Prospects of batteries

Page 1

Prospects of Batteries for PHEV Applications Fritz R. Kalhammer

PHEV Workshop Anaheim, December 2, 2007


Thesis • Electric vehicles (EVs) are substantially more efficient than other advanced-technology vehicles. Based on the same primary sources and vehicle miles, EVs use less energy, generate less greenhouse gases, and cause fewer emissions of pollutants. In principle, electricity and EVs are the energystrategic and environmentally superior links for coupling individual transportation to future energy sources.


But: Batteries required for EVs to match the technical (especially range) and cost characteristics of market competitive CVs and HEVs do not presently exist, nor are there realistic prospects for their development in the foreseeable future. Batteries and EVs with lesser attributes are feasible but unlikely to capture mass markets and generate nationally and globally significant energy-strategic and environmental benefits.


Thesis • PHEVs offer the best prospects among advanced-technology vehicles to achieve a large portion of EV benefits while offering market competitive attributes and life cycle costs in the foreseeable future. The main challenge for PHEVs is the battery, but compared to EVs battery size and cost issues are much reduced.


NiMH Prospects for PHEVs Advantages: • NiMH technology for HEVs is readily upscaled to PHEVs • PHEV operating and market experience can be acquired rapidly with appropriately modified HEVs But: • Ability of NiMH to achieve more than 2000-2500 deep cycles in PHEV service is questionable • NiMH weight and cost also are issues for AER>10 miles Conclusion: • NiMH batteries of relatively small capacity (e.g. ≤ 3-4 kWh) might find application in PHEVs with short AER but only if batteries deliver >2500-3000 deep cycles


Thesis

• Among known battery types, only lithium ion technologies have good prospects to meet the performance, life, and safety requirements - as well as the life cycle cost constraints - for a wide range of PHEV architectures and applications.


Li Ion Prospects for PHEVs: Performance ATV Type

Weight (max. kg)

Peak Power

Power Density

ES Capacity

Energy Density

(min. kW)

(min. W/kg)

(min. kWh)

(min.Wh/kg)

Battery Type

Battery Capability

Battery Capability

Full HEV

50

40-60

800-1200

1.5-2.5

30-50

PHEV-20 PHEV-40 Li Ion (battery) NiMH (module)

120 120 n.a. n.a.

50 65 n.a. n.a.

~400 ~540 500-900 250-400

7 14 n.a. n.a.

~60 ~120 75-120 50-60

EV (midsize)

250

100

400

40

160


Li Ion Prospects for PHEVs: Cycle Life • PHEV batteries need to deliver >2500-3000 deep cycles over battery life • More than 3000 deep cycles reported by at least four Li Ion battery developers/manufacturers - different chemistries - different cell designs

• Cycling results very promising even for simulated PHEV battery operating conditions


Cycling Performance of JC-SAFT VLM41 Li Ion Technology 7.0 First ten data points not considered in the extrapolation

Capacity (Ah)

42

6.5

40

6.0

38

5.5

36

5.0

34

4.5

32

4.0

30

3.5

28

3.0 5,000

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

Peak Power Per Module (kW)

44

Total Cycle # C/3 Capacity Test

C/3 Capacity Test EOL

Peak Power Test @ 80% DOD

Peak Power Test @ 80% DOD EOL

(module pack cycled to 75% DoD in simulated PHEV operating mode)


PHEV cycling of 32157 Cell from A123

* 8 DST mini-cycles per cycle * Total capacity measured every 50 cycles * SOC swing 74% (100-26% SOC) * C/2 3.6V CCCV charge


100% DoD Cycling of Altairnano Cell

Room Temperature Capacity Retention of 50mAh cells 110%

Typical Li-Ion At 2 hr rate Capacity retention, %

100%

90%

80%

70%

6 Min (10C) Full Depth of Discharge (1.5V Cut-Off) 6 Min (10C) Full Charge (2.8V Cut-Off)

60%

50% 0

5000

10000

15000

Cycles

20000

25000


Li Ion Prospects for PHEVs: Safety • Excellent on road safety experience with >5 year old Li Ion technology in ~ 100 EVs and HEVs • Multiple sensing of key variables (temperature, pressure, voltages) and hierarchical levels of electric control enable safe system operation • Newer cell chemistries have substantially higher levels of intrinsic safety (greater tolerance of abuse conditions)


Li Ion Battery Costs: Comparison of Projections with Propulsion Energy Cost Savings Vehicle Type

Annual Mileage

Efficiency Hybrid Drive

Electric Drive

(mi/gal)

(mi/kWh)

NPV ($) Energy Cost Savings

Costs ($) Projected for Li Ion Batteries

Gasoline

Electric

(miles/yr)

(miles/yr)

HEV

14,000

0

50

n.a.

2,878

3,025

PHEV-20

9,500

4,500

50

3.5

4,221

4,025

PHEV-40

8,000

6,000

50

3.5

4,669

5,585

0

14,000

n.a.

3.5

7,056

8,395

EV

Assumptions: CV efficiency 36 mpg, gasoline cost $3.50/gal, electricity cost 12¢/kWh, battery life 10 years, production 100,000 packs/year, interest rate 6%


Final Thoughts • Continuing concerns of carmakers may delay investment in Li Ion battery production and introduction of PHEVs • There is much to do: Validation of best available Li Ion technologies: - Generate more life data (key variables SoC, ΔSoC, temperature) - Develop better tests (duty cycle simulation; accelerated testing) - Prove battery systems in vehicles (packaging; control/safety)

Exploration/exploitation of advanced technologies: - Develop and apply better screening test for durability & safety - Explore and optimize battery systems with parallel Li Ion cells - Explore advanced concepts (electrolytes; active materials; etc.)

• The next 2-3 years will do much to establish viability of Li Ion batteries for PHEV applications!


Projected Costs of Li Ion Batteries Vehicle Type

Battery Capacity

Cell Capacity

(kWh)

(Ah)

2500 MWh/year 100k Batteries/Year Production Rate

Module Cost

Battery Cost

(MWh/y)

($/kWh)

($)

Full HEV

2

7

2500 200

550 1,010

1,650 3,025

PHEV-10

4

15

2500 400

395 605

2,240 3,445

PHEV-20

7

30

2500 700

295 405

2,750 4,025

PHEV-40

14

45

2500 1400

260 300

4,850 5,585

EV

40

120

2500 4000

195 175

9,285 8,395


Altairnano Products

The Altairnano battery solutions have minimal safety issues related to temperature and voltage due to the composition of the battery. 300o

Region 5 Cathode active material breakdown

Cell Temperature

O

C

260o

Region 6 Electrolyte leak Region 2 leads to vapor SEI Layer ignition Altairnano™ Batteries thermal Regionhave greater range of safety breakdown 1

200o

120o 100o

Region 1: Uses no copper – batteries can be taken to very low discharge state

Region 2: No dangerous SEI formed • Region 3: Altairnano batteries “shut down” Region 3 Copper • above Region3.7V 4: Caused by SEI Dissolves Li+ Plating at less layer, Altairnano forms no than during charging Altairnano Battery 2.0 V leads to dangerous SEI leads increased Safety Window to • Region 5: Proprietary heating shorting design removes this Region 4 • hazard Region 6: Eliminating Li Plating during charging leads to shorting dangers from other regions 4.04.2 2.0 10.0 6.0 8.0 mitigates this hazard Cell Voltage (Volts) Lithium Ion Safety Window

40o Room temp 0o

+

- 50o 0

Wide safety range for Altairnano products from -50° to 260°C


Lithium Ion Battery Safety

Lithium ion batteries require control of temperature & voltage to manage safety. 300o

O

C

260o

Cell Temperature

Region 5 Cathode active material breakdown

200o

Region 2 SEI Layer thermal breakdown

Region 1

120o

40o Room temp

Region 3

Copper Dissolves at less than 2.0 V leads to shorting

100o

Region 6 Electrolyte leak leads to vapor ignition

Lithium Ion Safety Window

Li+ Plating during charging leads to increased heating

0o

Region 4 Li Plating during charging leads to shorting +

- 50o 0

2.0

4.04.2

6.0

Cell Voltage (Volts)

8.0

10.0

Region 1: Dissolved copper re-plates on charge causing shorts Region 2: Thermal runaway virtually unavoidable once SEI Region 3: Occurs at highlayer breaks-down rates and can cause battery Regionto4:explode Lithium plating is unavoidable at cold temps; batteries can’t Region charge 5: Combination of free oxygen, electrolyte, and exposed graphite Region Runaway leads to 6: explosions hazard from other regions enhances vapor exertion and ignition

Safe operation is confined to a relatively small range of V and T


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.