Impressoras 3D
Tecnologia que pode revolucionar a produção da indústria Jorge Vicente Lopes da Silva Centro de Tecnologia da Informação Renato Archer – CTI
Comitê de Tecnologia da Informação e Comunicação São Paulo – 25/07/2014
Science Technology and Innova:on Ministry -‐ MCTI
Renato Archer Informa:on Technology Center – CTI Brazilian Science And Technology Ministry
Figures: – Campus area = 320.000 m2 – Building area = 14.000 m2 – People = 500 Campinas -‐ SP
Three Dimensional Technologies Division – CTI/DT3D
Mission To research, develop, utilize, and diffuse three dimensional technologies (virtual and physical) focusing in innovation and multidisciplinary applications driven by society
Partnership Companies (ProIND) Hospitals (ProMED) Universities (ProEXP)
Tópicos • A criação e implantação da tecnologia no Brasil; • A acessibilidade às impressoras 3D e também o desenvolvimento de soVwares mais simplificados para a u:lização das mesmas; • Impactos e a inovação que a impressora 3D pode proporcionar nas empresas; • Aplicação prá:ca da tecnologia;
Addi:ve Manufacturing -‐ AM Addi:ve Manufacturing
Addi:ve Processes Addi:ve Manufacturing F42 Commidee ASTM
Conven:onal processes (e.g. HSC -‐ High Speed Cu>ng)
Controlled deposition of thin layers of material to build a solid
Originally a tool for product development Modeling and Process planning for RP • Aeronau:cs industry • Virtual model genera:on (CAD/Reverse engineering/MIP systems) • Automobile industry • Process planning • Goods industry • Processing (AM process) • First machine in 1986 (SLA) • Post processing
Addi:ve Manufacturing myriad of processes laser powder
powder
ink-jet head powder
liquid
electron beam powder
sheet
extrusion head filaments
Mul:disciplinary applica:ons
UV lamp/ink-jet head liquid
10 principles of AM 1) Manufacturing complexity is free Complexityé Costs è 2) Variety is free Variety é Costs è 3) No assembling required Movable parts é Costs è 4) Zero lead-‐:me Inventory ê Flexibility and local produc:on é 5) Unlimited design space Design complexity and natural shapes é Costs è
6) Zero skill manufacturing Skill needed (ar:sans / setup) ê Costs è 7) Compact / portable manufacturing Compactness and portability é Costs è 8) Less waste by product (metal) Recycling needs ê Energy needs ê 9) Infinite materials composi:on Combina:on of raw materials é Costs è 10) Precise physical replica:on Cycle of scan-‐print-‐scan é Costs è
Based on: Fabricator – Hod Lipson and Melba Kurman (2013)
Mass produc:on
Ar:san produc:on
Customiza:on/variety ê Number of same product é Automa:on é Price per product (profit) ê
Convergence
Economy of scale
Expensive
Customiza:on/variety é Number of same product ê Automa:on ê Price per product (profit) é
Addi:ve Manufacturing Average costs
Customiza:on/variety é Number of same product è Automa:on é Price per (iden:cal or different) product (profit) è
AM Trends
Func:onal materials and dimensions Mega
1m
Meso/macro
10-‐3 m
Micro 10-‐6 m Nano 1 Angstrom -‐10 10 m
UAV 28 m wingspan
* LZH
Building
Trend
AM today’s applica:ons
** Trends & Research labs
* KIT - http://www.laserfocusworld.com ** National Geographic cover (11x14 microns / smaller than a grain of salt) / IBM - Almaden Research Center
MIP/CAD/CAE/AM STL file
DICOM
BioCAD (Biomodeling)
Medical Image Processing (segmenta:on, 3D reconstruc:on, rendering)
CT or MRI Dataset Acquisi:on
STL file
Prostheses customiza:on
STL file
Mesh file (STL) / BioCAD
Biomodel
Planning and execu:ng the Surgery with Biomodels
AM Processes to produce biomodels and devices
Simula:on (CAE Analysis)
InVesalius
Software livre para reconstrução e tratamento de imagens médicas 1
2
3
InVesalius
Volume rendering Transparency
Advanced Visualiza:on Tumor with contrast
Volume cropping
Volume rendering of mul:ple :ssues
Volume segmenta:on and planes
3D measurements heart
InVesalius community 100 countries
Free download: www.cti.gov.br/invesalius
Sagidal osteotomy of the mandibular ramus
•
Mechanical assessment of different fixa:on plates
Cooperation with FOP-UNICAMP
Cranioplasty • Cranioplasty prosthesis for growing pa:ent
Clinica Roland – patient treatment
Cranioplasty • Cranioplasty prosthesis for teenage pa:ent
Surgery planning using model
Model made by Adictive Manufacture
Surgery using a biocompatible material
Clinica Roland – patient treatment
MIP and RP Applica:ons: Hollow prostheses design
Challenge: Front temporal lesion
Visualiza:on in MIP using transparency
Mesh model (STL) In coopera:on with Sobrapar
MIP and RP Applica:ons: Hollow prostheses design (cont’d) MRI based model BioCAD and CT based biomodel
Solu:on: Volumetric prostheses to keep stable intracranial pressure
Surgery and prostheses placement
(Duramater)
Virtual donor
Implementa:on: CT and MRI segmenta:on
Results: Post-‐surgery In coopera:on with Sobrapar
Assis:ve Technologies
Hospitals
ProMed Ø 3500 cases of complex surgeries Ø > 120 public hospitals per year
Fab@CTI improvements Hardware development Interchangeable System
Photopolymerizer head
Filament heated extrusion head
Powder heated extrusion head
Biofabrica:on Organ prin:ng
Imaging Design/ blueprint
BioCAD - Micro and Macro scale
Prin:ng Self assembling of micro tissues
Simula:on Enabling 3D technologies for organ prinBng
Organ maturation in bioreactors
Clinical
Archeology
Montealto Suchus – 90 million years old
Cooperation with Monte Alto Museum and University of Campinas - UNICAMP
M.F. Oliveira (2008) – Master dissertation (UNICAMP)
INPE Cachoeira Paulista
BDA - Brazilian Decimetric Array
Fashion Â
Materialise World Conference 2012
Hearing aids – AM paradigm
Source: The Evolu:on of the Addi:ve Manufacturing Market -‐ Wim Michiels – Materialise World Conference 2012
2013
Analogy to computers 3D printing will shape our future
What’s ? 1900 In the lab
1940 in the army
1960 in the company
1980 at home
2000
2010
on the move
rapid rapid prototyping manufacturing
next = on demand printing from your own desktop
Price?
Ultimaker 3D printing
2 Direct Spare Project – Berenschot Service Logistics Summit 2012
CTI Renato Archer • 1997 first 3D prin:ng machine with focus on industrial and medical applica:ons; • 2005 proposal of a free sw and hw 3D prin:ng machine; • 200 thesis supported from Brazilian and interna:onal partner universi:es; • More than 1000 companies supported with technological services; • Consultancy and projects with companies like Petrobras, Embraer, Volkswagen, etc. • Support for start ups in Brazil, Argen:na, and Chile in specific soVware, 3D prin:ng and services (medical and industrial); • Brazilian proposal for La:n American an Caribbean integra:on in 3D technologies for healthcare (CEPAL, CGEE, MCTI).
Conclusions • Logis:cs will be remodeled (army, oil & gas, space, good industry, parts,…); • Lightweight op:mized (lavce) /mul:material structures; • Embedded systems/subsystems (sensors/actuators); • Open-‐design movement (following soVware and hardware); • Healthcare (tailored prostheses, specific devices and instrumental); • Telemedicine + 3D prin:ng = High technology in remote places; • Customized implants -‐> Scaffold (TE) -‐> organ bioprin:ng (scaffoldless TE); • Small companies will have more room in the market (flexibility with low investments); • Looking for killer applica:on (CAD/3DP); • Acquisi:on and merging of 3D printers and services companies.
Coopera:on Networks and Funding agencies
Obrigado pela atenção! Thank you for your kind aden:on! Gracias por su atención! Jorge Vicente Lopes da Silva Divisão de Tecnologias Tridimensionais – DT3D/CTI
Jorge.silva@cti.gov.br 19-3746-6142