2 minute read

The Robot Report

boundaries of what’s possible. Let’s take a look at two of the most recognizable humanoids that are currently functional.

Boston Dynamics - Atlas

Boston Dynamics Atlas is likely the most famous (real) humanoid ever produced. Atlas has been featured in a number of YouTube videos and even a Super Bowl commercial, as it performed a number of dance moves and demonstration moves on parkour courses. These videos have garnered millions of views on YouTube.

For all of its amazing abilities, Atlas remains an R&D project, and there are no plans to commercialize Altas in its current form. In fact, Atlas only operates within the confines of Boston Dynamics' headquarters in Waltham, Mass.

Atlas uses high-pressure hydraulic actuation to move its joints. That would likely have to change before Atlas is suitable for real-world work. Boston Dynamics has leveraged the R&D from Atlas to develop the commerciallyavailable Spot quadruped.

Agility Robotics - Digit

Agility Robotics is currently the only commercially-available humanoid designed for production work and being manufactured in large volumes. The company introduced the fourthgeneration Digit earlier in 2023 and is taking orders for warehousing applications.

Digit's most unique feature is that its knees bend backward. Its legs are derived from the legs of birds and provide a highly efficient kinematic model that is responsive to unexpected inputs while being energy efficient.

Agility Robotics currently holds the land speed record for a legged robot in part because of this unique design.

Race is underway

The race is on to design and commercialize the next generation of humanoids. Several companies have raised large funding rounds to support these endeavors.

Here is a wishlist of capabilities for this first generation of humanoids:

Physical proportions of an average human: 155-175 cm (61 in - 69 in);

~70 kg (155 lbs)

Minimum 4-hour battery life

Bipedal kinematics

Two arms with functional end-ofarm tooling or hands

AI sufficient to learn from human demonstration and communicate in real-time

Hand and finger design will be a major differentiator for this first generation of humanoid robots. Recreating a mechanical hand with four fingers and an opposable thumb that is analog to the human hand remains a difficult engineering challenge. Most of the robotics companies we highlight in the next section are designing highlyfunctional hands.

The challenge with hand design is building a hand with the desired flexibility and strength, while still being able to be manufactured at a low cost and be robust enough to survive dayto-day operations in a commercial deployment.

Agility Robotics made a key decision not to implement a high degree of freedom (DOF) hand in Digit, primarily because the robot isn't deployed into use cases where this is a requirement. Digit has a simple yet robust hand design that enables it to pick up and carry fully loaded totes and boxes within a warehouse. A higher DOF hand may be on the future roadmap for Digit once the market demands it.

The primary requirement for a functional humanoid will be to operate effectively within humanbuilt environments. These robots will be deployed into work environments already occupied by humans, and work side by side with human workers. These operating environments will include manufacturing facilities, warehouses, offices, and hospitals. The goal is not to change any of these environments to fit the robots, but rather for the robots to be adaptive to these environments.

Rotary Actuators with Integrated Servo Drive

The IDT Series is a family of compact actuators with an integrated servo drive with CANopen® communication. They deliver high torque with exceptional accuracy and repeatability, and feature Harmonic Drive® precision strain wave gears combined with a brushless servomotor. Some models are available with a brake and two magnetic absolute encoders with the second providing output position sensing. This revolutionary product line eliminates the need for an external drive and greatly simplifies cabling, yet delivers high-positional accuracy and torsional stiffness with a compact form factor.

• Actuator with Integrated Servo Drive utilizing CANopen®

• 24 or 48 VDC nominal supply voltage

• A single cable with only 4 conductors is needed: CANH, CANL, +VDC, 0VDC

• Zero Backlash Harmonic Drive® Gearing

• Panel Mount Connectors or Pigtail Cables Available with Radial and Axial Options

• Control Modes include: Torque, Velocity, and Position Control, CSP, CSV, CST

This article is from: