7 minute read
La naturaleza de partículas de la materia
from Química general
by Cengage
OBJETIVO DE APRENDIZAJE: Describir las características de la materia, incluidos los estados de la materia.
Todo el universo consiste en materia y energía. Todos los días entramos en contacto con innumerables tipos de materia. El aire, la comida, el agua, las rocas, la tierra, el vidrio y este libro son todos tipos diferentes de materia. En términos generales, la materia es cualquier cosa que tenga masa y ocupe un espacio.
La materia puede ser bastante invisible. Por ejemplo, si un tubo de ensayo en apariencia vacío se sumerge con la boca hacia abajo en un vaso de precipitados con agua, el agua sube solo un poco hacia el interior del tubo. El agua no puede subir más porque el tubo está lleno de materia invisible: aire ( gura 1.1).
Para el ojo macroscópico, la materia parece ser continua e ininterrumpida. Estamos impresionados por la gran diversidad de la materia. Dadas sus muchas formas, es difícil creer que a nivel microscópico toda la materia esté compuesta de partículas fundamentales discretas y diminutas llamadas átomos ( gura 1.2). Es en realidad sorprendente comprender que las partículas fundamentales del helado son bastante similares a las partículas del aire que respiramos. La materia es, en realidad, discontinua y está compuesta de partículas diminutas y discretas llamadas átomos.
Estados físicos de la materia
La materia existe en tres estados físicos: sólido, líquido y gas ( gura 1. ). Un sólido tiene una forma y un volumen de nidos con partículas que se adhieren de manera rígida unas a otras. La forma de un sólido puede ser independiente de su contenedor. En la gura 1.3a observamos agua en su forma sólida. Otro ejemplo, un cristal de azufre tiene la misma forma y volumen si se coloca en un vaso de precipitados o solo sobre una placa de vidrio.
Los sólidos más comunes, como la sal, el azúcar, el cuarzo y los metales son cristalinos. Las partículas que forman los materiales cristalinos existen en patrones geométricos tridimensionales regulares y repetitivos ( gura 1. ). Algunos sólidos como los plásticos, el vidrio y los geles no tienen ningún patrón geométrico interno regular. Tales sólidos se llaman sólidos amorfos (amorfo signi ca “sin gura o forma”) (ver fotos).
Un líquido tiene un volumen de nido pero no una forma de nida, con partículas que se adhieren rme pero no rígidamente. Aunque las partículas se mantienen unidas por fuertes fuerzas de atracción y están en estrecho contacto entre sí, pueden moverse de forma libre. La movilidad de las partículas le da uidez a un líquido y hace que tome la forma del recipiente en el que se almacena. Observe en la gura 1.3b cómo se ve el agua como líquido.
Un gas tiene volumen inde nido y forma no ja con partículas que se mueven de manera independiente unas de otras. Las partículas en estado gaseoso han ganado su ciente energía para vencer las fuerzas de atracción que las mantenían unidas como líquidos o sólidos. Un gas presiona de modo continuo en todas direcciones sobre las paredes de cualquier recipiente. Debido a esta cualidad, un gas llena por completo un recipiente. Las partículas de un gas están relativamente separadas en comparación con las de los sólidos y los líquidos. El volumen real de las partículas del gas es bastante pequeño en comparación con el volumen del espacio ocupado por el gas. Observe el gran espacio entre las moléculas de agua de la gura 1.3c, en comparación con el hielo y el agua líquida. Por lo tanto, un gas puede comprimirse en un volumen pequeño o expandirse casi de manera inde nida. Los líquidos no se pueden comprimir en gran medida, y los sólidos son aún menos compresibles que los líquidos.
Si se abre una botella de solución de amoniaco en un rincón del laboratorio, pronto podemos percibir su olor familiar en todas las partes de la habitación. El gas amoniaco que escapa de la solución demuestra que las partículas gaseosas se mueven libre y rápidamente, y tienden a penetrar toda el área en la que se liberan.
Charles D. Winters/Science Source
Aunque la materia es discontinua, existen fuerzas de atracción que mantienen unidas las partículas y le dan a la materia su apariencia de continuidad. Estas fuerzas atractivas son más fuertes en los sólidos, lo que les da rigidez; son más débiles en líquidos pero aún lo su ciente- mente fuertes como para contener líquidos en volúmenes de nidos. En los gases las fuerzas de atracción son tan débiles que las partículas de un gas son casi independientes entre sí. La tabla 1.1 enlista los materiales comunes que existen como sólidos, líquidos y gases. La tabla 1.2 compara las propiedades de sólidos, líquidos y gases.
FIGURA 1.3 Los tres estados de la materia. (a) Sólido: las moléculas de agua se mantienen juntas de forma rígida y están bastante cerca unas de otras. (b) Líquido: las moléculas de agua están más juntas pero son libres de moverse y deslizarse una sobre otra. (c) Gas: las moléculas de agua están separadas y se mueven de manera libre y aleatoria.
TABLA 1.1 Materiales comunes en los estados sólido líquido y gaseoso de la materia
Sólidos
Líquidos
Gases
Aluminio Alcohol Acetileno
CobreSangreAire
OroGasolinaButano
PolietilenoMielDióxido de carbono
SalMercurioCloro
ArenaAceiteHelio
AceroJarabeMetano
AzúcarVinagreNitrógeno
AzufreAguaOxígeno
TABLA 1.2 Propiedades físicas de sólidos líquidos y gases
EstadoFormaVolumenPartículas Compresibilidad
SólidoDe nidaDe nidoAferrándose rígidamente, empacamiento estrecho Muy leve
LíquidoInde nidaDe nidoMóviles, adheridasLeve Gas Inde nidaInde nido Independientes unas de otras y relativamente aparte Alta
1.2 Clasificación de la materia
OBJETIVO DE APRENDIZAJE: Distinguir entre una sustancia pura, una mezcla homogénea y una mezcla heterogénea.
El término materia se re ere a todos los materiales que componen el universo. Existen muchos miles de tipos distintos de materia. Una sustancia es un tipo particular de materia con una composición de nida y ja. A veces conocidas como sustancias puras, las sustancias son elementos o compuestos. Ejemplos familiares de elementos son el cobre, el oro y el oxígeno. Los compuestos familiares son la sal, el azúcar y el agua.
Clasi camos una muestra de materia como homogénea o heterogénea al examinarla. La materia homogénea es uniforme en apariencia y tiene las mismas propiedades en todas partes. La materia que consta de dos o más fases físicamente distintas es heterogénea. Una fase es una parte homogénea de un sistema separada de otras partes por límites físicos. Un sistema es simplemente el cuerpo de materia bajo consideración. Siempre que tengamos un sistema en el que existan límites visibles entre las partes o componentes, ese sistema tiene más de una fase y es heterogéneo. No importa si estos componentes están en estado sólido, líquido o gaseoso.
Una sustancia pura puede existir como diferentes fases en un sistema heterogéneo. El hielo que ota en el agua, por ejemplo, es un sistema bifásico formado por agua sólida y agua líquida. El agua en cada fase es de composición homogénea, pero debido a que están presentes dos fases el sistema es heterogéneo.
Una mezcla es un material que contiene dos o más sustancias y puede ser heterogénea u homogénea. Las mezclas son de composición variable. Si añadimos una cucharada de azúcar a un vaso de agua, de inmediato se forma una mezcla heterogénea. Las dos fases son un sólido (azúcar) y un líquido (agua). Pero al revolver, el azúcar se disuelve para formar una mezcla o solución homogénea (ver foto). Ambas sustancias aún están presentes: todas las partes de la solución son dulces y húmedas. Las proporciones de azúcar y agua se pueden variar con solo agregar más azúcar y revolviendo para disolver. Las soluciones no tienen que ser líquidas. Por ejemplo, el aire es una mezcla homogénea de gases. También existen soluciones sólidas. El latón es una solución homogénea de cobre y zinc.
(a) El agua es el líquido en el vaso de precipitado y el sólido blanco en la cuchara es el azúcar.
(b) El azúcar se puede disolver en el agua para producir una solución.
Muchas sustancias no forman mezclas homogéneas. Si mezclamos azúcar y arena blanca y na, se forma una mezcla heterogénea. Puede ser necesario un examen cuidadoso para decidir si la mezcla es heterogénea, porque las dos fases (azúcar y arena) son sólidos blancos, pero un análisis más detallado revelará que, de hecho, son diferentes tipos de cristales. La materia ordinaria existe sobre todo como mezclas. Si examinamos el suelo, el granito, el mineral de hierro u otros depósitos minerales anulares naturales, encontramos que son mezclas heterogéneas. La gura 1. ilustra las relaciones de sustancias y mezclas (ver nota).
Materia
Sustancias puras (composición homogénea)
Compuestos Elementos
Mezclas de dos o más sustancias
Soluciones (composición homogénea, una fase)
Mezclas heterogéneas (dos o más fases)
FIGURA 1.5 Clasi cación de la materia. Una sustancia pura siempre tiene una composición homogénea, mientras que una mezcla siempre contiene dos o más sustancias y puede ser homogénea o heterogénea.
Distinguir mezclas de sustancias puras
Las sustancias individuales, elementos o compuestos rara vez se encuentran de forma natural en estado puro. El aire es una mezcla de gases; el agua de mar es una mezcla de una variedad de minerales disueltos; el suelo ordinario es una mezcla compleja de minerales y diversos materiales orgánicos.
Nota Los diagramas de ujo pueden ayudarlo a visualizar las conexiones entre conceptos.
Mezcla Sustancia pura
1. Una mezcla siempre contiene dos o más sustancias que pueden estar presentes en cantidades diferentes.
2. Los componentes de una mezcla no pierden su identidad y pueden separarse por medios físicos.
PRÁCTICA 1 . 1
1. Una sustancia pura (elemento o compuesto) siempre tiene una composición de nida por su masa.
2. Los elementos de un compuesto pierden su identidad y solo pueden separarse por medios químicos.
¿Cuál de las siguientes es una mezcla y cuál es una sustancia pura? Explique su respuesta.
a. vinagre (4% de ácido acético y 96% de agua) b. solución de cloruro de sodio (sal) c. oro d. leche
¿Cómo se distingue una mezcla de una sustancia pura? Una mezcla siempre contiene dos o más sustancias que pueden estar presentes en concentraciones variables. Consideremos dos ejemplos.
Mezcla homogénea Las mezclas homogéneas (soluciones) que contienen 5 o 10% de sal en agua se pueden preparar mezclando solo las cantidades correctas de sal y agua. Estas mezclas se pueden separar hirviendo el agua, dejando la sal como residuo.
Mezcla heterogénea La composición de una mezcla heterogénea de cristales de azufre y limaduras de hierro puede variar mezclando solo más azufre o más limaduras de hierro. Esta mezcla se puede separar de manera física usando un imán para atraer el hierro (ver foto).