?&#x2018;&#x2039; < đ?&#x2018;&#x17D;) = ____ â&#x2C6;&#x2019; đ??šđ?&#x2018;Ľ (đ?&#x2018;Ľ) = đ??šđ?&#x2018;Ľ (đ?&#x2018;&#x17D;â&#x2C6;&#x2019; ) 3) đ?&#x2018;&#x192;(đ?&#x2018;&#x17D; â&#x2030;¤ đ?&#x2018;&#x2039; â&#x2030;¤ đ?&#x2018;?) = đ??šđ?&#x2018;Ľ (đ?&#x2018;?) â&#x2C6;&#x2019; đ??šđ?&#x2018;Ľ (đ?&#x2018;&#x17D;â&#x2C6;&#x2019; ) 4) đ?&#x2018;&#x192;(đ?&#x2018;&#x17D; â&#x2030;¤ đ?&#x2018;&#x2039; < đ?&#x2018;?) = đ??šđ?&#x2018;Ľ (đ?&#x2018;?â&#x2C6;&#x2019; ) â&#x2C6;&#x2019; đ??šđ?&#x2018;Ľ (đ?&#x2018;&#x17D;â&#x2C6;&#x2019; ) 5) đ?&#x2018;&#x192;(đ?&#x2018;&#x17D; < đ?&#x2018;&#x2039; < đ?&#x2018;?) = đ??šđ?&#x2018;Ľ (đ?&#x2018;?â&#x2C6;&#x2019; ) â&#x2C6;&#x2019; đ??šđ?&#x2018;Ľ (đ?&#x2018;&#x17D;) 6) đ?&#x2018;&#x192;(đ?&#x2018;&#x2039; > đ?&#x2018;&#x17D;) = 1 â&#x2C6;&#x2019; đ??šđ?&#x2018;Ľ (đ?&#x2018;&#x17D;) 7) đ?&#x2018;&#x192;(đ?&#x2018;&#x2039; â&#x2030;Ľ đ?&#x2018;&#x17D;) = 1 â&#x2C6;&#x2019; đ??šđ?&#x2018;Ľ (đ?&#x2018;&#x17D;â&#x2C6;&#x2019; ) 8) đ?&#x2018;&#x192;(đ?&#x2018;&#x2039; = đ?&#x2018;&#x17D;) = đ??šđ?&#x2018;Ľ (đ?&#x2018;&#x17D;) â&#x2C6;&#x2019; đ??šđ?&#x2018;Ľ (đ?&#x2018;&#x17D;â&#x2C6;&#x2019; ) -> if continuous, then = 0 - Any function with domain = ______ counter domain = [0,1] that statistics the ff. is a CDF: 1) đ??šđ?&#x2018;Ľ (â&#x2C6;&#x2019;â&#x2C6;?) = _____ đ??šđ?&#x2018;Ľ (đ?&#x2018;&#x2039;) = 0 and đ??šđ?&#x2018;Ľ (â&#x2C6;?) = ______ đ??šđ?&#x2018;Ľ (đ?&#x2018;&#x2039;) = 1 2) đ??šđ?&#x2018;Ľ (. ) is a monotone, nondecreasing function ( đ??šđ?&#x2018;Ľ (đ?&#x2018;&#x17D;) â&#x2030;¤ đ??šđ?&#x2018;Ľ (đ?&#x2018;?)đ?&#x2018;&#x201C;đ?&#x2018;&#x153;đ?&#x2018;&#x; đ?&#x2018;&#x17D;đ?&#x2018;&#x203A;đ?&#x2018;˘ đ?&#x2018;&#x17D; < đ?&#x2018;?) 3) đ??šđ?&#x2018;Ľ (. ) is a continuous from the right ( ______ đ??šđ?&#x2018;Ľ (đ?&#x2018;Ľ + â&#x201E;&#x17D;) = đ??šđ?&#x2018;Ľ (đ?&#x2018;&#x2039;) for all x )
Discrete Random Variables ď&#x192;&#x2DC; Sample space contains a finite # of sample points -> Discrete sample space ď&#x192;&#x2DC; RV defined over a discrete sample space
1
Probability Mass Function (PMF) ď&#x192;&#x2DC; đ?&#x2018;&#x192;đ?&#x2018;Ľ (đ?&#x2018;Ľ) = đ?&#x2018;&#x192;(đ?&#x2018;&#x2039; = đ?&#x2018;Ľ) ď&#x192;&#x2DC; Mass points: values of the discrete RV for which đ?&#x2018;&#x192;đ?&#x2018;Ľ (đ?&#x2018;Ľ) â&#x2030; 0 ď&#x192;&#x2DC; Should satisfy the ff properties: 1) đ?&#x2018;&#x192;đ?&#x2018;Ľ (đ?&#x2018;Ľ) â&#x2030;Ľ 0 2) â&#x2C6;&#x2018; all possible x đ?&#x2018;&#x192;đ?&#x2018;Ľ (đ?&#x2018;Ľ) = 1
Continuous Random Variables ď&#x192;&#x2DC; RV is continuous if the set of all possible values of X consists of an interval on the number line
Probability Density Function (PDF) ď&#x192;&#x2DC; Denoted as f(.) ď&#x192;&#x2DC; Satisfies the ff. properties: 1) đ?&#x2018;&#x201C;(đ?&#x2018;Ľ) â&#x2030;Ľ 0 for all x 2) The area below the curve, đ?&#x2018;&#x201C;(đ?&#x2018;Ľ) & above the x-axis is always equal to 1 3) đ?&#x2018;&#x192;(đ?&#x2018;&#x17D; â&#x2030;¤ đ?&#x2018;Ľ â&#x2030;¤ đ?&#x2018;?) = area bounded by đ?&#x2018;&#x201C;(đ?&#x2018;Ľ), x-axis x=a, and x=b ď&#x192;&#x2DC; Remarks: 1) Graph of PDF is always above the x-axis (cannot take negative value) 2) Area is always equal to 1 with x=a & x=b 3) If x is a continuous RV, đ?&#x2018;&#x192;(đ?&#x2018;Ľ < đ?&#x2018;&#x17D;) = đ?&#x2018;&#x192;(đ?&#x2018;Ľ â&#x2030;¤ đ?&#x2018;&#x17D;) always! (bec đ?&#x2018;&#x192;(đ?&#x2018;Ľ = đ?&#x2018;&#x17D;) = 0) 4) Whenever x is a continuous RV, đ?&#x2018;&#x192;(đ?&#x2018;&#x17D; < đ?&#x2018;Ľ < đ?&#x2018;?) = đ?&#x2018;&#x192;(đ?&#x2018;&#x17D; â&#x2030;¤ đ?&#x2018;Ľ < đ?&#x2018;?) = đ?&#x2018;&#x192;(đ?&#x2018;&#x17D; < đ?&#x2018;Ľ â&#x2030;¤ đ?&#x2018;?) = đ?&#x2018;&#x192;(đ?&#x2018;&#x17D; â&#x2030;¤ đ?&#x2018;Ľ â&#x2030;¤ đ?&#x2018;?) 5) A RV x is void to have a PDF if
đ?&#x2018;&#x2018;đ??š(đ?&#x2018;Ľ) đ?&#x2018;&#x2018;đ?&#x2018;Ľ
exists for x
đ?&#x2018;&#x192;đ??ˇđ??š =
đ?&#x2018;&#x2018;(đ??śđ??ˇđ??š) đ?&#x2018;&#x2018;đ?&#x2018;Ľ
6) CDF for a cont. RV X with pdf đ?&#x2018;&#x201C;(đ?&#x2018;Ľ) is defined for every y by: đ?&#x2018;Ś
đ??š(đ?&#x2018;Ś) = đ?&#x2018;&#x192;(đ?&#x2018;Ľ â&#x2030;¤ đ?&#x2018;Ś) = â&#x2C6;Ť đ?&#x2018;&#x201C;(đ?&#x2018;Ľ)đ?&#x2018;&#x2018;đ?&#x2018;Ľ â&#x2C6;&#x2019;â&#x2C6;? *đ??š(đ?&#x2018;Ś) is the area under the density curve to the LEFT of x.
7)
Should satisfy: a) đ?&#x2018;&#x201C;(đ?&#x2018;Ľ) â&#x2030;Ľ 0 for all x â&#x2C6;? đ?&#x2018;&#x201C;(đ?&#x2018;Ľ)đ?&#x2018;&#x2018;đ?&#x2018;Ľ â&#x2C6;&#x2019;â&#x2C6;?
b) Area under the entire density curve â&#x2C6;Ť
2
=1
Expected Value & Variance of a RV - â&#x20AC;&#x153;meanâ&#x20AC;? - đ??¸(đ?&#x2018;Ľ) = â&#x2C6;&#x2018;đ?&#x2018;&#x2014; đ?&#x2018;&#x2039;đ?&#x2018;&#x2014; đ?&#x2018;&#x192;đ?&#x2018;&#x2014; (đ?&#x2018;&#x2039;đ?&#x2018;&#x2014; ) -> discrete -
đ??¸(đ?&#x2018;Ľ) = â&#x2C6;Ťđ?&#x2018;&#x2026; đ?&#x2018;Ľđ?&#x2018;&#x201C;đ?&#x2018;Ľ(đ?&#x2018;Ľ)đ?&#x2018;&#x2018;đ?&#x2018;Ľ -> continuous
- đ?&#x2018;&#x2030;(đ?&#x2018;Ľ) = đ??¸(đ?&#x2018;Ľ 2 ) â&#x2C6;&#x2019; [đ??¸(đ?&#x2018;Ľ)]2 - Properties: x and y are random variables; a and b are constants 1) đ??¸(đ?&#x2018;&#x17D;đ?&#x2018;Ľ + đ?&#x2018;?) = đ?&#x2018;&#x17D;đ??¸(đ?&#x2018;Ľ) + đ?&#x2018;? - đ??¸(đ?&#x2018;&#x17D;đ?&#x2018;Ľ) = đ?&#x2018;&#x17D;đ??¸(đ?&#x2018;Ľ) - đ??¸(đ?&#x2018;?) = đ?&#x2018;? 2) đ??¸(đ?&#x2018;Ľ Âą đ?&#x2018;Ś) = đ??¸(đ?&#x2018;Ľ) Âą đ??¸(đ?&#x2018;Ś) 3) đ??¸(đ?&#x2018;Ľđ?&#x2018;Ś) = đ??¸(đ?&#x2018;Ľ)đ??¸(đ?&#x2018;Ś); if x & y are independent 4) đ??¸[đ?&#x2018;Ľ â&#x2C6;&#x2019; đ??¸(đ?&#x2018;Ľ)] = 0 5) đ?&#x2018;&#x2030;(đ?&#x2018;&#x17D;đ?&#x2018;Ľ + đ?&#x2018;?) = đ?&#x2018;&#x17D;2 đ?&#x2018;&#x2030;(đ?&#x2018;Ľ) - đ?&#x2018;&#x2030;(đ?&#x2018;&#x17D;đ?&#x2018;Ľ) = đ?&#x2018;&#x17D;2 đ?&#x2018;&#x2030;(đ?&#x2018;Ľ) - đ?&#x2018;&#x2030;(đ?&#x2018;?) = 0 6) đ?&#x2018;&#x2030;(đ?&#x2018;Ľ Âą đ?&#x2018;Ś) = đ?&#x2018;&#x2030;(đ?&#x2018;Ľ) + đ?&#x2018;&#x2030;(đ?&#x2018;Ś); x & y are independent
CREDITS: Notes by Camille Salazar Encoded by Gerald Roy CampaĂąano
3