6 minute read
INTRODUCING THE WORLD’S SMALLEST MULTI-TURN KIT ENCODERS
Miniature Package for Servomotors, Stepper Motors and Microdrives
22 mm diameter, 23 mm depth.
Full multi-turn functionality with maintenance-free rotation counterno backup batteries needed!
17-bit resolution, 32-bit rotation measurement range.
Self-calibration simplifies assembly.
SSI and BiSS C interfacesno license fees.
Find what you need with POSITAL’s online Product Finder. www.posital.com
1X - Neo
1X (formerly Halodi Robotics) has already successfully commercialized its first solution Eve, a wheeled, self-balancing humanoid-like robot. Neo is positioned to be a true humanoid with bipedal legged motion and functional hands.
The company raised an additional $23.5 million in Series A funding in March 2023 that included OpenAI as one of the investors. “1X is at the forefront of augmenting labor through the use of safe, advanced technologies in robotics,” said Brad Lightcap, OpenAI’s COO and manager of the OpenAI Startup Fund. “The OpenAI Startup Fund believes in the approach and impact that 1X can have on the future of work.”
Effectively, 1X is ready to graft the body of Eve to a bipedal leg base for this new generation of robots. The company has already developed autonomous navigation and facility mapping capabilities with Eve. The company has announced that Neo will be released in late 2023.
Sanctuary.AI - Phoenix
Sanctuary.AI is a Canadian company that has demonstrated five generations of its Phoenix robot. The soon-to-be-released sixth generation will be Sanctuary’s first true humanoid with legs and bipedal motion. Prior generations have evolved the torso, arms, and head of the robot.
With the early versions of Phoenix, Sanctuary developed its Carbon AI software. The company has been prolific over the last year publishing a number of YouTube videos that highlight the evolving capabilities of the early generations of Phoenix.
Sanctuary.AI is targeting late 2023 for a release of the bipedal edition of Phoenix. The robot will have a height of 170 cm and weigh 70 kg
Apptronik - Apollo
Apptronik has developed and delivered several generations of humanoid exoskeletons for the U.S. Department of Defense. From this work, the company developed Astra, its firstgeneration humanoid form factor. Similar to the strategy of Sanctuary.AI, Astra was developed as a torso-only demo unit with functional arms and hands. Apptronik developed hand-eye coordination for Astra to pick up and manipulate items.
The Austin, Texas-based company is expected to release a completely new humanoid in late summer 2023 called Apollo. There are no pictures of Apollo available yet, but I got a sneak peek of a prototype during a recent visit to Apptronik's headquarters. It has developed all of the kinematics for bipedal motion through its exoskeleton projects.
Apollo will be different from other robots on the market because its joints will be actuated by a novel actuator design. Apptronik expects this novel design feature will help reduce costs, reduce complexity, and eliminate failure points while giving joints and limbs the stiffness and actuation they require.
Figure.AI - Figure 01
With the exception of Tesla and Agility Robotics, Figure AI is one of the bestfunded companies in the humanoid race, having raised over $70 million in Series A funding. Our recent podcast conversation with co-founder and CEO Brett Adcock highlighted the progress the company is making toward the first generation of its Figure 01 humanoid.
Founded in 2022, the company has assembled an all-star engineering team with decades of humanoid experience from companies such as Boston Dynamics, Toyota Research Institute, the Institute for Human Machine Cognition, Agility Robotics, Google, and Apple.
Adcock is an experienced startup executive who has successfully launched two prior businesses. He sees humanoid development as a challenging problem, but he has a pragmatic approach to solving the big issues and has assembled all of the elements necessary to deliver a viable solution in this market. Figure AI is also teasing a late 2023 launch of its first product.
Tesla Optimus
In a famous live event, Tesla CEO Elon Musk demonstrated the first walking prototype of its Optimus humanoid. The robot tentatively made its first steps on a stage, and Musk announced this was the first time Optimus walked untethered.
Advanced Products for Robotics and Automation
CGI Motion standard products are designed with customization in mind. Our team of experts will work with you on selecting the optimal base product and craft a unique solution to help di erentiate your product or application. So when you think customization, think standard CGI assemblies.
Connect with us today to explore what CGI Motion can do for you. copyright©2021
With this demonstration, Tesla also threw its collective hat into the humanoid race. However, as amazing as it might have been to see Optimus walking on stage, the most amazing thing Musk announced was the $20,000 price. At a time in robotics when most (stationary) collaborative robots cost more than that, this milestone seems unrealistic.
However, one advantage for the Tesla Optimus engineering team is that they have an in-house and captive market for Optimus. The team is working with Tesla's automotive production team to define the use cases for a humanoid. Almost all of the released footage of Optimus shows it operating within a Tesla production facility. Before Optimus is ever released publicly, it will have deployed and iterated on multiple generations within Tesla.
In the months since that first demo, Tesla has continued to release additional videos of Optimus robots performing tasks. Optimus is likely one of the best-funded humanoid development projects, but Tesla has stated it may be 2027 before the product is commercially available.
Xiaomi CyberOne
Xiaomi is one of the largest smartphone manufacturers in Asia, and a public company worth well over $40 billion. The company knows how to design, build, sell, and support consumer electronics. In teasing its CyberOne humanoid, the company generated slick 3D animations of CyberOne, but only one video of real footage of CyberOne onstage with CEO Lei Jun during a launch event.
CyberOne has only been shown with a two-degree of freedom hand/wrist/ finger. This is a much simpler design than companies like Tesla, Figure, Sanctuary, and Apptronik are promising. However, this simplified but robust hand design might be more appropriate for a highend, consumer-style humanoid.
The CyberOne robot is 177 cm and weighs 52 kg, and the list price for the robot has been stated to be $100,000. The company is teasing a 2023 release date for CyberOne, but no more information has been released about the reality of this timeframe.
Fourier Intelligence
GR-1
The Figure 01 humanoid took its first steps in May 2023 –less than one year from the company’s inception.
| Figure
Shanghaibased Fourier Intelligence has produced exoskeletons since 2017. The company recently unveiled its first-generation humanoid called GR-1. Standing 1.65 meters tall and weighing 55 kilograms, GR-1 has 40 degrees of freedom (actuators) all over its body. With a peak torque of 300NM generated by a joint module installed at the hip, the robot can walk at 5 km per hour and carry objects of 50 kg.
The company designed and developed the Fourier Smart Actuator (FSA) all-in-one actuator series as a high-performance, low-cost actuator. The FSA is core to the design of the company's exoskeletons and now the GR-1.
Fourier is also incorporating AI tools such as ChatGPT into the robot's interaction model to enable more natural interaction with the humans with whom the GR-1 will collaborate. Fourier Intelligence is investigating opportunities to deploy the robot for disaster relief and response, senior care, and household service.
The year ahead
The next 12 months will be an exciting period with at least five companies promising to release their firstgeneration humanoids. The key question is just how functional these new robots will be when they are initially released. But difficult challenges still abound:
Safety will be key: Another hurdle for all of these systems is safety. It's scary to think about what happens when a 70 kg (155 lb) robot fails and collapses to the ground. If one of these robots loses its footing and either tries to compensate to rebalance or falls over, it could injure nearby humans or damage property. We've all seen and laughed at the videos of Boston Dynamics Atlas being bullied by a handler with a hockey stick, but it's no joking matter when these robots are working around the general public and non-professional users.
Containing system cost:
There is little doubt these systems will be the most complex, autonomous robots ever developed. But a significant commercialization challenge will be to minimize the bill of materials and develop robust and easily maintainable components. Component costs and the overall system price will be key differentiators for these systems.
It's expected that humanoids will eventually be collaborative, working together with humans. The safety features, recovery algorithms, and protocols developed by the various humanoid manufacturers remain important areas of research and development. It will be necessary for all of these vendors to demonstrate that their humanoids are well-behaved and have predictable failure modes before the systems are cleared for deployment.
To help with some of these development challenges, ASTM International recently created a legged robotics subcommittee. The subcommittee will focus on testing and performance standards for legged robots, including humanoids, that operate semiautonomously or in fully automated modes. RR