NEWS BATTERIES
Leydenjar’s silicon anode enters production realm Start-up Leydenjar is setting up a pilot production line in Eindhoven to prove its high-capacity battery anodes made from nano-textured silicon can be made not just in labs but in factories as well.
A
sked to look back at 3.5 years of developing a new anode recipe for lithium-ion batteries, Christian Rood of Leydenjar prefers to answer what outsiders have told him. “Experts and people from the battery industry say we should be happy with the progress we’ve made. Personally, I would have liked to have seen a little more. I guess I’m not easily satisfied,” the company co-founder admits. In any case, it’s fair to say: so far, so good. Leydenjar, named after the battery’s predecessor, thanks its existence to technology that was developed many years ago at solar cell research institute ECN. Researcher Wim Soppe theorized that nano- texturing would improve the performance of thin-film silicon solar cells. He then successfully developed a plasma-enhanced chemical vapor deposition (PECVD) process to create a layer of silicon nano-pillars on a substrate. Unfortunately, they didn’t perform as well as hoped. The technology was shelved and almost forgotten until Soppe learned that silicon is a superior host for lithium ions, yet fails miserably as a battery anode because it can’t handle the mechanical stress associated with repeatedly taking in and letting go of guests. The porous structure of pillared silicon might be able to handle that, Soppe figured. This time, he was onto something. In fact, the lithium-loading capacity of his silicon approaches the theoretical limit, without getting damaged by loading and unloading lithium. Fast forward to today, Leydenjar is gearing up to prove its technology can be mass-produced. The ultimate goal: making anodes for lithium-ion batteries that outperform the traditional graphite ones, without adding cost. 16
8
Credit: Leydenjar
Paul van Gerven