Лекция 4

Page 1

«

А

4.

»

.

:

А .

,

0. Э

. ,

Q T

T

QQ  Q Q  E , E -

.

,

,

.

QT  Q 1 . :

,

(Qx, Qy)  ( x, y) ;

,

Qx 2  x 2 ; , y.

Qy

,

x

Qx А

. А .

,

cos  Q  sin  » : 1  0   

«

 sin  . cos  

,

0  1  .  

: Q,

© . .

,

.

.

(

.

,

):

,


«

»

1 cos  0  sin  , Q    Q     . 0  sin   1  cos  

атр ц

Q

.

,

вращ

я

р тат р

.

x  x   1 ,  x2 

ё  y QT x    0

,

0.

:  cos  sin    x1   x1 cos   x2 sin   QT x   .      sin  cos   x2   x1 sin   x2 cos   y QT x    , 0 x1 sin   x2 cos  .

,

:

cos  

x1 x12  x22

x2

, sin  

,

x12  x22

y  x12  x22 . a12  a A   11 . a 21 a 22   a  r  2 2 QT  11    11  , . r11  a11  a21 a12   0 

Q,

,

r  r R   11 12  .  0 r22  QT A  R , A

R.

.

A  QR . . :

А

Ax  b

,

Q

Rx  y , Qy  b . y

:

y  QT b . © . .

,

.

,

LU

.

,

,


«

»

x

.

(

QR

Э

А «

.

)

, »

Ax  b .

c12 

.

,

. a11

x1

А A

2 2  a 21 a11

« «

, s12 

»

. , n-1

.

»

:

a 21

.

2 2  a 21 a11

2 2 c12  s12  1 ,  s12 a11  c12 a21  0 .

Ax  b

,

c12 s12 : (a11c12  a21s12 ) x1  (a12 c12  a22 s12 ) x2  ...  (a1n c12  a2n s12 ) xn  b1c12  b2 s12 . Ax  b ,  s12 c12 : (a12 s12  a22 c12 ) x2  ...  (a1n s12  a2n c12 ) xn  b1s12  b2 c12 , 0. x1  c12  s  12 T12   0   ...  0

T12 Ax  T12b ,

«

: 0 ... 0 0 ... 0 1 ... 0 .  ... ... 0 0 0 1

s12 c12 0 ... 0 x1

»

. .

:

c13 

(1) a11

 

(1) 2 a11

, s13 

2  a31

a31

 

(1) 2 a11

2  a31

(1) 2 2 c13  s13  1 ,  s13a11  c12 a31  0 .

« «

»

a11 .

»

А

T13T12 Ax  T13T12b .

(1) a11 -

: .

x1

© . .

.

, , 0: T1n ...T13T12 Ax  T1n ...T13T12b . ,

.

.

,

,

,


«

, k -

Tkl -

»

, l -

,

. «

, . . . x2 T2n ...T24T23T1n ...T13T12 Ax  T2n ...T24T23T1n ...T13T12b . 0 ,

.

»

.

n-1 T  Tn1, n ...T2n ...T24T23T1n ...T13T12 Rx  Tb , R  TA .

Q  T 1  T T . , . А

A  QR ,

,

А , ,

.

T

А А

w -

.

w  wT w  1 .

-

H  E  2wwT атр ц тра я. E -

(Alston Scott Householder)

.

x

H:

T

y  Hx  x  2ww x  x  2( x, w)w . w, x  w , : y  x  2w  x  2 x   x . w, ( x, w)  0 ,

x

x ,

w,

,

тра а т.

, y  Hx  x .

( x, w)  (w, w)   .

, y  x.

,

w, (

)

,

© . .

x e1  (1,0,0,...,0)T , , «

,

, ,

.

.

,

»

,

,

y  ( y1 ,0,0,...,0)T .

w

. ,

y


«

1 ~ : w ~ w  w

,

1 ~ w. ~T w ~ w

~  x x e w 1 ,

~  x x e . w 1

ё

w

»

,

, , ,

.

~ w

x1

x ,

w, ,

,

x .

x1

x

 x . A n-1

.

.

A.

H1  E  2w1w1T .

w1 A1  H1 A , 1 a11   0 A1   0   ...   0

... a11n   a123 ... a12n  a133 ... a13n  .  ... ... ...   a1n3 ... a1nn 

1 a12

1 a13

a122 a132 ... a1n 2

, .

H2 1 0  H 2  0  ...  0 ,

0 ... 0  * ... *  * ... *  .  ... ... ... * ... * 

0 * * ... *

A2  H 2 A1 .

A1

© . .

ё

A1

,

.

.

,

,

:


«

1 a11   0 A2  H 2 H1 A   0   ...   0

»

... a11n   2 a 23 ... a 22n  2 a33 ... a32n  .  ... ... ...  2  a n23 ... a nn 

1 a12

1 a13

2 a 22

0 ... 0

n-1 R  An 1  H n 1...H 2 H1 A  QT A ,

A  QR ,

Q  H1H 2 ...H n 1 .

,

A T

Rx  Q b .

b

,

,

.

А QR Q –

A,

,

QR

. Э ,

, QR-

R – . , .Э

QR

.

QR A

)

(

R.

, Э

.

,

,

.

,

,

.

,

,

1,

,

. .

А .

© . .

,

.

.

. .

,

,

,


«

   

MatLab MatLab

QR -Ш

; Ш QR

; ; MatLab

.

;

© . .

,

.

.

,

,

»


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.