Stat 130 – Intro to Math Stat for CS Chapter 6 Reviewer
Jointly Distributed RV’s 1) Joint FMFs for TWO DISCRETE RVs:
-
đ?‘ƒ(đ?‘Ľ, đ?‘Ś) = đ?‘ƒ(đ?‘‹ = đ?‘Ľ, đ?‘Œ = đ?‘Ś) đ?‘ƒ[(đ?‘‹, đ?‘Œ)đ??¸đ??´] = ∑(đ?‘‹,đ?‘Œ) ∑đ??¸đ??´ đ?‘ƒ(đ?‘Ľ, đ?‘Ś)
-
đ?‘ƒ(đ?‘Ľ, đ?‘Ś) is a joint pmf if it satisfies the ff: a) đ?‘ƒ(đ?‘Ľ, đ?‘Ś) ≼ 0 for all x and y
-
Marginal PMFs:
b) ∑đ?‘‹ ∑đ?‘Œ đ?‘ƒ(đ?‘Ľ, đ?‘Ś) = 1 đ?‘ƒđ?‘Ľ (đ?‘Ľ) = ∑đ?‘Œ đ?‘ƒ(đ?‘Ľ, đ?‘Ś)
đ?‘ƒđ?‘Ś (đ?‘Ś) = ∑đ?‘‹ đ?‘ƒ(đ?‘Ľ, đ?‘Ś)
2) Joint PDFs for TWO CONTNUOUS RVs:
đ?‘ƒ[(đ?‘‹, đ?‘Œ)đ??¸đ??´] = âˆŹ
đ?‘“(đ?‘Ľ, đ?‘Ś)đ?‘‘đ?‘Ľđ?‘‘đ?‘Ś đ??´
-
If 2d rectangle -> {(đ?‘Ľ, đ?‘Ś): đ?‘Ž ≤ đ?‘Ľ ≤ đ?‘?, đ?‘? ≤ đ?‘Ś ≤ đ?‘‘}, then, đ?‘?
đ?‘‘
đ?‘ƒ[(đ?‘‹, đ?‘Œ)đ??¸đ??´] = đ?‘ƒ(đ?‘Ž ≤ đ?‘‹ ≤ đ?‘?, đ?‘? ≤ đ?‘Œ ≤ đ?‘‘) = âˆŤ âˆŤ đ?‘“(đ?‘Ľ, đ?‘Ś)đ?‘‘đ?‘Śđ?‘‘đ?‘Ľ đ?‘Ž
-
đ?‘?
Properties: a) đ?‘“(đ?‘Ľ, đ?‘Ś) ≼ 0, for all x and y âˆ?
�
b) âˆŤâˆ’âˆ? âˆŤâˆ’âˆ? đ?‘“(đ?‘Ľ, đ?‘Ś)đ?‘‘đ?‘Ľđ?‘‘đ?‘Ś = 1 -
Marginal PMFs: �
�
đ?‘“đ?‘Ľ (đ?‘Ľ) = âˆŤâˆ’âˆ? đ?‘“(đ?‘Ľ, đ?‘Ś)đ?‘‘đ?‘Ś
đ?‘“đ?‘Ś (đ?‘Ś) = âˆŤâˆ’âˆ? đ?‘“(đ?‘Ľ, đ?‘Ś)đ?‘‘đ?‘Ľ
Independence of RVs ďƒ˜ Independent iff: a) đ?‘?(đ?‘Ľ, đ?‘Ś) = đ?‘?đ?‘Ľ (đ?‘Ľ)đ?‘?đ?‘Ś (đ?‘Ś) when x and y are discrete b) đ?‘“(đ?‘Ľ, đ?‘Ś) = đ?‘“đ?‘Ľ (đ?‘Ľ)đ?‘“đ?‘Ś (đ?‘Ś) when x and y are continuous Conditional Distributions ďƒ˜ cond. pdf of Y given that X=x is:
đ?‘“đ?‘Ś|đ?‘Ľ (đ?‘Ś|đ?‘Ľ) =
đ?‘“(đ?‘Ľ, đ?‘Ś) đ?‘“đ?‘Ľ (đ?‘Ľ)
Expected Values, Covariance, Correlation â„Ž(đ?‘Ľ, đ?‘Ś) = đ?‘Ľđ?‘Ś 1) đ??¸(đ?‘Ľđ?‘Ś) = ∑đ?‘Ľ ∑đ?‘Ś đ?‘Ľđ?‘Ś đ?‘ƒđ?‘Ľ, đ?‘Ś(đ?‘Ľ, đ?‘Ś) đ??¸(đ?‘‹đ?‘Œ) = âˆŹ đ?‘Ľđ?‘Śđ?‘“(đ?‘Ľ, đ?‘Ś)đ?‘‘đ?‘Ľđ?‘‘đ?‘Ś when independent, đ??¸(đ?‘Ľđ?‘Ś) = đ??¸(đ?‘Ľ)đ??¸(đ?‘Ś) 1
2) Covariance - Strong relationship -> there is dependence between the 2 RVs -> if x is large, y is also large strong + rel. (+cov) -> if x is small, y is also small strong + rel. (+cov) -> if x is large, y is small, & vice versa -> strong – rel. (-cov.) -> if x & y are NOT strongly related, + & - products will ____ to cancel each other out, yielding cov=0
-
đ??śđ?‘œđ?‘Ł(đ?‘Ľ, đ?‘Ś) = đ??¸(đ?‘Ľđ?‘Ś) − đ??¸(đ?‘Ľ)đ??¸(đ?‘Ś) -> = 0 if independent -> = đ?‘Ł(đ?‘Ľ) if đ?‘?đ?‘œđ?‘Ł(đ?‘Ľ1 đ?‘Ľ)
3) Correlation Coefficient
đ?‘ƒđ?‘Ľđ?‘Ś =
đ??śđ?‘œđ?‘Ł(đ?‘Ľ,đ?‘Ś) √đ?‘Ł (đ?‘Ľ)đ?‘Ł(đ?‘Ś)
Corr ∈ [−1, 1]
-
-> 1->perfect +rel. -> near 0 -> absence of relationship -> -1 -> perfect –rel. đ??śđ?‘œđ?‘&#x;đ?‘&#x;(đ?‘Žđ?‘‹ + đ?‘?, đ?‘?đ?‘Œ + đ?‘‘) = đ??śđ?‘œđ?‘&#x;đ?‘&#x;(đ?‘‹, đ?‘Œ); where a,b,c,d are constants đ?‘ƒ = 1 or −1 iff đ?‘Œ = đ?‘Žđ?‘‹ + đ?‘? for some #s a and b with đ?‘Ž ≠0
Statistics and Their Distributions ď&#x192;&#x2DC; RVs are said to form a (simple) random sample of size n if: a) The đ?&#x2018;&#x2039;đ?&#x2018;&#x2013; â&#x20AC;&#x2122;s are independent RVs b) ___ đ?&#x2018;&#x2039;đ?&#x2018;&#x2013; has the same prob. Dist. ď&#x192;&#x2DC; Remarks: a) If SRSWR or from an infinite population, conditions are satisfied đ?&#x2018;&#x203A; b) Approx. satisfied if SRSWOR and n<<N (rule of thumb: â&#x2030;¤ 0.5) đ?&#x2018;
Statistic ď&#x192;&#x2DC; RV whose value depends on the observed sample & may vary from sample to sample ď&#x192;&#x2DC; Sampling distribution - probability distribution of a statistic - depend on the size of the pop., sample, and the method of choosing the sample - Standard Error -> standard des. of a statistic Normal Population 1. đ?&#x153;&#x17D; is known - đ??¸(đ?&#x2018;ĽĚ&#x2026; ) = đ?&#x153;&#x2021; -> sampling dist. has mean equal to population mean
-
đ?&#x2018;&#x2020;. đ??¸. (đ?&#x2018;ĽĚ&#x2026; ) =
-
đ?&#x2018;Łđ?&#x2018;&#x17D;đ?&#x2018;&#x;(đ?&#x2018;ĽĚ&#x2026; ) =
-
đ?&#x2018;ĽĚ&#x2026; â&#x2C6;ź đ?&#x2018; (đ?&#x153;&#x2021;,
đ?&#x153;&#x17D;
â&#x2C6;&#x161;đ?&#x2018;&#x203A; đ?&#x153;&#x17D;2
đ?&#x2018;&#x203A; đ?&#x153;&#x17D;2 đ?&#x2018;&#x203A;
= 1 (when standardized)
) 2
2. đ?&#x153;&#x17D; is unknown - đ??¸(đ?&#x2018;ĽĚ&#x2026; ) = đ?&#x153;&#x2021; đ?&#x2018;
-
đ?&#x2018;&#x2020;. đ??¸. (đ?&#x2018;ĽĚ&#x2026; ) =
-
đ?&#x2018;Łđ?&#x2018;&#x17D;đ?&#x2018;&#x;(đ?&#x2018;ĽĚ&#x2026; ) =
-
đ?&#x2018;ĽĚ&#x2026; â&#x2C6;ź đ?&#x2018;Ą (đ?&#x153;&#x2021;, đ?&#x2018;&#x203A; )
â&#x2C6;&#x161;đ?&#x2018;&#x203A; đ?&#x2018; 2 đ?&#x2018;&#x203A;
>1
đ?&#x2018; 2
- Degrees of freedom = n-1 - T-distribution!!! Non-Normal Population Type of Population FINITE
Sampling Method SRSWR
FINITE
SRSWOR
INFINITE
SRSWR SRSWOR
Mean & Variance
đ?&#x153;&#x17D;đ?&#x2018;Ľ 2 đ?&#x153;&#x2021;, đ?&#x2018;&#x203A; đ?&#x153;&#x17D;đ?&#x2018;Ľ 2 đ?&#x2018; â&#x2C6;&#x2019; đ?&#x2018;&#x203A; đ?&#x153;&#x2021;, ( ) đ?&#x2018;&#x203A; đ?&#x2018; â&#x2C6;&#x2019;1 đ?&#x153;&#x17D;đ?&#x2018;Ľ 2 đ?&#x153;&#x2021;, đ?&#x2018;&#x203A;
Central Limit Theorem ď&#x192;&#x2DC; If n is sufficiently large, that is đ?&#x2018;&#x203A; > 30, we can assume normality! Remarks
1. 2. 3. 4. 5. 6. 7. 8.
đ??¸(đ?&#x2018;Ľ1 Âą đ?&#x2018;Ľ2 Âą . . . Âąđ?&#x2018;Ľđ?&#x2018;&#x2DC; = đ??¸(đ?&#x2018;Ľ2 )Âą. . . Âąđ??¸(đ?&#x2018;Ľđ?&#x2018;&#x2DC; ) đ??¸(đ?&#x2018;&#x17D;đ?&#x2018;Ľđ?&#x2018;&#x2013; + đ?&#x2018;?) = đ?&#x2018;&#x17D;đ??¸(đ?&#x2018;Ľđ?&#x2018;&#x2013; ) + đ?&#x2018;? đ??¸(đ?&#x2018;&#x17D;đ?&#x2018;Ľ + đ?&#x2018;?đ?&#x2018;&#x152;) = đ?&#x2018;&#x17D;đ??¸(đ?&#x2018;Ľ) + đ?&#x2018;?đ??¸(đ?&#x2018;Ś) đ??¸(đ?&#x2018;Ľ1 đ?&#x2018;Ľ2 . . . đ?&#x2018;Ľđ?&#x2018;&#x2DC; ) = đ??¸(đ?&#x2018;Ľ1 )đ??¸(đ?&#x2018;Ľ2 ). . . đ??¸(đ?&#x2018;Ľđ?&#x2018;&#x2DC; ) -> where đ?&#x2018;Ľ1 đ?&#x2018;Ľ2 , đ?&#x2018;Ľ. .. are independent đ?&#x2018;Ł(đ?&#x2018;Ľ + đ?&#x2018;Ś) = đ?&#x2018;Ł(đ?&#x2018;Ľ) + đ?&#x2018;Ł(đ?&#x2018;Ś) + 2đ??śđ?&#x2018;&#x153;đ?&#x2018;Ł(đ?&#x2018;&#x2039;, đ?&#x2018;&#x152;) -> if independent, Cov = 0 đ?&#x2018;Ł(đ?&#x2018;Ľ â&#x2C6;&#x2019; đ?&#x2018;Ś) = đ?&#x2018;Ł(đ?&#x2018;Ľ) + đ?&#x2018;Ł(đ?&#x2018;Ś) â&#x2C6;&#x2019; 2đ??śđ?&#x2018;&#x153;đ?&#x2018;Ł(đ?&#x2018;&#x2039;, đ?&#x2018;&#x152;) -> if independent, Cov = 0 đ?&#x2018;Ł(đ?&#x2018;&#x17D;đ?&#x2018;Ľ + đ?&#x2018;?đ?&#x2018;Ś) = đ?&#x2018;&#x17D;2 đ?&#x2018;Ł(đ?&#x2018;Ľ) + đ?&#x2018;? 2 [đ?&#x2018;Ł(đ?&#x2018;Ś)] + 2đ?&#x2018;&#x17D;đ?&#x2018;?đ??śđ?&#x2018;&#x153;đ?&#x2018;Ł(đ?&#x2018;&#x2039;, đ?&#x2018;&#x152;) -> if independent, Cov = 0 If đ?&#x2018;&#x2039;1 , đ?&#x2018;&#x2039;2 , . . . , đ?&#x2018;&#x2039;đ?&#x2018;&#x2DC; are uncorrelated RVs, then đ?&#x2018;Ł(â&#x2C6;&#x2018;đ?&#x2018;&#x2DC;đ?&#x2018;&#x2013;=1 đ?&#x2018;&#x17D;đ?&#x2018;&#x2013; đ?&#x2018;&#x2039;đ?&#x2018;&#x2013; = â&#x2C6;&#x2018;đ?&#x2018;&#x2DC;đ?&#x2018;&#x2013;=1 đ?&#x2018;&#x17D;đ?&#x2018;&#x2013; 2 đ?&#x2018;Ł(đ?&#x2018;&#x2039;đ?&#x2018;&#x2013; )
CREDITS: Notes by Camille Salazar Encoded by Gerald Roy CampaĂąano
3