13 minute read
Revista IC 650 marzo 2023
Resiliencia ante eventos sísmicos:una evaluación para la vivienda de la Ciudad de México
La resiliencia ante eventos sísmicos es un componente esencial en la planificación y el diseño de las construcciones, especialmente en áreas propensas a la actividad sísmica significativa. En este contexto, se presenta una metodología completa para evaluar la resiliencia sísmica de construcciones, incorporando un enfoque detallado para estimar los tiempos necesarios de rehabilitación. Este enfoque se implementa en un estudio de caso específico de la Ciudad de México, donde la amenaza sísmica es un desafío constante. La metodología sigue siete pasos, comenzando por la definición de la amenaza sísmica y la creación de una base de datos detallada de exposición. Luego se calcula la vulnerabilidad estructural y humana, se estima el riesgo sísmico, se formulan estrategias de rehabilitación y se evalúan los tiempos y recursos necesarios para la ejecución de estas estrategias.
Palabras clave: resiliencia sísmica, Ciudad de México, infraestructura urbana, viviendas.
La Ciudad de México, ubicada en una región altamente sísmica, ha experimentado históricamente sismos devastadores que han generado importantes pérdidas humanas y materiales. Ante esta realidad, la evaluación de la resiliencia sísmica de los edificios de viviendas se vuelve crucial con el fin de reducir el riesgo y mitigar los efectos de futuros eventos sísmicos. La resiliencia sísmica se define como la capacidad de una o varias construcciones para mantener cierto nivel de funcionalidad durante un sismo, así como su capacidad para regresar a una funcionalidad objetivo deseada en un escenario postsísmico (Cimellaro et al., 2005 y 2010).
En este contexto, se presenta un enfoque integral que combina datos históricos de sismos, modelos de peligro sísmico, análisis de vulnerabilidad estructural y no estructural, y técnicas de evaluación del riesgo para evaluar la capacidad de los edificios para resistir y recuperarse de sismos. Esta metodología busca proporcionar una comprensión detallada de la resiliencia sísmica de los edificios de viviendas en la Ciudad de México, con objeto de identificar áreas de mejora en términos de diseño estructural, planificación urbana y gestión del riesgo.
A través de este estudio se busca no solo cuantificar el riesgo sísmico, sino también informar a los tomadores de decisiones, ingenieros y urbanistas sobre las medidas necesarias para aumentar la resiliencia de la infraestructura urbana y reducir el impacto de futuros sismos. La implementación de estas medidas no solo puede salvar vidas y reducir pérdidas económicas, sino también fortalecer la capacidad de la Ciudad de México para enfrentar eventos sísmicos de manera más efectiva en el futuro.
La aplicación se lleva a cabo específicamente en el contexto de la Ciudad de México, una de las áreas urbanas más vulnerables a los sismos debido a su ubicación geográfica en una zona sísmicamente activa. A continuación se detallan y aplican los pasos específicos seguidos en la aplicación de la metodología.
Implementación de un modelo de peligro sísmico Se debe emplear un modelo de peligro sísmico que considere la actividad sísmica histórica en la región, así como la ubicación de fallas geológicas y la geología local. Este modelo debe proporcionar información sobre la probabilidad de ocurrencia de sismos de diferentes
magnitudes y ubicaciones. Para el caso específico de la Ciudad de México, se realiza el modelado del peligro sísmico en la estación de referencia de Ciudad Universitaria (CU). Se utiliza esta estación como punto focal para el análisis del peligro sísmico y se consideran tres tipos de fuentes sísmicas: subducción, intraplaca de profundidad intermedia y fallas corticales poco profundas. Estas fuentes se subdividen en un total de 22, modeladas con distribuciones de recurrencia de magnitud truncadas exponencialmente o gaussianas, dependiendo del tipo de fuente.
Generación de campos de intensidades sísmicas del suelo
A partir del modelo de peligro sísmico, se deben generar campos de sacudidas del suelo que simulan los efectos de los sismos en diferentes partes de la zona de estudio. Estos campos se utilizan para calcular las intensidades de sacudida en diferentes sitios de interés. Para el caso de aplicación, se calcularon las intensidades de sacudida del suelo en varios sitios de la Ciudad de México utilizando la estación de referencia CU y los cocientes de respuesta espectral (RSR) precalculados. Estos RSR se interpolan espacialmente utilizando técnicas estadísticas para obtener una estimación de la respuesta espectral local en cada sitio. En la figura 1 se muestran los campos de intensidades sísmicas correspondientes al evento de subducción del 19 de septiembre de 1985, Mw 8.1 (figura 1, arriba), que se ubicó ~350 km al suroeste de la Ciudad de México. En el lado izquierdo se presenta la intensidad para un periodo de sitio dominante de 1 s, mientras que en el lado derecho se muestra para un periodo de 2 s. Este evento generó aceleraciones en la parte central del antiguo lecho del lago de ~250 gals, con duraciones de hasta 4 minutos. Esta experiencia destacó la necesidad de actualizar las regulaciones de construcción para tener en cuenta estas condiciones de peligro sísmico y geotécnicas únicas. Asimismo, por una notable coincidencia, el mismo día del sismo de 1985, el 19 de septiembre de 2017, se produjo un evento (Mw 7.1) en la Placa de Cocos subducida, cuyo epicentro se ubicó ~100 km al sur de la ciudad, a una profundidad focal de 55 km. Los mapas de campos de intensidades sísmicas asociados a este evento de intraplaca de profundidad intermedia se presentan en la figura 1, en la parte baja. La distribución geográfica de los edificios afectados por los sismos de 1985 y 2017 es radicalmente diferente. En 1985, el daño se concentró en la parte central de la ciudad sobre gruesas capas de arcilla altamente deformable, que muestran periodos de sitio dominante de ~2 s, como se ilustra en esa figura 1, en la parte superior derecha. La destrucción se concentró en edificios de entre 9 y 16 pisos. Por el contrario, los daños causados por el sismo de 2017 se produjeron principalmente en la zona de transición, reflejando la costa del antiguo lago. Aquí, el periodo del sitio dominante es ~1 s, como se muestra en la figura ubicada en la parte inferior izquierda. Durante 2017 no se observaron afectaciones importantes en la parte central de la ciudad que fue fuertemente dañada por el sismo de 1985. Además, el sismo de 2017 afectó principalmente a edificios de menos de 8 pisos. El patrón de los edificios dañados refleja la intensidad contrastante de los temblores con periodos dominantes en el sitio de 2 y 1 s, respectivamente (figura 1). Los edificios derrumbados, mostrados como círculos negros en la figura 1 coinciden con las áreas de alta intensidad sísmica de cada sismo.
Desarrollo de un modelo de exposición de edificios Se recopila información detallada sobre construcciones incluyendo su ubicación, tipo de construcción, número de pisos y otras características relevantes. Esta información se utiliza para desarrollar un modelo de exposición que describe la distribución espacial y las características de los edificios vulnerables. Los datos utilizados para estimar los daños provienen del registro catastral de la Ciudad de México, donde se tomaron en cuenta el tipo de construcción, el número de pisos y otros datos relevantes. Estos datos cubren un área total de 830 millones de metros cuadrados, con una superficie construida total de más de 300 millones de metros cuadrados. Dado que la mayoría de los edificios en el catastro son viviendas, el enfoque estuvo en aproximadamente 950,000 viviendas incluidas en la base de datos, lo que representa aproximadamente el 89.7% del área construida en la ciudad. El inventario de edificios de viviendas se clasifica además en seis categorías estructurales según el número de pisos, reflejando así el desempeño sísmico de las viviendas: C1 (1-2 pisos), C2 (3-5 pisos), C3 (6-10 pisos), C4 (11-15 pisos), C5 (16-20 pisos) y C6 (más de 20 pisos).
Establecimiento de relaciones entre pérdidas e intensidad
Se desarrollan relaciones entre las pérdidas esperadas y la intensidad de sacudida del suelo para diferentes tipos de edificios y niveles de sacudida. Estas relaciones se fundamentan en datos empíricos de sismos (por ejemplo, Suárez y Jaimes, 2023).
Cálculo de la evaluación del riesgo sísmico
Utilizando las relaciones establecidas, se calcula la evaluación del riesgo sísmico para distintos escenarios sísmicos. Esto incluye estimar las pérdidas esperadas en términos de daños estructurales y no estructurales, así como posibles impactos en la población y la economía (por ejemplo, Suárez y Jaimes, 2023).
Definición de funciones de recuperación
Se definen funciones de recuperación que describen el tiempo necesario para restaurar la funcionalidad de los edificios después de un sismo (González et al., 2020). Esto incluye el tiempo necesario para realizar inspecciones estructurales, ingeniería de rehabilitación, obtención de permisos, financiamiento y movilización de recursos para reparaciones. Para evaluar la resiliencia sísmica, este estudio presenta un enfoque probabilístico para estimar los parámetros necesarios que conforman las funciones de recuperación o perfil de funcionalidad, Q (t), de una construcción, como se ilustra en la figura 2, donde se muestra la variación de la funcionalidad a lo largo del tiempo. Inicialmente, hay un periodo antes de que ocurra el evento sísmico, denotado como Ta, durante el cual el sistema experimenta una degradación gradual de la funcionalidad debido al deterioro ambiental y otros factores, como la intemperie. Posteriormente, se produce una caída repentina en la funcionalidad, Fc, la cual se atribuye a la ocurrencia de un sismo en el tiempo t0 Esta disminución se debe a los daños tanto estructurales como no estructurales. Después de esto, se presenta un periodo de tiempo plano, Tb, que representa una fase de retraso antes de que comiencen las actividades de reparación. Finalmente, los tiempos Tc y Td están relacionados con las reparaciones estructurales y no estructurales, respectivamente. La duración total de la inactividad del sistema se calcula como la suma de Tb, Tc y Td. La estimación de los parámetros de resiliencia (tiempos y funcionalidad) se realiza mediante modelos empíricos que relacionan la respuesta estructural con cada uno de los componentes mostrados en la figura 2. Estos modelos se derivan de análisis no lineales, donde se estudia la configuración de los daños y luego se asigna una pérdida adecuada de funcionalidad y se planifican las actividades de reparación.
Este análisis ofrece una evaluación detallada de la capacidad de los edificios para resistir y recuperarse de los sismos, identificando áreas de mejora y priorizando medidas de mitigación y preparación. Para el propósito, la resiliencia se cuantifica utilizando los enfoques propuestos por Bruneau et al. (2003) y Cimellaro et al. (2010), quienes presentaron la ecuación:
R=∫t0 + Tco t0 Q(t)/ Tco dt (1)
En la ecuación, R representa la resiliencia sísmica del sistema, que se muestra como un sombreado gris en la figura 2. Tc0 denota el tiempo de control del sistema, mientras que Q (t) representa la funcionalidad del sistema como un proceso estocástico no estacionario, similar al mostrado en la figura 2a, donde la funcionalidad Q (t) se mide como una función adimensional (porcentaje) del tiempo. Además, t0 señala el momento de ocurrencia del evento sísmico. Es crucial señalar que la pérdida de resiliencia, RL, se calcularía simplemente como 1–R o 100–R, representada en la figura 2 por un sombreado magenta.
En la figura 3 se muestran los resultados de la resiliencia sísmica para las categorías C3 (izquierda) y C4 (derecha), considerando que han ocurrido los sismos del 19 de septiembre de 1985 Mw 8.1 (arriba) y 2017 Mw 7.1 (abajo). Se establecen tres niveles de resiliencia: alta (color verde, con R≥ 0.99); media (color naranja para 0.99 < R < 0.92); y baja (color rojo para R < 0.92). La resiliencia alta asegura una ocupación casi inmediata, garantizando la seguridad de vida, mientras que la resiliencia media permite una rehabilitación rápida y una pronta funcionalidad, con igual seguridad de vida. En contraste, la resiliencia baja implica una rehabilitación prolongada, dificultando la reanudación de las actividades. En la figura 3c, los resultados reflejan principalmente la situación después del sismo de Puebla de 2017, donde los edificios de 6 a 10 pisos, en ciertas zonas de la ciudad, mostraron baja resiliencia (marcada en rojo), aunque otros alcanzaron niveles altos (marcados en verde). En contraste, en la figura 3d las estructuras de la categoría C4 (11 a 15 pisos) sufrieron menos daños, con pocos casos de resiliencia muy baja; sin embargo, aún persiste la necesidad de mejorar la resiliencia comunitaria debido a los niveles bajos encontrados en muchas estructuras. Los resultados de otro sismo de Michoacán en 1985 (figuras 3a y 3b) respaldan la tendencia de que las viviendas de la categoría C3 sean más propensas a tener menor resiliencia que las de la categoría C4.
Este enfoque metodológico proporciona una evaluación integral de la capacidad de recuperación de la infraestructura urbana ante sismos, lo que permite identificar áreas de menor resiliencia y priorizar medidas de mitigación y preparación. Los resultados obtenidos pueden ser utilizados por los responsables de la toma de decisiones para mejorar la planificación urbana y la gestión del riesgo sísmico en la Ciudad de México.
Conclusiones y comentarios finales
La metodología presentada para evaluar la resiliencia sísmica ha demostrado ser una herramienta eficaz para determinar la capacidad de las estructuras de resistir y recuperarse de eventos sísmicos. Su aplicación en la Ciudad de México, una región con un historial sísmico significativo, ofrece valiosas lecciones para mejorar la preparación y la mitigación ante futuros sismos. Los resultados resaltan la urgente necesidad de integrar conceptos de resiliencia en los reglamentos de diseño sísmico. La mayoría de las edificaciones analizadas muestran niveles de resiliencia susceptibles de mejora,
u Se recopila información sobre construcciones incluyendo su ubicación, tipo de construcción, número de pisos, etc. Esta información se utiliza para desarrollar un modelo de exposición que describe la distribución espacial y las características de los edificios vulnerables. Los datos utilizados para estimar los daños provienen del registro catastral de la ciudad, donde se consideraron tipo de construcción, número de pisos y otros datos relevantes. Estos datos cubren un área total de 830 millones de metros cuadrados, con una superficie construida total de más de 300 millones de metros cuadrados.
lo que subraya la vulnerabilidad presente y la necesidad apremiante de fortalecer la capacidad de recuperación de estas estructuras. Es crucial tener en cuenta la configuración específica de cada edificio al diseñar estrategias de mitigación y desarrollo.
La influencia significativa del tiempo de control (Tco) en los valores de resiliencia resalta la necesidad de establecer objetivos claros y adaptados a los intereses del propietario y las necesidades sociales. Es esencial definir con precisión los objetivos de recuperación para garantizar estrategias de rehabilitación efectivas y tiempos de recuperación realistas.
Asimismo, se busca promover una sociedad segura y resiliente, donde los esfuerzos graduales permitan el funcionamiento normal de la vida diaria y las actividades sociales tras un evento sísmico u otro fenómeno natural. En resumen, este estudio proporciona una base sólida para identificar edificaciones que requieren atención inmediata, ofreciendo información valiosa para la toma de decisiones en la prevención y respuesta ante desastres. La implementación de este enfoque no solo destaca las vulnerabilidades existentes, sino que también sugiere estrategias clave para mejorar la resiliencia de las estructuras y comunidades afectadas por eventos sísmicos. La resiliencia sísmica, como parámetro de evaluación, emerge como una herramienta valiosa para impulsar mejoras significativas en la capacidad de recuperación de infraestructuras clave
MIGUEL A. JAIMES TÉLLEZ
Ingeniero civil con doctorado.
Investigador del Instituto de Ingeniería de la UNAM.
Secretario del Comité de Resiliencia de la Infraestructura del CICM.