C H A P T E R 1 Limits and Their Properties Section 1.1
A Preview of Calculus . . . . . . . . . . . . . . . . . . . . 27
Section 1.2
Finding Limits Graphically and Numerically . . . . . . . . 27
Section 1.3
Evaluating Limits Analytically
Section 1.4
Continuity and One-Sided Limits . . . . . . . . . . . . . . 37
Section 1.5
Infinite Limits . . . . . . . . . . . . . . . . . . . . . . . . 42
. . . . . . . . . . . . . . . 31
Review Exercises
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Problem Solving
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
C H A P T E R 1 Limits and Their Properties Section 1.1
A Preview of Calculus
Solutions to Odd-Numbered Exercises 1. Precalculus: 20 ft sec 15 seconds 300 feet
3. Calculus required: slope of tangent line at x 2 is rate of change, and equals about 0.16.
5. Precalculus: Area 12 bh 12 5 3 15 2 sq. units
7. Precalculus: Volume 2 4 3 24 cubic units
9. (a)
6
(1, 3) −4
8 −2
(b) The graphs of y2 are approximations to the tangent line to y1 at x 1. (c) The slope is approximately 2. For a better approximation make the list numbers smaller:
0.2, 0.1, 0.01, 0.001 11. (a) D1 5 1 2 1 5 2 16 16 5.66 5 5 5 5 5 5 (b) D2 1 2 1 2 3 1 3 4 1 4 1 2
2
2
2
2.693 1.302 1.083 1.031 6.11 (c) Increase the number of line segments.
Section 1.2 1.
x
1.9
1.99
1.999
2.001
2.01
2.1
f x
0.3448
0.3344
0.3334
0.3332
0.3322
0.3226
lim
x→2
3.
Finding Limits Graphically and Numerically
x 2 0.3333 x2 x 2
0.1
x f x lim
x→0
0.01
0.2911
0.001
0.2889
x 3 3
x
Actual limit is 13 .
0.2887
0.2887
0.001
0.01
0.1
0.2887
0.2884
0.2863
Actual limit is 1 2 3 .
27
28
Chapter 1
5.
x
2.9
f x
0.0641
lim
x→3
7.
Limits and Their Properties
2.999
3.001
3.01
3.1
0.0627
0.0625
0.0625
0.0623
0.0610
1 x 1 1 4 0.0625 x 3
0.1
x
2.99
f x
0.01
0.9983
lim
x→0
0.001
0.99998
sin x 1.0000 x
Actual limit is 161 .
1.0000
0.001
0.01
0.1
1.0000
0.99998
0.9983
(Actual limit is 1.) (Make sure you use radian mode.)
11. lim f x lim 4 x 2
9. lim 4 x 1
x→2
x→3
13. lim
x→2
x 5 does not exist. For values of x to the left of 5, x 5 x 5 equals 1,
x 5 whereas for values of x to the right of 5, x 5 x 5 equals 1. x→5
15. lim tan x does not exist since the function increases and x→ 2
17. lim cos 1 x does not exist since the function oscillates x→0
between 1 and 1 as x approaches 0.
decreases without bound as x approaches 2. 19. C t 0.75 0.50 t 1
(a)
(b)
3
t
3
3.3
3.4
3.5
3.6
3.7
4
C 1.75
2.25
2.25
2.25
2.25
2.25
2.25
2.5
2.9
3
3.1
3.5
4
1.75
1.75
1.75
2.25
2.25
2.25
lim C t 2.25
t→3.5
(c)
5
0 0
t
2
C 1.25
lim C t does not exist. The values of C jump from 1.75 to 2.25 at t 3. t→3
21. You need to find such that 0 < x 1 < implies 1 f x 1 1 < 0.1. That is, x
0.1 <
1 1 < 0.1 x
1 0.1 <
1 x
< 1 0.1
9 < 10
1 x
11 < 10
10 > 9
x
>
10 11
10 10 1 > x 1 > 1 9 11 1 1 > x 1 > . 9 11
So take
1 . Then 0 < x 1 < implies 11
1 1 < x 1 < 11 11
1 1 < x 1 < . 11 9
Using the first series of equivalent inequalities, you obtain
f x 1
1 1 < < 0.1. x
Section 1.2 23. lim 3x 2 8 L x→2
3x 2 8 3x 6 3 x 2
< 0.01 < 0.01 < 0.01
0.01 0.0033 3 0.01 Hence, if 0 < x 2 < , you have 3
0 < x 2 <
3x 6 < 0.01 3x 2 8 < 0.01 f x L < 0.01 3 x 2 < 0.01
27. lim x 3 5
Finding Limits Graphically and Numerically
25. lim x2 3 1 L x→2
x2 3 1 x2 4 x 2 x 2 x 2 x 2
< 0.01 < 0.01
If we assume 1 < x < 3, then 0.01 5 0.002.
Hence, if 0 < x 2 < 0.002, you have 1
x 2 x 2 < 0.01 x2 4 < 0.01 x2 3 1 < 0.01 f x L < 0.01
12 x 1 12 4 1 3
x 1 3 < x 2 <
<
1 2
<
Hence, let .
1 2
1 2
Hence, if 0 < x 2 < , you have
x 2 <
x 3 5 < f x L <
x 4 x 4
< < 2
Hence, let 2 .
Hence, if 0 < x 4 < 2 , you have
x 4 < 2
x 2 x 1 3 1 2
1 2
< <
f x L <
31. lim 3 3
3 33. lim x 0
x→6
x→0
Given > 0:
x <
3 x 0 < Given > 0:
3 3 <
3
x
0 <
< 3
Hence, any > 0 will work.
Hence, let 3.
Hence, for any > 0, you have
Hence for 0 < x 0 < 3, you have
1
x 2 < 0.002 5 0.01 < x 2 0.01
Given > 0:
x 3 5 x 2
< 0.01
0.01
x→ 4
Given > 0:
< 0.01
x 2 < x 2
29. lim
x→2
f x L < 3 3 <
29
x < < 3 x 0 < f x L <
3
3 x
30
Chapter 1
Limits and Their Properties
35. lim x 2 2 2 4 x→ 2
37. lim x2 1 2 x→1
Given > 0:
Given > 0:
x 2 4 x 2 4 x 2 x 2 x 2
x2 1 2 x2 1 x 1 x 1
<
x 2 < 0
< <
Hence, .
x 2 < x 2 4 < x 2 4 < f x L <
If we assume 0 < x < 2, then 3.
Hence for 0 < x 1 < , you have 3
1
1
x2 1 < x2 1 2 < f x 2 < x 9
0.5
41. f x
x 4 1 6
x 1 < 3 < x 1
(because x 20)
x 5 3
lim f x
<
x 2 <
x→4
<
x 1 < x 1
Hence for 0 < x 2 < , you have
39. f x
<
−6
10
x 3
lim f x 6
6
x→9
−0.1667
0
10 0
The domain is 5, 4 4, . 1 The graphing utility does not show the hole at 4, 6 .
The domain is all x ≥ 0 except x 9. The graphing utility does not show the hole at 9, 6 .
43. lim f x 25 means that the values of f approach 25 as x gets closer and closer to 8. x→8
45. (i) The values of f approach different numbers as x approaches c from different sides of c:
(ii) The values of f increase without bound as x approaches c:
(iii) The values of f oscillate between two fixed numbers as x approaches c:
y
y
y
6
4
5
3
4
2
3
4 3
2
1
1
x
−4 −3 −2 −1 −1
1
2
3
4
−3 −2 −1 −1
3
4
−3
−4
−4
47. f x 1 x 1 x lim 1 x 1 x e 2.71828
x→0
y 7
3
(0, 2.7183)
2 1 −3 −2 −1 −1
x 1
2
2
5
−2
−3
x
−4 −3 −2
x 2
3
4
5
x
f x
x
f x
0.1
2.867972
0.1
2.593742
0.01
2.731999
0.01
2.704814
0.001
2.719642
0.001
2.716942
0.0001
2.718418
0.0001
2.718146
0.00001
2.718295
0.00001
2.718268
0.000001
2.718283
0.000001
2.718280
3
4
Section 1.3 49. False; f x sin x x is undefined when x 0. From Exercise 7, we have lim
x→0
51. False; let f x
sin x 1. x
Evaluating Limits Analytically
31
53. Answers will vary.
x10, 4x, 2
x 4 . x 4
f 4 10 lim f x lim x2 4x 0 10
x→4
x→4
55. If lim f x L1 and lim f x L2, then for every > 0, there exists 1 > 0 and 2 > 0 such that x c < 1 ⇒ f x L1 < and x→c
x→c
x c < 2 ⇒ f x L2 < . Let equal the smaller of 1 and 2. Then for x c L1 L2 L1 f x f x L2 ≤ L1 f x f x L2 < . Therefore, L1 L2 < 2 . Since > 0 is arbitrary, it follows that L1 L2.
< , we have
57. lim f x L 0 means that for every > 0 there exists > 0 such that if x→c
0 < x c < , then
f x L 0
< .
This means the same as f x L < when 0 < x c < .
Thus, lim f x L. x→c
Section 1.3 1.
Evaluating Limits Analytically (a) lim h x 0
7
x→5
−8
3.
(b) lim h x 6
x→0
π
−π
x→ 1
13
(a) lim f x 0
4
−7
(b) lim f x 0.524
−4
h x x2 5x
f x x cos x 7. lim 2x 1 2 0 1 1
5. lim x4 24 16 x→2
x→0
9. lim x2 3x 3 2 3 3 9 9 0 x→ 3
11. lim 2x2 4x 1 2 3 2 4 3 1 18 12 1 7 x→ 3
13. lim
x→2
17. lim
x→7
1 1 x 2 5x
x 2
15. lim
x→1
5 7
7 2
35
9
35 3
x 3 1 3 2 2 x2 4 12 4 5 5
19. lim x 1 3 1 2 x→3
x→ 3
6
32
Chapter 1
Limits and Their Properties
21. lim x 3 2 4 3 2 1
23. (a) lim f x 5 1 4
x→ 4
x→1
(b) lim g x 43 64 x→4
(c) lim g f x g f 1 g 4 64 x→1
25. (a) lim f x 4 1 3
27. lim sin x sin x→ 2
x→1
(b) lim g x 3 1 2
1 2
x→3
(c) lim g f x g 3 2 x→1
29. lim cos x→2
33.
x 2 1 cos 3 3 2
lim sin x sin
x→5 6
31. lim sec 2x sec 0 1 x→0
5 1 6 2
35. lim tan x→3
37. (a) lim 5g x 5 lim g x 5 3 15 x→c
x→c
(b) lim f x g x lim f x lim g x 2 3 5 x→c
x→c
x→c
(c) lim f x g x lim f x lim g x 2 3 6 x→c
x→c
x→c
lim f x
f x 2 x→c (d) lim x→c g x lim g x 3
39. (a) lim f x 3 lim f x 3 4 3 64 x→c
x→c
(b) lim f x lim f x 4 2 x→c
x→c
(c) lim 3 f x 3 lim f x 3 4 12 x→c
x→c
(d) lim f x 3 2 lim f x 3 2 4 3 2 8 x→c
x→c
41. f x 2x 1 and g x x 0.
4x tan 34 1
2x2 x agree except at x
x→c
43. f x x x 1 and g x
x3 x agree except at x 1. x 1
(a) lim g x lim f x 1
(a) lim g x lim f x 2
(b) lim g x lim f x 3
(b) lim g x lim f x 0
x→0
x→ 1
45. f x
x→1
x→0
x→ 1
x→ 1
x2 1 and g x x 1 agree except at x 1. x 1
lim f x lim g x 2
x→ 1
x→1
47. f x x 2.
x→ 1
x→ 1
x3 8 and g x x2 2x 4 agree except at x 2
lim f x lim g x 12
x→2
3
x→2
12 −3
4
−4
−9
9 0
49. lim
x→5
x 5 x 5 lim x2 25 x→5 x 5 x 5 lim
x→5
1 1 x 5 10
51. lim
x→ 3
x2 x 6 x 3 x 2 lim x→ 3 x 3 x 3 x2 9 lim
x→ 3
x 2 5 5 x 3 6 6
Section 1.3
53. lim
x 5 5
lim
x
x→0
lim
x→0
55. lim
x 5 3
x 4
x→4
x 5 5
lim
x→4
x 5 5
x 5 5
5 x 5 5 1 1 lim x x 5 5 x→0 x 5 5 2 5 10
x 5 3
x 4
x→4
lim
x
x→0
Evaluating Limits Analytically
x 5 3
x 5 3
1 x 5 9 1 1 lim x 4 x 5 3 x→4 x 5 3 9 3 6
1 1 2 2 x 1 1 2 x 2 2 2 x 57. lim lim lim x→0 x→0 x→0 2 2 x x x 4
59. lim
x→0
2 x x 2x 2x 2 x 2x lim lim 2 2
x→0
x→0
x
x
x x 2 2 x x 1 x2 2x 1 x2 2x x x 2 2x 2 x 1 x2 2x 1 lim
x→0
x→0
x
x
61. lim
lim 2x x 2 2x 2
x→0
63. lim
x 2 2
x→0
x
x
0.1
f x
0.354 0.01
0.358
2
0.001
0
0.001
0.01
0.1
0.345
?
0.354
0.353
0.349
0.354
−3
3
−2
Analytically, lim
x 2 2
x
x→0
lim
x 2 2
x
x→0
lim
x→0
x 2 2
x 2 2
x 2 2
x x 2 2
lim
x→0
1
x 2 2
1 2 2
2
4
1 1 2 x 2 1 65. lim x→0 x 4
0.354
3
−5
x
0.1
0.01
0.001
0
0.001
f x
0.263
0.251
0.250
?
0.250
1 1 2 x 2 2 2 x Analytically, lim lim x→0 x→0 x 2 2 x
1
0.01
0.1
0.249
0.238
x
1
1
−2
1
1
lim . x x→0 lim 2 2 x x x→0 2 2 x 4
33
34
Chapter 1
67. lim
xâ&#x2020;&#x2019;0
Limits and Their Properties
sin x lim xâ&#x2020;&#x2019;0 5x
sin x x
15 1 15 51
69. lim
xâ&#x2020;&#x2019;0
1 sin x 1 cos x lim xâ&#x2020;&#x2019;0 2 2x2
sin x x
1 cos x x
1 1 0 0 2
1 cos h 2 1 cos h 1 cos h lim hâ&#x2020;&#x2019;0 hâ&#x2020;&#x2019;0 h h
sin2 x sin x lim sin x 1 sin 0 0 xâ&#x2020;&#x2019;0 xâ&#x2020;&#x2019;0 x x
71. lim
73. lim
0 0 0
75. lim
xâ&#x2020;&#x2019; 2
cos x lim sin x 1 xâ&#x2020;&#x2019; 2 cot x
79. f t
f t
tâ&#x2020;&#x2019;0
sin 3t sin 3t lim tâ&#x2020;&#x2019;0 2t 3t
4
0.01
2.96
0.001
2.9996
3
0
0.001
0.01
0.1
?
3
2.9996
2.96
â&#x2C6;&#x2019; 2
2 â&#x2C6;&#x2019;1
The limit appear to equal 3.
sin 3t sin 3t lim 3 3 1 3. tâ&#x2020;&#x2019;0 tâ&#x2020;&#x2019;0 t 3t
Analytically, lim
81. f x
32 1 32 23
sin 3t t 0.1
t
77. lim
sin x2 x
1
â&#x2C6;&#x2019; 2
x
0.1
0.01 0.001 0 0.001 0.01 0.1
f x
0.099998 0.01 0.001 ? 0.001 0.01 0.099998
2
â&#x2C6;&#x2019;1
sin x2 sin x2 lim x 0 1 0. xâ&#x2020;&#x2019;0 xâ&#x2020;&#x2019;0 x x2
Analytically, lim
83. lim
hâ&#x2020;&#x2019;0
f x h f x 2 x h 3 2x 3 2x 2h 3 2x 3 2h lim lim lim 2 hâ&#x2020;&#x2019;0 hâ&#x2020;&#x2019;0 hâ&#x2020;&#x2019;0 h h h h
4 4 4 4 f x h f x 4x 4 x h x h x 85. lim lim lim lim 2 hâ&#x2020;&#x2019;0 x h x hâ&#x2020;&#x2019;0 hâ&#x2020;&#x2019;0 hâ&#x2020;&#x2019;0 h h x h xh x 87. lim 4 x2 â&#x2030;¤ lim f x â&#x2030;¤ lim 4 x2 xâ&#x2020;&#x2019;0
xâ&#x2020;&#x2019;0
xâ&#x2020;&#x2019;0
89. f x x cos x 4
4 â&#x2030;¤ lim f x â&#x2030;¤ 4 xâ&#x2020;&#x2019;0
Therefore, lim f x 4. xâ&#x2020;&#x2019;0
â&#x2C6;&#x2019; 3 2
3 2
â&#x2C6;&#x2019;4
lim x cos x 0
xâ&#x2020;&#x2019;0
Section 1.3
91. f x x sin x
93. f x x sin
6
2
1 x
â&#x2C6;&#x2019;0.5
0.5
â&#x2C6;&#x2019;6
â&#x2C6;&#x2019;0.5
lim x sin x 0
lim x sin
xâ&#x2020;&#x2019;0
95. We say that two functions f and g agree at all but one point (on an open interval) if f x g x for all x in the interval except for x c, where c is in the interval.
1 0 x
97. An indeterminant form is obtained when evaluating a limit using direct substitution produces a meaningless fractional expression such as 0 0. That is, lim
xâ&#x2020;&#x2019;c
f x g x
for which lim f x lim g x 0 xâ&#x2020;&#x2019;c
99. f x x, g x sin x, h x
When you are â&#x20AC;&#x153;close toâ&#x20AC;? 0 the magnitude of f is approximately equal to the magnitude of g. Thus, g f 1 when x is â&#x20AC;&#x153;close toâ&#x20AC;? 0.
f h
â&#x2C6;&#x2019;5
xâ&#x2020;&#x2019;c
sin x x
3
g
5
â&#x2C6;&#x2019;3
101. s t 16t2 1000 lim tâ&#x2020;&#x2019;5
s 5 s t 600 16t2 1000 16 t 5 t 5 lim lim lim 16 t 5 160 ft sec. tâ&#x2020;&#x2019;5 tâ&#x2020;&#x2019;5 tâ&#x2020;&#x2019;5 5 t 5 t t 5
Speed 160 ft sec 103. s t 4.9t2 150 s 3 s t 4.9 32 150 4.9t2 150 4.9 9 t2 lim lim tâ&#x2020;&#x2019;3 tâ&#x2020;&#x2019;3 tâ&#x2020;&#x2019;3 3 t 3 t 3 t
lim
lim
xâ&#x2020;&#x2019;3
4.9 3 t 3 t lim 4.9 3 t 29.4 m sec xâ&#x2020;&#x2019;3 3 t
105. Let f x 1 x and g x 1 x. lim f x and lim g x do not exist. xâ&#x2020;&#x2019;0
xâ&#x2020;&#x2019;0
lim 0 0
1 1 lim f x g x lim xâ&#x2020;&#x2019;0 xâ&#x2020;&#x2019;0 x x
xâ&#x2020;&#x2019;0
107. Given f x b, show that for every > 0 there exists a > 0 such that f x b < whenever x c < . Since f x b b b 0 < for any > 0, then any value of > 0 will work.
35
0.5
â&#x2C6;&#x2019; 2
xâ&#x2020;&#x2019;0
Evaluating Limits Analytically
109. If b 0, then the property is true because both sides are equal to 0. If b 0, let > 0 be given. Since lim f x L,
xâ&#x2020;&#x2019;c
there exists > 0 such that f x L < b whenever 0 < x c < . Hence, wherever 0 < x c < , we have
b f x L
<
or
bf x bL
which implies that lim bf x bL. xâ&#x2020;&#x2019;c
<
36
Chapter 1
Limits and Their Properties
M f x ≤ f x g x ≤ M f x
111.
113. False. As x approaches 0 from the left,
lim M f x ≤ lim f x g x ≤ lim M f x
x→c
x→c
x→c
x 1. x
2
M 0 ≤ lim f x g x ≤ M 0 x→c
−3
0 ≤ lim f x g x ≤ 0
3
x→c
Therefore, lim f x g x 0.
−2
x →c
115. True.
117. False. The limit does not exist. 4
−3
6
−2
119. Let f x
4,4,
if x ≥ 0 if x < 0
lim f x lim 4 4.
x→0
x→0
lim f x does not exist since for x < 0, f x 4 and for x ≥ 0, f x 4.
x→0
rational 0,1, ifif xx isis irrational 0, if x is rational g x x, if x is irrational
121. f x
lim f x does not exist.
x→0
No matter how “close to” 0 x is, there are still an infinite number of rational and irrational numbers so that lim f x does not x→0 exist. lim g x 0.
x→0
When x is “close to” 0, both parts of the function are “close to” 0.
123. (a) lim
x→0
1 cos x 1 cos x lim x→0 x2 x2 lim
x→0
1 cos2 x x 1 cos x 2
sin2 x x→0 x2
lim 1
1 cos x
1 cos x
1
1 cos x
12 21
(b) Thus,
1 cos x 1 1 ⇒ 1 cos x x2 x2 2 2 1 ⇒ cos x 1 x2 for x 0. 2
1 (c) cos 0.1 1 0.1 2 0.995 2 (d) cos 0.1 0.9950, which agrees with part (c).
Section 1.4
Section 1.4
3. (a) lim f x 0
(b) lim f x 1
(b) lim f x 0
x→3
x→4
x→3
The function is continuous at x 3.
x→0
x→4
(c) lim f x does not exist
(c) lim f x 0
x→3
x
lim
x→0
9.
does not exist because
x x2 9
grows
x
1
1
lim x x→0 x x x x
x→0
x→3
x x2 9
x 1. x
lim
x→3
lim
x→ 3
without bound as x → 3 .
1 1 x x x x x x lim 13. lim x→0 x→0 x x x x
15. lim f x lim
The function is NOT continuous at x 4.
The function is NOT continuous at x 3.
x 5 1 1 lim x2 25 x→5 x 5 10
x
lim f x 2
x→4
(b) lim f x 2
x→3
(c) lim f x 1
11. lim
5. (a)
x→3
x→3
x→5
37
Continuity and One-Sided Limits
1. (a) lim f x 1
7. lim
Continuity and One-Sided Limits
1 x x x
1 1 2 x x 0 x
x 2 5 2 2
17. lim f x lim x 1 2 x→1
x→1
lim f x lim x3 1 2
x→1
x→1
lim f x 2
x→1
21. lim 3 x 5 3 3 5 4
19. lim cot x does not exist since x→
x→4
x 3 for 3 < x < 4
lim cot x and lim cot x do not exist.
x→
x→
23. lim 2 x does not exist x→3
because lim 2 x 2 3 5
x→3
and
25. f x
1 x2 4
27. f x
has discontinuities at x 2 and x 2 since f 2 and f 2 are not defined.
x x 2
has discontinuities at each integer k since lim f x lim f x . x→k
x→k
lim 2 x 2 4 6.
x→3
29. g x 25 x2 is continuous on 5, 5 .
31. lim f x 3 lim f x . x→0
x→0
f is continuous on 1, 4 .
33. f x x2 2x 1 is continuous for all real x.
38
Chapter 1
Limits and Their Properties
35. f x 3x cos x is continuous for all real x.
37. f x
x is not continuous at x 0, 1. Since x2 x
x 1 for x 0, x 0 is a removable x2 x x 1 discontinuity, whereas x 1 is a nonremovable discontinuity.
39. f x
x is continuous for all real x. x2 1
41. f x
x 2 x 2 x 5
has a nonremovable discontinuity at x 5 since lim f x x→5 does not exist, and has a removable discontinuity at x 2 since lim f x lim
x→ 2
43. f x
x 2 has a nonremovable discontinuity at x 2 since
45. f x
x,x ,
x 2
x→ 2
1 1 . x 5 7
lim f x does not exist.
x→ 2
x ≤ 1 x > 1
2
has a possible discontinuity at x 1. 1. f 1 1 2.
lim f x lim x 1
x→1
x→1
x→1
x→1
lim f x 1
lim f x lim x2 1
x→1
3. f 1 lim f x x→1
f is continuous at x 1, therefore, f is continuous for all real x. x 1, 47. f x 2 3 x,
x ≤ 2
1. f 2
x > 2
2 1 2 2
lim f x lim
x→2
2.
has a possible discontinuity at x 2.
x→2
2x 1 2
lim f x lim 3 x 1
x→2
x→2
lim f x does not exist.
x→2
Therefore, f has a nonremovable discontinuity at x 2.
49. f x
x tan 4 , x,
x x
1. f 1 1 2. lim f x 1 x→ 1
3. f 1 lim f x x→ 1
x < 1 tan 4 , ≥ 1 x,
1 < x < 1 has possible discontinuities at x 1, x 1. x ≤ 1 or x ≥ 1
f 1 1 lim f x 1
x→1
f 1 lim f x x→1
f is continuous at x ± 1, therefore, f is continuous for all real x.
Section 1.4
Continuity and One-Sided Limits
39
51. f x csc 2x has nonremovable discontinuities at integer multiples of 2.
53. f x x 1 has nonremovable discontinuities at each integer k.
55. lim f x 0
57. f 2 8
50
xâ&#x2020;&#x2019;0
lim f x 0
Find a so that lim ax2 8 â&#x2021;&#x2019; a
xâ&#x2020;&#x2019;0
xâ&#x2020;&#x2019;2
f is not continuous at x 2.
â&#x2C6;&#x2019;8
8 2. 22
8 â&#x2C6;&#x2019;10
59. Find a and b such that lim ax b a b 2 and lim ax b 3a b 2. xâ&#x2020;&#x2019; 1
xâ&#x2020;&#x2019;3
a b 2
3a b 2 4
4a
a 1 b
2, f x x 1, 2,
x â&#x2030;¤ 1 1 < x < 3 x â&#x2030;Ľ 3
2 1 1
61. f g x x 1 2
63. f g x
Continuous for all real x.
Nonremovable discontinuities at x Âą 1
67. f x
65. y x x Nonremovable discontinuity at each integer 0.5
1 1 x2 5 6 x2 1
2xx 2x,4, 2
x â&#x2030;¤ 3 x > 3
Nonremovable discontinuity at x 3 5
â&#x2C6;&#x2019;3
3
â&#x2C6;&#x2019;5
7
â&#x2C6;&#x2019;1.5 â&#x2C6;&#x2019;5
69. f x
x x2 1
71. f x sec
Continuous on ,
73. f x
sin x x
Continuous on: . . . , 6, 2 , 2, 2 , 2, 6 , 6, 10 , . . . 1 75. f x 16x4 x3 3 is continuous on 1, 2 .
f 1 33 16 and f 2 4. By the Intermediate Value Theorem, f c 0 for at least one value of c between 1 and 2.
3
â&#x2C6;&#x2019;4
x 4
4
â&#x2C6;&#x2019;2
The graph appears to be continuous on the interval 4, 4 . Since f 0 is not defined, we know that f has a discontinuity at x 0. This discontinuity is removable so it does not show up on the graph.
40
Chapter 1
Limits and Their Properties
77. f x x2 2 cos x is continuous on 0, . f 0 3 and f 2 1 > 0. By the Intermediate Value Theorem, f c 0 for the least one value of c between 0 and .
81. g t 2 cos t 3t
79. f x x3 x 1 f x is continuous on 0, 1 . f 0 1 and f 1 1 By the Intermediate Value Theorem, f x 0 for at least one value of c between 0 and 1. Using a graphing utility, we find that x 0.6823. 83. f x x2 x 1
g is continuous on 0, 1 .
f is continuous on 0, 5 .
g 0 2 > 0 and g 1 1.9 < 0.
f 0 1 and f 5 29
By the Intermediate Value Theorem, g t 0 for at least one value c between 0 and 1. Using a graphing utility, we find that t 0.5636.
1 < 11 < 29 The Intermediate Value Theorem applies. x2 x 1 11 x2 x 12 0
x 4 x 3 0 x 4 or x 3 c 3 (x 4 is not in the interval.) Thus, f 3 11. 85. f x x3 x2 x 2
87. (a) The limit does not exist at x c.
f is continuous on 0, 3 .
(b) The function is not defined at x c.
f 0 2 and f 3 19
(c) The limit exists at x c, but it is not equal to the value of the function at x c.
2 < 4 < 19 The Intermediate Value Theorem applies.
(d) The limit does not exist at x c.
x3 x2 x 2 4 x3 x2 x 6 0
x 2 x2 x 3 0 x 2 (x2
x 3 has no real solution.) c 2
Thus, f 2 4. 89.
91. The functions agree for integer values of x:
y 5 4 3 2 1 â&#x2C6;&#x2019;2 â&#x2C6;&#x2019;1
g x 3 x 3 x 3 x f x 3 x 3 x x 1
3 4 5 6 7
â&#x2C6;&#x2019;2 â&#x2C6;&#x2019;3
However, for non-integer values of x, the functions differ by 1. f x 3 x g x 1 2 x .
The function is not continuous at x 3 because lim f x 1 0 lim f x .
xâ&#x2020;&#x2019;3
for x an integer
xâ&#x2020;&#x2019;3
1 1 For example, f 2 3 0 3, g 2 3 1 4.
Section 1.4
t 2 2 t
Continuity and One-Sided Limits
N
93. N t 25 2 t
0
1
1.8
2
3
3.8
N t
50
25
5
50
25
5
Number of units
50 40 30 20 10
t 2
Discontinuous at every positive even integer.The company replenishes its inventory every two months.
4
6
8
10 12
Time (in months)
95. Let V 43 r 3 be the volume of a sphere of radius r. V 1 43 4.19 V 5 3 53 523.6 4
Since 4.19 < 275 < 523.6, the Intermediate Value Theorem implies that there is at least one value r between 1 and 5 such that V r 275. (In fact, r 4.0341.) 97. Let c be any real number. Then lim f x does not exist since there are both rational and xâ&#x2020;&#x2019;c
irrational numbers arbitrarily close to c. Therefore, f is not continuous at c. y
1, if x < 0 0, if x 0 99. sgn x 1, if x > 0
4 3 2 1
(a) lim sgn x 1
â&#x2C6;&#x2019;4 â&#x2C6;&#x2019;3 â&#x2C6;&#x2019;2 â&#x2C6;&#x2019;1
xâ&#x2020;&#x2019;0
x 1
2
3
4
â&#x2C6;&#x2019;2
(b) lim sgn x 1
â&#x2C6;&#x2019;3
xâ&#x2020;&#x2019;0
â&#x2C6;&#x2019;4
(c) lim sgn x does not exist. xâ&#x2020;&#x2019;0
101. True; if f x g x , x c, then lim f x lim g x and xâ&#x2020;&#x2019;c
xâ&#x2020;&#x2019;c
103. False; f 1 is not defined and lim f x does not exist. xâ&#x2020;&#x2019;1
at least one of these limits (if they exist) does not equal the corresponding function at x c.
105. (a) f x
b
0 â&#x2030;¤ x < b b < x â&#x2030;¤ 2b
0
(b) g x
y
2b
x 2
0 â&#x2030;¤ x â&#x2030;¤ b
b
x 2
b < x â&#x2030;¤ 2b
y
2b
b
x b
b
2b
NOT continuous at x b.
x b
2b
Continuous on 0, 2b .
41
42
Chapter 1
107. f x
Limits and Their Properties
x c2 c
x
, c > 0
Domain: x c2 ≥ 0 ⇒ x ≥ c2 and x 0, c2, 0 0, x c2 c
lim
x
x→0
lim
x c2 c
x→0
x
x c2 c x c2 c
x c2 c2 1 1 lim x→0 x x c2 c x→0 x c2 c 2c
lim
Define f 0 1 2c to make f continuous at x 0. 109. h x x x
15
h has nonremovable discontinuities at x ± 1, ± 2, ± 3, . . . . −3
3 −3
Section 1.5 1.
Infinite Limits
lim 2
x x2 4
lim 2
x x2 4
x→ 2
x→ 2
3.
lim tan
x 4
lim tan
x 4
x→ 2
x→ 2
5. f x
1 x2 9
x
3.5
3.1
3.01
3.001
2.999
2.99
2.9
2.5
f x
0.308
1.639
16.64
166.6
166.7
16.69
1.695
0.364
lim f x
x→ 3
lim f x
x→ 3
7. f x
x2 x2 9
x
3.5
3.1
3.01
3.001
2.999
2.99
2.9
2.5
f x
3.769
15.75
150.8
1501
1499
149.3
14.25
2.273
lim f x
x→ 3
lim f x
x→ 3
Section 1.5
9. lim x→0
1 1 lim x2 x→0 x2
Therefore, x 0 is a vertical asymptote.
Infinite Limits
43
x2 2 x 2 x 1
11. lim x→2
x2 2 x 2 x 1
lim
x→2
Therefore, x 2 is a vertical asymptote. lim
x2 2 x 2 x 1
lim
x2 2 x 2 x 1
x→ 1
x→ 1
Therefore, x 1 is a vertical asymptote.
13.
lim
x→ 2
x2
x2 x2 and lim 2 x→ 2 x 4 4
15. No vertical asymptote since the denominator is never zero.
Therefore, x 2 is a vertical asymptote. lim
x→2
x2 x2 and lim 2 x→2 x 4 x2 4
Therefore, x 2 is a vertical asymptote.
17. f x tan 2x x
21.
lim
x→ 2
lim
x→ 2
sin 2x has vertical asymptotes at cos 2x
2n 1 n , n any integer. 4 4 2 x
x 2 x 1
x x 2 x 1
Therefore, x 2 is a vertical asymptote. lim
x x 2 x 1
lim
x x 2 x 1
x→1
x→1
19. lim 1 t→0
4 4 lim 1 2 t→0 t2 t
Therefore, t 0 is a vertical asymptote.
x3 1 x 1 x2 x 1 x 1 x 1
23. f x
has no vertical asymptote since lim f x lim x2 x 1 3
x→ 1
x→ 1
Therefore, x 1 is a vertical asymptote.
25. f x
x 5 x 3 x 3 ,x 5 x 5 x2 1 x2 1
No vertical asymptotes. The graph has a hole at x 5.
27. s t
t has vertical asymptotes at t n , n sin t
a nonzero integer. There is no vertical asymptote at t 0 since lim t→0
t 1. sin t
44
Chapter 1
Limits and Their Properties
x2 1 lim x 1 2 x→ 1 x 1 x→ 1
29. lim
31.
lim
x2 1 x 1
lim
x2 1 x 1
x→ 1
2
−3
x→ 1
3
8
−3
3
Vertical asymptote at x 1
−8
−5
Removable discontinuity at x 1
33. lim x→2
37.
x 3 x 2
lim
x→ 3
45. lim
x→
x→3
x2 2x 3 x 1 4 lim x→ 3 x 2 x2 x 6 5
41. lim 1 x→0
35. lim
1 x
x2 x x 1 lim 2 x→1 x 1 x 1 x→1 x 1 2
39. lim
43. lim x→0
x lim x sin x 0 csc x x→
x2 x 3 x 3
47.
2
2 sin x
lim
x→ 1 2
x sec x and
lim
x→ 1 2
x sec x .
Therefore, lim x sec x does not exist. x→ 1 2
49. f x
x2 x 1 x3 1
lim f x lim
x→1
x→1
51. f x
1 x 1
1 x2 25
lim f x
x→5
0.3
3
−8
−4
8
5
−0.3
−3
53. A limit in which f x increases or decreases without bound as x approaches c is called an infinite limit. is not a number. Rather, the symbol
55. One answer is f x
x 3 x 3 . x 6 x 2 x2 4x 12
lim f x
x→c
says how the limit fails to exist. 57.
k , 0 < r < 1. Assume k 0. 1 r k lim S lim (or if k < 0) r→1 r→1 1 r
59. S
y 3 2 1 −2
x
−1
1 −1 −2
3
Section 1.5
61. C
528x , 0 ≤ x < 100 100 x
63. (a) r
(a) C 25 $176 million
(b) r
(b) C 50 $528 million (c) C 75 $1584 million
x
x→25
f x
1
0.5
0.2
0.1
0.01
0.001
0.0001
0.1585
0.0411
0.0067
0.0017
0
0
0
0.5
lim
x→0 − 1.5
x sin x 0 x
1.5
− 0.25
(b)
x f x
1
0.5
0.2
0.1
0.01
0.001
0.0001
0.1585
0.0823
0.0333
0.0167
0.0017
0
0
0.001
0.0001
0.1667 0.1667
0.1667
0.25
− 1.5
lim
1.5
x→0
x sin x 0 x2
− 0.25
(c)
x f x
1
0.5
0.2
0.1
0.1585
0.1646
0.1663
0.1666
0.01
0.25
− 1.5
lim
1.5
x→0
x sin x 0.1167 1 6 x3
− 0.25
(d)
x f x
1
0.5
0.2
0.1
0.1585
0.3292
0.8317
1.6658
0.01
0.001
0.0001
16.67
166.7
1667.0
1.5
− 1.5
1.5
− 1.5
For n ≥ 3, lim x→0
x sin x . xn
lim
x→0
x sin x x4
7 ft sec 12
2 15 3 ft sec 2 625 225
(c) lim
528 Thus, it is not possible. (d) lim x→100 100 x 65. (a)
2 7 625 49
2x 625 x2
Infinite Limits
45
46
Chapter 1
Limits and Their Properties (b) The direction of rotation is reversed.
67. (a) Because the circumference of the motor is half that of the saw arbor, the saw makes 1700 2 850 revolutions per minute.
(d)
(c) 2 20 cot 2 10 cot : straight sections. The angle subtended in each circle is
2 2 2
(e)
2 .
0.3
0.6
0.9
1.2
1.5
L
306.2
217.9
195.9
189.6
188.5
450
Thus, the length of the belt around the pulleys is 20 2 10 2 30 2 .
0
Total length 60 cot 30 2
(f)
0, 2
Domain:
2
0
lim
â&#x2020;&#x2019; 2
L 60 188.5
(All the belts are around pulleys.) (g) lim L â&#x2020;&#x2019;0
71. False; let
69. False; for instance, let f x
1, f x x 3,
x2 1 or x 1
x 0 x 0.
The graph of f has a vertical asymptote at x 0, but f 0 3.
x g x 2 . x 1 73. Given lim f x and lim g x L: xâ&#x2020;&#x2019;c
xâ&#x2020;&#x2019;c
(2) Product:
If L > 0, then for L 2 > 0 there exists 1 > 0 such that g x L < L 2 whenever 0 < x c < 1. Thus, L 2 < g x < 3L 2. Since lim f x then for M > 0, there exists 2 > 0 such that f x > M 2 L whenever
x c
xâ&#x2020;&#x2019;c
< 2. Let be the smaller of 1 and 2. Then for 0 < x c < , we have f x g x > M 2 L L 2 M.
Therefore lim f x g x . The proof is similar for L < 0. xâ&#x2020;&#x2019;c
(3) Quotient: Let > 0 be given.
There exists 1 > 0 such that f x > 3L 2 whenever 0 < x c < 1 and there exists 2 > 0 such that g x L <
L 2 whenever 0 < x c < 2. This inequality gives us L 2 < g x < 3L 2. Let be the smaller of 1 and 2. Then for 0 <
x c
g x f x
<
3L 2 . 3L 2
Therefore, lim
xâ&#x2020;&#x2019;c
75. Given lim
xâ&#x2020;&#x2019;c
< , we have
g x 0. f x
1 0. f x
Suppose lim f x exists and equals L. Then, xâ&#x2020;&#x2019;c
lim 1 1 1 xâ&#x2020;&#x2019;c 0. xâ&#x2020;&#x2019;c f x lim f x L lim
xâ&#x2020;&#x2019;c
This is not possible. Thus, lim f x does not exist. xâ&#x2020;&#x2019;c