12 minute read
Revista IC 650 marzo 2023
Aspectos técnicos para alcanzar cero emisiones netas en 2050 en el sector eléctrico
Para calcular los requerimientos de potencia con cero emisiones netas al año 2050 por la noche, en este artículo se toma el valor actual de consumo y se extrapola al 2050. Se examina cuánta potencia limpia hay disponible en el país (biomasa, geotermia, nuclear) y se calcula el faltante para generarla en el día con solar, almacenarla y usarla en la noche, o bien, capturando y almacenando CO2. Destaca la importancia de bajar el consumo mediante ahorro y eficiencia, y se advierte que el consumo podría subir mucho con la llegada de los autos eléctricos, bancos de datos y cambios del sector industrial.
Palabras clave: cero emisiones netas, almacenamiento de energía, captura de CO2, matriz eléctrica.
Las buenas intenciones de muchos para ayudar a la transformación energética que nos libre del nefasto cambio climático ha llevado a la proliferación de ideas novedosas, muchas veces desarticuladas, creyendo que con ellas se resuelve el problema. En este artículo, tomando números gruesos, se calcula lo que va a requerir el país en 2050 y se analizan las posibilidades de suministrar esta potencia con cero emisiones netas. Para ello, primero se examina el potencial técnicamente disponible para satisfacer esa necesidad. Como no alcanza, se agregan otras tecnologías, como la de generar emitiendo CO2 a la atmósfera pero capturándolo y llevándolo a almacenamientos subterráneos; finalmente, se analizan técnicas para generar durante el día (con solar o eólica) y almacenar esa energía para entregarla en la noche. Se completa el análisis explicando la importancia de incrementar el ahorro de energía.
Examen de posibilidades técnicas de generación sin emisiones
Sin detenerse a analizar los detalles, se construye una matriz de tecnologías limpias que podrían aportar a la generación. Luego, al ver que solo se alcanza a cubrir un 40% de la demanda a la hora que se tomó como base para el análisis (9 de la noche), se examinan opciones para generar energía durante el día, cuando hay radiación solar, y almacenarla para usarla en la noche, a la hora seleccionada. Se resalta el almacenamiento en baterías –actualmente muy en boga– y el rebombeo, consistente en la construcción de dos embalses artificiales, uno alto y uno bajo, conectados con sus respectivas tuberías de presión y turbobombas; se bombea agua del estanque bajo al alto utilizando energía solar y luego en la noche, a la hora seleccionada, se genera energía eléctrica dejando pasar el agua al estanque bajo por las turbinas. También se muestra otra aplicación de la energía solar en el día, al usar esa energía solar para generar hidrógeno (“verde” se le llama a este) en una instalación de electrólisis, el cual se almacena a presión y luego durante la noche, a la hora seleccionada, se usa como combustible para alimentar las turbinas a gas de una planta de ciclo combinado con los quemadores debidamente ajustados para usar hidrógeno en lugar de gas natural.
En la descripción de cada tecnología se resalta que esta utiliza la central de ciclo combinado con un factor de planta bastante bajo, porque durante el día la central no genera pues es evidentemente más económico inyectar la energía solar-eléctrica directamente a la red, en lugar de transformarla en hidrógeno. Otra tecnología que se plantea para generar en la noche a la hora seleccionada, con cero emisiones netas, es seguir usando gas natural y las mismas centrales de ciclo combinado, con la gran diferencia de que antes de que el gas natural entre en la turbina, mediante el tradicional proceso de “reformación” se extrae el hidrógeno del metano y este se inyecta a la turbina a gas, donde se han ajustado previamente los quemadores. Este proceso produce una gran cantidad de CO2, pero muy concentrado, lo que permite comprimirlo y llevarlo a sitios para su almacenamiento permanente. Al hidrógeno de este proceso se le conoce como “azul”. Otra forma viable de seguir utilizando gas metano –o gas natural– en las plantas de ciclo combinado es utilizarlas tal cual se usan actualmente, sin ninguna modificación, pero instalando en las chimeneas los equipos necesarios para separar el CO2 caliente del aire y del nitrógeno que sale por la chimenea. Esto cuando baje de precio el sistema de separación de gases, que normalmente se hace con aminas que absorben el CO2 y luego se calientan para que lo desprendan (es lo caro del proceso), se comprima y se lleve al sitio de almacenamiento.
También se están haciendo ensayos para seguir usando las plantas a carbón y separar en las chimeneas el CO2 del nitrógeno y de algo de aire (mucho menor en comparación con las chimeneas en una planta de ciclo binario). Al igual que en los casos anteriores, el CO2 comprimido se lleva a un sumidero permanente.
El CO 2 producido en cualquiera de estos procesos, y que se lleva en tubería a presión a un sitio de almacenamiento permanente, puede modificarse si las circunstancias lo permiten. Por ejemplo, se puede dejar escapar a la atmósfera CO2 por la chimenea y compensarlo buscando un sitio donde haya pozos adecuados para almacenar permanentemente CO 2 , poner allí grandes ventiladores con membranas especiales para “sacarle” el CO2 que hay en la atmósfera (muy diluido) y a pocos metros inyectarlo al pozo, con lo que se evitan las largas tuberías de conducción de CO 2 a presión. Por cierto, esto ya se hace en algunos sitios utilizando viejos pozos abandonados de campos de gas natural. Quien implemente este método podría sostener que tiene en su central de generación un proceso de cero emisiones netas. Es fácil imaginar que este “dudoso” sistema desembocaría en la instalación de grandes empresas captadoras de CO2 de aire y almacenadoras en el subsuelo, que venderían su participación abatiendo CO2 a empresas que lo emitan. Lo mismo puede ocurrir con quienes acertadamente pueden aducir que han plantado gran cantidad de hectáreas de nuevos bosques que absorben dióxido de carbono de la atmósfera y lo transforman en celulosa. Finalmente, las dos formas clásicas y abundantes de almacenamiento en el mundo son el rebombeo en presas de generación y las baterías de litio (o de otros electrolitos más económicos).
Hay muchos lugares en el mundo (muchísimos) con centrales hidroeléctricas en las que se aprovecha algún accidente topográfico para construir un vaso artificial a una cota más arriba que la del embalse –digamos unos 300 m–, al cual se le instalan las tuberías necesarias y turbobombas capaces de operar como bomba, alimentadas por energía solar en las horas del día y como turbina –dejando bajar el agua– en las horas de la noche, cuando se requiera. Así se está almacenando la energía solar del día en estanques de agua para operar como una hidroeléctrica en las horas de la noche. Una versión modificada de la anterior consiste en ubicar sitios topográficos adecuados, lo más cerca posible de donde la línea de transmisión y el sistema lo requieran, para construir un estanque alto y uno bajo (deseablemente con unos 300 m o más de desnivel) donde se instalen estas turbobombas y sus correspondientes tuberías. El llenado inicial de ambos estanques se hace bombeando agua desde algún sitio adecuado (puede ser un año bombeando a bajo caudal, o solo en época de lluvias).
La operación de este sistema no consume agua, no necesita tener un río ni una presa. Si fuera necesario, para disminuir a un mínimo el consumo por evaporación, los paneles solares que se usen para bombear el agua se instalan flotando en ambos estanques. Con esta tecnología se pueden instalar miles de megawatts para almacenar en el día y generar en la noche.
Finalmente, cargando o descargando las baterías que funcionan con un electrolito, no necesariamente de litio, las cuales han tenido un gran auge en años recientes. Las baterías tienen dos funciones importantes y muy diferentes. La primera es mejorar la calidad de energía entregada a la red, lo cual se logra manteniéndolas cargadas, ubicadas dentro del recinto de una central generadora de sol o viento y conectadas adecuadamente para eliminar los cambios bruscos de generación (subidas y bajadas de carga). En la actualidad se le han adicionado otras funciones muy importantes, como la regulación de frecuencia y la aportación de inercia virtual al sistema, muchas veces complementadas con equipo de control inteligente. Es decir, la electrónica de potencia está revolucionando el uso de baterías para apoyar a la estabilidad de las redes. La segunda es apoyando a la red eléctrica mediante el almacenamiento de energía en las horas en que esta es abundante e incluso llega a sobrar (vertimiento), y regresarla a la red en las horas de mayor demanda. Estos bancos de batería son muy grandes, del orden de varios megawatts, y generalmente usan un electrolito más económico que el litio, ya que no importa que las baterías sean grandes y pesadas.
Balance de la matriz de generación
En la figura 1 se presenta un resumen de la potencia “limpia” que se puede instalar para aportar energía despachable a este sistema de cero emisiones. Suma en total 40 GW, lo que todavía está lejos de los 100 GW necesarios para satisfacer la demanda de un día de verano a las 21:30 horas en el año 2050. Luego se le agregan a la gráfica los otros dos esquemas. El de captura, transporte y almacenamiento de CO2, con el que podría seguir generando unos 18 GW quemando carbón o gas natural, pero capturando el CO2 de este proceso. Finalmente, se incorporan los 22 GW que se podrían obtener almacenando energía generada durante el día para usarla en la noche.
En la figura 1 se hace evidente que, a pesar del gran esfuerzo que se hace para incorporar técnicas de generación limpias, sigue existiendo un faltante de alrededor de 20 GW. La única solución para obtenerlos es con un plan muy efectivo de ahorro y eficiencia energética.
Eficiencia energética
La forma principal de ahorrar energía eliminando la pérdidas que existen actualmente en la transmisión y distribución de energía eléctrica es la eficiencia energética. La propia Comisión Federal de Electricidad tiene un ambicioso y efectivo programa para eliminarlas y reducirlas a un mínimo técnicamente aceptable. También desempeñan un papel muy efectivo las políticas que –mediante la emisión de normas técnicas emitidas por la Comisión Nacional para el Uso Eficiente de la Energía– obligan a que los artefactos eléctricos cumplan con requisitos de eficiencia energética (el cambio de alumbrado y las normas para refrigeradores han sido muy importantes).
Aparte de lo anterior, México sigue siendo un país con un enorme consumo en sistemas de aire acondicionado. Este consumo se puede (y debería) disminuir de manera significativa con la implantación de normas de construcción de edificios y viviendas donde con la sola arquitectura adecuada al clima de la zona se ahorre en aire artificial, y segundo, cambiando la estrategia de operación de los aparatos usando bombas de calor, donde el frío y el calor se almacenan adecuadamente en el subsuelo.
Finalmente, el exceso en el consumo de energía por la noche, cuando es cara porque ya no hay sol, se puede disminuir con un sistema inteligente que reformule la geometría de la curva de demanda, para achicarla en la noche y agrandarla en el día.
Consumos adicionales que se esperan en 2050 Todo el análisis que hasta aquí se ha presentado se basa en que para el año 2050 crecerá el consumo en un 2.5% anual. Sin embargo, ya se vislumbran severos incrementos. Solo menciono tres que van a ser muy significativos:
El crecimiento de la flota de autos eléctricos traerá consigo un incremento de decenas de gigawatts para todo el sistema de carga de sus baterías.
Lo mismo sucederá con el incremento de la actividad de computación, ya sea para procesar bitcoins o para mantener grandes bancos de datos, o incluso para atender las necesidades de la propia inteligencia artificial.
Finalmente, la tendencia mundial de llegar al año 2050 con cero emisiones está llevando al sector industrial, principalmente de fundición, laminado y producción de acero y de cemento, a cambiar sus grandes hornos y quemadores, que originalmente quemaban gas o carbón, y reemplazarlos por sistemas totalmente eléctricos; con ello resuelven su problema, pero le pasan un incremento de consumo al sector eléctrico.
Todo lo anterior se muestra de manera gráfica en la figura 2, donde a la izquierda se representan los ahorros de energía esperados y a la derecha los incrementos que se estima se podrían producir para el año 2050.
Conclusiones y recomendaciones
Aquí se presenta un resumen de las conclusiones de este trabajo y se esbozan siete recomendaciones para que lleguemos debidamente preparados al año 2050 y tengamos una matriz energética con cero emisiones netas.
Conclusiones Por la noche deben generar solo las plantas nucleares, geotérmicas y de biomasa, más algo de hidráulica, eólica y marina (esto aporta un 50% de la potencia requerida).
Se puede continuar con la generación de algunas plantas de gas natural o carbón siempre que se eliminen las emisiones con captura, transporte y almacenamiento de CO2 (podrían aportar un 22%).
Una opción muy importante para satisfacer la demanda es almacenar energía solar (o algo de eólica) durante el día en baterías, en embalses de rebombeo o produciendo hidrógeno para generar en la noche (con almacenamiento se podría cubrir un 28%).
El ahorro de energía y la eficiencia energética son la solución más barata (pueden bajar la demanda en más de un 20%).
Recomendaciones
1. Estudiar sitios de rebombeo donde la red lo requiera (independientes de las presas existentes).
2. Revisar el programa nuclear. Será en el futuro la gran aportación mundial de energía limpia firme.
3. Desarrollar al máximo la geotermia. En México es abundante, económica, constante y limpia, con alta integración nacional de equipos y capital humano. México fue tercer lugar mundial en potencia instalada.
4. Fomentar el estudio y aplicación de captura, transporte y almacenamiento de CO2
5. Normativa para modificar la curva de consumo con exigencias de eficiencia energética.
6. Normativa para cargar vehículos eléctricos con tarifas bidireccionales.
7. La complejidad del tema amerita crear un centro de estudios y planeación para apoyar a la Secretaría de Energía en el Programa para el Desarrollo del Sistema Eléctrico Nacional y al manejo de la red con energías variables, almacenamiento, hidrógeno y captura de CO2
GERARDO HIRIART LE BERT
Ingeniero naval mecánico con doctorado en Ingeniería Mecánica. Exgerente de Geotermia en la CFE. Director general de GeoKeri y miembro honorario del Colegio de Ingenieros Civiles de México, donde es coordinador adjunto del Comité de Energía.