Ευκλειδης Α 108

Page 1

E

Γυμνάσιο

108

Α Π Ρ Ι Λ Ι ΟΣ - Μ Α Ι ΟΣ - Ι ΟΥ Ν Ι ΟΣ 2 0 1 8 ε υ ρ ώ 3 , 0 0

ΕΝΤΥΠΟ ΚΛΕΙΣΤΟ ΑΡ. ΑΔΕΙΑΣ 1099/96 ΚΕΜΠ.ΑΘ.

4156

ΚΕΜΠ.ΑΘ.

Ταχ. Γραφείο

Αριθμός Άδειας

ΕΚΔΟΤΩΝ

Hellenic Post

ΕΛΤΑ

υκλείδης

ΠΛΗΡΩΜΕΝΟ ΤΕΛΟΣ

Α΄

Μαθηματικό περιοδικό για το

Επαναληπτικά Θέματα

Ελληνική Μαθηματική Εταιρεία


α

΄

ÌÁÈÇÌÁÔÉÊÏ ÐÅÑÉÏÄÉÊÏ ÐËÇÑÏÖÏÑÇÓÇÓ

ãéá ôï ãõìíÜóéï

Åõêëåßäçò

Τεύχος 108 Απρίλιος - Μάιος - Ιούνιος 2018 Τιμή Τεύχους 3,00 Εύρω e-mail: info@hms.gr, www.hms.gr

ÐÅÑÉÅ×ÏÌÅÍÁ

Ιστορία των Μαθηματικών

Η ιστορία του αριθμού «π» Γιώργος Λαγουδάκος ................................................

= Γ΄ Τάξη Θέματα Γεωμετρίας Γ΄ Γυμνασίου 1

Τα Μαθηματικά στο Σχολείο

Γιάννης Νικολόπουλος ................................................... 30

Προχωρημένα θέματα για όλους. Τάξη Γ΄ Επιμέλεια: Στέφανος Κεΐσογλου ...................................... 32

= Α΄ Τάξη Επαναληπτικά Θέματα Άλγεβρας Α΄ Γυμνασίου

Μαθηματικοί Διαγωνισμοί

Ιωάννα Δοργιάκη - Νίκος Σκομπρής .................................. 6

Επιλεγμένα Θέματα Γεωμετρίας Α΄ Γυμνασίου

Μαθηματικοί Διαγωνισμοί, Επιμέλεια: Επιτροπή Διαγωνισμών ................................... 34

Νάνσυ Κυριακοπούλου ..................................................... 8

= Β΄ Τάξη Εξίσωση μιας ευθείας γραμμής Στυλιανός Μαραγκάκης, Ανδρέας Τριανταφύλλου .............. 10

Γενικά Θέματα Β΄ Γυμνασίου Επιμέλεια: Σερέφογλου Φίλιππος

Διάφορα ΟΧΙ Αδιάφορα Η Χρυσή Τομή στο σύγχρονο design

................................... 15

Επαναληπτικές ασκήσεις Β΄ Γυμνασίου Επιμέλεια: Τζίφας Νίκος Λαγός Γεώργιος ......................... 20

Προχωρημένα θέματα για όλους. Τάξη Β΄ Ιωάννης Ρίζος .............................................................. 23

= Γ΄ Τάξη Επαναληπτικές ασκήσεις Γ΄ Γυμνασίου

Μαρία Ρουσούλη, Γιώργος Καραφέρης, Παναγιώτης Θ. Θεοδώρου .................................................................................. 38

Αυτό το ξέρατε; Μαθηματικά Ανάλεκτα Συντακτική Επιτροπή ..................................................... 42

1ο ΓΥΜΝΑΣΙΟ ΣΚΑΛΑΣ ΩΡΩΠΟΥ ΑΤΤΙΚΗΣ ΙΧΝΗΛΑΤΩΝΤΑΣ ΤΑ ΕΜΠΝΕΥΣΜΕΝΑ ΜΟΝΟΠΑΤΙΑ ΤΟΥ Μ. C. ESCHER Παρουσίαση : Στάμη Τσικοπούλου ................................... 44

Διασκεδαστικά Μαθηματικά,

Επιμέλεια: Παπαπανάγου Κωνσταντίνα-Σερέφογλου Φίλιππος

25

Μαρία Ρουσούλη ........................................................... 49

ΕΚΔΟΣΗ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΜΑΘΗΜΑΤΙΚΗΣ ΕΤΑΙΡΕΙΑΣ

Συντακτική Επιτροπή ÐÁÍÅÐÉÓÔÇÌÉÏÕ 34, 106 79 ÁÈÇÍÁ Ôçë.: 210 3617784 - 210 3616532 Fax: 210 3641025 Åêäüôçò: ÁíÜñãõñïò Öåëëïýñçò ÄéåõèõíôÞò: ÉùÜííçò ÔõñëÞò ÅðéìÝëåéá ¸êäïóçò: Êõñéáêïðïýëïõ ÍÜíóõ

Êùäéêüò ÅË.ÔÁ: 2054 ISSN: 1105 - 7998

Ðñüåäñïò: ÊåÀóïãëïõ ÓôÝöáíïò Á´ Áíôéðñüåäñïò: ÊõñÜíáò Ðáíáãéþôçò ´ Áíôéðñüåäñïò: Ëõìðåñüðïõëïò Ãåþñãéïò ÌÝëç: ÁëáöÜêç Óôáõñïýëá ÁñäáâÜíç Ðüðç Βιτζιλαίου Μαρία ÄïñãéÜêç ÉùÜííá Èåïäùñüðïõëïò Èñáóýâïõëïò ÊõñÜíáò Ðáíáãéþôçò Êõñéáêïðïýëïõ ÍÜíóõ Êùíóôáíôéíßäçò Áñéóôåßäçò Ëáãüò Ãåþñãéïò

Ëõìðåñüðïõëïò Ãåþñãéïò Μακρυνιώτης Στυλιανός-Ηλίας Ìåíäùíßäçò Ãåþñãéïò Ìïñöïðïýëïõ Ìáñßá ÌðáêÜëçò ÁíáóôÜóéïò Ðáëáéïãéáííßäçò ÄçìÞôñéïò Παπαδάκη Άννα Óßóêïõ Ìáñßá Ôæßöáò Íßêïò Ôóéêïðïýëïõ ÓôÜìç Öåñåíôßíïò Óðõñßäùí ÁðïêåíôñùìÝíïé óõíåñãÜôåò ÁíáóôÜóéïò Ðáôñþíçò (ÐÜôñá) ÃéÜííçò ÈùìáÀäçò (Èåó/íßêç) Ãéþñãïò Ñßæïò (ÊÝñêõñá) Ãéþñãïò Ôóáðáêßäçò (Áãñßíéï) ÅéñÞíç ÐåñéóõíÜêç (ÊñÞôç) ÃéÜííçò ÑÜëëçò (×ßïò) Μαρία Ρουσούλη (Καστοριά)

Γράμμα της Σύνταξης Αγαπητοί / ές αναγνώστες αναγνώστριες. Το τεύχος 108 είναι το τελευταίο της σχολικής χρονιάς 2017-2018. Κατά πάγια τακτική το τελευταίο τεύχος κάθε σχολικής χρονιάς περιέχει θέματα λυμένα αλλά και άλυτα, τα οποία είναι κατάλληλα για τις εξετάσεις του Ιουνίου. Αυτός είναι και ο λόγος για τον οποίο έχουμε περιορίσει τα θέματα γενικού ενδιαφέροντος τα οποία όμως θα περιλάβουμε στο επόμενο τεύχος. Το υλικό που μας έρχεται από όλη την Ελλάδα, αλλά και από τους μόνιμους συνεργάτες μέλη της συντακτικής επιτροπής, είναι μεγάλο σε αριθμό ώστε συχνά θα πρέπει να αναβάλλουμε την έκδοσή του σε ορισμένα τεύχη. Βασική μας αρχή είναι πάντα ότι οι συγγραφείς που προέρχονται από την περιφέρεια προηγούνται στην κρίση και προώθηση των κειμένων τους. Όπως και στο προηγούμενο έτσι και στο παρόν τεύχος δεν έχουμε συμπεριλάβει άρθρο για την στήλη Τέχνη και Μαθηματικά, το οποίο όμως θα δημοσιευτεί στο επόμενο τεύχος. Να μην ξεχνάμε την επέτειο των 100 χρόνων της ΕΜΕ, είναι ένα από τα σημαντικότερα γεγονότα στην επιστημονική κοινότητα, σε συνδυασμό με το 2018 έτος Μαθηματικών. Ευχόμαστε καλή επιτυχία στις εξετάσεις και καλό καλοκαίρι. Εκ μέρους της Συντακτικής επιτροπής του περιοδικού Ο πρόεδρος: Στέφανος Κεΐσογλου Ειδικός γραμματέας του ΔΣ της ΕΜΕ τ. Σχολικός Σύμβουλος

Υποστηρικτής Ταχυδρομικών Υπηρεσιών

ΕΛΤΑ Hellenic Post

ÉÄÉÏÊÔÇÓÉÁ ôçò ÅËËÇÍÉÊÇÓ ÌÁÈÇÌÁÔÉÊÇÓ ÅÔÁÉÑÅÉÁÓ Óôïé÷åéïèåóßá - Óåëéäïðïßçóç: ÅËËÇÍÉÊÇ ÌÁÈÇÌÁÔÉÊÇ ÅÔÁÉÑÅÉÁ Åêôýðùóç: ROTOPRINT (A. ÌÐÑÏÕÓÁËÇ & ÓÉÁ ÅÅ). ôçë.: 210 6623778 - 358 Õðåýèõíïò ôõðïãñáöåßïõ: Ä. Ðáðáäüðïõëïò

Η έγκαιρη πληρωμή της συνδρομής Βοηθάει στην έκδοση του περιοδικού • Ôá äéáöçìéæüìåíá âéâëßá äå óçìáßíåé üôé ðñïôåßíïíôáé áðü ôçí Å.Ì.Å. • Ïé óõíåñãáóßåò, ôá Üñèñá, ïé ðñïôåéíüìåíåò áóêÞóåéò, ïé ëýóåéò áóêÞóåùí êôë. ðñÝðåé íá óôÝëíïíôáé Ýãêáéñá, óôá ãñáöåßá ôçò Å.Ì.Å. ìå ôçí Ýíäåéîç “Ãéá ôïí Åõêëåßäç A´”. ¼Ëá ôá Üñèñá õðüêåéíôáé óå êñßóç ÔéìÞ ôåý÷ïõò: åõñþ 3,00 ÅôÞóéá óõíäñïìÞ (10,00+2,00 Ôá÷õäñïìéêÜ=åõñþ 12,00). ÅôÞóéá óõíäñïìÞ ãéá Ó÷ïëåßá åõñþ 10,00 Ôï áíôßôéìï ãéá ôá ôåý÷ç ðïõ ðáñáããÝëíïíôáé óôÝëíåôáé: 1. Ìå áðëÞ ôá÷õäñïìéêÞ åðéôáãÞ óå äéáôáãÞ Å.Ì.Å. Ôá÷. Ãñáöåßï ÁèÞíá 54 Ô.È. 30044 2. Óôçí éóôïóåëßäá ôçò Å.Ì.Å., üðïõ õðÜñ÷åé äõíáôüôçôá ôñáðåæéêÞò óõíáëëáãÞò ìå ôçí ôñÜðåæá EUROBANK 3. Ðëçñþíåôáé óôá ãñáöåßá ôçò Å.Ì.Å.


¡ ÂÌÍÈÊȯº ÍÈÎ ºÊÂÁÅÈɉ «É» ======================================================================== īȚȫȡȖȠȢ ȁĮȖȠȣįȐțȠȢ Ǿ ȚıIJȠȡȓĮ ĮȣIJȒ ȑȤİȚ Įʌȩ ȩȜĮ !!! ǹȞĮijȑȡİIJĮȚ ıIJȠȞ ʌȚȠ įȚȐıȘȝȠ ĮȡȚșȝȩ, IJȠȞ ĮȡȚșȝȩ ʌ. ȃĮȚ, ĮȣIJȠȪ IJȠȣ ʌİȡȓİȡȖȠȣ ĮȡȚșȝȠȪ IJȠȣ 3,14159…. ȉȠȣ ĮȡȚșȝȠȪ ʌȠȣ ȩȜİȢ ȠȚ ijȣȜȑȢ IJȠȣ țȩıȝȠȣ ʌȡȠıʌȐșȘıĮȞ ȞĮ ȣʌȠȜȠȖȓıȠȣȞ, ǺĮȕȣȜȫȞȚȠȚ, ǼȕȡĮȓȠȚ, ǹȚȖȪʌIJȚȠȚ, DzȜȜȘȞİȢ, DZȡĮȕİȢ, ǿȞįȠȓ, ȀȚȞȑȗȠȚ, ǼȣȡȦʌĮȓȠȚ, ǿȐʌȦȞİȢ, ǹȝİȡȚțĮȞȠȓ. ȉȠȣ ĮȡȚșȝȠȪ, ʌȠȣ ĮijȚİȡȫȞȠȞIJĮȚ İįȐijȚĮ ıIJȘ ȕȓȕȜȠ țĮȚ ıİ ĮȡȤĮȓİȢ țȦȝȦįȓİȢ. ȉȠȣ ĮȡȚșȝȠȪ ȖȚĮ IJȠȞ ȠʌȠȓȠ įȘȝȚȠȣȡȖȠȪȞIJĮȚ IJĮȚȞȓİȢ ȦȢ țĮȚ ʌȠȚȘȝĮIJȐțȚĮ ĮʌȠȝȞȘȝȩȞİȣıȘȢ. ȉȚ İȓȞĮȚ ȩȝȦȢ Ƞ ĮȡȚșȝȩȢ ĮȣIJȩȢ, ʌȫȢ ʌȡȠțȪʌIJİȚ; ȅ ĮȡȚșȝȩȢ ĮȣIJȩȢ İȓȞĮȚ Ș ʌȡȫIJȘ ʌĮȖțȩıȝȚĮ ıIJĮșİȡȐ ʌȠȣ ĮȞĮțĮȜȪijșȘțİ ʌȠIJȑ !!. ǼȓȞĮȚ Ƞ ĮȡȚșȝȩȢ, ʌȠȣ ʌĮȖțȠıȝȓȦȢ ıȣȝȕȠȜȓȗİIJĮȚ ȝİ IJȠ İȜȜȘȞȚțȩ ȖȡȐȝȝĮ ʌ. ǼȓȞĮȚ ȑȞĮȢ įȚȐıȘȝȠȢ ĮȡȚșȝȩȢ, ʌȠȣ ȑȤİȚ țĮȚ IJȘȞ ȖİȞȑșȜȚĮ ȝȑȡĮ IJȠȣ. Ǿ 14 ȂĮȡIJȓȠȣ țȐșİ ȤȡȩȞȠ İȓȞĮȚ Ș «pi day». ǼțİȓȞȘ IJȘ ȝȑȡĮ ȩȜȠȢ Ƞ țȩıȝȠȢ ȖȚȠȡIJȐȗİȚ IJȠ ȖİȖȠȞȩȢ ȩIJȚ : « Ș įȚȐȝİIJȡȠȢ IJȠȣ țȪțȜȠȣ ȤȦȡȐ 3,14 ʌİȡȓʌȠȣ ijȠȡȑȢ ıIJȘȞ ʌİȡȚijȑȡİȚĮ IJȠȣ țȪțȜȠȣ. » ȅ ĮȡȚșȝȩȢ ĮȣIJȩȢ İȝijĮȞȓȗİIJĮȚ țĮȚ ıIJȠ İȝȕĮįȩȞ IJȠȣ țȣțȜȚțȠȪ įȓıțȠȣ. ǹȢ șȣȝȘșȠȪȝİ IJȠȞ IJȪʌȠ … Ǽ=ʌ·ȡ2, ȩʌȠȣ ȡ Ș ĮțIJȓȞĮ IJȠȣ țȪțȜȠȣ. Ǿ ȚıIJȠȡȓĮ ȟİțȚȞȐ Įʌȩ … x

IJȘȞ ǺĮȕȣȜȫȞĮ ȩʌȠȣ:

Ș İʌȚțȡĮIJȠȪıĮ IJȚȝȒ İȓȞĮȚ ʌ=3, ĮȜȜȐ ȣʌȐȡȤȠȣȞ ʌȚȞĮțȓįİȢ ʌȠȣ ĮȞĮȖȡȐijİIJĮȚ țĮȚ Ș IJȚȝȒ 1 ʌ=3 =3,125 8 x ȈȣȞİȤȓȗȠȣȝİ ıIJȘȞ ǹȓȖȣʌIJȠ, ȩʌȠȣ ıIJȠȞ ʌȐʌȣȡȠ IJȠȣ Rind Ȓ ʌȐʌȣȡȠ IJȠȣ Ames, țİȓȝİȞȠ IJȠȣ 1800 ʌ.Ȥ. ʌİȡȓʌȠȣ, ʌİȡȚȑȤİIJĮȚ ȑȞĮ ʌȡȩȕȜȘȝĮ ʌȡȠıįȚȠȡȚıȝȠȪ IJȠȣ İȝȕĮįȠȪ İȞȩȢ țȣțȜȚțȠȪ ĮȖȡȠȪ įȚĮȝȑIJȡȠȣ 9 khet (ȝȠȞȐįĮ ȝȑIJȡȘıȘȢ ȝȒțȠȣȢ). ȅȚ ıȣȝȕȠȣȜȑȢ IJȠȣ ȖİȦȝȑIJȡȘ IJȘȢ İʌȠȤȒȢ İȓȞĮȚ ȠȚ İȟȒȢ: «ȆȐȡİ IJȠ 1/9 IJȘȢ įȚĮȝȑIJȡȠȣ țĮȚ ĮijĮȓȡİıİ IJȠ Įʌȩ IJȘ įȚȐȝİIJȡȠ. ȉȘ įȚĮijȠȡȐ, ʌȠȣ șĮ ȕȡİȚȢ, ȪȥȦıȑ IJȘȞ ıIJȠ IJİIJȡȐȖȦȞȠ. ȉȠ ĮʌȠIJȑȜİıȝĮ, ʌȠȣ șĮ ȕȡİȚȢ İȓȞĮȚ IJȠ İȝȕĮįȩȞ IJȠȣ ĮȖȡȠȪ». ǻȘȜĮįȒ, ȤȡȘıȚȝȠʌȠȚȫȞIJĮȢ ıȪȖȤȡȠȞȠȣȢ ıȣȝȕȠȜȚıȝȠȪȢ ȠȚ ǹȚȖȪʌIJȚȠȚ ȤȡȘıȚȝȠʌȠȚȠȪıĮȞ IJȠȞ IJȪʌȠ 8 64 256 2 Ǽ=( į) 2 Ȓ Ǽ= 4 ȡ 2 = ȡ . 9 81 81 ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/1


--------------------------------------------------------------------------------------------------- Ǿ ȚıIJȠȡȓĮ IJȠȣ ĮȡȚșȝȠȪ «ʌ» ------------------------------------------------------------------------------------------------

Ǿ IJȚȝȒ IJȠȣ țȜȐıȝĮIJȠȢ ıIJȠȞ IJȪʌȠ İȓȞĮȚ ʌİȡȓʌȠȣ 3,16049, Ș ʌȡȫIJȘ ʌȡȠıȑȖȖȚıȘ IJȠȣ ĮȡȚșȝȠȪ ʌ. x ǹȞȘijȠȡȓȗȠȞIJĮȢ ijșȐȞȠȣȝİ ʌȡȠȢ IJȘȞ ǿİȡȠȣıĮȜȒȝ, ȩʌȠȣ ıİ ĮʌȩıʌĮıȝĮ IJȘȢ ȕȓȕȜȠȣ (ʌĮȜĮȚȐ įȚĮșȒțȘ, ȕĮıȚȜȑȦȞ ī’,7:23) ĮȞĮijȑȡİIJĮȚ ȑȞĮ țȣțȜȚțȩ șȣıȚĮıIJȒȡȚȠ, ʌȠȣ İȓȤİ țĮIJĮıțİȣĮıIJİȓ ıIJȠ ȞĮȩ IJȠȣ ȈȠȜȠȝȫȞIJĮ, ȩʌȠȣ Ƞ ȜȩȖȠȢ IJȘȢ ʌİȡȚijȑȡİȚĮȢ ʌȡȠȢ IJȘ įȚȐȝİIJȡȠ İȓȞĮȚ 3 !! «… țĮ੿ ਥʌȠ઀Șıİ IJ੽Ȟ ș੺ȜĮııĮȞ į੼țĮ ਥȞ ʌ੾ȤİȚ ਕʌઁ IJȠ૨ Ȥİ઀ȜȠȣȢ Į੝IJોȢ ਪȦȢ IJȠ૨ Ȥİ઀ȜȠȣȢ Į੝IJોȢ, ıIJȡȠȖȖ઄ȜȠȞ ț઄țȜ૳ IJઁ Į੝IJંǜ ʌ੼ȞIJİ ਥȞ ʌ੾ȤİȚ IJઁ ੢ȥȠȢ Į੝IJોȢ, țĮ੿ ıȣȞȘȖȝ੼ȞȠȚ IJȡİ૙Ȣ țĮ੿ IJȡȚ੺țȠȞIJĮ ਥȞ ʌ੾ȤİȚ ਥț઄țȜȠȣȞ Į੝IJ੾Ȟ…» x

ȈȣȞİȤȓȗȠȞIJĮȢ ʌȡȠȢ IJĮ ʌȐȞȦ … ijșȐȞȠȣȝİ ıIJȘȞ ǼȜȜȐįĮ

Ǽțİȓ IJĮ ȝĮșȘȝĮIJȚțȐ ijșȐȞȠȣȞ ıIJȠ ĮʌȩȖİȚȩ IJȠȣȢ. ȅȚ ĮȟȚȦȝĮIJȚțȑȢ IJȚȝȑȢ ȖȚĮ IJȠȞ ĮȡȚșȝȩ ʌ, įİȞ ĮȡțȠȪȞ. ȉȠ ʌȠȜȓIJİȣȝĮ įȘȝȠțȡĮIJȓĮ, ȑIJıȚ țȐșİ IJȚ ʌȡȑʌİȚ ȞĮ ĮȚIJȚȠȜȠȖİȓIJĮȚ. ȈIJȠ ȤȫȡȠ IJȦȞ ȝĮșȘȝĮIJȚțȫȞ ȞĮ ĮʌȠįİȚțȞȪİIJĮȚ – ȞĮ țĮIJĮıțİȣȐȗİIJĮȚ ȝİ ȩıȠ IJȠ įȣȞĮIJȩ ȜȚȖȩIJİȡĮ ȝȘȤĮȞȚțȐ ȝȑıĮ ( ȝȩȞȠ ȝİ įȚĮȕȒIJȘ țĮȚ țĮȞȩȞĮ). Ǿ ĮʌĮȓIJȘıȘ IJȘȢ įȚțĮȚȠȜȩȖȘıȘȢ ĮȞĮįİȚțȞȪİȚ IJȘȞ ȝĮșȘȝĮIJȚțȒ İʌȚıIJȒȝȘ ıİ ĮȞĮȝijȚıȕȒIJȘIJĮ İʌȓʌİįĮ. ȋĮȡĮțIJȘȡȚıIJȚțȩȢ Ƞ İʌȓȜȠȖȠȢ țȐșİ ȝĮșȘȝĮIJȚțȠȪ ıȣȜȜȠȖȚıȝȠȪ: ȩʌİȡ ȑįİȚ įİȓȟĮȚ Ȓ ȩʌİȡ ȑįİȚ ʌȠȚİȓıĮȚ. ȆȩıȠ ȩȝȦȢ İȓȞĮȚ IJİȜȚțȐ IJȠ ʌ; ȂʌȠȡȠȪȝİ ȞĮ ȣʌȠȜȠȖȓıȠȣȝİ IJȠ İȝȕĮįȩȞ İȞȩȢ țȪțȜȠȣ ȝİ IJȘ ȕȠȒșİȚĮ İȞȩȢ ȚıȠįȪȞĮȝȠȣ IJİIJȡĮȖȫȞȠȣ; ȀĮIJĮıțİȣȐȗİIJĮȚ įȘȜĮįȒ IJİIJȡȐȖȦȞȠ ȝİ İȝȕĮįȩȞ ȓıȠ ȝİ ĮȣIJȩ İȞȩȢ įİįȠȝȑȞȠȣ țȪțȜȠȣ; (IJİIJȡĮȖȦȞȚıȝȩȢ IJȠȣ țȪțȜȠȣ). ǵıȠ IJĮ İȡȦIJȒȝĮIJĮ ĮȣIJȐ įİȞ ȑȕȡȚıțĮȞ ĮʌĮȞIJȒıİȚȢ, Ƞ IJİIJȡĮȖȦȞȚıȝȩȢ IJȠȣ țȪțȜȠȣ țĮȚ ȩıȠȚ ʌȡȠıʌĮșȠȪıĮȞ țȐIJȚ IJȑIJȠȚȠ, ĮȞIJȚȝİIJȦʌȓȗȠȞIJĮȞ ȦȢ ȠȚ ȐȞșȡȦʌȠȚ ʌȠȣ țȣȞȘȖȠȪıĮȞ IJȠ ĮįȪȞĮIJȠ, IJȠ ȐʌȚĮıIJȠ… ȋĮȡĮțIJȘȡȚıIJȚțȩ IJȠ ĮʌȩıʌĮıȝĮ Įʌȩ IJȚȢ ȩȡȞȚșİȢ IJȠȣ ǹȡȚıIJȠijȐȞȘ ʌȠȣ Ƞ ĮıIJȡȠȞȩȝȠȢ ȂȑIJȦȞ ȜȑİȚ: «ȝİ IJȠ Ƞȡșȩ ȡĮȕįȓ ĮȡȤȓȗȦ ȞĮ ȝİIJȡȫ ȫıIJİ ȞĮ ȖȓȞİȚ Ƞ țȪțȜȠȢ IJİIJȡȐȖȦȞȠȢ ȖȚĮ ȤȐȡȘ ıȠȣÚțĮȚ ıIJȠ țȑȞIJȡȠ IJȠȣ șĮ İȓȞĮȚ Ș ĮȖȠȡȐ ıIJȘȞ ȠʌȠȓĮ șĮ ȠįȘȖȠȪȞ ȩȜȠȚ ȠȚ įȡȩȝȠȚ ıȣȖțȜȓȞȠȞIJĮȢ ıIJȠ țȑȞIJȡȠ, ȩʌȦȢ ı’ ȑȞĮ ĮıIJȑȡȚ, ʌȠȣ İȞȫ İȓȞĮȚ țȣțȜȠIJİȡȑȢ ıIJȑȜȞİȚ ʌĮȞIJȠȪ İȣșİȓİȢ ĮțIJȓȞİȢ ȜĮȝʌȡȑȢ». «ǹȜȒșİȚĮ, Ƞ ȐȞșȡȦʌȠȢ İȓȞĮȚ ĬĮȜȒȢ!» ǹʌĮȞIJȒıİȚȢ ıIJĮ İȡȦIJȒȝĮIJĮ ĮȣIJȐ ȕȡȑșȘțĮȞ, ĮȞȠȓȖȠȞIJĮȢ ȞȑȠȣȢ įȡȩȝȠȣȢ, ʌĮȡȐȖȠȞIJĮȢ ȞȑĮ ȝĮșȘȝĮIJȚțȐ … ǹȜȜȐ ĮȢ ʌȐȡȠȣȝİ IJĮ ʌȡȐȖȝĮIJĮ ȝİ IJȘ ıİȚȡȐ. ǿʌʌȠțȡȐIJȘȢ Ƞ ȋȓȠȢ (-470ʌ.Ȥ.) țĮIJȠȡșȫȞİȚ ȞĮ IJİIJȡĮȖȦȞȓıİȚ ıȤȒȝĮIJĮ ʌȠȣ ʌİȡȚȕȐȜȜȠȞIJĮȚ Įʌȩ țȣțȜȚțȐ IJȩȟĮ. ȅȚ ȖȞȦıIJȠȓ ȝȘȞȓıțȠȚ IJȠȣ. ǹȞ įȠȪȝİ IJȠ įȚʌȜĮȞȩ ıȤȒȝĮ, IJȠ ȐșȡȠȚıȝĮ IJȦȞ İȝȕĮįȫȞ IJȦȞ įȪȠ «ȝȚıȠijȑȖȖĮȡȦȞ» İȓȞĮȚ ȩıȠ IJȠ İȝȕĮįȩȞ IJȠȣ ȠȡșȠȖȦȞȓȠȣ IJȡȚȖȫȞȠȣ. ȉĮ ıȤȒȝĮIJĮ ĮȣIJȐ İȓȞĮȚ IJĮ ʌȡȫIJĮ țĮȝʌȣȜȩȖȡĮȝȝĮ ȤȦȡȓĮ ʌȠȣ ȣʌȠȜȠȖȓȗİIJĮȚ IJȠ İȝȕĮįȩȞ IJȠȣȢ ȤȦȡȓȢ ȞĮ ȤȡİȚĮıIJȠȪȝİ IJȠȞ ĮȡȚșȝȩ ʌ. ǹȜȜȠȓȝȠȞȠ İȓȞĮȚ țĮȚ IJĮ IJİȜİȣIJĮȓĮ… ǹȞIJȚijȫȞ (-430ʌ.Ȥ.) ȣʌȠȜȠȖȓȗİȚ IJȠ İȝȕĮįȩȞ IJȠȣ țȪțȜȠȣ İȖȖȡȐijȠȞIJĮȢ țĮȞȠȞȚțȐ ʌȠȜȪȖȦȞĮ ıİ ȑȞĮ țȪțȜȠ. ȄİțȚȞȫȞIJĮȢ Įʌȩ ȑȞĮ IJİIJȡȐȖȦȞȠ țĮIJĮıțİȣȐȗİȚ ȠțIJȐȖȦȞȠ – 16ȖȦȞȠ – 32ȖȦȞȠ ț.IJ.Ȝ., ȝȑȤȡȚ ȞĮ ijșȐıİȚ ıİ ʌȠȜȪȖȦȞȠ, IJȠȣ ȠʌȠȓȠȣ ȠȚ ʌȜİȣȡȑȢ ʌȡȠıİȖȖȓȗȠȣȞ IJȘȞ ʌİȡȚijȑȡİȚĮ IJȠȣ țȪțȜȠȣ. Ȃİ IJȠȞ IJȡȩʌȠ ĮȣIJȩ țĮIJȠȡșȫȞİȚ ȞĮ ʌȡȠıįȚȠȡȓıİȚ ȝİ ȝİȖȐȜȘ ĮțȡȓȕİȚĮ IJȠ İȝȕĮįȩȞ IJȠȣ țȪțȜȠȣ. ȈȚȖȐ ıȚȖȐ ȖȓȞİIJĮȚ ĮȞIJȚȜȘʌIJȩ ȩIJȚ ȝİ IJȠȣȢ ʌİȡȚȠȡȚıȝȠȪȢ ʌȠȣ șȑIJİȚ Ș țȜĮıȚțȒ ȖİȦȝİIJȡȓĮ IJȠ ʌȡȩȕȜȘȝĮ IJȠȣ IJİIJȡĮȖȦȞȚıȝȠȪ IJȠȣ țȪțȜȠȣ įİȞ ȜȪȞİIJĮȚ. DzIJıȚ, ȩȜȠ țĮȚ ʌȚȠ ʌȠȜȪʌȜȠțȑȢ țĮȝʌȪȜİȢ ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/2


--------------------------------------------------------------------------------------------------- Ǿ ȚıIJȠȡȓĮ IJȠȣ ĮȡȚșȝȠȪ «ʌ» ------------------------------------------------------------------------------------------------

İȝijĮȞȓȗȠȞIJĮȚ. ǻȪıțȠȜĮ ȠȞȩȝĮIJĮ ȩʌȦȢ ȈʌİȚȡȠİȚįȒȢ – ȉİIJȡĮȖȦȞȓȗȠȣıĮ – ȀȠȤȜȓĮȢ țȐȞȠȣȞ IJȘȞ İȝijȐȞȚıȒ IJȠȣȢ țĮȚ ijșȐȞȠȣȝİ ıIJȠȞ ȝİȖĮȜȪIJİȡȠ ȝĮșȘȝĮIJȚțȩ IJȘȢ ĮȡȤĮȚȩIJȘIJĮȢ. x ǹȡȤȚȝȒįȘȢ (287-212 ʌ.Ȥ.) ȂĮșȘȝĮIJȚțȩȢ, ȝȘȤĮȞȚțȩȢ, ijȣıȚțȩȢ. ȈIJȠ ȑȡȖȠ IJȠȣ ȀȪțȜȠȣ ȝȑIJȡȘıȘȢ ĮʌȠįİȚțȞȪİȚ IJĮ İȟȒȢ șİȦȡȒȝĮIJĮ 1. ȀȐșİ țȪțȜȠȢ İȓȞĮȚ ȓıȠȢ ʌȡȠȢ ȑȞĮ ȠȡșȠȖȫȞȚȠ IJȠȣ ȠʌȠȓȠȣ Ș ȝȓĮ ʌȜİȣȡȐ ȚıȠȪIJĮȚ ȝİ IJȘȞ ĮțIJȓȞĮ țĮȚ Ș ȐȜȜȘ ȝİ IJȘȞ ʌİȡȓȝİIJȡȠ IJȠȣ țȪțȜȠȣ. 2. ȅ ȜȩȖȠȢ İȞȩȢ țȪțȜȠȣ ʌȡȠȢ IJȠ IJİIJȡȐȖȦȞȠ ʌȠȣ ȑȤİȚ ʌȜİȣȡȐ IJȘ įȚȐȝİIJȡȠ İȓȞĮȚ ȓıȠȢ ȝİ 11/14 10 3. Ǿ ʌİȡȓȝİIJȡȠȢ İȞȩȢ țȪțȜȠȣ ȑȤİȚ IJȚȝȒ ȝİȖĮȜȪIJİȡȘ Įʌȩ 3 IJȘȢ 71 10 IJȘȢ įȚĮȝȑIJȡȠȣ. įȚĮȝȑIJȡȠȣ țĮȚ ȝȚțȡȩIJİȡȘ IJȘȢ 3 71 10 10 ȉȠ șİȫȡȘȝĮ ĮȣIJȩ įȓȞİȚ IJȘȞ ıȤȑıȘ 3 <ʌ<3 . 71 70 ȈIJȘȞ ȓįȚĮ ıȤȑıȘ țĮIJĮȜȒȖİȚ İȖȖȡȐijȠȞIJĮȢ țĮȚ ʌİȡȚȖȡȐijȠȞIJĮȢ țĮȞȠȞȚțȐ ʌȠȜȪȖȦȞĮ ıİ țȪțȜȠ, (ȩʌȦȢ țĮȚ Ƞ ǹȞIJȚijȫȞ). ȆȡȠıİȖȖȓȗȠȞIJĮȢ IJȘȞ ʌİȡȓȝİIJȡȠ IJȠȣ țȪțȜȠȣ ȝİ IJȘ ȕȠȒșİȚĮ IJȦȞ ʌİȡȚȝȑIJȡȦȞ İȖȖİȖȡĮȝȝȑȞȠȣ țĮȚ ʌİȡȚȖİȖȡĮȝȝȑȞȠȣ 96ȖȫȞȠȣ. x ȂİIJȐ IJȠȣȢ DzȜȜȘȞİȢ ıİȚȡȐ ȑȤȠȣȞ ȠȚ ȇȦȝĮȓȠȚ … ȅ ĮȡȤȚIJȑțIJȠȞĮȢ ǺȚIJȡȠȪȕȚȠȢ (1ȠȢ ĮȚ. ʌ.Ȥ.) ĮȞĮijȑȡİȚ ʌȘȖȐįȚ țȣțȜȚțȒȢ įȚĮIJȠȝȒȢ ȝİ įȚȐȝİIJȡȠ 4 1 25 ʌȠįȫȞ țĮȚ ʌİȡȓȝİIJȡȠ 12 ʌȠįȫȞ, įȓȞȠȞIJĮȢ ȑIJıȚ IJȘȞ IJȚȝȒ ʌ=3,12= 2 8 x

ǵȝȦȢ țĮȚ ıIJȘȞ ȝĮțȡȚȞȒ ȀȓȞĮ ȠȚ ȝĮșȘȝĮIJȚțȠȓ ȣʌȠȜȩȖȚȗĮȞ …

ȅ Liu Hsiao (1 ĮȚ. ȝ.Ȥ.) ȤȡȘıȚȝȠʌȠȚİȓ IJȘȞ IJȚȝȒ ʌ=3,1547 ȅ ĮıIJȡȠȞȩȝȠȢ Wang Fan (219-257 ȝ. ȋ.) țĮIJĮȜȒȖİȚ ıIJȠ ıȣȝʌȑȡĮıȝĮ ȩIJȚ «ȩIJĮȞ ȝȓĮ ʌİȡȚijȑȡİȚĮ țȪțȜȠȣ ȑȤİȚ ȝȒțȠȢ 142 IJȩIJİ Ș įȚȐȝİIJȡȩȢ IJȘȢ İȓȞĮȚ 45». Ǿ ıȤȑıȘ ĮȣIJȒ įȓȞİȚ IJȘȞ IJȚȝȒ 3,156 ȉȠȞ 3Ƞ ȝ. ȋ. ĮȚȫȞĮ Ƞ ȝĮșȘȝĮIJȚțȩȢ Liu Hui ıIJȠ ȑȡȖȠ IJȠȣ « Ǿ ĮȡȚșȝȘIJȚțȒ ıİ İȞȞȚȐ ȝȑȡȘ», ĮțȠȜȠȣșȫȞIJĮȢ ʌĮȡȩȝȠȚĮ ȝȑșȠįȠ, ȩʌȦȢ İțİȓȞȘ IJȠȣ ǹȡȤȚȝȒįȘ, ĮȜȜȐ ȝȩȞȠ ȝİ İȖȖİȖȡĮȝȝȑȞĮ țĮȞȠȞȚțȐ ʌȠȜȪȖȦȞĮ, įȓȞİȚ IJȘȞ IJȚȝȒ 3927 ʌ= =3,1416 1250 ȉȠȞ 5Ƞ ĮȚȫȞĮ ȝ. Ȥ. Ƞ ĮıIJȡȠȞȩȝȠȢ Tsu Ch’ung Chih ʌȡȠıİȖȖȓȗİȚ IJȠ ʌ ȝİ İȖȖİȖȡĮȝȝȑȞĮ ʌȠȜȪȖȦȞĮ ȝİ 24.576 ʌȜİȣȡȑȢ țĮȚ țĮIJĮȜȒȖİȚ ıIJȘȞ IJȚȝȒ ʌ=3,14159265 x

ȈIJȚȢ ȝĮțȡȚȞȑȢ ǿȞįȓİȢ ıIJȠ șȡȘıțİȣIJȚțȩ ȑȡȖȠ Sulva Sutra ȝİ ĮijȠȡȝȒ IJȘȞ țĮIJĮıțİȣȒ ȕȦȝȫȞ ȖȚĮ șȡȘıțİȣIJȚțȑȢ IJİȜİIJȑȢ ȠȚ ȝĮșȘȝĮIJȚțȠȓ ȣʌȠȜȩȖȚȗĮȞ țĮȚ ȑȖȡĮijĮȞ …

«Ȇȡȩıșİıİ ıIJȠ ȝȚıȩ IJȘȢ ʌȜİȣȡȐȢ IJȠȣ IJİIJȡĮȖȫȞȠȣ IJȠ ȑȞĮ IJȡȓIJȠ IJȘȢ įȚĮijȠȡȐȢ ĮȞȐȝİıĮ ıIJȠ ȝȚıȩ IJȘȢ įȚĮȖȦȞȓȠȣ țĮȚ IJȠ ȝȚıȩ IJȘȢ ʌȜİȣȡȐȢ țĮȚ șĮ ȕȡİȚȢ IJȘȞ ĮțIJȓȞĮ IJȠȣ țȪțȜȠȣ ȓıȠȣ İȝȕĮįȠȪ» ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/3


--------------------------------------------------------------------------------------------------- Ǿ ȚıIJȠȡȓĮ IJȠȣ ĮȡȚșȝȠȪ «ʌ» ------------------------------------------------------------------------------------------------

«Ǿ įȚȐȝİIJȡȠȢ IJȠȣ țȪțȜȠȣ ʌȠȣ İȓȞĮȚ ȚıȠįȪȞĮȝȠ ȝİ ȑȞĮ IJİIJȡȐȖȦȞȠ İȓȞĮȚ IJĮ 8/10 IJȘȢ įȚĮȖȦȞȓȠȣ IJȠȣ IJİIJȡĮȖȫȞȠȣ» ȅ ĮıIJȡȠȞȩȝȠȢ Aryabhata (-499 ȝ. ȋ.) ıIJȠ ȑȡȖȠ IJȠȣ Aryabhatiya ȖȡȐijİȚ « ʌȡȩıșİıİ 4 ıIJȠ 100, ʌȠȜȜĮʌȜĮıȓĮıİ İʌȓ 8 țĮȚ ʌȡȩıșİıİ ĮțȩȝĮ 62.000, ĮȣIJȩ ʌȠȣ șĮ ȕȡİȚȢ İȓȞĮȚ Ș ʌİȡȚijȑȡİȚĮ İȞȩȢ 62832 țȪțȜȠȣ ȝİ įȚȐȝİIJȡȠ 20.000», įȓȞȠȞIJĮȢ ȝİ IJȠȞ IJȡȩʌȠ ĮȣIJȩ IJȘȞ IJȚȝȒ ʌ= =3,1416 . 20000 ȅ ȝĮșȘȝĮIJȚțȩȢ țĮȚ ĮıIJȡȠȞȩȝȠȢ Bralmagupta (-598 ȝ. Ȥ) įȓȞİȚ IJȘȞ IJȚȝȒ ʌ= 10 =3,1623 22 ȉȑȜȠȢ, Ƞ ȝĮșȘȝĮIJȚțȩȢ Bhaskara (1114-1185 ȝ. ȋ.) įȓȞİȚ IJȘȞ IJȚȝȒ ʌ= =3,142857 7 x

ȆȚȠ țȐIJȦ ıIJȘȞ ǹȡĮȕȓĮ …

ȅ Mohammed ibn Musa Ȓ Al Khwarizmi (-9ĮȚȫȞĮȢ ȝ. ȋ), ıȣȖȖȡĮijȑĮȢ IJȠȣ ʌȠȜȪ ȖȞȦıIJȠȪ ȝĮșȘȝĮIJȚțȠȪ ȑȡȖȠȣ Algebrve 1 62832 . Almocabelah, ȤȡȘıȚȝȠʌȠȚİȓ IJȚȢ IJȚȝȑȢ 3 țĮȚ 7 20000 ȉȚȢ ȓįȚİȢ IJȚȝȑȢ ȤȡȘıȚȝȠʌȠȚȠȪıĮȞ țĮȚ ȠȚ ȝĮșȘȝĮIJȚțȠȓ Tabit ibn Qurra (826-901 ȝ.ȋ.) țĮȚ Ƞ ȆȑȡıȘȢ ȝĮșȘȝĮIJȚțȩȢ Al Birouni (973-1048 ȝ.ȋ.) ȉȑȜȠȢ, Ƞ ĮıIJȡȠȞȩȝȠȢ Al Kashi (-430 ȝ. ȋ.) ıIJȘ ȝĮțȡȚȞȒ ȈĮȝĮȡțȐȞįȘ (ıIJȠ ıȘȝİȡȚȞȩ ȅȣıʌİțȚıIJȐȞ) įȓȞİȚ IJȘȞ IJȚȝȒ ʌ=3,14159265358988732 , İȖȖȡȐijȠȞIJĮȢ ıİ țȪțȜȠ ʌȠȜȪȖȦȞȠ ȝİ 230 ʌȜİȣȡȑȢ. x

ǹʌȩ İįȫ țĮȚ ȝİIJȐ ĮȞĮȜĮȝȕȐȞİȚ Ș ǻȪıȘ …

ȅȜȠȑȞĮ țĮȚ țĮȜȪIJİȡİȢ ʌȡȠıİȖȖȓıİȚȢ ʌĮȡȠȣıȚȐȗȠȞIJĮȚ, ʌĮȞȑȝȠȡijȠȚ IJȪʌȠȚ İȝijĮȞȓȗȠȞIJĮȚ … O Fibonacci 1220 ȝ. Ȥ. įȓȞİȚ IJȘȞ IJȚȝȒ ʌ=3,141818 ȅ Al Kashi 1430 ȝ. ȋ. ȣʌȠȜȩȖȚıİ ʌ=3,1459265358979 ȅ Francois Viete IJȠ 1593 ȖȡȐijİȚ ʌ=3,1415926536 ĮȜȜȐ țĮȚ ȖȡȐijİȚ IJȠ ʌȡȫIJȠ ȐʌİȚȡȠ ȖȚȞȩȝİȞȠ ȖȚĮ ȞĮ ʌİȡȚȖȡȐȥİȚ IJȠ ʌ

2 2+ 2 2+ 2+ 2 2 ...= 2 2 2 ʌ

ȉȠ 1655 Ƞ John Wallis (1616-1703 ) ĮʌȠįİȚțȞȪİȚ :

2 2 4 4 6 6 8 8 ʌ ...= 1 3 3 5 5 7 7 9 2

ȅ Newton ȣʌȠȜȠȖȓȗİȚ ȩIJȚ ʌ=3,1415926535897932 . 1 1 1 1 1 ʌ ȅ James Gregory (1638-1675) ȖȡȐijİȚ : 1- + - + - +...= 3 5 7 9 11 4 1 1 1 ʌ2 + + +...= țĮȚ İȓȞĮȚ Ƞ 12 32 52 8 ʌȡȫIJȠȢ, ʌȠȣ ĮȞĮȡȦIJȚȑIJĮȚ ĮȞ ȝʌȠȡİȓ Ƞ ʌ ȞĮ İȓȞĮȚ ȜȪıȘ ʌȠȜȣȦȞȣȝȚțȒȢ İȟȓıȦıȘȢ ȝİ ĮțȑȡĮȚȠȣȢ ıȣȞIJİȜİıIJȑȢ. DzȞĮ İȡȫIJȘȝĮ ʌȠȣ ıȣȞįȑİIJĮȚ ȐȡȡȘțIJĮ ȝİ IJȠ ĮȞ IJİȜȚțȐ Ƞ țȪțȜȠȢ ȝʌȠȡİȓ ȞĮ IJİIJȡĮȖȦȞȚıșİȓ. ȅȚ ȝĮșȘȝĮIJȚțȠȓ ĮȡȤȓȗȠȣȞ ȞĮ ȝȚȜȠȪȞ ȖȚĮ ȑȞĮ ȞȑȠ İȓįȠȢ ĮȡȚșȝȫȞ IJȠȣȢ ȣʌİȡȕĮIJȚțȠȪȢ ĮȡȚșȝȠȪȢ. ȅ Leonard Euler ( 1707-1783) ȖȡȐijİȚ :

ȉȠ 1761 Ƞ Johann Heinrich Lambert ĮʌȠįİȚțȞȪİȚ ȩIJȚ IJȠ ʌ İȓȞĮȚ ȐȡȡȘIJȠȢ. ȉĮ ȡİțȩȡ IJȦȞ įİțĮįȚțȫȞ ʌȡȠıİȖȖȓıİȦȞ IJȠȣ ʌ ıʌȐȞİ IJȠ ȑȞĮ ȝİIJȐ IJȠ ȐȜȜȠ … ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/4


--------------------------------------------------------------------------------------------------- Ǿ ȚıIJȠȡȓĮ IJȠȣ ĮȡȚșȝȠȪ «ʌ» ------------------------------------------------------------------------------------------------

ȉȠ 1844 ȠȚ Schulz von Strassnitzky țĮȚ Johann Dase ȣʌȠȜȠȖȓȗȠȣȞ 200 ȥȘijȓĮ, Ƞ William Shanks IJȠ 1873 700 ȥȘijȓĮ. ȉȠ 1882 Ƞ Ferdinand Lindeman ĮʌȠįİȚțȞȪİȚ ȩIJȚ Ƞ ʌ İȓȞĮȚ ȣʌİȡȕĮIJȚțȩȢ ĮȡȚșȝȩȢ. ȅ țȪțȜȠȢ IJİȜȚțȐ įİȞ ȝʌȠȡİȓ ȞĮ IJİIJȡĮȖȦȞȚıșİȓ. DzȞĮ İȡȫIJȘȝĮ 2.500 ȤȡȩȞȦȞ ȕȡȓıțİȚ IJȘȞ ĮʌȐȞIJȘıȒ IJȠȣ. ȉĮ İȡȦIJȒȝĮIJĮ ıȤİIJȚțȐ ȝİ IJȠ «ʌ» ȤȐȞȠȣȞ IJȘȞ ĮȓȖȜȘ IJȠȣȢ, Ș ĮȞĮȗȒIJȘıȘ ȖȚĮ ȞȑȠȣȢ ȩȝȠȡijȠȣȢ IJȪʌȠȣȢ įİȞ İȓȞĮȚ ʌȚĮ IJȘȢ ȝȩįĮȢ. ȈȚȖȐ ıȚȖȐ ȞȑĮ İȡȦIJȒȝĮIJĮ ĮʌĮıȤȠȜȠȪȞ IJȘȞ ȝĮșȘȝĮIJȚțȒ țȠȚȞȩIJȘIJĮ, ȩȜĮ ıȤİIJȚțȐ ȝİ IJȠ «ʌ» ijĮȓȞİIJĮȚ ȞĮ ȑȤȠȣȞ ĮʌĮȞIJȘșİȓ. ȉȠȞ 20Ƞ ĮȚȫȞĮ ȩȝȦȢ ȝİ IJȘȞ İȝijȐȞȚıȘ IJȦȞ ȘȜİțIJȡȠȞȚțȫȞ ȣʌȠȜȠȖȚıIJȫȞ IJȠ țȣȞȒȖȚ IJȦȞ įİțĮįȚțȫȞ ʌȡȠıİȖȖȓıİȦȞ IJȠȣ «ʌ» İȝʌȞȑİȚ. ǼȓȞĮȚ ȝȚĮ İȣțĮȚȡȓĮ ȖȚĮ ȞĮ įȠțȚȝĮıșİȓ Ș IJĮȤȪIJȘIJĮ IJȦȞ ȣʌȠȜȠȖȚıIJȫȞ. DzIJıȚ IJȠ 1947 Ƞ D.F. Ferguson ȣʌȠȜȠȖȓȗİȚ 808 ȥȘijȓĮ ȤȡȘıȚȝȠʌȠȚȫȞIJĮȢ İʌȚIJȡĮʌȑȗȚȠ ȣʌȠȜȠȖȚıIJȒ țĮȚ įȠȣȜİȪȠȞIJĮȢ İʌȓ ȑȞĮ ȤȡȩȞȠ. ȂİIJȐ ȖȓȞİIJĮȚ Ș ȑțȡȘȟȘ … 1949 Ƞ ENIAC ȣʌȠȜȠȖȓȗİȚ 2.037 ȥȘijȓĮ 1954 Ƞ NORC ȣʌȠȜȠȖȓȗİȚ 3.089 ȥȘijȓĮ 1957 Ƞ Pegasus ȣʌȠȜȠȖȓȗİȚ 7.480 ȥȘijȓĮ 1959 Ƞ ǿǺȂ 704 16.167 ȥȘijȓĮ 1961 Ƞ ǿǺȂ 7090 100.265 ȥȘijȓĮ 1966 Ƞ ǿǺȂ 7030 250.000 ȥȘijȓĮ 1967 Ƞ CDC 6600 500.000 ȥȘijȓĮ 1973 Ƞ CDC 7600 1.001.250 ȥȘijȓĮ DzȞĮȢ ĮIJİȜİȓȦIJȠȢ țĮIJȐȜȠȖȠȢ ȇȫıȠȚ – ǹȝİȡȚțȐȞȠȚ – ǿȐʌȦȞİȢ – ȀȚȞȑȗȠȚ, ȑȞĮȢ ĮȞIJĮȖȦȞȚıȝȩȢ ȖȚĮ IJȘȞ ĮțȡȓȕİȚĮ țĮȚ ijșȐȞȠȣȝİ ıIJȠȞ Fabrice Bellard ʌȠȣ IJȠ 2010 ȣʌȠȜȩȖȚıİ 2,7 IJȡȚıİțĮIJȠȝȝȪȡȚĮ ȥȘijȓĮ IJȠȣ ʌ, ȤȡȘıȚȝȠʌȠȚȫȞIJĮȢ ȑȞĮȞ ĮʌȜȩ ȣʌȠȜȠȖȚıIJȒ. ǼȡȖȐıIJȘțİ 131 ȘȝȑȡİȢ, İȞȫ ȤȡİȚȐıIJȘțİ 1 ȉǺ ıțȜȘȡȩ įȓıțȠ, ȖȚĮ ȞĮ ĮʌȠșȘțİȪıİȚ IJȠ ĮʌȠIJȑȜİıȝȐ IJȠȣ ! ǼȞȫ ȑȖȡĮijĮ ĮȣIJȐ ĮȞĮțȐȜȣȥĮ ȩIJȚ ȠȚ Alexander J. Yee & Shigeru Kondo țĮIJȐijİȡĮȞ ȞĮ ȣʌȠȜȠȖȓıȠȣȞ ʌİȡȓ IJĮ 5 IJȡȚıİțĮIJȠȝȝȪȡȚĮ ȥȘijȓĮ IJȠȣ ʌ. ȅ ȣʌȠȜȠȖȚıȝȩȢ IJȦȞ ȥȘijȓȦȞ įȚȒȡțİıİ 90 ȘȝȑȡİȢ ĮȡȤȓȗȠȞIJĮȢ ıIJȚȢ 4 ȂĮǸȠȣ 2010. ȉİȜȚțȐ, Ƞ įȚĮȖȦȞȚıȝȩȢ ȝȐȜȜȠȞ șĮ ıȣȞİȤȚıIJİȓ ȖȚĮ ʌȠȜȪ ĮțȩȝĮ !!! īȚĮ ʌİȡȚııȩIJİȡİȢ ʌȜȘȡȠijȠȡȓİȢ ıIJȘȞ ȚıIJȠıİȜȓįĮ: http://www.numberworld.org/misc_runs/pi-5t/details.html

ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/5


ɺƺÄÀÉÍÂÃǷ ¢Ȑźͺ Ʀļ¾»ÊºË ÎÅƺÌȯÈÎ ======================================================== ǿȦȐȞȞĮ ǻȠȡȖȚȐțȘ - ȃȓțȠȢ ȈțȠȝʌȡȒȢ ĬȑȝĮ 1Ƞ: ǻȓȞȠȞIJĮȚ ȠȚ ʌĮȡĮıIJȐıİȚȢ:

$ %

24 <2 23 : 4 2<32

3

2

15 52 5<32 <70 2

. . Į) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJĮ ǹ țĮȚ Ǻ ȕ) ȃĮ ȕȡİȓIJİ IJȠ ȂȀǻ țĮȚ IJȠ ǼȀȆ IJȦȞ ǹ,Ǻ țĮȚ 2< $ 16 ĬȑȝĮ 2Ƞ: ǻȓȞȠȞIJĮȚ ȠȚ ĮȡȚșȝȠȓ į, ʌ țĮȚ ȣ, ȩʌȠȣ: G 7 2 36 :12 2<32 4<1,5 S 4<6,5 5<4, 6 0,5<8 10 X 7< S G 3< S2 3<8

Į) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȠȣȢ ĮȡȚșȝȠȪȢ į țĮȚ ʌ ȕ) ǹijȠȪ ȣʌȠȜȠȖȓıİIJİ IJȠ ȣ ȞĮ ȕȡİȓIJİ IJȠ įȚĮȚȡİIJȑȠ IJȘȢ İȣțȜİȓįİȚĮȢ įȚĮȓȡİıȘȢ ʌȠȣ ȑȤİȚ įȚĮȚȡȑIJȘ į, ʌȘȜȓțȠ ʌ țĮȚ ȣʌȩȜȠȚʌȠ ȣ. ĬȑȝĮ 3Ƞ: ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȚȢ ʌĮȡĮıIJȐıİȚȢ: Į) $ 24 0,5<32 2,5<23 ȕ) %

x

3

y3 : x 2 xy y 2 , ȩIJĮȞ x=4 țĮȚ y=2

Ȗ) ȃĮ İȟİIJȐıİIJİ ĮȞ ȠȚ IJȚȝȑȢ IJȦȞ ʌĮȡĮıIJȐıİȦȞ ǹ țĮȚ Ǻ İȓȞĮȚ ĮȡȚșȝȠȓ ĮȞIJȓıIJȡȠijȠȚ. ȃĮ įȚțĮȚȠȜȠȖȒıİIJİ IJȘȞ ĮʌȐȞIJȘıȒ ıĮȢ. ĬȑȝĮ 4Ƞ: 2 ǹȞ IJĮ IJȦȞ ȝĮșȘIJȫȞ IJȘȢ ǹǯ īȣȝȞĮıȓȠȣ İȞȩȢ ıȤȠȜİȓȠȣ İȓȞĮȚ ĮȖȩȡȚĮ țĮȚ ȠȜȩțȜȘȡȘ Ș IJȐȟȘ ȑȤİȚ 5 72 țȠȡȓIJıȚĮ, IJȩIJİ: Į) ȆȩıȠȚ İȓȞĮȚ ȠȚ ȝĮșȘIJȑȢ IJȘȢ ǹǯ īȣȝȞĮıȓȠȣ țĮȚ ʌȩıĮ İȓȞĮȚ IJĮ ĮȖȩȡȚĮ; ȕ) ǹȞ ȩȜȠȚ ȠȚ ȝĮșȘIJȑȢ İȓȞĮȚ 120 țĮȚ ȑȡșȠȣȞ ıIJȠ ıȤȠȜİȓȠ 24 ȝĮșȘIJȑȢ, ʌȠȣ İȓȞĮȚ ȩȜȠȚ ĮȖȩȡȚĮ, ȞĮ ȕȡİȓIJİ: i) ȉȚ ʌȠıȠıIJȩ IJȦȞ ȝĮșȘIJȫȞ İȓȞĮȚ IJȫȡĮ țȠȡȓIJıȚĮ ii) ȆȠȚȠ İȓȞĮȚ IJȠ ʌȠıȠıIJȩ ĮȪȟȘıȘȢ IJȦȞ ȝĮșȘIJȫȞ ĬȑȝĮ 5Ƞ: ǹʌȩ IJȠ İıȦIJİȡȚțȩ İȞȩȢ ȠȡșȠȖȦȞȓȠȣ ʌȠȣ ȑȤİȚ įȚĮıIJȐıİȚȢ 6m țĮȚ 4m ĮijĮȚȡȠȪȝİ ȑȞĮ IJİIJȡȐȖȦȞȠ ȝİ ʌȜİȣȡȐ 3m. Į) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȠ ʌȠıȠıIJȩ IJȠȣ İȝȕĮįȠȪ IJȠȣ ıȤȒȝĮIJȠȢ ʌȠȣ ĮʌȠȝȑȞİȚ. ȕ) ǹȞ x İȓȞĮȚ IJȠ İȝȕĮįȩȞ IJȠȣ ȠȡșȠȖȦȞȓȠȣ țĮȚ y İȓȞĮȚ IJȠ İȝȕĮįȩȞ IJȠȣ IJİIJȡĮȖȫȞȠȣ ȞĮ ȕȡİșİȓ Ș IJȚȝȒ IJȘȢ ʌĮȡȐıIJĮıȘȢ: ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/6


---------------------------------------------------------------------- ǼʌĮȞĮȜȘʌIJȚțȐ ĬȑȝĮIJĮ DZȜȖİȕȡĮȢ ǹǯ īȣȝȞĮıȓȠȣ --------------------------------------------------------------------

$

ĬȑȝĮ 6Ƞ:

ǻȓȞȠȞIJĮȚ ȠȚ ʌĮȡĮıIJȐıİȚȢ: D

x 3 : y 2 y x 1 1y 2

2

24 5 8 23 17

Į) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȚȢ ʌĮȡĮıIJȐıİȚȢ Į țĮȚ ȕ ȕ) ȃĮ ȜȪıİIJİ IJȚȢ İȟȚıȫıİȚȢ: x D E i) D 3x E ii) iii) 2D E x E D 7 ĬȑȝĮ 7Ƞ:

ȅ ĮȡȚșȝȩȢ y İȓȞĮȚ Ș ȜȪıȘ IJȘȢ İȟȓıȦıȘȢ

y 2 2018

E 33 : 9 7, 05 : 4, 7 32 2 : 2 2

țĮȚ

E 2

0 țĮȚ Ƞ ĮȡȚșȝȩȢ Ȧ İȓȞĮȚ Ƞ ȂȀǻ(12,21).

Į) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȚȢ ʌĮȡĮıIJȐıİȚȢ: 1 1 § 1 3· § 1· 2 y i) D Z ii) E Z2 1 ¨ ¸ ¨ 3 y ¸ Z 1

4 2 4¹ © y 8¹ © ȕ) ȃĮ ȜȪıİIJİ IJȚȢ İȟȚıȫıİȚȢ: D i) Dx E ii) D E x iii) E x ĬȑȝĮ 8Ƞ: ǻȪȠ ijȣıȚțȠȓ ĮȡȚșȝȠȓ ȝİȖĮȜȪIJİȡȠȚ IJȠȣ 1 ȑȤȠȣȞ ȐșȡȠȚıȝĮ 15. ȅ ȑȞĮȢ Įʌȩ IJȠȣȢ įȪȠ įȚĮȚȡİȓIJĮȚ ȝİ IJȠ 10 țĮȚ ĮijȒȞİȚ ȣʌȩȜȠȚʌȠ 1. Į) ȃĮ ȕȡİȓIJİ IJȠȣȢ ĮȡȚșȝȠȪȢ ĮȣIJȠȪȢ. ȕ) ǹȞ x İȓȞĮȚ Ƞ ȝİȖĮȜȪIJİȡȠȢ Įʌȩ IJȠȣȢ įȪȠ țĮȚ y İȓȞĮȚ Ƞ ȝȚțȡȩIJİȡȠȢ, ȞĮ ȕȡİșİȓ Ș IJȚȝȒ IJȘȢ ʌĮȡȐıIJĮıȘȢ: 1·§ 1· § 1· § $ ¨ x ¸<¨ y ¸<¨ y ¸ 11 ¹ © 4¹ © 8¹ ©

ĬȑȝĮ 9Ƞ: ǻȓȞȠȞIJĮȚ ȠȚ IJȡȚȥȒijȚȠȚ ĮȡȚșȝȠȓ 78 , 9 7 țĮȚ 27 ıIJȠȣȢ ȠʌȠȓȠȣȢ ȑȤȠȣȝİ ĮȞIJȚțĮIJĮıIJȒıİȚ ȑȞĮ ȥȘijȓȠ ıIJȠȞ țĮșȑȞĮ ȝİ ȑȞĮ ȖȡȐȝȝĮ. Į) ȃĮ ȣʌȠȜȠȖȓıİIJİ ȩȜİȢ IJȚȢ įȣȞĮIJȑȢ IJȚȝȑȢ IJȠȣ x ȫıIJİ Ƞ ʌȡȫIJȠȢ ĮȡȚșȝȩȢ ȞĮ įȚĮȚȡİȓIJĮȚ ȝİ IJȠ 3. ȕ) ȃĮ ȣʌȠȜȠȖȓıİIJİ ȩȜİȢ IJȚȢ įȣȞĮIJȑȢ IJȚȝȑȢ IJȠȣ y ȫıIJİ Ƞ įİȪIJİȡȠȢ ĮȡȚșȝȩȢ ȞĮ įȚĮȚȡİȓIJĮȚ ȝİ IJȠ 9 țĮȚ IJȠ 5 Ȗ) ȃĮ ȣʌȠȜȠȖȓıİIJİ ȩȜİȢ IJȚȢ įȣȞĮIJȑȢ IJȚȝȑȢ IJȠȣ z ȫıIJİ Ƞ IJȡȓIJȠȢ ĮȡȚșȝȩȢ ȞĮ įȚĮȚȡİȓIJĮȚ ȝİ IJȠ 10. į) ȃĮ İȟȘȖȒıİIJİ ȖȚĮIJȓ IJȠ ȐșȡȠȚıȝĮ IJȦȞ IJȡȚȫȞ ĮȡȚșȝȫȞ įȚĮȚȡİȓIJĮȚ ʌȐȞIJĮ ȝİ IJȠ 3.

ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/7


ÉÂľ¼ÅȐƺ ¢Ȑźͺ ¾ÒžÍÊȯºË ÎÅƺÌȯÈÎ ====================================================================== ȃȐȞıȣ ȀȣȡȚĮțȠʌȠȪȜȠȣ ĬȑȝĮ 1Ƞ ȈIJȘȞ įȚʌȜĮȞȒ İȚțȩȞĮ ȣʌȐȡȤȠȣȞ 4 ıʌȓIJȚĮ țĮȚ 4 įȡȩȝȠȚ Ǽ1, Ǽ2, Ǽ3, Ǽ4. īȚĮ IJȚȢ ĮʌȠıIJȐıİȚȢ, ȝİIJĮȟȪ IJȦȞ ıʌȚIJȚȫȞ, ȖȞȦȡȓȗȠȣȝİ ȩIJȚ: i) ȉȠ ȝİȖȐȜȠ țȩțțȚȞȠ ıʌȓIJȚ ĮʌȑȤİȚ İȟȓıȠȣ Įʌȩ țȐșİ ȑȞĮ Įʌȩ IJĮ ȐȜȜĮ IJȡȓĮ ıʌȓIJȚĮ. ii) ȉĮ įȪȠ ıʌȓIJȚĮ ʌȠȣ ȕȡȓıțȠȞIJĮȚ ʌȐȞȦ ıIJȠ įȡȩȝȠ Ǽ1 ĮʌȑȤȠȣȞ ȝİIJĮȟȪ IJȠȣȢ ȩıȠ ĮʌȑȤİȚ țĮȚ IJȠ ȝİȖȐȜȠ țȩțțȚȞȠ ıʌȓIJȚ Įʌȩ țĮșȑȞĮ Įʌȩ ĮȣIJȐ. Į) ȃĮ ijIJȚȐȟİIJİ ıIJȠ IJİIJȡȐįȚȩ ıĮȢ ȑȞĮ ıȤȒȝĮ, ıIJȠ ȠʌȠȓȠ IJĮ ıʌȓIJȚĮ șĮ ʌĮȡȚıIJȐȞȠȞIJĮȚ ȝİ ıȘȝİȓĮ țĮȚ ȠȚ įȡȩȝȠȚ ȝİ İȣșİȓİȢ. ȕ) ȃĮ ȕȡİȓIJİ IJȚȢ ȖȦȞȓİȢ IJȠȣ IJȡȚȖȫȞȠȣ ʌȠȣ ȑȤİȚ țȠȡȣijȑȢ IJĮ ıʌȓIJȚĮ IJȠȣ įȡȩȝȠȣ Ǽ1 țĮȚ IJȠ ȝİȖȐȜȠ țȩțțȚȞȠ ıʌȓIJȚ. Ȗ) ȃĮ İȟȘȖȒıİIJİ ȖȚĮIJȓ ȠȚ įȡȩȝȠȚ Ǽ1 țĮȚ Ǽ2 İȓȞĮȚ țȐșİIJȠȚ. ĬȑȝĮ 2Ƞ

ĬȑȝĮ 3Ƞ

ȅȚ İȣșİȓİȢ Į țĮȚ ȕ İȓȞĮȚ ʌĮȡȐȜȜȘȜİȢ. ȅȚ İȣșİȓİȢ Ȗ țĮȚ į İȓȞĮȚ ʌĮȡȐȜȜȘȜİȢ. Ǿ İȣșİȓĮ ȕ İȓȞĮȚ țȐșİIJȘ ıIJȘȞ ෡ȝ İȓȞĮȚ ȠȡșȑȢ. Ǿ İȣșİȓĮ Ȗ. ȅȚ ȖȦȞȓİȢ ȜȞ෠ȟ țĮȚ Ȝȟ ୭ ෡ ȖȦȞȓĮ ȟȝȠ İȓȞĮȚ ͵Ͳ . I. ǼȟȘȖȒıIJİ, ȖȚĮIJȓ Ș İȣșİȓĮ į İȓȞĮȚ țȐșİIJȘ ıIJȘȞ İȣșİȓĮ Į. II. ȆȩıȦȞ ȝȠȚȡȫȞ İȓȞĮȚ Ș ȖȦȞȓĮ ȟȠ෠ȝ ; ǹȚIJȚȠȜȠȖȒıIJİ. ෡Ƞ ; III. ȆȩıȦȞ ȝȠȚȡȫȞ İȓȞĮȚ Ș ȖȦȞȓĮ ȝȟ ǹȚIJȚȠȜȠȖȒıIJİ. ෡Ȟ ; IV. ȆȩıȦȞ ȝȠȚȡȫȞ İȓȞĮȚ Ș ȖȦȞȓĮ Ȝȟ ǹȚIJȚȠȜȠȖȒıIJİ. ෡ȟ ; V. ȆȩıȦȞ ȝȠȚȡȫȞ İȓȞĮȚ Ș ȖȦȞȓĮ ȞȜ ǹȚIJȚȠȜȠȖȒıIJİ. ȈIJȠ įȚʌȜĮȞȩ ıȤȒȝĮ ȠȚ İȣșİȓİȢ İ țĮȚ ȗ İȓȞĮȚ ʌĮȡȐȜȜȘȜİȢ. 1. ȃĮ ȕȡİșİȓ ȝȚĮ ȖȦȞȓĮ ıȣȝʌȜȘȡȦȝĮIJȚțȒ IJȘȢ ෡ȝ țĮȚ ȞĮ ĮȚIJȚȠȜȠȖȘșİȓ. ȖȦȞȓĮȢ ȢȜ 2. ȃĮ ȕȡİșİȓ ȝȚĮ ȖȦȞȓĮ ʌĮȡĮʌȜȘȡȦȝĮIJȚțȒ IJȘȢ ෡ȝ țĮȚ ȞĮ ĮȚIJȚȠȜȠȖȘșİȓ. ȖȦȞȓĮȢ ȢȜ ෡ȝ ൌ ͸Ͳட , ʌȩıȦȞ ȝȠȚȡȫȞ İȓȞĮȚ ȠȚ 3. ǹȞ Ș ȖȦȞȓĮ ȢȜ ෡Ȟ ǡ ȝȜ ෡ȡ ǡ ȡȜ ෡Ƞ ǡ ȠȜ ෡ȟ ǡ ȜȠ෠ȟǡ Ȝȟ ෡Ƞ; ȖȦȞȓİȢ: ȝȜ

ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/8


------------------------------------------------------------------------ ǼʌȚȜİȖȝȑȞĮ ĬȑȝĮIJĮ īİȦȝİIJȡȓĮȢ ǹǯ īȣȝȞĮıȓȠȣ --------------------------------------------------------------------

ĬȑȝĮ 4Ƞ ȈIJȠ įȚʌȜĮȞȩ ıȤȒȝĮ ȚıȤȪİȚ ȩIJȚ: x x x

īǻ//Ǽǽ, Ǿ ȖȦȞȓĮ ȞȠ෠ȡ İȓȞĮȚ ͳͳͲட , Ǿ ȖȦȞȓĮ ȜȞ෠ȝ İȓȞĮȚ țĮIJȐ ͳͲட ȝȚțȡȩIJİȡȘ ෡Ȟ. Įʌȩ IJȘ ȖȦȞȓĮ Ȝȝ

ȃĮ ȕȡİȓIJİ ʌȩıȦȞ ȝȠȚȡȫȞ İȓȞĮȚ: 1. Ǿ ȖȦȞȓĮ ȜȞ෠ȟ. ȃĮ ĮȚIJȚȠȜȠȖȒıİIJİ. 2. Ǿ ȖȦȞȓĮ ȜȞ෠ȝ. ȃĮ ĮȚIJȚȠȜȠȖȒıİIJİ. ෡Ȟ. ȃĮ ĮȚIJȚȠȜȠȖȒıİIJİ. 3. Ǿ ȖȦȞȓĮ Ȝȝ ෡Ȟ. ȃĮ ĮȚIJȚȠȜȠȖȒıİIJİ. 4. Ǿ ȖȦȞȓĮ ȝȜ

ĬȑȝĮ 5Ƞ

෡ ൌ ͸ͷ୭ . ȈIJȠ įȚʌȜĮȞȩ ıȤȒȝĮ Ș ȖȦȞȓĮ 1. ȆȠȚĮ İȣșȪȖȡĮȝȝĮ IJȝȒȝĮIJĮ İȓȞĮȚ ʌĮȡȐȜȜȘȜĮ; ǹȚIJȚȠȜȠȖȒıIJİ. 2. ȃĮ ȣʌȠȜȠȖȚıIJȠȪȞ ȠȚ ȖȦȞȓİȢ ȜȞ෠ȝ ǡ ȟȞ෠ ǡ ෡Ƞǡ Ƞȟ ෡ȡ Ǥ Ȟȟ

ĬȑȝĮ 6Ƞ

෡ ȝ ǡ ෡ Ȟ ǡ ȞȪ ෡ ȟǡ ȈIJȠ įȚʌȜĮȞȩ ȘȝȚțȪțȜȚȠ ȠȚ ȖȦȞȓİȢ Ȝ ෡ ෡ ȟȪȠ ǡ ȠȪȡ İȓȞĮȚ ȓıİȢ. Į) ȃĮ ȣʌȠȜȠȖȓıİIJİ țȐșİ ȝȓĮ Įʌȩ ĮȣIJȑȢ IJȚȢ ȖȦȞȓİȢ. ȕ) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȚȢ ȖȦȞȓİȢ IJȠȣ IJȡȚȖȫȞȠȣ ǻȅǼ Ȗ) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȚȢ ȖȦȞȓİȢ IJȠȣ IJȡȚȖȫȞȠȣ ǹȅī

ĬȑȝĮ 7Ƞ ȃĮ țĮIJĮıțİȣȐıİIJİ ȑȞĮ ȚıȠıțİȜȑȢ IJȡȓȖȦȞȠ ǹǺī (ǹǺ=ǹī) IJȠȣ ȠʌȠȓȠȣ Ș ȖȦȞȓĮ IJȘȢ țȠȡȣijȒȢ ȞĮ İȓȞĮȚ ͺͲட . ȃĮ ijȑȡİIJİ IJȘ įȚȐȝİıȠ ǹȂ IJȠȣ IJȡȚȖȫȞȠȣ. ǹʌȩ IJȘȞ țȠȡȣijȒ ī ȞĮ ijȑȡİIJİ ȝȓĮ İȣșİȓĮ (İ) ʌĮȡȐȜȜȘȜȘ ıIJȘ įȚȐȝİıȠ ǹȂ. ȃĮ ʌȡȠİțIJİȓȞİIJİ IJȘȞ ʌȜİȣȡȐ Ǻǹ ʌȡȠȢ IJȠ ȝȑȡȠȢ IJȠȣ ǹ ȝȑȤȡȚ ȞĮ ıȣȞĮȞIJȒıİȚ IJȘȞ İȣșİȓĮ (İ) ıIJȠ ıȘȝİȓȠ ǻ. Į) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȚȢ ȖȦȞȓİȢ IJȠȣ IJȡȚȖȫȞȠȣ ǹǻī. ȕ) ȃĮ İȟȘȖȒıİIJİ ȖȚĮIJȓ IJĮ IJȝȒȝĮIJĮ ǹī țĮȚ ǹȀ İȓȞĮȚ ȓıĮ.

ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/9


ÇȯÌÒÌÀ ÅÂºË ¾ÎÁ¾ȯºË ¼ÊºÅÅȘË ========================================= ȈIJȣȜȚĮȞȩȢ ȂĮȡĮȖțȐțȘȢ, ǹȞįȡȑĮȢ ȉȡȚĮȞIJĮijȪȜȜȠȣ Ǿ İȟȓıȦıȘ ȝȚĮȢ İȣșİȓĮȢ ȖȡĮȝȝȒȢ ıȣȞȒșȦȢ ȖȡȐijİIJĮȚ ȝİ ĮȣIJȩȞ IJȠȞ IJȡȩʌȠ: y Dx E x IJȚ ıȘȝĮȓȞİȚ; y o «ʌȩıȠ ȝĮțȡȚȐ Įʌȩ IJȘȞ ĮȡȤȒ IJȦȞ ĮȟȩȞȦȞ, ıIJȠȞ ȠȡȚȗȩȞIJȚȠ ȐȟȠȞĮ x’x» x o «ʌȩıȠ ȝĮțȡȚȐ Įʌȩ IJȘȞ ĮȡȤȒ IJȦȞ ĮȟȩȞȦȞ, ıIJȠȞ țĮIJĮțȩȡȣijȠ ȐȟȠȞĮ y’y» D o țȜȓıȘ (ʌȩıȠ ĮʌȩIJȠȝȘ İȓȞĮȚ Ș ȖȡĮȝȝȒ) E o ȈȣȞĮȞIJȐ Ȓ IJȑȝȞİȚ IJȠȞ ȐȟȠȞĮ y’y Ȓ įȚȑȡȤİIJĮȚ Įʌȩ ıȘȝİȓȠ IJȠȣ ȐȟȠȞĮ y’y IJİIJĮȖȝȑȞȘȢ y Ȓ įȚȐțİȞȠ Y. x ȆȦȢ ȕȡȓıțȠȣȝİ IJĮ «Į» țĮȚ «ȕ» ıİ ȝȓĮ ıȣȞȐȡIJȘıȘ ʌȠȣ Ș ĮȞİȟȐȡIJȘIJȘ ȝİIJĮȕȜȘIJȒ x İȓȞĮȚ ȣȥȦȝȑȞȘ ıIJȘȞ ȝȠȞȐįĮ (ʌȡȫIJȠȣ ȕĮșȝȠȪ) Ȓ ʌȠȣ Ș İȟĮȡIJȘȝȑȞȘ ȝİIJĮȕȜȘIJȒ ȝİIJĮȕȐȜȜİIJĮȚ (ĮȣȟȐȞİIJĮȚ / İȜĮIJIJȫȞİIJĮȚ) țĮIJȐ ıIJĮșİȡȩ ĮȡȚșȝȩ ǺȡȓıțȠȣȝİ IJȠ « E » İȪțȠȜĮ, ȕȜȑʌȠȞIJĮȢ IJȠ ıȘȝİȓȠ ȩʌȠȣ Ș ȖȡĮȝȝȒ IJȑȝȞİȚ IJȠȞ ȐȟȠȞĮ yǯy. īȚĮ ȞĮ ȕȡȠȪȝİ IJȠ « D » (IJȘȞ țȜȓıȘ) ȤȡİȚȐȗȠȞIJĮȚ, ȩʌȦȢ șĮ įȠȪȝİ, țȐʌȠȚȠȚ ȣʌȠȜȠȖȚıȝȠȓ. īȞȦȡȓȗȠȣȝİ ȩIJȚ Ș ȖȜȦııȚțȒ ʌİȡȚȖȡĮijȒ, Ȓ İȟȓıȦıȘ, Ƞ ʌȓȞĮțĮȢ IJȚȝȫȞ țĮȚ Ș ȖȡĮȝȝȒ (ȖȡĮijȚțȒ ʌĮȡȐıIJĮıȘ) İȓȞĮȚ ȚıȠįȪȞĮȝİȢ İțijȡȐıİȚȢ, ȖȚĮ IJȠȞ ʌȡȠıįȚȠȡȚıȝȩ ȝȚĮȢ ıȣȞȐȡIJȘıȘȢ. ǼȞįȚĮijȑȡȠȞ ȑȤİȚ ȞĮ įȠȪȝİ ʌȦȢ ȝʌȠȡȠȪȝİ Įʌȩ ȝȚĮ ȑțijȡĮıȘ ȞĮ ȕȡȠȪȝİ IJȚȢ ȣʌȩȜȠȚʌİȢ. DzȞĮ ȖȞȦȡȓȗȠȣȝİ IJȘȞ İȟȓıȦıȘ IJȘȢ ıȣȞȐȡIJȘıȘȢ, ȩʌȦȢ ĮȞĮȜȪıĮȝİ ıIJȠ ʌȡȠȘȖȠȪȝİȞȠ ȐȡșȡȠ ȖȚĮ IJȚȢ ıȣȞĮȡIJȒıİȚȢ1, ȝʌȠȡȠȪȝİ ȞĮ ıȤȘȝĮIJȓıȠȣȝİ IJȠȞ ʌȓȞĮțĮ IJȚȝȫȞ țĮȚ IJȘ ȖȡĮijȚțȒ ʌĮȡȐıIJĮıȘ IJȘȢ ıȣȞȐȡIJȘıȘȢ. 3 ǼȚįȚțȩIJİȡĮ ȖȞȦȡȓȗȠȞIJĮȢ IJȘȞ İȟȓıȦıȘ ȝȚĮȢ ȖȡĮȝȝȒȢ ʌ.Ȥ. IJȘȞ y x 2 , ȝʌȠȡȠȪȝİ ʌȠȜȪ İȪțȠȜĮ 2 țĮȚ ȐȝİıĮ ȞĮ țĮIJĮıțİȣȐıȠȣȝİ IJȘ ȖȡĮijȚțȒ IJȘȢ ʌĮȡȐıIJĮıȘ ȤȡȘıȚȝȠʌȠȚȫȞIJĮȢ Įʌȩ IJȘȞ ȖİȦȝİIJȡȓĮ IJȠ ȩIJȚ ȝȓĮ İȣșİȓĮ ȠȡȓȗİIJĮȚ ʌȜȒȡȦȢ Įʌȩ įȪȠ ıȘȝİȓĮ. īȚĮ IJȠ ıțȠʌȩ ĮȣIJȩ, ĮțȠȜȠȣșȠȪȝİ IJĮ ʌĮȡĮțȐIJȦ ȕȒȝĮIJĮ: 1) ȆȐȞIJȠIJİ ȟİțȚȞȐȝİ Įʌȩ IJȠ ıȘȝİȓȠ (ǹ) ʌȠȣ Ș ȖȡĮȝȝȒ IJȑȝȞİȚ IJȠȞ ȐȟȠȞĮ y’y (Ƞ ĮȡȚșȝȩȢ ʌȠȣ İȓȞĮȚ ȝȩȞȠȢ IJȠȣ ıIJȘȞ İȟȓıȦıȘ țĮȚ įİȞ ȑȤİȚ ıȣȞȘȝȝȑȞȠ IJȠ "x".) ǼȐȞ įİȞ įȓȞİIJĮȚ IJȑIJȠȚȠȢ ĮȡȚșȝȩȢ, ȟİțȚȞȒıIJİ ȕȐȗȠȞIJĮȢ ȑȞĮ ıȘȝİȓȠ ıIJȠ (0,0). ȈIJȘȞ ʌİȡȓʌIJȦıȒ ȝĮȢ ȕȐȗȠȣȝİ ȑȞĮ ıȘȝİȓȠ ıIJȘ șȑıȘ (0,2) ıIJȠȞ ȐȟȠȞĮ y’y. 2) ȀȠȚIJȐȗȠȣȝİ IJȘȞ țȜȓıȘ "Į" (ʌȠȜȜȑȢ ijȠȡȑȢ, İȓȞĮȚ țȜȐıȝĮ). ȀĮIJȩʌȚȞ, ȕȐȗȠȣȝİ ȑȞĮ ıȘȝİȓȠ (Ǻ) ıIJȘ șȑıȘ 1,E țĮȚ ıIJȘ ıȣȞȑȤİȚĮ IJȠ ıȘȝİȓȠ (ī) ʌȠȣ İȓȞĮȚ ʌȐȞȦ Ȓ țȐIJȦ Įʌȩ IJȠ ıȘȝİȓȠ Ǻ țĮIJȐ Į 3) ȃĮ șȣȝȐıIJİ ȩIJȚ Ș țȜȓıȘ ĮȞIJȚʌȡȠıȦʌİȪİȚ ȐȞȠįȠ / țȐșȠįȠ. 4) ȉȑȜȠȢ ıȣȞįȑıIJİ IJĮ įȪȠ ıȘȝİȓĮ (ǹ) țĮȚ (ī) ʌȠȣ ıȤİįȚȐıĮIJİ ȝİ ȝȚĮ ȖȡĮȝȝȒ ʌȠȣ İțIJİȓȞİIJĮȚ ıİ ȠȜȩțȜȘȡȠ IJȠ įȓțIJȣȠ ıȣȞIJİIJĮȖȝȑȞȦȞ. īȞȦȡȓȗȠȞIJĮȢ IJĮ ʌĮȡĮʌȐȞȦ ȝʌȠȡȠȪȝİ ȞĮ İʌİȟİȡȖĮıIJȠȪȝİ IJȘȞ ȖȜȦııȚțȒ ʌİȡȚȖȡĮijȒ ȝȚĮȢ ıȣȞȐȡIJȘıȘȢ țĮȚ ȞĮ ȖȡȐȥȠȣȝİ IJȘ ıȣȝȕȠȜȚțȒ IJȠȣȢ ȑțijȡĮıȘ (ȝİIJĮijȡȐȗȠȞIJĮȢ IJĮ ȜȩȖȚĮ IJȠȣ ǺȜ. ȂȓĮ İȚıĮȖȦȖȒ ıIJȚȢ ȈȣȞĮȡIJȒıİȚȢ IJȘȢ Ǻǯ īȣȝȞĮıȓȠȣ, ȈIJȣȜȚĮȞȩȢ ȂĮȡĮȖțȐțȘȢ, ǹȞįȡȑĮȢ ȉȡȚĮȞIJĮijȪȜȜȠȣ, ǼȣțȜİȓįȘȢ ǹ, IJ. 107 1

ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/10


---------------------------------------------------------------------------------------------- ǼȟȓıȦıȘ ȝȚĮȢ İȣșİȓĮȢ ȖȡĮȝȝȒȢ ----------------------------------------------------------------------------------------

ʌȡȠȕȜȒȝĮIJȠȢ Įʌȩ IJȘ ıȣȞȒșȘ ȖȜȫııĮ ıIJȘȞ ıȣȝȕȠȜȚțȒ (ĮȜȖİȕȡȚțȒ) țĮȚ ȤȡȘıȚȝȠʌȠȚȫȞIJĮȢ IJȘ ȝİIJĮȕȜȘIJȒ x ȖȚĮ IJȠȞ ȐȖȞȦıIJȠ), įȘȜĮįȒ ȝİ ȝĮșȘȝĮIJȚțȐ ıȪȝȕȠȜĮ ʌȠȣ İȓȞĮȚ Ș «ȖȜȫııĮ» IJȦȞ ȝĮșȘȝĮIJȚțȫȞ, ȩʌȦȢ2 ȂĮșȘȝĮIJȚțȒ «ȈȣȝȕȠȜȚțȒ» īȜȦııȚțȒ «ȁİțIJȚțȒ» ʌȡȩIJĮıȘ ʌĮȡȐıIJĮıȘ ȈțȑȥȠȣ ȑȞĮȞ ĮȡȚșȝȩ. 1 x ȉȠ IJȡȚʌȜȐıȚȠ İȞȩȢ ĮȡȚșȝȠȪ. 2 3 x ȀĮIJȐ 5 ʌİȡȚııȩIJİȡĮ Įʌȩ ȑȞĮȞ ĮȡȚșȝȩ. x +5 3 ȀĮIJȐ 7 ȜȚȖȩIJİȡĮ Įʌȩ țȐʌȠȚȠ ĮȡȚșȝȩ. x –7 4 6 ȜȚȖȩIJİȡĮ Įʌȩ IJȠ ʌİȞIJĮʌȜȐıȚȠ İȞȩȢ ĮȡȚșȝȠȪ. 5 5 x –6 3x 3 3 x Ȓ IJĮ İȞȩȢ ĮȡȚșȝȠȪ. 6 7 7 7 ĮȞ x Ƞ ȝȚțȡȩIJİȡȠȢ, x +50 Ƞ ȝİȖĮȜȪIJİȡȠȢ Ȓ ĮȞ x ǻȪȠ ĮȡȚșȝȠȓ įȚĮijȑȡȠȣȞ țĮIJȐ 50. 7 Ƞ ȝİȖĮȜȪIJİȡȠȢ, x –50 Ƞ ȝȚțȡȩIJİȡȠȢ. ȉȠ ȐșȡȠȚıȝĮ įȪȠ ĮȡȚșȝȫȞ İȓȞĮȚ 15. x o ȑȞĮȢ, 15– x Ƞ ȐȜȜȠȢ. 8 x –15 ( x Ș ıȘȝİȡȚȞȒ ȘȜȚțȓĮ ȝİ ȆȠȚĮ Ș ȘȜȚțȓĮ IJȠȣ īȚȐȞȞȘ ʌȡȚȞ 15 ȤȡȩȞȚĮ. 9 x –15 0) ȆȠȚĮ Ș ȘȜȚțȓĮ IJȘȢ DZȞȞĮȢ ȝİIJȐ 8 ȤȡȩȞȚĮ. x +8 ( x Ș ıȘȝİȡȚȞȒ ȘȜȚțȓĮ) 10 Ǿ ǼȜȑȞȘ İȓȞĮȚ ıȒȝİȡĮ 20 ȤȡȠȞȫȞ, ȝİIJȐ x 3 3 11 20 x

ȤȡȩȞȚĮ ʌȩıĮ șĮ İȓȞĮȚ IJĮ IJȘȢ ȘȜȚțȓĮȢ IJȘȢ; 4 4

12

13

14

15

Ȉİ ȝȚĮ İțįȡȠȝȒ ȝİIJİȓȤĮȞ 40 ȝĮșȘIJȑȢ țĮȚ ȖȠȞİȓȢ. ǹȞ x ȠȚ ȝĮșȘIJȑȢ, i) ȆȩıȠȚ ȒIJĮȞ ȠȚ ȖȠȞİȓȢ; ii) ǹȞ țȐșİ ȝĮșȘIJȒȢ ʌȜȒȡȦıİ 3 İȣȡȫ țĮȚ țȐșİ ȖȠȞȚȩȢ 4 İȣȡȫ, ʌȩıĮ ʌȜȒȡȦıĮȞ ȩȜȠȚ ȠȚ ȝĮșȘIJȑȢ; iii) ȆȩıĮ ʌȜȒȡȦıĮȞ ȠȚ ȖȠȞİȓȢ; iv) ȆȩıĮ ʌȜȒȡȦıĮȞ ȩȜȠȚ ȝĮȗȓ; DzȤȠȣȝİ 30 ȗȫĮ țȩIJİȢ țĮȚ țȠȣȞȑȜȚĮ. ǹȞ x ȠȚ țȩIJİȢ Į) ȆȩıĮ İȓȞĮȚ IJĮ țȠȣȞȑȜȚĮ ; ȕ) ȆȩıĮ ʌȩįȚĮ ȑȤȠȣȞ ȩȜİȢ ȠȚ țȩIJİȢ; Ȗ) ȆȩıĮ ʌȩįȚĮ ȑȤȠȣȞ ȩȜĮ IJĮ țȠȣȞȑȜȚĮ; į) ȆȩıĮ ʌȩįȚĮ ȑȤȠȣȞ ȩȜĮ IJĮ ȗȫĮ ȝĮȗȓ; DzȤȦ 45 țȑȡȝĮIJĮ IJȦȞ 2 țĮȚ 5 ȜİʌIJȫȞ. ǹȞ x IJĮ țȑȡȝĮIJĮ IJȦȞ 2 ȜİʌIJȫȞ Į) ȆȩıĮ İȓȞĮȚ IJĮ țȑȡȝĮIJĮ IJȦȞ 5 ȜİʌIJȫȞ; ȕ) ȆȠȚĮ Ș ĮȟȓĮ IJȦȞ țİȡȝȐIJȦȞ IJȦȞ 2 ȜİʌIJȫȞ; Ȗ) ȆȠȚĮ Ș ĮȟȓĮ IJȦȞ țİȡȝȐIJȦȞ IJȦȞ 5 ȜİʌIJȫȞ; į) ȆȠȚĮ Ș ıȣȞȠȜȚțȒ ĮȟȓĮ IJȦȞ țİȡȝȐIJȦȞ; ǹȞ IJȠ x ȥȘijȓȠ IJȦȞ įİțȐįȦȞ țĮȚ z IJȠ ȥȘijȓȠ IJȦȞ ȝȠȞȐįȦȞ, ȑȞĮȢ įȚȥȒijȚȠȢ ĮȡȚșȝȩȢ ıȣȝȕȠȜȓȗİIJĮȚ

40– x 3x 4 40 x

3x 4 40 x

30– x 2x 4(30– x ) 2x 4 30 x

45– x 2x 5(45– x ) 2 x +5(45– x ) 10 x +1 z (ĮȞĮʌIJȣȖȝȑȞȘ ȝȠȡijȒ)

ȆĮȡȐįİȚȖȝĮ: ȂİȜȑIJȘ IJȘȢ ıȣȞȐȡIJȘıȘȢ ȝȒțȠȢ ʌȜİȣȡȐȢ țĮȚ ʌİȡȓȝİIJȡȠȢ 2 ǺȜ. ȁȪıȘ ʌȡȠȕȜȘȝȐIJȦȞ ȝİ IJȘ ȕȠȒșİȚĮ IJȦȞ İȟȚıȫıİȦȞ țĮȚ ĮȞȚıȫıİȦȞ, Ȇ. ȀȣȡȐȞĮȢ, ǼȣțȜİȓįȘȢ ǹ, IJ. 77 ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/11


---------------------------------------------------------------------------------------------- ǼȟȓıȦıȘ ȝȚĮȢ İȣșİȓĮȢ ȖȡĮȝȝȒȢ ----------------------------------------------------------------------------------------

ǻȓȞİIJĮȚ IJȠ įȚʌȜĮȞȩ ȝȠIJȓȕȠ. ȆȫȢ șĮ ʌİȡȚȖȡȐijĮIJİ IJȠ ȖȡȐijȘȝĮ ĮȣIJȠȪ IJȠȣ ȝȠIJȓȕȠȣ; x īȚĮIJȓ ijĮȓȞİIJĮȚ ȑIJıȚ; x ȆȫȢ șĮ ȝʌȠȡȠȪıĮIJİ ȞĮ İȟȘȖȒıİIJİ ĮȜȖİȕȡȚțȐ ĮȣIJȒ IJȘ ıȤȑıȘ;

x x

ȆȫȢ ıȣȞįȑİIJĮȚ Ș ıȣȞȐȡIJȘıȘ ʌȠȣ ȖȡȐȥĮIJİ ȝİ IJȘȞ İȚțȩȞĮ; ȆȡȠȕȜȑȥIJİ IJȘȞ ʌİȡȓȝİIJȡȠ İȐȞ țȐʌȠȚȠȢ șȑȜİȚ ʌȜİȣȡȚțȐ ȝȒțȘ 10 ȝȚțȡȫȞ ȝȠȞĮįȚĮȓȦȞ ʌȜĮțȫȞ. ȈȪȝijȦȞĮ ȝİ IJȠ ȖȡȐijȘȝĮ, Ș ʌȜİȣȡȐ IJȠȣ țȐșİ IJİIJȡȐȖȦȞȠȣ ĮʌȠIJİȜİȓIJĮȚ Įʌȩ ȝȚțȡȑȢ ȝȠȞĮįȚĮȓİȢ ʌȜȐțİȢ, ȠȚ ȠʌȠȓİȢ țȐșİ ijȠȡȐ ĮȣȟȐȞȠȞIJĮȚ țĮIJȐ ȝȓĮ (1), ȐȡĮ Ș ʌİȡȓȝİIJȡȠȢ ĮȣȟȐȞİIJİ țĮIJȐ 4. ǹȞ ıȣȝȕȠȜȓıȠȣȝİ ȝİ x IJȠ ȝȒțȠȢ IJȘȢ ʌȜİȣȡȐȢ İȞȩȢ Įʌȩ IJĮ IJİIJȡȐȖȦȞĮ, IJȩIJİ Ș ʌİȡȓȝİIJȡȩȢ IJȠȣ șĮ İȓȞĮȚ y 4x Ǿ ıȣȞȐȡIJȘıȘ y 4x ȝĮȢ įİȓȤȞİȚ ʌȩıȘ İȓȞĮȚ Ș ʌİȡȓȝİIJȡȠȢ IJȠȣ IJİIJȡĮȖȫȞȠȣ ʌȠȣ Ș ʌȜİȣȡȐ IJȠȣ ĮʌȠIJİȜİȓIJĮȚ Įʌȩ x ȝȚțȡȐ ȝȠȞĮįȚĮȓĮ ʌȜĮțȐțȚĮ. ȅ ʌȓȞĮțĮȢ IJȚȝȫȞ IJȘȢ ıȣȞȐȡIJȘıȘȢ İȓȞĮȚ: x 1 2 3 4 5 y 4 8 12 16 20 ȉĮ ıȘȝİȓĮ IJȘȢ īȡĮijȚțȒȢ ȆĮȡȐıIJĮıȘȢ: (1, 4), (2, 8), (3, 12), (4, 16),…țĮȚ Ș ȖȡĮijȚțȒ ʌĮȡȐıIJĮıȘ

6 24

7 28

īȚĮ ȞĮ ȕȡȠȪȝİ IJȘȞ ʌİȡȓȝİIJȡȠ IJȠȣ IJİIJȡĮȖȫȞȠȣ ʌȜİȣȡȐȢ 10, İȡȖĮȗȩȝĮıIJİ ȦȢ İȟȒȢ: ȊȥȫȞȠȣȝİ țȐșİIJȘ ıIJȠ ȠȡȚȗȩȞIJȚȠ ȐȟȠȞĮ ıIJȠ ıȘȝİȓȠ ǹ, țĮȚ Įʌȩ IJȠ ıȘȝİȓȠ ʌȠȣ ıȣȞĮȞIJȐ IJȘ ȖȡĮijȚțȒ ʌĮȡȐıIJĮıȘ ijȑȡȞȠȣȝİ țȐșİIJȘ ıIJȠ țĮIJĮțȩȡȣijȠ ȐȟȠȞĮ. Ǿ IJİIJĮȖȝȑȞȘ IJȠȣ ıȘȝİȓȠȣ Ǻ İȓȞĮȚ Ș ȗȘIJȠȪȝİȞȘ ʌİȡȓȝİIJȡȠȢ IJȠȣ IJİIJȡĮȖȫȞȠȣ, įȘȜĮįȒ 40. īȞȦȡȓȗȠȞIJĮȢ IJȠ ȖȡȐijȘȝĮ (İȣșİȓĮ ȖȡĮȝȝȒ) ȝʌȠȡȠȪȝİ ȞĮ ȕȡȠȪȝİ IJȘȞ țȜȓıȘ IJȘȢ Į (ıȣȞIJİȜİıIJȒȢ įȚİȪșȣȞıȘȢ) țĮȚ ıIJȘȞ ıȣȞȑȤİȚĮ IJȘȞ İȟȓıȦıȘ IJȘȢ.

ȆĮȡȐįİȚȖȝĮ 1: DzıIJȦ Ș ȖȡĮijȚțȒ ʌĮȡȐıIJĮıȘ īȚĮ ȞĮ ʌȡȠıįȚȠȡȓıȠȣȝİ IJȘȞ țȜȓıȘ IJȘȢ ȖȡĮȝȝȒȢ IJȘȢ ȖȡĮijȚțȒȢ ʌĮȡȐıIJĮıȘȢ, ijȑȡȞȠȣȝİ Įʌȩ IJȠ ıȘȝİȓȠ ȕ ʌȠȣ ıȣȞĮȞIJȐ (Ș ȖȡĮȝȝȒ) IJȠȞ ȐȟȠȞĮ y’y țȐșİIJȘ ıİ ĮȣIJȩȞ, țĮȚ Įʌȩ IJȠ ıȘȝİȓȠ 1 IJȠȣ ȐȟȠȞĮ x’x țȐșİIJȘ ıİ ĮȣIJȩȞ. DzIJıȚ ıȤȘȝĮIJȓȗİIJĮȚ ȑȞĮ ȠȡșȠȖȫȞȚȠ IJȡȓȖȦȞȠ. ȅ ȜȩȖȠȢ IJȦȞ ȝȘțȫȞ IJȦȞ ʌȜİȣȡȫȞ IJȠȣ ȠȡșȠȖȦȞȓȠȣ IJȡȚȖȫȞȠȣ (țȐșİIJȘ ʌȜİȣȡȐ/ 2 ȠȡȚȗȩȞIJȚĮ ʌȜİȣȡȐ) ȝĮȢ įȓȞİȚ IJȘȞ țȜȓıȘ, įȘȜĮįȒ D 2 . ǼʌȠȝȑȞȦȢ, 1 ĮȞIJȚțĮșȚıIJȫȞIJĮȢ Ș İȟȓıȦıȘ y Dx E ȖȓȞİIJĮȚ y 2x 1 . ȈIJȘ ıȣȞȑȤİȚĮ ĮȞ șȑȜȠȣȝİ ȞĮ IJȘȞ İʌĮȜȘșİȪıȠȣȝİ ȕȡȓıțȠȣȝİ IJȠȞ ʌȓȞĮțĮ IJȚȝȫȞ țĮȚ IJȘȞ ȖȡĮijȚțȒ IJȘȢ ʌĮȡȐıIJĮıȘ, Ș ȠʌȠȓĮ ıȣȝʌȓʌIJİȚ ȝİ IJȘ įȠıȝȑȞȘ.

x y

2x 1

0 1

1 3

2 5

ȆĮȡȐįİȚȖȝĮ 2: DzıIJȦ Ș ȖȡĮijȚțȒ ʌĮȡȐıIJĮıȘ ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/12


---------------------------------------------------------------------------------------------- ǼȟȓıȦıȘ ȝȚĮȢ İȣșİȓĮȢ ȖȡĮȝȝȒȢ ----------------------------------------------------------------------------------------

īȚĮ ȞĮ ʌȡȠıįȚȠȡȓıȠȣȝİ IJȘȞ țȜȓıȘ IJȘȢ ȖȡĮȝȝȒȢ IJȘȢ ȖȡĮijȚțȒȢ ʌĮȡȐıIJĮıȘȢ, ijȑȡȞȠȣȝİ Įʌȩ IJȠ ıȘȝİȓȠ E 2 ʌȠȣ ıȣȞĮȞIJȐ (Ș ȖȡĮȝȝȒ) IJȠȞ ȐȟȠȞĮ y’y țȐșİIJȘ ıİ ĮȣIJȩȞ, țĮȚ Įʌȩ IJȠ ıȘȝİȓȠ -1 IJȠȣ ȐȟȠȞĮ x’x țȐșİIJȘ ıİ ĮȣIJȩȞ. DzIJıȚ ıȤȘȝĮIJȓȗİIJĮȚ ȑȞĮ ȠȡșȠȖȫȞȚȠ IJȡȓȖȦȞȠ. ȅ ȜȩȖȠȢ IJȦȞ ȝȘțȫȞ IJȦȞ ʌȜİȣȡȫȞ IJȠȣ ȠȡșȠȖȦȞȓȠȣ IJȡȚȖȫȞȠȣ (țȐșİIJȘ ʌȜİȣȡȐ/ ȠȡȚȗȩȞIJȚĮ ʌȜİȣȡȐ) ȝĮȢ įȓȞİȚ IJȘȞ țȜȓıȘ, 2 įȘȜĮįȒ D 2 . 1 ǼʌȠȝȑȞȦȢ, ĮȞIJȚțĮșȚıIJȫȞIJĮȢ Ș İȟȓıȦıȘ y Dx E ȖȓȞİIJĮȚ y 2x 2 . ȈIJȘ ıȣȞȑȤİȚĮ ĮȞ șȑȜȠȣȝİ ȞĮ IJȘȞ İʌĮȜȘșİȪıȠȣȝİ ȕȡȓıțȠȣȝİ IJȠȞ ʌȓȞĮțĮ IJȚȝȫȞ țĮȚ IJȘȞ ȖȡĮijȚțȒ IJȘȢ ʌĮȡȐıIJĮıȘ, Ș ȠʌȠȓĮ ıȣȝʌȓʌIJİȚ ȝİ IJȘ įȠıȝȑȞȘ.

x y

2x 2

0 2

1 0

2 -2

ȆĮȡȐįİȚȖȝĮ 3: ȅȡȚȗȩȞIJȚĮ ȖȡĮȝȝȒ ȆȠȚĮ İȓȞĮȚ Ș İȟȓıȦıȘ ȖȚĮ ȠȡȚȗȩȞIJȚĮ ȖȡĮȝȝȒ; Ǿ țȜȓıȘ IJȘȢ ȠȡȚȗȩȞIJȚĮȢ ȖȡĮȝȝȒȢ İȓȞĮȚ Ƞ, ĮijȠȪ Ș țȜȓıȘ (țȐșİIJȘ ʌȜİȣȡȐ/ ȠȡȚȗȩȞIJȚĮ ʌȜİȣȡȐ) ȝİ țȐșİIJȘ ʌȜİȣȡȐ=0 İȓȞĮȚ ȝȘįȑȞ. ȈIJȘ ıȣȖțİțȡȚȝȑȞȘ ʌİȡȓʌIJȦıȘ y 2 , ȖȚĮIJȓ țȐșİ ıȘȝİȓȠ IJȘȢ ıȣȖțİțȡȚȝȑȞȘȢ ȖȡĮȝȝȒȢ ȑȤİȚ ıȣȞIJİIJĮȖȝȑȞİȢ ȝİ IJİIJĮȖȝȑȞȘ 2. ȆĮȡȐįİȚȖȝĮ 4: ȀĮIJĮțȩȡȣijȘ ȖȡĮȝȝȒ ȆȠȚĮ İȓȞĮȚ Ș İȟȓıȦıȘ ȖȚĮ țĮIJĮțȩȡȣijȘ ȖȡĮȝȝȒ; ȈIJȘȞ ʌȡĮȖȝĮIJȚțȩIJȘIJĮ Ș țĮIJĮțȩȡȣijȘ ȖȡĮȝȝȒ İȓȞĮȚ ȝȓĮ İȚįȚțȒ ʌİȡȓʌIJȦıȘ țĮȚ ȤȡȘıȚȝȠʌȠȚȠȪȝİ ȝȚĮ įȚĮijȠȡİIJȚțȒ İȟȓıȦıȘ, ȩȤȚ y ... , ĮȜȜȐ ĮȞIJȓ ĮȣIJȒȢ ȤȡȘıȚȝȠʌȠȚȠȪȝİ IJȘ x ... Ǿ țȜȓıȘ IJȘȢ țĮIJĮțȩȡȣijȘȢ ȖȡĮȝȝȒȢ İȓȞĮȚ ĮʌȡȠıįȚȩȡȚıIJȘ, ĮijȠȪ Ș țȜȓıȘ (țȐșİIJȘ ʌȜİȣȡȐ/ ȠȡȚȗȩȞIJȚĮ ʌȜİȣȡȐ) ȝİ ȠȡȚȗȩȞIJȚĮ ʌȜİȣȡȐ=0 įİȞ ȠȡȓȗİIJĮȚ ȈIJȘ ıȣȖțİțȡȚȝȑȞȘ ʌİȡȓʌIJȦıȘ x 1, 5 , ȖȚĮIJȓ țȐșİ ıȘȝİȓȠ IJȘȢ ıȣȖțİțȡȚȝȑȞȘȢ ȖȡĮȝȝȒȢ ȑȤİȚ ıȣȞIJİIJĮȖȝȑȞİȢ ȝİ IJİIJȝȘȝȑȞȘ 1, 5 . ȆĮȡȐįİȚȖȝĮ 5: ȈȣȞĮȡIJȒıİȚȢ ʌȠȣ Ș ȖȡĮijȚțȒ IJȠȣȢ ʌĮȡȐıIJĮıȘ İȓȞĮȚ İȣșİȓĮ ȖȡĮȝȝȒ ȝȘ x 2 2x 3 ıȣȞİȤȩȝİȞȘ. DzıIJȦ Ș ıȣȞȐȡIJȘıȘ y x 1 ȆĮȡĮIJȘȡȠȪȝİ ȩIJȚ Ƞ ʌĮȡȠȞȠȝĮıIJȒȢ IJȠȣ țȜȐıȝĮIJȠȢ ȖȚĮ x 1 ȝȘįİȞȓȗİIJĮȚ, İʌȠȝȑȞȦȢ IJȠ țȜȐıȝĮ ıIJȠ x 1 įİȞ ȠȡȓȗİIJĮȚ, įİȞ ȑȤİȚ ȞȩȘȝĮ ʌȡĮȖȝĮIJȚțȠȪ ĮȡȚșȝȠȪ. ǼțIJİȜȫȞIJĮȢ IJȘ įȚĮȓȡİıȘ Ȓ ȝİIJĮIJȡȑʌȠȞIJĮȢ IJȠȞ ĮȡȚșȝȘIJȒ ıİ ȖȚȞȩȝİȞȠ ʌĮȡĮȖȩȞIJȦȞ țĮȚ x 2 2x 3 x 3 x 1

x 3 ĮʌȜȠʌȠȚȫȞIJĮȢ ȑȤȠȣȝİ y x 1 x 1 ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/13


---------------------------------------------------------------------------------------------- ǼȟȓıȦıȘ ȝȚĮȢ İȣșİȓĮȢ ȖȡĮȝȝȒȢ ----------------------------------------------------------------------------------------

ǹȣIJȒ Ș ȑțijȡĮıȘ İȓȞĮȚ ȝȚĮ ıȣȞȐȡIJȘıȘ IJȠȣ x IJȘȢ ȝȠȡijȒȢ y=Įx+ȕ, ȝİ țȜȓıȘ D 1 țĮȚ IJȑȝȞİȚ IJȠȞ ȐȟȠȞĮ yǯy ıIJȠ ıȘȝİȓȠ 3 . ǹȜȜȐ ĮȣIJȒ Ș ıȣȞȐȡIJȘıȘ įİȞ ȠȡȓȗİIJĮȚ (įȚĮȓȡİıȘ ȝİ ȝȘįȑȞ) ıIJȠ ıȣȖțİțȡȚȝȑȞȠ ıȘȝİȓȠ x 1 . ȊʌȐȡȤİȚ ȜȠȚʌȩȞ ȝȚĮ ĮıȣȞȑȤİȚĮ IJȘȢ ȖȡĮijȚțȒȢ ʌĮȡȐıIJĮıȘȢ ȖȚĮ IJȘ ıȣȞȐȡIJȘıȘ y ıIJȠ x 1 . ȆȡĮțIJȚțȐ Ș ȖȡĮijȚțȒ ʌĮȡȐıIJĮıȘ ȑȤİȚ ȑȞĮ İȓįȠȢ ȠʌȒȢ, ȑȞĮ ıȘȝİȓȠ, ʌȠȣ ijĮȓȞİIJĮȚ ıIJȠ ȖȡȐijȘȝĮ ȦȢ ȑȞĮȢ ȝȚțȡȩȢ țȪțȜȠȢ ȖȪȡȦ Įʌȩ ĮȣIJȩ IJȠ ıȘȝİȓȠ. ǼʌȠȝȑȞȦȢ Ș ȖȡĮijȚțȒ ʌĮȡȐıIJĮıȘ IJȘȢ ıȣȞȐȡIJȘıȘȢ ıȤİįȚȐȗİȚ ȝȚĮ ıȣȞİȤȒ İȣșİȓĮ ıȘȝİȓȦȞ, İțIJȩȢ Įʌȩ IJȠ ıȘȝİȓȠ ȩʌȠȣ IJȠ x İȓȞĮȚ 1. ǻȘȜĮįȒ Ș ȖȡĮijȚțȒ ʌĮȡȐıIJĮıȘ IJȘȢ ıȣȞȐȡIJȘıȘȢ ȑȤİȚ ĮıȣȞȑȤİȚĮ (țȩȥȚȝȠ) ıIJȠ ıȘȝİȓȠ 1, 4 .

1.

2. 3. 4.

5.

6.

ǼʌĮȞĮȜȘʌIJȚțȑȢ ǹıțȒıİȚȢ ȃĮ țĮIJĮıțİȣȐıİIJİ ıIJȠ ȓįȚȠ ıȪıIJȘȝĮ ĮȟȩȞȦȞ IJȚȢ ȖȡĮijȚțȑȢ ʌĮȡĮıIJȐıİȚȢ IJȦȞ ıȣȞĮȡIJȒıİȦȞ: 1 1 1 1 x 2 Į) y 3x, y 3x 2, y x 2 ȕ) y x, y x 1, y 3 4 4 4 ȃĮ țĮIJĮıțİȣȐıİIJİ ıIJȠ ȓįȚȠ ıȪıIJȘȝĮ ĮȟȩȞȦȞ IJȚȢ ȖȡĮijȚțȑȢ ʌĮȡĮıIJȐıİȚȢ IJȦȞ ıȣȞĮȡIJȒıİȦȞ: Į) y 3x 3, DQ 0 d x d 6 , ȕ) y 3x, DQ x d 2 , Ȗ) y 4x 3, DQ 2 d x d 5 . ȃĮ ȕȡİșİȓ Ƞ IJȪʌȠȢ IJȘȢ ıȣȞȐȡIJȘıȘȢ ʌȠȣ Ș ȖȡĮijȚțȒ IJȘȢ ʌĮȡȐıIJĮıȘ įȚȑȡȤİIJĮȚ Įʌȩ IJȘȞ ĮȡȤȒ R IJȦȞ ĮȟȩȞȦȞ țĮȚ ıȤȘȝĮIJȓȗİȚ ȝİ IJȠȞ ȠȡȚȗȩȞIJȚȠ ȐȟȠȞĮ ȖȦȞȓĮ 45 . ȃĮ ȕȡİșİȓ Ƞ IJȪʌȠȢ IJȘȢ ıȣȞȐȡIJȘıȘȢ ʌȠȣ Ș ȖȡĮijȚțȒ IJȘȢ ʌĮȡȐıIJĮıȘ įȚȑȡȤİIJĮȚ Įʌȩ IJȘȞ ĮȡȤȒ 1 IJȦȞ ĮȟȩȞȦȞ țĮȚ İȓȞĮȚ ʌĮȡȐȜȜȘȜȘ ıIJȘȞ İȣșİȓĮ ȝİ İȟȓıȦıȘ y x 4 . 2 ȃĮ ȕȡİșİȓ Ƞ IJȪʌȠȢ IJȘȢ ıȣȞȐȡIJȘıȘȢ ʌȠȣ Ș ȖȡĮijȚțȒ IJȘȢ ʌĮȡȐıIJĮıȘ İȓȞĮȚ İȣșİȓĮ Ș ȠʌȠȓĮ 1 įȚȑȡȤİIJĮȚ Įʌȩ IJȠ ıȘȝİȓȠ $ 2, 6 țĮȚ İȓȞĮȚ ʌĮȡȐȜȜȘȜȘ ıIJȘȞ İȣșİȓĮ ȝİ İȟȓıȦıȘ y x 2. 4 ȃĮ İȟİIJȐıİIJİ ĮȞ IJĮ ıȘȝİȓĮ $ 3,1 , % 3,5 NDL * 10,1 ıȤȘȝĮIJȓȗȠȣȞ ȠȡșȠȖȫȞȚȠ IJȡȓȖȦȞȠ.

7.

ȃĮ ȕȡİșİȓ Ƞ IJȪʌȠȢ IJȘȢ ıȣȞȐȡIJȘıȘȢ ʌȠȣ Ș ȖȡĮijȚțȒ IJȘȢ ʌĮȡȐıIJĮıȘ İȓȞĮȚ İȣșİȓĮ Ș ȠʌȠȓĮ įȚȑȡȤİIJĮȚ Įʌȩ IJĮ ıȘȝİȓĮ $ 2, 6 țĮȚ % 1, 4 .

8.

ȃĮ ȕȡİȓIJİ IJȠȞ ʌȡĮȖȝĮIJȚțȩ ĮȡȚșȝȩ O , ȫıIJİ Ș İȣșİȓĮ (İ) ȝİ İȟȓıȦıȘ y

9.

İȓȞĮȚ ʌĮȡȐȜȜȘȜȘ ıIJȘȞ İȣșİȓĮ (Ș) ȝİ İȟȓıȦıȘ y 6x 2018 . ȃĮ ȕȡİșİȓ Ƞ IJȪʌȠȢ IJȘȢ ıȣȞȐȡIJȘıȘȢ ʌȠȣ Ș ȖȡĮijȚțȒ IJȘȢ ʌĮȡȐıIJĮıȘ İȓȞĮȚ İȣșİȓĮ Ș ȠʌȠȓĮ įȚȑȡȤİIJĮȚ Įʌȩ IJȠ ıȘȝİȓȠ $ 1,5 țĮȚ İȓȞĮȚ ʌĮȡȐȜȜȘȜȘ ıIJȘȞ İȣșİȓĮ ȝİ İȟȓıȦıȘ

§1· y ¨ ¸x 2. ©2¹ 10. ȃĮ ȕȡİȓIJİ IJȘȞ İȟȓıȦıȘ IJȘȢ ıȣȞȐȡIJȘıȘȢ ʌȠȣ ȑȤİȚ ȖȡĮijȚțȒ ʌĮȡȐıIJĮıȘ IJȘ ȖȡĮȝȝȒ (İ).

ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/14

O 3 x 2

ȞĮ


¾ÆÂÃǷ ¢Ȑźͺ ÎÅƺÌȯÈÎ ============================================================ ǼʌȚȝȑȜİȚĮ: ȈİȡȑijȠȖȜȠȣ ĭȓȜȚʌʌȠȢ

1.Į) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȘȞ ʌĮȡȐıIJĮıȘ $

310 185 113 64

ȕ) ǹȞ ȑȞĮ IJİIJȡȐȖȦȞȠ ȑȤİȚ İȝȕĮįȩ ȓıȠ ȝİ ǹ+207 ıİ cm 2 , ȞĮ ȣʌȠȜȠȖȓıİIJİ IJȘȞ ʌİȡȓȝİIJȡȩ IJȠȣ. ȁȪıȘ Į) $

310 185 113 8

310 185 11

310 185 121

310 196

310 14

324 18

ȕ) ǹȞ D Ș ʌȜİȣȡȐ IJȠȣ IJİIJȡĮȖȫȞȠȣ IJȩIJİ D 2 18 207 IJİIJȡȐȖȦȞȠ ȑȤİȚ ʌİȡȓȝİIJȡȠ .. 2. ȈIJȠ įȚʌȜĮȞȩ ıȤȒȝĮ IJȠ ǹǺīǻ İȓȞĮȚ ȠȡșȠȖȫȞȚȠ ʌĮȡĮȜȜȘȜȩȖȡĮȝȝȠ İȖȖİȖȡĮȝȝȑȞȠ ıİ țȪțȜȠ. ǼʌȓıȘȢ ȚıȤȪİȚ ȩIJȚ IJȠ İȝȕĮįȩ IJȠȣ țȣțȜȚțȠȪ 15 įȓıțȠȣ İȓȞĮȚ ( 907, 46cm 2 țĮȚ KP '%* . 17 Į) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ Ș įȚĮȖȫȞȚȠȢ Ǻǻ İȓȞĮȚ įȚȐȝİIJȡȠȢ IJȠȣ țȪțȜȠȣ ȕ) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȠ ȝȒțȠȢ IJȠȣ IJȝȒȝĮIJȠȢ Ǻǻ țĮȚ IJȠ ȝȒțȠȢ IJȠȣ țȪțȜȠȣ (ıİ cm) Ȗ) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȠ ǹǺīǻ. ǻȓȞİIJĮȚ ȩIJȚ S # 3,14 ȁȪıȘ

225 ȐȡĮ D

225 15cm ȠʌȩIJİ IJȠ

Į) ǼʌİȚįȒ IJȠ ǹǺīǻ İȓȞĮȚ ȠȡșȠȖȫȞȚȠ ȚıȤȪİȚ ȩIJȚ ' * % 90o ȠʌȩIJİ '$% 2 '*% 2 90o 180o ȐȡĮ Ș įȚĮȖȫȞȚȠȢ Ǻǻ İȓȞĮȚ įȚȐȝİIJȡȠȢ IJȠȣ țȪțȜȠȣ ȕ) ǹȞ U İȓȞĮȚ Ș ĮțIJȓȞĮ IJȠȣ țȪțȜȠȣ IJȩIJİ ( SU2 ȠʌȩIJİ 3,14 U 2 907, 46 ȠʌȩIJİ U2 289 ȐȡĮ

U 289 ȠʌȩIJİ U 17 cm țĮȚ ȐȡĮ ... ȉȠ ȝȒțȠȢ IJȠȣ țȪțȜȠȣ İȓȞĮȚ L S %' 3,14 34 106, 76 cm '* '* 15 '* 15 Ȗ) ȈIJȠ ȠȡșȠȖȫȞȚȠ IJȡȓȖȦȞȠ ǻīǺ İȓȞĮȚ KP '%* ȐȡĮ ȠʌȩIJİ 34 34 ȐȡĮ 34 17 34 17 '% '* 15 2 30 cm , ȠʌȩIJİ ıȪȝijȦȞĮ ȝİ IJȠ ʌȣșĮȖȩȡİȚȠ șİȫȡȘȝĮ ȚıȤȪİȚ ȩIJȚ %* 2 '* 2 %' 2 , ȐȡĮ țĮȚ IJİȜȚțȐ %* 2 302 342 ȠʌȩIJİ %* 2 1156 900 , İʌȠȝȑȞȦȢ %* 2 256 2 %* 256 16 cm ȠʌȩIJİ $%*' %* '* 30 16 480 cm . 3.Į) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȘȞ ʌĮȡȐıIJĮıȘ $

1 1600

58

2

65

4 27 9

x 13 1 Nx ȕ) ǹȞ Ƞ ĮȡȚșȝȩȢ -2 İȓȞĮȚ ȜȪıȘ IJȘȢ İȟȓıȦıȘȢ 2 4 ĮȡȚșȝȩȢ, ȞĮ ȕȡİȓIJİ IJȠȞ ĮȡȚșȝȩ ț. ǼȊȀȁǼǿǻǾȈ Aǯ 108 IJ.4/15

2

2

81 § 4· ¨ ¸ 64 © 15 ¹

Nx 2 ȩʌȠȣ ț ʌȡĮȖȝĮIJȚțȩȢ 3

2


---------------------------------------------------------------------------------- ǼʌĮȞĮȜȘʌIJȚțȑȢ ĮıțȒıİȚȢ Ǻǯ īȣȝȞĮıȓȠȣ ------------------------------------------------------------------------------

ȁȪıȘ 1 7 4 9 40 4 81 15 8

1 58 65 4 9 40 4 27 3 15 8 1 7 4 9 1 7 4 9 1 7 4 9 40 4 9 15 8 40 36 15 8 40 6 15 8 (.3 6,8,15,40 120 3 140 32 135 35 275 240 2 120 120 120 120 120 120 120

Į) $

ȕ) ǼʌİȚįȒ Ƞ ĮȡȚșȝȩȢ -2 İȓȞĮȚ ȜȪıȘ IJȘȢ İȟȓıȦıȘȢ, ȑȤȠȣȝİ ȩIJȚ

N 2

2 3

2 N 11 1 2N 2 N ȠʌȩIJİ 12 12 12 ȐȡĮ 6 11 3 1 2N 4 2 N

3 2 4 3 55 11 ȠʌȩIJİ 66 3 6N 8 4N įȘȜĮįȒ 4N 6N 8 63 ȠʌȩIJİ 10N 55 ȐȡĮ ț=- =10 2 ȐȡĮ

11 1 2N 2 4

2 13 1 N 2

2 4

2

4. ȈIJȠ įȚʌȜĮȞȩ ıȤȒȝĮ IJȠ ǹǺīǻ İȓȞĮȚ ʌĮȡĮȜȜȘȜȩȖȡĮȝȝȠ ȝİ ʌİȡȓȝİIJȡȠ 28 cm țĮȚ IJĮ ǺǼ, īǽ İȓȞĮȚ ȪȥȘ IJȠȣ. 9x 81 11x 17 , $' țĮȚ ǼʌȓıȘȢ $% 16 12 4 VXQ (%* . 5 Į) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȠ x, ȕ) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȠ ǹǺīǻ, Ȗ) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȠ īǽ ȁȪıȘ Į)

ǼʌİȚįȒ

IJȠ

ǹǺīǻ

İȓȞĮȚ

ʌĮȡĮȜȜȘȜȩȖȡĮȝȝȠ

ȑȤȠȣȝİ

ȩIJȚ

9 x 81 țĮȚ 16 9 x 81 11x 17 28 , 8 6 $% *'

11x 17 9 x 81 11x 17 2 28 ȐȡĮ ȠʌȩIJİ 2 12 16 12 9 x 81 11x 17 ȐȡĮ 24 ȠʌȩIJİ 3 9 x 81 4 11x 17 672 , İʌȠȝȑȞȦȢ 28 24 , 24 8 6 27 x 243 44 x 68 672 ȠʌȩIJİ 71x 175 672 ȐȡĮ 71x 672 175 ȠʌȩIJİ 71x 497 țĮȚ 497 x 7. 71 9 7 81 63 81 144 11 7 17 77 17 60 ȕ) $% *' 9 cm țĮȚ $' %* 5 cm . 16 16 16 12 12 12 (% 4 (% ȈIJȠ IJȡȓȖȦȞȠ ǺǼī ȑȤȠȣȝİ VXQ (%* ȐȡĮ (% 4 cm țĮȚ ȠʌȩIJİ 5 5 %* $%*' (% $% 4 9 36 cm2 . $'

%*

Ȗ) $%*' *= %* ȐȡĮ 5*= 36 ȠʌȩIJİ *=

36 cm . 5

ǼȊȀȁǼǿǻǾȈ Aǯ 108 IJ.4/16


---------------------------------------------------------------------------------- ǼʌĮȞĮȜȘʌIJȚțȑȢ ĮıțȒıİȚȢ Ǻǯ īȣȝȞĮıȓȠȣ ------------------------------------------------------------------------------

5. ȈIJȠ įȚʌȜĮȞȩ ıȤȒȝĮ IJȠ IJİIJȡȐʌȜİȣȡȠ ǹǺīǻ İȓȞĮȚ İȖȖİȖȡĮȝȝȑȞȠ ıIJȠȞ țȪțȜȠ. ǼʌȓıȘȢ ȚıȤȪİȚ

ȩIJȚ $%

*'

100o 5M , %* 135o 6M ,

60o 10M , $'

85o M .

Į) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȠ ij (ıİ ȝȠȓȡİȢ) ȕ) ȃĮ ijȑȡİIJİ IJȘ įȚĮȖȫȞȚȠ ǹī țĮȚ ȞĮ

ȣʌȠȜȠȖȓıİIJİ IJȚȢ ȖȦȞȓİȢ *$% țĮȚ $*' . Ȗ) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ IJȠ ǹǺīǻ İȓȞĮȚ ȚıȠıțİȜȑȢ IJȡĮʌȑȗȚȠ. ȁȪıȘ

Į) $% %* *' $' 360o ȐȡĮ 100o 5M 135o 6M 60o 10M 85o M 360o , İʌȠȝȑȞȦȢ 10M 12M 380o 360o , ȠʌȩIJİ 2M 20o ȐȡĮ ij=100

ȕ) ǼȓȞĮȚ $' 85o 10R

$*'

$' 2

75R țĮȚ 2

%* 135o 6 10R

*$%

%* 2

75R ȐȡĮ

135R 60R

75R , ȐȡĮ

75R 2

Ȗ) ǼʌİȚįȒ *$% $*' țĮȚ ȠȚ ȖȦȞȓİȢ ĮȣIJȑȢ İȓȞĮȚ İȞIJȩȢ țĮȚ İȞĮȜȜȐȟ IJȦȞ İȣșİȚȫȞ ǹǺ, īǻ ȝİ IJȑȝȞȠȣıĮ IJȘȞ İȣșİȓĮ ǹī, İȓȞĮȚ $% *' , ȐȡĮ IJȠ IJİIJȡȐʌȜİȣȡȠ ǹǺīǻ İȓȞĮȚ IJȡĮʌȑȗȚȠ. ǼʌȓıȘȢ

$'

%* ȐȡĮ ǹǻ=Ǻī ȠʌȩIJİ IJȠ ǹǺīǻ İȓȞĮȚ ȚıȠıțİȜȑȢ IJȡĮʌȑȗȚȠ.

6. ȈIJȠ įȚʌȜĮȞȩ ıȤȒȝĮ ȚıȤȪİȚ ȩIJȚ

'%( 73o , $* 30 cm , $' 34cm , *' 16cm Į) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ IJȠ IJȡȓȖȦȞȠ ǹīǻ İȓȞĮȚ ȠȡșȠȖȫȞȚȠ.

ȕ) ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ IJȠ $(' İȓȞĮȚ ȘȝȚțȪțȜȚȠ. Ȗ) ȃĮ ȕȡİȓIJİ IJȠ ȝȒțȠȢ IJȠȣ țȪțȜȠȣ ıİ cm țĮȚ IJȠ İȝȕĮįȩ IJȠȣ țȣțȜȚțȠȪ įȓıțȠȣ.

į) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȠ $( (ıİ ȝȠȓȡİȢ). ǻȓȞİIJĮȚ ȩIJȚ S # 3,14 .

ǼȊȀȁǼǿǻǾȈ Aǯ 108 IJ.4/17


---------------------------------------------------------------------------------- ǼʌĮȞĮȜȘʌIJȚțȑȢ ĮıțȒıİȚȢ Ǻǯ īȣȝȞĮıȓȠȣ ------------------------------------------------------------------------------

Į) $'

2

34

1156, $* *'

2

2

ȁȪıȘ 30 16 900 256 1156 ȠʌȩIJİ IJȠ IJȡȓȖȦȞȠ ǹīǻ İȓȞĮȚ

2

2

2

ȠȡșȠȖȫȞȚȠ ȝİ $*' 90R

ȕ) $('

2 90R

2 $*'

180R ȐȡĮ IJȠ $(' İȓȞĮȚ ȘȝȚțȪțȜȚȠ

Ȗ) ǼʌİȚįȒ IJȠ $(' İȓȞĮȚ ȘȝȚțȪțȜȚȠ, Ș ȤȠȡįȒ ǹǻ İȓȞĮȚ įȚȐȝİIJȡȠȢ ȠʌȩIJİ IJȠ ȝȒțȠȢ IJȠȣ țȪțȜȠȣ $' 34 İȓȞĮȚ L S $' 3,14 34 106, 76 cm țĮȚ Ș ĮțIJȓȞĮ IJȠȣ țȪțȜȠȣ İȓȞĮȚ U 17 cm 2 2 ȠʌȩIJİ IJȠ İȝȕĮįȩ IJȠȣ țȣțȜȚțȠȪ įȓıțȠȣ İȓȞĮȚ L SU 2 3,14 17 2 3,14 289 907, 46 cm 2 .

į) '(

2 '%(

2 73o

146o ȐȡĮ '( ($

'($ ȠʌȩIJİ 146o ($ 180o ȐȡĮ ($ 34o

7. ȈIJȠ įȚʌȜĮȞȩ IJȡȓȖȦȞȠ ABī IJȠ IJȝȒȝĮ Ǻǻ İȓȞĮȚ ȪȥȠȢ țĮȚ 3 *' $* . ǹȞ %'* 48cm 2 , 7 § ' · ȞĮ ȣʌȠȜȠȖȓıİIJİ IJȠ ¨ $%* ¸ . © ¹ ȁȪıȘ 3 7 $* 7 ȐȡĮ 3$* 7*' ȠʌȩIJİ $* *' ȐȡĮ 7*' 7 3 1 1 7 7 $%* %' $* %' *' 48 7 16 112 cm2 įȚȩIJȚ 2 2 3 3 1 %'* %' *' 48 cm2 2 8. ȈIJȠ įȚʌȜĮȞȩ ıȤȒȝĮ IJȠ IJİIJȡȐʌȜİȣȡȠ ǹǺīǼ İȓȞĮȚ ʌĮȡĮȜȜȘȜȩȖȡĮȝȝȠ țĮȚ 2 $%*( 1140 cm ,

KP %*(

5 , %* 13

52cm

țĮȚ $' 29cm , ȩʌȠȣ IJȠ ıȘȝİȓȠ ǻ ȕȡȓıțİIJĮȚ ıIJȘȞ ʌȡȠȑțIJĮıȘ IJȘȢ īǼ. Į) ȃĮ ĮȚIJȚȠȜȠȖȒıİIJİ ȖȚĮIJȓ IJȠ IJİIJȡȐʌȜİȣȡȠ ǹǺīǻ İȓȞĮȚ IJȡĮʌȑȗȚȠ ȕ) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȠ $%*'

ȁȪıȘ Į) ȉȠ IJİIJȡȐʌȜİȣȡȠ ǹǺīǼ İȓȞĮȚ ʌĮȡĮȜȜȘȜȩȖȡĮȝȝȠ ȐȡĮ $%

IJİIJȡȐʌȜİȣȡȠ ǹǺīǻ İȓȞĮȚ IJȡĮʌȑȗȚȠ. ȕ) ĭȑȡȞȠȣȝİ IJĮ ȪȥȘ Ǻǽ, ǹǾ IJȠȣ IJȡĮʌİȗȓȠȣ ǹǺīǻ.

ǼȊȀȁǼǿǻǾȈ Aǯ 108 IJ.4/18

*( , ȠʌȩIJİ $%

*' ȐȡĮ IJȠ


---------------------------------------------------------------------------------- ǼʌĮȞĮȜȘʌIJȚțȑȢ ĮıțȒıİȚȢ Ǻǯ īȣȝȞĮıȓȠȣ ------------------------------------------------------------------------------

%= %= 5 5 ȐȡĮ ȠʌȩIJİ %= 52 5 4 20 cm %* 52 13 13 țĮȚ ıȪȝijȦȞĮ ȝİ IJȠ ȆȣșĮȖȩȡİȚȠ șİȫȡȘȝĮ İȓȞĮȚ %= 2 =* 2 %* 2 , ȠʌȩIJİ =* 2 202 522 2304 ȠʌȩIJİ =* 48 cm . ȐȡĮ =* 2 400 2704 ȠʌȩIJİ =* 2 2704 400 2304 ȐȡĮ =*

ȉȩIJİ ıIJȠ IJȡȓȖȦȞȠ Ǻǽī ȚıȤȪİȚ ȩIJȚ KP %*=

ǼʌȓıȘȢ (ǹǺīǼ)=1140 ȐȡĮ $% %= 1140 ȠʌȩIJİ 20ǹǺ=1140 ȐȡĮ $%

114 2

57 cm .

ǵȝȦȢ IJȠ IJİIJȡȐʌȜİȣȡȠ ǹǺǽǾ İȓȞĮȚ ȠȡșȠȖȫȞȚȠ ȐȡĮ ǽǾ=ǹǺ=57cm țĮȚ ǹǾ=Ǻǽ=20cm ȠʌȩIJİ ıIJȠ IJȡȓȖȦȞȠ ǹǻǾ, Įʌȩ ʌȣșĮȖȩȡİȚȠ șİȫȡȘȝĮ, ȑȤȠȣȝİ ȩIJȚ $+ 2 +' 2 $' 2 ȐȡĮ +' 2 202 292 , ȠʌȩIJİ +' 2 400 841 , ȐȡĮ +' 2 841 400 441 ȠʌȩIJİ Ǿǻ=21cm, İʌȠȝȑȞȦȢ ǻī = ǻǾ+Ǿǽ+ǽī = 21+57+48 = 126cm ȠʌȩIJİ $% *' %= 126 57 20 183 10 1830 cm2 $%*'

2 2 Ȓ ȕ' IJȡȩʌȠȢ $%*'

$'+ $%=+ %=*

1 1 1 1 = $+ +' $+ += %= =* 20 21 20 57 20 48 = 2 2 2 2 2 10 21 1140 10 48 210 1140 480 1830 cm 9. ȂȚĮ ʌĮȡȑĮ 18 ĮIJȩȝȦȞ ʌȒȖİ ıİ ȑȞĮ İıIJȚĮIJȩȡȚȠ. ȀȐʌȠȚĮ ȐIJȠȝĮ İʌȑȜİȟĮȞ IJȠ ȝİȞȠȪ IJȦȞ 18€. 2 İʌȑȜİȟĮȞ IJȠ ȝİȞȠȪ IJȦȞ 15€ țĮȚ ȠȚ ȣʌȩȜȠȚʌȠȚ IJȠ ȝİȞȠȪ IJȦȞ ǹʌȩ IJĮ ȣʌȩȜȠȚʌĮ ȐIJȠȝĮ IJĮ 3 12€. ǹȞ Ƞ ȜȠȖĮȡȚĮıȝȩȢ ȒIJĮȞ 264€ ʌȩıĮ ȐIJȠȝĮ İʌȑȜİȟĮȞ IJȠ ȝİȞȠȪ IJȦȞ 18€, ʌȩıĮ IJȦȞ 15€ țĮȚ ʌȩıĮ IJȦȞ 12€; ȁȪıȘ DzıIJȦ x IJȠ ʌȜȒșȠȢ IJȦȞ ĮIJȩȝȦȞ ʌȠȣ İʌȑȜİȟĮȞ IJȠ ȝİȞȠȪ IJȦȞ 18€.

ȆȡȠijĮȞȫȢ Ƞ ĮȡȚșȝȩȢ x İȓȞĮȚ ijȣıȚțȩȢ țĮȚ 0<x<18. ȉȩIJİ IJĮ ȣʌȩȜȠȚʌĮ ȐIJȠȝĮ İȓȞĮȚ 18-x ȐȡĮ 2 ĮȣIJȠȓ ʌȠȣ İʌȑȜİȟĮȞ IJȠ ȝİȞȠȪ IJȦȞ 15€ İȓȞĮȚ ·(18-x) țĮȚ ĮȣIJȠȓ ʌȠȣ İʌȑȜİȟĮȞ IJȠ ȝİȞȠȪ IJȦȞ 12€ 3 1 İȓȞĮȚ (18-x). 3 ǼʌİȚįȒ Ƞ ıȣȞȠȜȚțȩȢ ȜȠȖĮȡȚĮıȝȩȢ ȒIJĮȞ 264€ ȑȤȠȣȝİ: 2 1 18x 18 x 15 18 x 12 264 , ȐȡĮ 18x 10 18 x 4 18 x 264 , ȠʌȩIJİ 3 3 18x+180-10x+72-4x=264, ȐȡĮ 4 x 252 264 ȠʌȩIJİ 4x=12, ȐȡĮ x=3 ȐIJȠȝĮ İʌȑȜİȟĮȞ IJȠ ȝİȞȠȪ IJȦȞ 18€, 10 ȐIJȠȝĮ İʌȑȜİȟĮȞ IJȠ ȝİȞȠȪ IJȦȞ 15€ țĮȚ 18-10-3=5 ȐIJȠȝĮ İʌȑȜİȟĮȞ IJȠ ȝİȞȠȪ IJȦȞ 12€

ǼȊȀȁǼǿǻǾȈ Aǯ 108 IJ.4/19


ɺƺÄÀÉÍÂÃȐË ÌÃȘ̾ÂË ÎÅƺÌȯÈÎ =============================================== ǼʌȚȝȑȜİȚĮ : ȉȗȓijĮȢ ȃȓțȠȢ –ȁĮȖȩȢ īİȫȡȖȚȠȢ 1.

଴ ଵ଴଴ ଵ ିଷ

ǹȞ ߙ ൌ ቊ൤ቀ ቁ ൨ ቋ ସ

ߢߙߡ ߚ ൌ ሺʹ െ ͵ሻଶ଴ଵ଼ െ ͵ଷ െ ሺെ͵ሻଷ െ ʹͲͳͺ଴ െ ሺെͳሻଶ଴ଵ଻

Į) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȚȢ IJȚȝȑȢ IJȦȞ Į țĮȚ ȕ țĮȚ ȞĮ ĮʌȠįİȓȟİIJİ ȩIJȚ Į=ȕ ȕ) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȘȞ IJȚȝȒ IJȘȢ ʌĮȡȐıIJĮıȘȢ ߉ ൌ

ሺି଺ሻఱ ଷఱ

଼ర

ఈ ଶ଴ଵ଼

ଵ଴య

െ ሺିସሻర ൅ ሺିହሻయ െ ቀെ ቁ ఉ

2.

ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȘȞ ʌİȡȓȝİIJȡȠ IJȠȣ IJİIJȡȐʌȜİȣȡȠȣ, ȩIJĮȞ ‫ ݔ‬൅ ‫ ݕ‬ൌ ͳͲ

3.

DzıIJȦ Ș İȟȓıȦıȘ ߣ‫ ݔ‬െ ͵‫ ݔ‬൅ ͳ ൌ െ‫ ݔ‬൅ ͷ

Į) ȃĮ ȜȪıİIJİ IJȘȞ İȟȓıȦıȘ ȖȚĮ Ȝ=3 ȕ) ȃĮ ȕȡİȓIJİ IJȘȞ IJȚȝȒ IJȠȣ Ȝ ȑIJıȚ ȫıIJİ i) Ǿ İȟȓıȦıȘ ȞĮ İȓȞĮȚ ĮįȪȞĮIJȘ ii) Ș İȟȓıȦıȘ ȞĮ ȑȤİȚ ȜȪıȘ IJȘȞ x=1. 4.

ǻȓȞȠȞIJĮȚ ȠȚ İȟȚıȫıİȚȢ ͵ െ ሾʹ െ Ͷሺ‫ ݔ‬൅ ͳሻሿ ൌ Ͷ െ ͵ሺʹ െ ‫ݔ‬ሻ ൅ ͻ ߢߙߡ ͵ሺʹ‫ ݔ‬൅ ߣሻ െ ʹߣ ൌ ௫ାସ ଷ

െ ʹሺߣ ൅ ͳሻ. ǹȞ Ș ȜȪıȘ IJȘȢ ʌȡȫIJȘȢ İȟȓıȦıȘȢ İȓȞĮȚ țĮȚ ȜȪıȘ IJȘȢ įİȪIJİȡȘȢ İȟȓıȦıȘȢ

IJȩIJİ ȞĮ ȕȡİșİȓ Ș IJȚȝȒ IJȠȣ Ȝ. 5.

6.

7.

ଵ ିଷ

ǻȓȞİIJĮȚ Ș ʌĮȡȐıIJĮıȘ ߈ ൌ ቀെ ቁ ଷ

൅ ሺെʹሻସ ൅ ሺͷ െ ͸ሻ଴ ൅

ଶవ ଶళ

i) ii)

ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȘȞ IJȚȝȒ IJȘȢ ʌĮȡȐıIJĮıȘȢ Ȁ. ȃĮ İȟİIJȐıİIJİ ĮȞ Ƞ ĮȡȚșȝȩȢ Ȁ İȓȞĮȚ ȜȪıȘ IJȘȢ İȟȓıȦıȘȢ ͵‫ ݔ‬൅ ʹହ ൌ ‫ ݔ‬൅ ͺ

iii)

ȃĮ ȜȪıİIJİ IJȘȞ İȟȓıȦıȘ ሺ߈ ൅ ͸ሻ‫ ݔ‬ൌ

ǻȓȞİIJĮȚ Ș İȟȓıȦıȘ

ହ௫ିଵ ଶ

െͳൌ‫ݔ‬െ

ଵଵି௫

଺బ ିଵ ଶ

.

i)

ȃĮ ȜȪıİIJİ IJȘȞ İȟȓıȦıȘ.

ii)

ǹȞ Ș ʌĮȡĮʌȐȞȦ İȟȓıȦıȘ țĮȚ Ș İȟȓıȦıȘ ቀʹߙ ൅ ቁ െ ቀെ െ ʹߙቁ ൌ ሺʹߙ െ ‫ݔ‬ሻ

ȑȤȠȣȞ țȠȚȞȒ ȜȪıȘ ȞĮ ȕȡİȓIJİ IJȘȞ IJȚȝȒ IJȠȣ Į. ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȚȢ ʌĮȡĮıIJȐıİȚȢ ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/20


--------------------------------------------------------------------------------- ǼʌĮȞĮȜȘʌIJȚțȑȢ ǹıțȒıİȚȢ Ǻǯ īȣȝȞĮıȓȠȣ ------------------------------------------------------------------------------

i)

ටͳ͵ ൅ ඥ͹ ൅ ξͶ െ ටʹͳ െ ඥʹʹ ൅ ξͻ

ii)

ටඥͳ͸ െ ξͳͶͶ െ ඥξͺͳ

iii)

ඨʹͶටͶඥʹ͹ξͻ

8. ǻȓȞİIJĮȚ Ș İȣșİȓĮ ‫ ݕ‬ൌ ቀͷ െ

ఈିଶ ଷ

ቁ ‫ ݔ‬ȝİ țȜȓıȘ

i) ȃĮ ȕȡİȓIJİ IJȠȞ ĮȡȚșȝȩ Į. ii) ȃĮ ıȤİįȚȐıİIJİ IJȘȞ ȖȡĮijȚțȒ ʌĮȡȐıIJĮıȘ IJȘȢ İȣșİȓĮȢ. 9. ǻȓȞİIJĮȚ Ș ıȣȞȐȡIJȘıȘ ‫ ݕ‬ൌ ʹ‫ ݔ‬൅ ͸ i) ȃĮ ıȤİįȚȐıİIJİ IJȘ ȖȡĮijȚțȒ ʌĮȡȐıIJĮıȘ ĮȞ ͳ ൑ ‫ ݔ‬൑ ͹. ii) ȃĮ ȕȡİȓIJİ IJȠ ȝȒțȠȢ IJȠȣ İȣșȣȖȡȐȝȝȠȣ IJȝȒȝĮIJȠȢ ʌȠȣ ʌȡȠțȪʌIJİȚ Įʌȩ IJȘȞ ʌĮȡĮʌȐȞȦ ȖȡĮijȚțȒ ʌĮȡȐıIJĮıȘ. iii) ȃĮ ȕȡİȓIJİ IJȠ İȝȕĮįȩ IJȠȣ IJİIJȡȐʌȜİȣȡȠȣ ʌȠȣ ıȤȘȝĮIJȓȗİIJĮȚ Įʌȩ IJȘȞ ʌĮȡĮʌȐȞȦ ȖȡĮijȚțȒ ʌĮȡȐıIJĮıȘ, IJȚȢ İȣșİȓİȢ x=1 țĮȚ x=7, țĮȚ IJȠȞ ȐȟȠȞĮ xxǯ. 10. ǻȓȞİIJĮȚ Ș İȣșİȓĮ ߝǣ ‫ ݕ‬ൌ ʹ‫ ݔ‬െ ͸ i) ȃĮ ȕȡİȓIJİ IJȘȞ İȟȓıȦıȘ IJȘȢ İȣșİȓĮȢ į Ș ȠʌȠȓĮ İȓȞĮȚ ʌĮȡȐȜȜȘȜȘ ıIJȘȞ İ țĮȚ IJȑȝȞİȚ IJȠȞ ȐȟȠȞĮ IJȦȞ y ıIJȠ ıȘȝİȓȠ ǻ(0,-1). ii) ȃĮ țȐȞİIJİ IJȘȞ ȖȡĮijȚțȒ ʌĮȡȐıIJĮıȘ IJȦȞ İȣșİȚȫȞ į țĮȚ İ. iii) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȠ İȝȕĮįȩ IJȠȣ IJİIJȡȐʌȜİȣȡȠȣ ʌȠȣ ȑȤİȚ țȠȡȣijȑȢ IJĮ ıȘȝİȓĮ IJȠȝȒȢ IJȦȞ İȣșİȚȫȞ į țĮȚ İ ȝİ IJȠȣȢ ȐȟȠȞİȢ. 11. DzȤȠȣȝİ IJȘȞ İȣșİȓĮ (İ) ȝİ İȟȓıȦıȘ ‫ ݕ‬ൌ ͵‫ ݔ‬െ ʹ. i) ȃĮ țȐȞİIJİ IJȘȞ ȖȡĮijȚțȒ ʌĮȡȐıIJĮıȘ IJȘȢ İȣșİȓĮȢ (İ) țĮȚ ȞĮ ȕȡİȓIJİ IJȚȢ ıȣȞIJİIJĮȖȝȑȞİȢ IJȦȞ ıȘȝİȓȦȞ IJȠȝȒȢ IJȘȢ (İ) ȝİ IJȠȣȢ ȐȟȠȞİȢ. ii) ȃĮ țȐȞİIJİ IJȘȞ ȖȡĮijȚțȒ ʌĮȡȐıIJĮıȘ ĮȞ െ͵ ൑ ‫ ݔ‬൑ ͷ. iii) ȃĮ ȕȡİȓIJİ IJȠ Ȝ ȫıIJİ IJȠ ıȘȝİȓȠ ǹ(3Ȝ+5,Ȝ-1) ȞĮ ĮȞȒțİȚ ıIJȘȞ ʌĮȡĮʌȐȞȦ İȣșİȓĮ. iv) ȃĮ ȕȡİȓIJİ IJȘȞ İȟȓıȦıȘ ȝȚĮȢ ȐȜȜȘȢ İȣșİȓĮȢ (İǯ ) ,Ș ȠʌȠȓĮ İȓȞĮȚ ʌĮȡȐȜȜȘȜȘ ȝİ IJȘȞ (İ) țĮȚ ʌİȡȞȐ Įʌȩ IJȠ ıȘȝİȓȠ Ȃ(3,7). 12. ȈIJȠ ʌĮȡĮțȐIJȦ ıȤȒȝĮ: i) ii)

ȃĮ ȣʌȠȜȠȖȓıİIJİ IJĮ x, y ȃĮ ȣʌȠȜȠȖȓıİIJİ IJĮ İȝȕĮįȐ IJȦȞ IJȡȚȖȫȞȦȞ ȀȁȂ,ȀȂȃ țĮȚ IJȠȣ IJİIJȡȐʌȜİȣȡȠȣ ȀȁȂȃ.

13. ȈIJȠ ʌĮȡĮțȐIJȦ ıȤȒȝĮ IJȠ ǹǺīǻ İȓȞĮȚ ȠȡșȠȖȫȞȚȠ țĮȚ IJȠ ǽ İȓȞĮȚ IJȠ ȝȑıȠ IJȘȢ ʌȜİȣȡȐȢ ǻī.

ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/21


--------------------------------------------------------------------------------- ǼʌĮȞĮȜȘʌIJȚțȑȢ ǹıțȒıİȚȢ Ǻǯ īȣȝȞĮıȓȠȣ ------------------------------------------------------------------------------

ȃĮ ȣʌȠȜȠȖȓıİIJİ : i) ȉȘȞ ǻī ii) ȉȘȞ ǹǼ iii) ȉȠ İȝȕĮįȩ IJȠȣ IJȡȚȖȫȞȠȣ ǽǼǹ

14. ȈIJȠ ʌĮȡĮțȐIJȦ ıȤȒȝĮ ȞĮ ȣʌȠȜȠȖȓıİIJİ: i) ȉȘȞ ǹǼ. ii) ȉȘȞ ǹī. iii) ȉȠ ȪȥȠȢ ʌȠȣ ĮȞIJȚıIJȠȚȤİȓ ıIJȘȞ ʌȜİȣȡȐ ǹī , ıIJȠ IJȡȓȖȦȞȠ ǹǼī

15. ǹȞ ǹǻ İȓȞĮȚ IJȠ ȪȥȠȢ IJȡȚȖȫȞȠȣ ǹǺī, ǹī=10 cm, Ǻǻ=x țĮȚ ǻī= 2x+3. ǹȞ ߪ߭ߥ߁ ൌ , ȞĮ ହ

ȕȡİȓIJİ: i) ȉȠȞ x ii) ȉȠ ȪȥȠȢ ǹǻ. iii) ȉȠ ȘȝǺ, IJȠ ıȣȞǺ țĮȚ IJȘȞ İijǺ, iv) ȉȠ İȝȕĮįȩ IJȠȣ IJȡȚȖȫȞȠȣ ǹǺī. 16. ȈIJȠ ʌĮȡĮțȐIJȦ IJȡȓȖȦȞȠ ǹǺī İȓȞĮȚ ޿߀ ൌ ͵ξʹܿ݉ǡ ޿߁ ൌ ͷ ܿ݉ ߢߙߡ ߀෠ ൌ Ͷͷ଴ . ǹȞ IJȠ ǹǻ İȓȞĮȚ ȪȥȠȢ IJȠȣ IJȡȚȖȫȞȠȣ ȞĮ ȕȡİȓIJİ : i) ȉȠ Ǻǻ. ii) ȉȠ ȘȝȦ, IJȠ ıȣȞȦ ,țĮȚ IJȘȞ İijȦ, iii) ȉȠ İȝȕĮįȩ IJȠȣ IJȡȚȖȫȞȠȣ ǹǺī.

17. ǻȓȞİIJĮȚ ȚıȩʌȜİȣȡȠ IJȡȓȖȦȞȠ ʌȜİȣȡȐȢ ʹξ͵ܿ݉,İȖȖİȖȡĮȝȝȑȞȠ ıİ țȪțȜȠ ĮțIJȓȞĮȢ ȡ. ȃĮ ȕȡİșİȓ: i) Ǿ ĮțIJȓȞĮ ȡ ii) ȉȠ ǹǻ iii) ȉȠ İȝȕĮįȩȞ IJȘȢ İʌȚijȐȞİȚĮȢ ʌȠȣ ĮȞȒțİȚ ıIJȠȞ țȣțȜȚțȩ įȓıțȠ țĮȚ ȕȡȓıțİIJĮȚ ȑȟȦ Įʌȩ IJȠ IJȡȓȖȦȞȠ.

ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/22


ªÊÈÐÒÊÀÅȐƺ ÁȐźͺ ¼Âº ȿÄÈÎË. ­ǷÇÀ . ==================================== ǿȦȐȞȞȘȢ ȇȓȗȠȢ, ǻȡ. ȂĮșȘȝĮIJȚțȫȞ ȆĮȞİʌȚıIJȘȝȓȠȣ ȆĮIJȡȫȞ Ȇİȡȓ ĮțİȡĮȓȦȞ ĮȡȚșȝȫȞ țĮȚ “ȚıIJȠȡȚțȫȞ” İȟȚıȫıİȦȞ ȉĮ șȑȝĮIJĮ ʌȠȣ ĮțȠȜȠȣșȠȪȞ ĮʌİȣșȪȞȠȞIJĮȚ ıİ ȩȜĮ IJĮ ʌĮȚįȚȐ (țĮȚ ȖȚĮIJȓ ȩȤȚ țĮȚ ıIJȠȣȢ ȖȠȞİȓȢ IJȠȣȢ) ȝİ ıțȠʌȩ ȞĮ IJĮ ȥȣȤĮȖȦȖȒıȠȣȞ țĮȚ ȞĮ IJĮ ijȑȡȠȣȞ ıİ İʌĮijȒ ȝİ ȑȞȞȠȚİȢ țĮȚ įȚĮįȚțĮıȓİȢ IJȦȞ ȂĮșȘȝĮIJȚțȫȞ ʌȠȣ įİȞ ıȣȞĮȞIJȠȪȞ ıȣȤȞȐ ıIJȘȞ IJȐȟȘ. ǼȜʌȓȗȠȣȝİ ȞĮ įȫıȠȣȞ ȑȞĮ ȝȚțȡȩ İȡȑșȚıȝĮ ıIJȠȣȢ ȝĮșȘIJȑȢ ȝĮȢ ȖȚĮ ʌİȡĮȚIJȑȡȦ ȑȡİȣȞĮ țĮȚ ıȣȖȖȡĮijȒ IJȦȞ įȚțȫȞ IJȠȣȢ ȚıIJȠȡȚȫȞ ȝİ ȝĮșȘȝĮIJȚțȩ ʌİȡȚİȤȩȝİȞȠ. 1. ȉĮ ʌȡȠȕȜȒȝĮIJĮ İȪȡİıȘȢ IJȘȢ ȘȜȚțȓĮȢ İȞȩȢ ĮIJȩȝȠȣ ĮʌȠIJİȜȠȪıĮȞ ȖȚĮ ĮȚȫȞİȢ ʌȡȠıijȚȜİȓȢ țĮȚ įȚĮıțİįĮıIJȚțȠȪȢ ĮȡȚșȝȘIJȚțȠȪȢ ȖȡȓijȠȣȢ. īİȞȚțȐ IJȑIJȠȚȠȣ İȓįȠȣȢ ʌȡȠȕȜȒȝĮIJĮ ĮȞIJȚȝİIJȦʌȓȗȠȞIJĮȚ ȝİ ȤȡȒıȘ ıIJȠȚȤİȚȫįȠȣȢ DZȜȖİȕȡĮȢ, ĮȞ țĮȚ ıȣȤȞȐ Ș įȣıțȠȜȓĮ IJȠȣȢ ȑȖțİȚIJĮȚ ıIJȘȞ ȓįȚĮ IJȠȣȢ IJȘ įȚĮIJȪʌȦıȘ. Ǽįȫ, ȖȚĮ “ʌȡȠșȑȡȝĮȞıȘ”, ȟİțȚȞȐȝİ ȝİ ȑȞĮ IJȑIJȠȚȠ ʌȡȩȕȜȘȝĮ: 3 IJȠȣ ĮșȡȠȓıȝĮIJȠȢ IJȦȞ ȘȜȚțȚȫȞ IJȦȞ IJȡȚȫȞ ʌĮȚįȚȫȞ IJȠȣ. Ǿ ȘȜȚțȓĮ IJȠȣ ț. ȀȫıIJĮ İȓȞĮȚ ȓıȘ ȝİ IJĮ 2 ȂʌȠȡİȓIJİ ȞĮ ȕȡİȓIJİ IJȘȞ ȘȜȚțȓĮ IJȠȣ ț. ȀȫıIJĮ, ĮȞ ȖȞȦȡȓȗİIJİ ȩIJȚ ȠȚ ȘȜȚțȓİȢ IJȦȞ ʌĮȚįȚȫȞ IJȠȣ ĮʌȠIJİȜȠȪȞ ʌȣșĮȖȩȡİȚĮ IJȡȚȐįĮ (įȘȜĮįȒ IJȡȚȐįĮ șİIJȚțȫȞ ĮțİȡĮȓȦȞ ĮȡȚșȝȫȞ (x,y,z) ʌȠȣ ĮʌȠIJİȜȠȪȞ ȜȪıȘ IJȘȢ İȟȓıȦıȘȢ x 2 y 2 z 2 ), İȞȫ IJȠ ȐșȡȠȚıȝĮ IJȦȞ IJİIJȡĮȖȫȞȦȞ IJȠȣȢ ȚıȠȪIJĮȚ ȝİ 338; 2. DzȞĮ ĮțȩȝȘ ʌȡȩȕȜȘȝĮ ȝİ ȘȜȚțȓİȢ: Ȃİ IJȠȞ ʌĮIJȑȡĮ ȝȠȣ ȝĮȢ ȤȦȡȓȗȠȣȞ ĮȡțİIJȐ ȤȡȩȞȚĮ. ȉȠȣȜȐȤȚıIJȠȞ ȑIJıȚ ʌȓıIJİȣĮ ʌȐȞIJĮ, țĮȚ ȖȚ ĮȣIJȩ Įʌȩ IJȩIJİ ʌȠȣ ȒȝȠȣȞ ȝĮșȘIJȒȢ, ȣʌȠȜȩȖȚȗĮ IJȘȞ ȘȜȚțȓĮ ȝȠȣ ȦȢ țȜȐıȝĮ IJȘȢ ȘȜȚțȓĮȢ IJȠȣ ʌĮIJȑȡĮ ȝȠȣ. ǵIJĮȞ, İʌȚIJȑȜȠȣȢ, Ș ȘȜȚțȓĮ ȝȠȣ ȑȖȚȞİ ȓıȘ ȝİ IJȠ ½ IJȘȢ ȘȜȚțȓĮȢ IJȠȣ ʌĮIJȑȡĮ ȝȠȣ, ȑijIJȚĮȟĮ IJȠ ĮțȩȜȠȣșȠ ʌȡȩȕȜȘȝĮ IJȠ ȠʌȠȓȠ șĮ ȒșİȜĮ ȞĮ ȝȠȚȡĮıIJȫ ȝĮȗȓ ıĮȢ: ĭȑIJȠȢ (2018) Ș ȘȜȚțȓĮ İȞȩȢ ʌĮIJȑȡĮ İȓȞĮȚ įȚʌȜȐıȚĮ IJȘȢ ȘȜȚțȓĮȢ IJȠȣ ȖȚȠȣ IJȠȣ. ǹȞ ȝȐȜȚıIJĮ ıțİijIJİȓ țĮȞİȓȢ ȩIJȚ IJĮ ȑIJȘ 2007 țĮȚ 2008 Ƞ ȝȑıȠȢ ȩȡȠȢ IJȠȣ ĮșȡȠȓıȝĮIJȠȢ IJȦȞ ȘȜȚțȚȫȞ IJȠȣȢ ȒIJĮȞ Ƞ ȝȚțȡȩIJİȡȠȢ IJȡȚȥȒijȚȠȢ ĮȡȚșȝȩȢ ʌȠȣ ȑȤİȚ ȩȜĮ IJȠȣ IJĮ ȥȘijȓĮ įȚĮijȠȡİIJȚțȐ, IJȩIJİ ȝʌȠȡİȓ İȪțȠȜĮ ȞĮ ȣʌȠȜȠȖȓıİȚ IJȚȢ ȘȜȚțȓİȢ ʌĮIJȑȡĮ țĮȚ ȖȚȠȣ. 3. ȂʌȠȡİȓIJİ ȞĮ ȕȡİȓIJİ IJȡİȚȢ ʌȡȫIJȠȣȢ ĮȡȚșȝȠȪȢ (įȘȜĮįȒ ijȣıȚțȠȪȢ ĮȡȚșȝȠȪȢ ȝİȖĮȜȪIJİȡȠȣȢ IJȠȣ 1 ʌȠȣ įȚĮȚȡȠȪȞIJĮȚ ȝȩȞȠ ȝİ IJȠȞ İĮȣIJȩ IJȠȣȢ țĮȚ IJȠ 1) IJȦȞ ȠʌȠȓȦȞ IJȠ ȖȚȞȩȝİȞȠ ȞĮ ȚıȠȪIJĮȚ ȝİ IJȠȞ ȝȚțȡȩIJİȡȠ ijȣıȚțȩ ĮȡȚșȝȩ ʌȠȣ ȝʌȠȡİȓ ȞĮ ȖȡĮijİȓ ȦȢ ȐșȡȠȚıȝĮ įȪȠ țȪȕȦȞ ȝİ įȪȠ įȚĮijȠȡİIJȚțȠȪȢ IJȡȩʌȠȣȢ; ǺȑȕĮȚĮ İȐȞ țȐʌȠȚȠȢ ȑȤİȚ įİȚ IJȘȞ IJĮȚȞȓĮ ȅ ȐȞșȡȦʌȠȢ ʌȠȣ ȖȞȫȡȚȗİ IJȠ ȐʌİȚȡȠ (The man who knew infinity), ĮijȚİȡȦȝȑȞȘ ıIJȘ ȗȦȒ IJȠȣ ǿȞįȠȪ ȝĮșȘȝĮIJȚțȠȪ ȈȡȚȞȚȕȐıĮ ȇĮȝĮȞȠȣIJȗȐȞ țĮȚ ȑȤİȚ ʌȡȠıȑȟİȚ IJȠȞ «ĮȡȚșȝȩ IJȠȣ IJĮȟȓ», șĮ ȕȡİȚ ĮȝȑıȦȢ IJȘ ȜȪıȘ ĮȞĮȜȪȠȞIJĮȢ IJȠȞ ʌĮȡĮʌȐȞȦ ĮȡȚșȝȩ ıİ ȖȚȞȩȝİȞȠ ʌȡȫIJȦȞ ʌĮȡĮȖȩȞIJȦȞ. DzIJıȚ, ȖȚĮ ȜȩȖȠȣȢ įȚțĮȚȠıȪȞȘȢ, ĮȢ įȫıȠȣȝİ ȝȚĮ ȕȠȒșİȚĮ țĮȚ ıİ ȩıȠȣȢ įİȞ ȑȤȠȣȞ įİȚ IJȘȞ IJĮȚȞȓĮ, ȜȑȖȠȞIJȐȢ IJȠȣȢ ȩIJȚ ȠȚ ĮȡȚșȝȠȓ ʌȠȣ ȗȘIJȐȝİ ȑȤȠȣȞ ȐșȡȠȚıȝĮ 39, ĮȞȒțȠȣȞ ıIJȚȢ įȪȠ ʌȡȫIJİȢ įİțȐįİȢ țĮȚ Ƞ ȝİıĮȓȠȢ ĮȡȚșȝȩȢ ȚıȠȪIJĮȚ ȝİ IJȠ ȘȝȚȐșȡȠȚıȝĮ IJȦȞ ȐȜȜȦȞ įȪȠ. 4. DzȞĮȢ ĮȡȚșȝȩȢ ȠȞȠȝȐȗİIJĮȚ ȞĮȡțȚııȚıIJȚțȩȢ, ȩIJĮȞ ȚıȠȪIJĮȚ ȝİ IJȠ ȐșȡȠȚıȝĮ IJȦȞ ȥȘijȓȦȞ IJȠȣ ʌȠȣ IJȠ țĮșȑȞĮ İȓȞĮȚ ȣȥȦȝȑȞȠ ıİ įȪȞĮȝȘ ȓıȘ ȝİ IJȠ ʌȜȒșȠȢ IJȦȞ ȥȘijȓȦȞ IJȠȣ ĮȡȚșȝȠȪ. īȚĮ ʌĮȡȐįİȚȖȝĮ Ƞ ĮȡȚșȝȩȢ 407 ȑȤİȚ IJȡȓĮ ȥȘijȓĮ țĮȚ ȚıȠȪIJĮȚ ȝİ IJȠ ȐșȡȠȚıȝĮ IJȦȞ țȪȕȦȞ IJȠȣȢ, įȘȜĮįȒ ͶͲ͹ ൌ Ͷଷ ൅ Ͳଷ ൅ ͹ଷ . DzȞĮ ȐȜȜȠ ʌĮȡȐįİȚȖȝĮ İȓȞĮȚ IJȠ 1634 14 64 34 44 . Ȃİ ĮijȠȡȝȒ ȜȠȚʌȩȞ ĮȣIJȠȪȢ IJȠȣȢ İȞįȚĮijȑȡȠȞIJİȢ ĮȡȚșȝȠȪȢ, ȑȖȡĮȥĮ ȖȚĮ İıȐȢ IJȠ ĮțȩȜȠȣșȠ ʌȡȩȕȜȘȝĮ ıİ ȑȝȝİIJȡȠ ȜȩȖȠ: Ȃ’ ĮȣIJȑȢ IJȚȢ ȚįȚȩIJȘIJİȢ țĮȚ ȝİ IJȘȞ ȚıIJȠȡȓĮ ȜȓȖȠȣȢ șĮ İȪȡİȚȢ ĮȡȚșȝȠȪȢ ıĮȞ ȥȐȟİȚȢ ıIJĮ ȕȚȕȜȓĮ. ȉȡȓĮ İȚȞ’ IJĮ ȥȘijȓĮ IJȠȣ ȝİ ȐșȡȠȚıȝĮ İȞȞȑĮ IJȠȣ ĮȡȚșȝȠȪ ʌȠȣ ȥȐȤȞȠȣȝİ, ȝĮ ȐțȠȣıİ IJĮ ȞȑĮ: ȀĮșȑȞĮ Įʌ’ IJĮ ȥȘijȓĮ IJȠȣ ıIJȠȞ țȪȕȠ ĮȞ ȣȥȦșİȓ țȚ ȪıIJİȡĮ IJ’ ȐșȡȠȚıȝĮ IJȦȞ țȪȕȦȞ ȤȦȡȓȢ ȜȐșȠȢ ȕȡİșİȓ, ȚıȠȪIJĮȚ ȝİ IJȠȞ ĮȡȚșȝȩ ʌȠȣ ȥȐȤȞȠȣȝİ ȞĮ ȕȡȠȪȝİ, ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/23


------------------------------------------------------------------------------- ȆȡȠȤȦȡȘȝȑȞĮ șȑȝĮIJĮ ȖȚĮ ȩȜȠȣȢ. ȉȐȟȘ Ǻǯ ---------------------------------------------------------------------------

ijȑȡİ ȝȠȜȪȕȚ țĮȚ ȤĮȡIJȓ, ȜȓȖȠ ȖȚĮ ȞĮ IJȠ įȠȪȝİ! *** ȀȚ ĮȞ ʌȐȜȚ įİȞ ȝʌȠȡȑıĮIJİ IJȠȞ ĮȡȚșȝȩ ȞĮ ȕȡİȓIJİ įȚĮȕȐıIJİ IJȠ ǼȣĮȖȖȑȜȚȠ țĮȚ ȝȘȞ ĮȞȘıȣȤİȓIJİ ȖȚĮIJȓ IJȠ ȖȡȐijİȚ țĮșĮȡȐ ıIJȠ țĮǯ Ƞ ǿȦȐȞȞȘȢ ʌȦȢ ȩIJĮȞ IJȠȣȢ İȣȜȩȖȘıİ Ƞ İȖȖȠȞȩȢ IJȘȢ DZȞȞȘȢ, IJȠȣȢ ȝĮșȘIJȑȢ, İʌȚȐıĮȞİ IJȩıĮ ıIJĮ įȓȤIJȣĮ ȥȐȡȚĮ, ȩıĮ țȚ Ƞ ĮȡȚșȝȩȢ ĮȣIJȩȢ ʌȠȣ ȥȐȤȞİIJİ IJĮ ȤȞȐȡȚĮ. 5. ȀĮȚ ȖȚĮ IJȠ IJȑȜȠȢ țȐIJȚ İʌȓțĮȚȡȠ! ȆȡȩıijĮIJĮ ĮȞĮțĮȜȪijșȘțİ Ƞ ȝİȖĮȜȪIJİȡȠ ʌȡȫIJȠȢ ĮȡȚșȝȩȢ ʌȠȣ İȓȞĮȚ ȖȞȦıIJȩȢ ȝȑȤȡȚ ıȒȝİȡĮ (ȠȚ ʌȡȫIJȠȚ ĮȡȚșȝȠȓ İȓȞĮȚ ȐʌİȚȡȠȚ ȩʌȦȢ ĮʌȑįİȚȟİ Ƞ ǼȣțȜİȓįȘȢ), Ƞ ȠʌȠȓȠȢ ȝȐȜȚıIJĮ ıȣȝȕĮȓȞİȚ ȞĮ İȓȞĮȚ țĮȚ Ƞ 50ȠȢ ʌȡȫIJȠȢ ĮȡȚșȝȩȢ IJȠȣ ȂİȡıȑȞ. ȅȚ ʌȡȫIJȠȚ IJȘȢ ȝȠȡijȒȢ 2Q 1 , ȩʌȠȣ Ȟ ʌȡȫIJȠȢ, İȓȞĮȚ ȖȞȦıIJȠȓ ȦȢ ʌȡȫIJȠȚ IJȠȣ ȂİȡıȑȞ țĮȚ ȠȞȠȝȐıIJȘțĮȞ ȑIJıȚ ʌȡȠȢ IJȚȝȒȞ IJȠȣ īȐȜȜȠȣ ȝȠȞĮȤȠȪ Marin Mersenne (1588-1648) Ƞ ȠʌȠȓȠȢ IJȠȣȢ ȝİȜȑIJȘıİ. Ȃİ ĮʌĮȖȦȖȒ ıİ ȐIJȠʌȠ (reductio ad absurdum) ĮʌȠįİȚțȞȪİIJĮȚ ıȤİIJȚțȐ İȪțȠȜĮ ȩIJȚ ĮȞ ȑȞĮȢ ĮȡȚșȝȩȢ IJȘȢ ȝȠȡijȒȢ 2Q 1 İȓȞĮȚ ʌȡȫIJȠȢ, IJȩIJİ Ƞ ߥ İȓȞĮȚ ʌȡȫIJȠȢ. ȂʌȠȡİȓIJİ ȞĮ ȕȡİȓIJİ ȑȞĮ ĮȞIJȚʌĮȡȐįİȚȖȝĮ ȖȚĮ ȞĮ ĮʌȠįİȓȟİIJİ ȩIJȚ įİȞ ȚıȤȪİȚ IJȠ ĮȞIJȓıIJȡȠijȠ; (įȘȜĮįȒ ĮȞ Ȟ ʌȡȫIJȠȢ, IJȩIJİ Ƞ 2Q 1 įİȞ İȓȞĮȚ ȣʌȠȤȡİȦIJȚțȐ ʌȡȫIJȠȢ). ǹʌĮȞIJȒıİȚȢ șİȝȐIJȦȞ IJİȪȤȠȣȢ 107. 1) Ȃİ ȕȐıȘ IJȠ įȚʌȜĮȞȩ ıȤȒȝĮ Ș ȣʌȠIJİȓȞȠȣıĮ IJȠȣ ȝȚțȡȠȪ ȠȡșȠȖȦȞȓȠȣ IJȡȚȖȫȞȠȣ İȓȞĮȚ ȓıȘ ȝİ ȡ 2 İȞȫ ıIJȠ ȝİȖȐȜȠ

ȠȡșȠȖȫȞȚȠ Ș ȣʌȠIJİȓȞȠȣıĮ İȓȞĮȚ ȓıȘ ȝİ 10 2 . Ȃİ ȕȐıȘ ĮȣIJȐ Ș 2 1 ĮțIJȓȞĮ ȡ = 10 2 - ȡ 2 -10 Įʌȩ ȩʌȠȣ ʌȡȠțȪʌIJİȚ ȡ=10 2 1 2) ǹȞ ijȑȡȠȣȝİ IJĮ ǻǼ//ǹǺ țĮȚ Ǽǽ//ǹǻ ȝʌȠȡȠȪȝİ ȞĮ ȣʌȠȜȠȖȓıȠȣȝİ ĮȡȤȚțȐ IJȚȢ ʌȜİȣȡȑȢ IJȠȣ ȚıȠıțİȜȠȪȢ ȠȡșȠȖȦȞȓȠȣ ǻīǼ. ǹijȠȪ ǻǼ=ǹǽ țĮȚ ǽǺ=21-ǹǽ ȐȡĮ ȝʌȠȡȠȪȝİ ȞĮ ȣʌȠȜȠȖȓıȠȣȝİ IJȚȢ ʌȜİȣȡȑȢ IJȠȣ ȚıȠıțİȜȠȪȢ ȠȡșȠȖȦȞȓȠȣ ǼǽǺ. ȉȫȡĮ țĮȚ IJĮ IJȡȓĮ ıȤȒȝĮIJĮ ȑȤȠȣȞ İȝȕĮįȐ ʌȠȣ ȝʌȠȡİȓ ȞĮ ȣʌȠȜȠȖȚıIJȠȪȞ. 3) ȈȘȝİȓȦıȘ: ȈȪȝijȦȞĮ ȝİ IJȘȞ ȣʌȩįİȚȟȘ IJȘȢ ȐıțȘıȘȢ ȚıȤȪİȚ İij(Į+ȕ)= İij(Į)+İij(ȕ) 1 1 . ȆĮȡĮIJȘȡȠȪȝİ ȩIJȚ İij(Į)= țĮȚ İij(ȕ)= ĮțȩȝȘ 1-İij(Į) İij(ȕ) 3 2 1 1 + İij(Į)+İij(ȕ) 3 2 1 = İij(450). = 1-İij(Į) İij(ȕ) 1- 1 1 3 2 4) ȂȓĮ ʌȠȜȪ țȠȝȥȒ ȜȪıȘ İȓȞĮȚ țĮȚ ĮȣIJȒ ʌȠȣ ʌȡȠțȪʌIJİȚ Įʌȩ IJȠ įȚʌȜĮȞȩ ıȤȒȝĮ. Ǽįȫ İȓȞĮȚ ıĮȞ ȞĮ ȑȤȠȣȝİ ʌȐȡİȚ 6 ijȠȡȑȢ IJȠȞ ȤȫȡȠ ıIJȠȞ ȠʌȠȓȠ țȚȞİȓIJĮȚ IJȠ ȗȦȐțȚ. ǹȣIJȩ ıȘȝĮȓȞİȚ ȩIJȚ Ƞ țȪțȜȠȢ ȑȤİȚ İȝȕĮįȩȞ ȓıȠ ȝİ IJȠ ȝȚıȩ IJȠȣ țĮȞȠȞȚțȠȪ İȟĮȖȫȞȠȣ. 1 3 DZȡĮ ʌȡ2= ·(6·1002· ) ȠʌȩIJİ ȣʌȠȜȠȖȓȗİIJĮȚ IJȠ ȡ. 4 2 5) Į) 1+3+5+7+9+11+13+15=64 ȕ) ǹʌȩ IJȘȞ ȚıȩIJȘIJĮ

x x 3 x 5 x 7 x 9 x11 x13 x15 =1616 ʌȡȠțȪʌIJİȚ ȩIJȚ

x x 3 x 5 x 7 x 9 x11 x13 x15 =1616 ȐȡĮ

x 64 =1616 İʌȠȝȑȞȦȢ x32=432 țĮȚ İʌİȚįȒ x>0 ȐȡĮ x=4.

ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/24


ɺƺÄÀÉÍÂÃȐË ºÌÃȘ̾ÂË ÎÅƺÌȯÈÎ. ============================= ǼʌȚȝȑȜİȚĮ: ȆĮʌĮʌĮȞȐȖȠȣ ȀȦȞıIJĮȞIJȓȞĮ-ȈİȡȑijȠȖȜȠȣ ĭȓȜȚʌʌȠȢ 1.

ǻȓȞȠȞIJĮȚ IJĮ ʌȠȜȣȫȞȣȝĮ 5 x

x 3 3x 2 ,Q x

x 2 1 țĮȚ Ș ʌĮȡȐıIJĮıȘ

5 x 1 3x 2 Q x 1 5 x 6x 2 x 1 x 1 Q x

Į) ȃĮ ʌĮȡĮȖȠȞIJȠʌȠȚȒıİIJİ IJȠȣȢ ʌĮȡȠȞȠȝĮıIJȑȢ IJȘȢ ʌĮȡȐıIJĮıȘȢ ǹ(x) ȕ) ȃĮ ȕȡİȓIJİ IJȚȢ IJȚȝȑȢ IJȠȣ x ȖȚĮ IJȚȢ ȠʌȠȓİȢ ȠȡȓȗİIJĮȚ Ș ʌĮȡȐıIJĮıȘ ǹ(x) Ȗ) ȃĮ țȐȞİIJİ IJȘȞ ʌȡȩıșİıȘ IJȦȞ țȜĮıȝȐIJȦȞ IJȘȢ ʌĮȡȐıIJĮıȘȢ į) ȃĮ ȜȪıİIJİ IJȘȞ İȟȓıȦıȘ ǹ(x) =0 ȁȪıȘ 2 Į) Q x x 1 x 1 x 1

$ x

ȕ) Q x 0 ȐȡĮ x 1 x 1 0 ȠʌȩIJİ x 1 0 Ȓ x 1 0 ȐȡĮ x 1 Ȓ x Ȗ) 5 x 1

x 1

1 . ȈȣȞİʌȫȢ Ș ʌĮȡȐıIJĮıȘ ȠȡȓȗİIJĮȚ ȩIJĮȞ x z 1 NDL x z 1 3

3 x 1

x 3 3 x 2 3 x 1 3 x 2 2 x 1

2

x3 3 x 2 țĮȚ Q x

x3 3x 2 3x 1 3x 2 6 x 3 $ x

x x x x x 3x x 1 x 1

3

3

2

3

2

į) $ x 0 ȐȡĮ x 4 x3 2 x 2 x

0 Ȓ x2 x 2 0 . '

1

2

1 x 2 1 ȐȡĮ

x3 3x 2 3x 2 x 2 1 1 x3 3x 2 6 x 2 x 1 x 1 x 1 x 1

x3 x2 x3 3x 2 x 1 x 1 x 1 x 1

4

x

2

x 3 x 1 x 2 x 1 x3 3 x 2

x 1 x 1

x x 2x2 x 1 x 1

4

3

0 ȠʌȩIJİ x 2 x 2 x 2 0 ȐȡĮ x 2

0 Ȓ x 2 x 2 0 ȠʌȩIJİ

īȚĮ IJȘȞ İȟȓıȦıȘ x 2 x 2 0 ȑȤȠȣȝİ ȩIJȚ

4 1 2 1 8 9 ! 0 ȠʌȩIJİ ȑȤİȚ įȪȠ ȐȞȚıİȢ ȜȪıİȚȢ

­1 3 4 2 K O ȪVK H ȓQDL GHNW Ȓ 1 r 9 °° 2 2 x1,2 ® 2 1 °1 3 2 1 K O ȪVK DSRUU ȓ SWHWDL °̄ 2 2 2. ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȚȢ ʌĮȡĮıIJȐıİȚȢ § 1 1 2 · 2 2 Į) ¨ ¸ 3E 2D 4 : 4D 12DE 16 9E

© 2D 3E 3DE ¹ § 16D 2 9E 2 § · 8D · 16D 2 9E 2 1 1 :¨ ȕ) ¨ ¸ ¸ 2 4D 3E ¹ 8DJ 3EG 4DG 6EJ © 6EJ 3EG 8DJ 4DG ¹ © 12DE 9E ȁȪıȘ § 1 1 2 · 2 2 Į) ¨ ¸ 3E 2D 4 : 4D 12DE 16 9 E

© 2D 3E 3DE ¹ 3E 2D 4 2 3E 2D 4 : ª 3E 2D 42 º ¬ ¼ 6DE ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/25


---------------------------------------------------------------------------------- ǼʌĮȞĮȜȘʌIJȚțȑȢ ĮıțȒıİȚȢ īǯ īȣȝȞĮıȓȠȣ ------------------------------------------------------------------------------

3E 2D 4 3E 2D 4 6DE

1

3E 2D 4 3E 2D 4

1 6DE

§ 16D 2 9 E 2 § · 8D · 16D 2 9 E 2 1 1 ȕ) ¨ :¨ ¸ ¸ 2 4D 3E ¹ 8DJ 3EG 4DG 6 EJ © 6 EJ 3EG 8DJ 4DG ¹ © 12DE 9 E § 16D 2 9 E 2 · 4D 3E 4D 3E : § 8D · 1 1 ¨¨ ¸¸ ¨¨ ¸¸ © 3E 4D 3E 4D 3E ¹ 4D 2J G 3E G 2J © 3E 2J G 4D 2J G ¹ 16D 2 9 E 2 24DE 4D 3E 4D 3E

4D 3E : 3E 4D 3E

2J G 4D 3E 12DE 2J G

4D 3E 4D 3E 12DE 2J G

3E 4D 3E 2J G 4D 3E 2

4D 4D 3E

­ 21x 4y 29 3. Į) ȃĮ ȜȪıİIJİ IJȠ ıȪıIJȘȝĮ ® ¯ 23x 6y 33 ȕ) ǹȞ $ x 0 , y 0 İȓȞĮȚ IJȠ ıȘȝİȓȠ IJȠȝȒȢ IJȦȞ İȣșİȚȫȞ H1 : 21x 4y

29 H 2 : 23x 6y

33

ȞĮ ȣʌȠȜȠȖȓıİIJİ IJȠȣȢ IJȡȚȖȦȞȠȝİIJȡȚțȠȪȢ ĮȡȚșȝȠȪȢ IJȦȞ ȖȦȞȚȫȞ x 2 $ , xc 2 $ ȁȪıȘ Į) Ȃİ IJȘ ȝȑșȠįȠ ĮȞIJȚșȑIJȦȞ ıȣȞIJİȜİıIJȫȞ ʌȠȜȜĮʌȜĮıȚȐȗȠȣȝİ IJȘȞ ʌȡȫIJȘ İʌȓ 6 țĮȚ IJȘȞ įİȪIJİȡȘ ­° 126 x 24 y 174 306 ® İʌȓ -4 ȠʌȩIJİ ȑȤȠȣȝİ °̄ 92 x 24 y 132 ȐȡĮ x 9 ȠʌȩIJİ Įʌȩ IJȘȞ ʌȡȫIJȘ 34 34 x 306 160 İȟȓıȦıȘ ȖȚĮ x 9 ȑȤȠȣȝİ 21 9 4 y 29 ȐȡĮ 4 y 160 ȠʌȩIJİ y ȐȡĮ y 40 4 ȉȠ ıȪıIJȘȝĮ ȑȤİȚ ȝȠȞĮįȚțȒ ȜȪıȘ IJȠ ȗİȪȖȠȢ 9, 40

ȕ) ǼʌİȚįȒ IJȠ ıȪıIJȘȝĮ ȑȤİȚ ȝȠȞĮįȚțȒ ȜȪıȘ IJȠ ȗİȪȖȠȢ 9, 40 , ȠȚ İȣșİȓİȢ H1 , H 2 IJȑȝȞȠȞIJĮȚ ıIJȠ ıȘȝİȓȠ $ 9, 40 . DzȤȠȣȝİ

9

2$

2

402

81 1600

41 ȠʌȩIJİ

9 40 .ǼʌİȚįȒ , HM x 2 $ 41 9 40 9 x 2 $ xc 2 $ 180o İȓȞĮȚ KP xc 2 $ , VXQ xc 2 $ , HM xc 2 $ 41 41 3 2 4. Į) ȃĮ ȜȪıİIJİ IJȘȞ İȟȓıȦıȘ 2 x 3 x 7 x 15 2 x 2 x 5 21

KP x 2 $

40 , VXQ x 2 $ 41

1681

40 9

ȕ) ǹȞ xR İȓȞĮȚ ȜȪıȘ IJȘȢ ʌĮȡĮʌȐȞȦ İȟȓıȦıȘȢ, ȞĮ ȣʌȠȜȠȖȓıİIJİ IJȠȣȢ IJȡȚȖȦȞȠȝİIJȡȚțȠȪȢ ĮȡȚșȝȠȪȢ IJȘȢ ĮȝȕȜİȓĮȢ ȖȦȞȓĮȢ T ȝİ KPT x0 ȁȪıȘ 3 2 Į) 2 x 3 x 7 x 15 2 x 2 x 5 21 ȐȡĮ 8 x 3 36 x 2 54 x 27 7 x 2 15 x

2 x 4 x 2 20 x 25 21 ȠʌȩIJİ

8 x 3 43 x 2 69 x 27 8 x3 40 x 2 50 x 21 ȐȡĮ 43x 2 40 x 2 50 x 69 x 27 21 0 ȠʌȩIJİ

ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/26


---------------------------------------------------------------------------------- ǼʌĮȞĮȜȘʌIJȚțȑȢ ĮıțȒıİȚȢ īǯ īȣȝȞĮıȓȠȣ ------------------------------------------------------------------------------

3x 2 19 x 6 0 . DZȡĮ ' 192 4 3 6 361 72 289 ! 0 ȠʌȩIJİ Ș İȟȓıȦıȘ ȑȤİȚ įȪȠ ȐȞȚıİȢ ­19 17 36 6 19 r 289 °° 6 6 ȡȓȗİȢ x1,2 ® 6 °19 17 2 1 °̄ 6 6 3 2

1 §1· ȐȡĮ KP 2T VXQ 2T 1 ȠʌȩIJİ ¨ ¸ VXQ 2T 1 ȐȡĮ 3 ©3¹ 1 1 8 VXQ 2T ȠʌȩIJİ İʌİȚįȒ 90R T 180R țĮȚ ȐȡĮ 1 ȠʌȩIJİ VXQ 2T 1 ȐȡĮ VXQ 2T 9 9 9 8 4 2 4 2 2 2 8 VXQT 0 İȓȞĮȚ VXQT ȠʌȩIJİ VXQT țĮȚ 9 3 3 3 3 1 1 1 2 2 2 3 HMT 2 2 4 2 2 2 2 2 2 2 3 x2 x3 9x 2 4x 5 5. ǻȓȞİIJĮȚ Ș ʌĮȡȐıIJĮıȘ $ x

81x5 25x 3 81x6 90x5 25x4 9x 2 5x 81x 3 25x

ȕ) ǼʌİȚįȒ x0 KPT d 1 ȚıȤȪİȚ ȩIJȚ KPT

Į) ȃĮ ʌĮȡĮȖȠȞIJȠʌȠȚȒıİIJİ IJȠȣȢ ʌĮȡĮȞȠȝĮıIJȑȢ IJȘȢ ʌĮȡȐıIJĮıȘȢ ȕ) ȃĮ ȕȡİȓIJİ IJȚȢ IJȚȝȑȢ IJȠȣ x ȖȚĮ IJȚȢ ȠʌȠȓİȢ ȠȡȓȗİIJĮȚ Ș ʌĮȡȐıIJĮıȘ Ȗ) ȃĮ țȐȞİIJİ IJȘȞ ʌȡȩıșİıȘ IJȦȞ țȜĮıȝȐIJȦȞ IJȘȢ ʌĮȡȐıIJĮıȘȢ į) ȃĮ ȜȪıİIJİ IJȘȞ İȟȓıȦıȘ $ x 0 Į) 81x 25 x 5

3

x 81x 25

3

2

x 4 81x 2 90 x 25

ȁȪıȘ x 9 x 5 9 x 5 , 81x 6 90 x5 25 x 4 3

x 4 9 x 5 , 9 x 2 5 x 81x3 25 x

2

x 9 x 5 x 81x 2 25

x 2 9 x 5 9 x 5 9 x 5

x 2 9 x 5 9 x 5

2

ȕ) ȅȚ ʌĮȡĮȞȠȝĮıIJȑȢ IJȘȢ ʌĮȡȐıIJĮıȘȢ İȓȞĮȚ ȖȚȞȩȝİȞĮ IJȦȞ ʌĮȡĮȖȩȞIJȦȞ 5 țĮȚ 9 x 5 0 ȐȡĮ 9 x x ,9 x 5, 9 x 5 . ǹȜȜȐ 9 x 5 0 ȐȡĮ 9 x 5 ȠʌȩIJİ x 9 5 5 5 x . ȈȣȞİʌȫȢ Ș ʌĮȡȐıIJĮıȘ ȠȡȓȗİIJĮȚ ȩIJĮȞ x z 0 țĮȚ x z țĮȚ x z . 9 9 9 2 3 2 x x 9x 4x 5 4 2 Ȗ) $ x

2 2 3 x 9 x 5 9 x 5 x 9 x 5

x 9 x 5 9 x 5

1 1 9 x2 4 x 5 x 9 x 5 9 x 5 x 9 x 5 2 x 2 9 x 5 2 9 x 5

To İȜȐȤȚıIJȠ țȠȚȞȩ ʌȠȜȜĮʌȜȐıȚȠ IJȦȞ ʌĮȡȠȞȠȝĮıIJȫȞ İȓȞĮȚ x 2 9 x 5 9 x 5

2

ȐȡĮ $ x

x 9 x 5

x 2 9 x 5 9 x 5

2

x 9 x 5

x 2 9 x 5 9 x 5

2

9 x2 5x 9 x2 5x 9 x2 4 x 5

9x2 4x 5

x 2 9 x 5 9 x 5

x 2 9 x 5 9 x 5

2

2

9 x2 4 x 5 x 2 9 x 5 9 x 5

2

.

ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/27

5 ȠʌȩIJİ


---------------------------------------------------------------------------------- ǼʌĮȞĮȜȘʌIJȚțȑȢ ĮıțȒıİȚȢ īǯ īȣȝȞĮıȓȠȣ ------------------------------------------------------------------------------

į) $ x 0 ȠʌȩIJİ 9 x 2 4 x 5 0 . ' 4 4 9 5 16 180 196 ! 0 ȐȡĮ Ș İȟȓıȦıȘ ȑȤİȚ įȪȠ ȐȞȚıİȢ ȜȪıİȚȢ ­ 4 14 18 1 GHNW Ȓ OȪVK °° 18 18 ® ° 4 14 10 5 K OȪVK DSRUU ȓ SWHWDL °̄ 18 18 9 2

­ 4y 1 2 4y 3 3 4y 3 9 5y 2x

° 6. Į) ȃĮ ȜȪıİIJİ IJȠ ıȪıIJȘȝĮ ® 3 3 3 °̄ 4x 2 15xy 5y 2x 5y 30xy 1 8x 125y 1

țĮȚ ȞĮ ȕȡİȓIJİ IJȘ ıȤİIJȚțȒ șȑıȘ IJȦȞ İȣșİȚȫȞ İ1 : 6x 7y 1 ­x y 1 ° 5 8 40 30 ȕ) ȃĮ ȜȪıİIJİ IJȠ ıȪıIJȘȝĮ ® 2 2 ° ¯ 2x 2 1 3y y ıȤİIJȚțȒ șȑıȘ IJȦȞ İȣșİȚȫȞ ] : 24x 15y 1, İ 2 : 8x 5y Ȗ) ȃĮ ȕȡİȓIJİ IJȘ ıȤİIJȚțȒ șȑıȘ IJȦȞ İȣșİȚȫȞ İ1 , ] Į) 4 y 1 4 y 3 3 4 y

2

ȐȡĮ 6 x 8 y 15 y

17 , İ 2 : 8x 5y

4x 3 2 3y 2

2

1 țĮȚ ȞĮ ȕȡİȓIJİ IJȘ

1

ȁȪıȘ 3 9 5 y 2 x ȠʌȩIJİ 16 y 2 8 y 1 9 16 y 2

27 15 y 6 x

27 10 ȠʌȩIJİ 6 x 7 y 17 țĮȚ

4 x 2 15 xy 5 y 2 x 5 y 30 xy 1 8 x3 125 y 3 1 ȐȡĮ 3

8 x 60 x 2 y 125 y 3 150 y 2 x 60 yx 2 8 x3 150 xy 2 5 y 8 x3 125 y 3 1 Įʌȩ ȩʌȠȣ ʌȡȠțȪʌIJİȚ ­6 x 7 y 17 8 x 5 y 1 .ȉȠ ıȪıIJȘȝĮ ȖȓȞİIJĮȚ ® ʌȠȜȜĮʌȜĮıȚȐȗȠȣȝİ IJȘȞ ʌȡȫIJȘ İʌȓ -4 țĮȚ IJȘȞ ¯8 x 5 y 1 įİȪIJİȡȘ İʌȓ 3 țĮȚ ʌȡȠțȪʌIJİȚ: 24 x 28 y 68 ­ ® 65 ȠʌȩIJİ y 5 țĮȚ Įʌȩ IJȘȞ įİȪIJİȡȘ İȟȓıȦıȘ ȖȚĮ y 5 ȑȤȠȣȝİ ¯ 24 x 15 y 3 13 13 y 65 24 8 x 5 5 1 ȠʌȩIJİ 8 x 24 ȐȡĮ x 3 . ȉȠ ıȪıIJȘȝĮ ȑȤİȚ ȝȠȞĮįȚțȒ ȜȪıȘ IJȠ ȗİȪȖȠȢ 8 3, 5 ıȣȞİʌȫȢ ȠȚ İȣșİȓİȢ H1 , H 2 IJȑȝȞȠȞIJĮȚ ıIJȠ ıȘȝİȓȠ $ 3, 5 . x y 1 1 1 1 x y 120 120 120 120 ȠʌȩIJİ ȝİ (.3 5,8,30, 40 120 İȓȞĮȚ 5 8 40 30 5 8 40 30 2 2 24 x 15 y 3 4 ȐȡĮ 24 x 15 y 1 .ǼʌȓıȘȢ 2 x 2 1 3 y y 4 x 2 3 2 3 y 2 ȐȡĮ

ȕ)

4 x 2 8 x 4 1 6 y 9 y 2 y 4 x 2 6 9 y 2 ȠʌȩIJİ 8 x 5 y 6 5 ȐȡĮ 8 x 5 y 1 ıȣȞİʌȫȢ IJȠ ıȪıIJȘȝĮ ȖȓȞİIJĮȚ ­ 24 x 15 y 1 ° ­24 x 15 y 1 ȐȡĮ ® 24 x 15 y 3 ȐȡĮ IJȠ ıȪıIJȘȝĮ İȓȞĮȚ ĮįȪȞĮIJȠ ȠʌȩIJİ ] İ 2 ® ¯8 x 5 y 1 ° 0 x 0 y 2 ¯

Ȗ) ǼʌİȚįȒ Ș İ1 IJȑȝȞİȚ IJȘȞ İ2 țĮȚ H 2

] ȐȡĮ Ș İ1 IJȑȝȞİȚ IJȘȞ ] ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/28


---------------------------------------------------------------------------------- ǼʌĮȞĮȜȘʌIJȚțȑȢ ĮıțȒıİȚȢ īǯ īȣȝȞĮıȓȠȣ ------------------------------------------------------------------------------

7. ȈIJȠ ʌĮȡĮțȐIJȦ ıȤȒȝĮ IJȠ IJȡȓȖȦȞȠ ǹǺī İȓȞĮȚ ȚıȠıțİȜȑȢ. ǼʌȚʌȜȑȠȞ İȓȞĮȚ %= A $' , *+ A $( , %=

*+ . ǻİȓȟIJİ ȩIJȚ:

Į) '$% *$( ȕ) IJȠ IJȡȓȖȦȞȠ ǹǻǼ İȓȞĮȚ ȚıȠıțİȜȑȢ Ȗ) ȉĮ IJȡȓȖȦȞĮ ǽǺǻ, īǾǼ İȓȞĮȚ ȓıĮ į) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȘȞ ʌĮȡȐıIJĮıȘ: § ^ · İij ¨ $'% $%' ¸ Șȝ$ % ' ıȣȞ$ * ( İij '$% Șȝ$ * % ıȣȞ$ % * © ¹ ȁȪıȘ

Į) īȚĮ IJĮ IJȡȓȖȦȞĮ ǹǽǺ, ǹǾī ȑȤȠȣȝİ: $=% $+* 90R țĮȚ Ǻǽ=īǾ. ǼʌȓıȘȢ ǹǺ=ǹī ȖȚĮIJȓ

ǹǺī İȓȞĮȚ ȚıȠıțİȜȑȢ. ȈȣȞİʌȫȢ IJĮ IJȡȓȖȦȞĮ ǹǽǺ, ǹǾī İȓȞĮȚ ȓıĮ țĮȚ ȐȡĮ '$% *$(

ȕ) īȚĮ IJĮ IJȡȓȖȦȞĮ ǹǻǺ, ǹīǼ țĮȚ ȑȤȠȣȝİ: '$% *$( Įʌȩ IJȠ Į) , ǹǺ=ǹī ȖȚĮIJȓ IJȠ IJȡȓȖȦȞȠ ǹǺī

İȓȞĮȚ ȚıȠıțİȜȑȢ ȠʌȩIJİ $%* $*% ȐȡĮ $ % ' 180R $%* 180R $*% $*( . DZȡĮ ǹǻǺ, ǹīǼ İȓȞĮȚ ȓıĮ ȠʌȩIJİ ǹǻ=ǹǼ įȘȜĮįȒ IJȠ IJȡȓȖȦȞȠ ǹǻǼ İȓȞĮȚ ȚıȠıțİȜȑȢ ȝİ ȕȐıȘ ǻǼ.

Ȗ) ǼʌİȚįȒ Įʌȩ IJȠ İȡȫIJȘȝĮ ȕ) IJȠ IJȡȓȖȦȞȠ ǹǻǼ İȓȞĮȚ ȚıȠıțİȜȑȢ ȝİ ȕȐıȘ ǻǼ İȓȞĮȚ $ ' (

$(' .

ǼʌȓıȘȢ ' = % * + ( 90R țĮȚ Ǻǽ=īǾ Įʌȩ IJȘȞ ȣʌȩșİıȘ ȐȡĮ IJĮ IJȡȓȖȦȞĮ ǽǺǻ, īǾǼ İȓȞĮȚ ȓıĮ. ^ § ^ · į) ȈIJȠ IJȡȓȖȦȞȠ ǹǺǻ İȓȞĮȚ $'% $%' '$% 180R ȠʌȩIJİ İij ¨ $'% $%' ¸ İij '$% . © ¹

ǼʌȓıȘȢ $ % ' 180R $ % * ȐȡĮ Șȝ$ % '

ȐȡĮ ıȣȞ$ * (

Șȝ$ * % țĮȚ $ * ( 180R $ * %

180R $ % *

ıȣȞ$ % * . ȀĮIJȐ ıȣȞȑʌİȚĮ Ș IJȚȝȒ IJȘȢ ʌĮȡȐıIJĮıȘȢ İȓȞĮȚ ȝȘįȑȞ.

8. ǻȓȞȠȞIJĮȚ IJĮ ʌȠȜȣȫȞȣȝĮ 5 x

x 2 3țx+2Ȝx+Ȝ+16 țĮȚ Q x =țx 3 +Ȝx 2 -14țx+5Ȝ+16

Į) ǹȞ Ƞ ĮȡȚșȝȩȢ 5 İȓȞĮȚ ȡȓȗĮ IJȠȣ ʌȠȜȣȦȞȪȝȠȣ P(x) țĮȚ Q(-2)=-16 ȞĮ ȕȡİȓIJİ IJȠȣȢ ĮȡȚșȝȠȪȢ ț, Ȝ ȕ) ǹȞ ȑȞĮȢ Įʌȩ IJȠȣȢ ĮȡȚșȝȠȪȢ ț, Ȝ ʌȠȣ ȕȡȒțĮIJİ ıIJȠ ʌȡȠȘȖȠȪȝİȞȠ İȡȫIJȘȝĮ İȓȞĮȚ ȓıȠȢ ȝİ IJȘȞ İijș ȩʌȠȣ 90R T 180R , ȞĮ ȕȡİȓIJİ IJĮ Șȝș, ıȣȞș. ȁȪıȘ Į) ȅ ĮȡȚșȝȩȢ 5 İȓȞĮȚ ȡȓȗĮ IJȠȣ ʌȠȜȣȦȞȪȝȠȣ P(x) ȐȡĮ P(5)=0 ȠʌȩIJİ 52+3·ț·5+2·Ȝ·5+Ȝ+16=0 ȐȡĮ 15ț+11Ȝ=-41. ǼʌȓıȘȢ Q(-2)=-16 ȐȡĮ ț(-2)3+Ȝ(-2)2-14ț·(-2)+5Ȝ+16=-16 Įʌȩ ȩʌȠȣ ʌȡȠțȪʌIJİȚ 20ț+9Ȝ=-32. īȚĮ ȞĮ ȕȡȠȪȝİ IJȠȣȢ ĮȡȚșȝȠȪȢ ț, Ȝ ʌȡȑʌİȚ ȞĮ ȜȪıȠȣȝİ IJȠ ıȪıIJȘȝĮ: ­15N 11O 41 ȆȠȜȜĮʌȜĮıȚȐȗȠȣȝİ IJȘȞ ʌȡȫIJȘ İȟȓıȦıȘ İʌȓ -4 țĮȚ IJȘ įİȪIJİȡȘ İʌȓ 3, ® ¯20N 9O 32 1 ʌȡȠıșȑIJȠȣȝİ țĮȚ ʌȡȠțȪʌIJİȚ -17Ȝ=68 ȐȡĮ Ȝ=-4 țĮȚ Įʌȩ IJȘȞ ʌȡȫIJȘ İȟȓıȦıȘ ȑȤȠȣȝİ ț= . 5

KPT 4 ȐȡĮ VXQT 2 4VXQT . ǹʌȩ KP 2T VXQ 2T 1 ȑȤȠȣȝİ 4VXQT VXQ 2T 1 ȐȡĮ 17VXQ 2T 1 ȐȡĮ

ȕ) ǼʌİȚįȒ 90R T 180R İȓȞĮȚ HMT 0 NDL VXQT 0 ȐȡĮ HMT

KPT

VXQ 2T

1 țĮȚ VXQT 17

1 17

1 17

17 . ȉȑȜȠȢKPT 17

ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/29

4 ȠʌȩIJİ

4VXQT

4 17 17


¢Ȑźͺ ¾ÒžÍÊȯºË ÎÅƺÌȯÈÎ. ========================================================================īȚȐȞȞȘȢ ȃȚțȠȜȩʌȠȣȜȠȢ ȉĮ șȑȝĮIJĮ ʌȠȣ ĮțȠȜȠȣșȠȪȞ İȓȞĮȚ İȞįİȚțIJȚțȐ țĮȚ țĮIJȐȜȜȘȜĮ ȖȚĮ ȝȓĮ țĮȜȒ İʌĮȞȐȜȘȥȘ IJȘȢ īİȦȝİIJȡȓĮȢ IJȘȢ īǯ īȣȝȞĮıȓȠȣ. ǹȞĮijȑȡȠȞIJĮȚ ıIJĮ țİijȐȜĮȚĮ IJȘȢ ȚıȩIJȘIJĮȢ IJȦȞ IJȡȚȖȫȞȦȞ, IJȘȢ ȠȝȠȚȩIJȘIJĮȢ İȣșȣȖȡȐȝȝȦȞ ıȤȘȝȐIJȦȞ țĮȚ IJȘȢ IJȡȚȖȦȞȠȝİIJȡȓĮȢ. ĬȑȝĮ 1Ƞ ȃĮ țĮIJĮıțİȣȐıİIJİ ȝȓĮ ȖȦȞȓĮ xOy. ȆȐȞȦ ıIJȘȞ ʌȜİȣȡȐ IJȘȢ ȅx ȞĮ ʌȐȡİIJİ IJĮ ıȘȝİȓĮ ǹ țĮȚ Ǻ ȫıIJİ ȅǹ=ǹǺ. ȆȐȞȦ ıIJȘȞ ʌȜİȣȡȐ IJȘȢ ȅy ȞĮ ʌȐȡİIJİ IJĮ ıȘȝİȓĮ ī țĮȚ ǻ ȫıIJİ ȅī=īǻ. ȃĮ ijȑȡİIJİ IJȘȞ țȐșİIJȠ ʌȐȞȦ ıIJȘȞ ʌȜİȣȡȐ ȅx ıIJȠ ıȘȝİȓȠ ǹ. ȃĮ ijȑȡİIJİ IJȘȞ țȐșİIJȠ ʌȐȞȦ ıIJȘȞ ʌȜİȣȡȐ ȅy ıIJȠ ıȘȝİȓȠ ī. ȅȚ įȪȠ țȐșİIJİȢ IJȑȝȞȠȞIJĮȚ ıIJȠ ıȘȝİȓȠ Ȁ. Į) ȃĮ įİȓȟİIJİ ȩIJȚ IJĮ IJȡȓȖȦȞȠ ȅȀǺ țĮȚ ȅȀǻ İȓȞĮȚ ȚıȠıțİȜȒ. ȕ) ǹȞ țĮIJĮıțİȣȐıȠȣȝİ ȑȞĮȞ țȪțȜȠ ȝİ țȑȞIJȡȠ Ȁ țĮȚ ĮțIJȓȞĮ ȅȀ ȞĮ İȟȘȖȒıİIJİ ȖȚĮIJȓ ĮȣIJȩȢ șĮ İȓȞĮȚ Ƞ ʌİȡȚȖİȖȡĮȝȝȑȞȠȢ țȪțȜȠȢ IJȠȣ IJȡȚȖȫȞȠȣ ȅǺǻ. ĬȑȝĮ 2Ƞ ǻȓȞİIJĮȚ ȚıȠıțİȜȑȢ IJȡȓȖȦȞȠ ǹǺī (ǹǺ = ǹī). ĭȑȡȞȠȣȝİ IJȘ įȚȐȝİıȠ ǹǼ țĮȚ ʌȐȞȦ ıİ ĮȣIJȒ ȑȞĮ IJȣȤĮȓȠ ıȘȝİȓȠ ǻ. ȅȚ ȘȝȚİȣșİȓİȢ Ǻǽ țĮȚ īǾ IJȑȝȞȠȣȞ ĮȞIJȓıIJȠȚȤĮ IJȚȢ ʌȜİȣȡȑȢ ǹī ıIJȠ ǽ țĮȚ ǹǺ ıIJȠ Ǿ. Ȃİ ȕȐıȘ IJĮ įİįȠȝȑȞĮ ĮȣIJȐ: Į) ȃĮ įİȓȟİIJİ ȩIJȚ IJȠ IJȡȓȖȦȞȠ Ǻǻī İȓȞĮȚ ȚıȠıțİȜȑȢ. ȕ) ȃĮ ıȣȖțȡȓȞİIJĮȚ IJĮ IJȡȓȖȦȞĮ ǹǻǾ țĮȚ ǹǻǽ. Ȗ) ȃĮ ȕȡİȓIJİ IJȘ ıȤȑıȘ ʌȠȣ ıȣȞįȑİȚ IJȚȢ ȖȦȞȓİȢ ij țĮȚ Ȧ.

ĬȑȝĮ 3Ƞ ǻȓȞİIJĮȚ țȪțȜȠȢ (Ȁ, ȡ) țĮȚ ȠȚ ȤȠȡįȑȢ IJȠȣ ǹǺ țĮȚ īǻ ʌȠȣ IJȑȝȞȠȞIJĮȚ İțIJȩȢ IJȠȣ țȪțȜȠȣ ıIJȠ ıȘȝİȓȠ Ĭ. ǹȞ İȓȞĮȚ ȖȞȦıIJȩ ȩIJȚ ȚıȤȪİȚ ǹĬ = īĬ. ȃĮ įİȚȤșİȓ ȩIJȚ: Į) IJĮ IJȡȓȖȦȞĮ ǹĬȀ țĮȚ īĬȀ İȓȞĮȚ ȓıĮ. n. ȕ) Ș ĬȀ İȓȞĮȚ įȚȤȠIJȩȝȠȢ IJȘȢ ȖȦȞȓĮȢ $4* Ȗ) ȞĮ įİȚȤșİȓ ȩIJȚ ǹǺ = īǻ. ĬȑȝĮ 4Ƞ ȈIJȠ įȚʌȜĮȞȩ IJȡȓȖȦȞȠ ǹǺī ȚıȤȪȠȣȞ IJĮ ʌĮȡĮțȐIJȦ: n = 2 %*$ n x ȖȚĮ IJȚȢ ȖȦȞȓİȢ $%* x ȖȚĮ IJȚȢ ʌȜİȣȡȑȢ Ǻī = 2Ǻǹ. x Ș Ǻǻ İȓȞĮȚ įȚȤȠIJȩȝȠȢ. x Ș ǻǼ İȓȞĮȚ țȐșİIJȘ ıIJȘ Ǻī. Į) ȃĮ įİȚȤșİȓ ȩIJȚ: ǺǼ = Ǽī ȕ) ȞĮ ȕȡİȓIJİ IJȡȓĮ ȓıĮ IJȡȓȖȦȞĮ ıIJȠ ıȤȒȝĮ țĮȚ ȞĮ įȚțĮȚȠȜȠȖȒıİIJİ ȖȚĮIJȓ İȓȞĮȚ ȓıĮ. ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/30


----------------------------------------------------------------------------------------- ĬȑȝĮIJĮ īİȦȝİIJȡȓĮȢ īǯ īȣȝȞĮıȓȠȣ -------------------------------------------------------------------------------------

n = 90°. Ȗ) ȞĮ ĮʌȠįİȓȟİIJİ ȩIJȚ Ș ȖȦȞȓĮ %$* ĬȑȝĮ 5Ƞ ȈIJȠ įȚʌȜĮȞȩ ıȤȒȝĮ ȣʌȐȡȤȠȣȞ įȪȠ ȩȝȠȚĮ ʌĮȡĮȜȜȘȜȩȖȡĮȝȝĮ. ȉȠ ȝİȖȐȜȠ ȑȤİȚ İȝȕĮįȩȞ 144cm2 țĮȚ IJȠ ȝȚțȡȩ 36cm2. H ʌȜİȣȡȐ Ǿǽ IJȠȣ ȝȚțȡȠȪ İȓȞĮȚ ȓıȘ ȝİ 5cm. Į) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȠȞ ȜȩȖȠ ȠȝȠȚȩIJȘIJĮȢ IJȦȞ įȪȠ ıȤȘȝȐIJȦȞ. ȕ) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȠ ȪȥȠȢ ĬȀ IJȠȣ ǼǽǾĬ. Ȗ) ȃĮ ȕȡİȓIJİ IJȘȞ ʌİȡȓȝİIJȡȠ IJȠȣ ʌĮȡĮȜȜȘȜȠȖȡȐȝȝȠȣ ǹǺīǻ. ĬȑȝĮ 6Ƞ

ȅ ǺĮıȓȜȘȢ șȑȜİȚ ȞĮ ȝİIJȡȒıİȚ IJȠ ȪȥȠȢ x IJȠȣ IJȠȓȤȠȣ țĮȚ įȚĮșȑIJİȚ ȝȓĮ ıțȐȜĮ 4,5m. ȀĮșȫȢ IJȠ ȪȥȠȢ IJȠȣ ǺĮıȓȜȘ İȓȞĮȚ 1,6m ȝİIJȡȐ IJȠ țȠȝȝȐIJȚ IJȘȢ ıțȐȜĮȢ ʌȠȣ ijIJȐȞİȚ ȝȑȤȡȚ IJȠ țİijȐȜȚ IJȠȣ țĮȚ IJȠ ȕȡȓıțİȚ 1,8m. Į) ȃĮ ȖȡȐȥİIJİ ȝȓĮ ĮȞĮȜȠȖȓĮ ȝİ ȕȐıȘ IJĮ ʌĮȡĮʌȐȞȦ ȝİȖȑșȘ. ȕ) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȠ ȪȥȠȢ IJȠȣ IJȠȓȤȠȣ. Ȗ) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȘȞ ĮʌȩıIJĮıȘ IJȠȣ ǺĮıȓȜȘ Įʌȩ IJȠȞ IJȠȓȤȠ. (ȃĮ șİȦȡȒıİIJİ ȩIJȚ Ș ĮʌȩıIJĮıȘ ĮȣIJȒ İȓȞĮȚ Ș ĮʌȩıIJĮıȘ Įʌȩ IJȠ țİijȐȜȚ IJȠȣ ȝȑȤȡȚ IJȠȞ IJȠȓȤȠ).

Ƞ

ĬȑȝĮ 7 ȆȐȞȦ ıIJȠ İȣșȪȖȡĮȝȝȠ IJȝȒȝĮ ǻī ʌĮȓȡȞȠȣȝİ ȑȞĮ ıȘȝİȓȠ ȅ țĮȚ țĮIJĮıțİȣȐȗȠȣȝİ IJĮ ȠȡșȠȖȫȞȚĮ IJȡȓȖȦȞĮ ȅīǹ țĮȚ ȅǻǺ. ȅȚ ȠȡșȑȢ ȖȦȞȓİȢ ȕȡȓıțȠȞIJĮȚ ıIJȚȢ țȠȡȣijȑȢ ǻ țĮȚ ī. Ȃİ ȕȐıȘ IJȚȢ ȝİIJȡȒıİȚȢ IJȦȞ ʌȜİȣȡȫȞ IJȦȞ IJȡȚȖȫȞȦȞ: Į) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȠ ȘȝȓIJȠȞȠ IJȘȢ ȖȦȞȓĮȢ ij țĮȚ IJȘȢ ȖȦȞȓĮȢ Ȧ. ȕ) ȃĮ ĮʌȠįİȓȟİIJİ ȝİ ȠʌȠȚȠȞįȒʌȠIJİ IJȡȩʌȠ ȩIJȚ Ș ȖȦȞȓĮ ǹȅǺ İȓȞĮȚ ĮȝȕȜİȓĮ.

ĬȑȝĮ 8Ƞ

ȅ īȚȫȡȖȠȢ ʌȡȠıʌĮșİȓ ȞĮ țĮIJĮıțİȣȐıİȚ ȑȞĮ IJȡȓȖȦȞȠ ȝİ ʌȜİȣȡȑȢ 14cm, 6cm țĮȚ 7cm. ȊʌȠșȑIJİȚ ȩIJȚ IJȠ IJȡȓȖȦȞȠ ĮȣIJȩ ȝʌȠȡİȓ ȞĮ țĮIJĮıțİȣĮıIJİȓ țĮȚ ȖȚĮ IJȚȢ ȖȦȞȓİȢ IJȠȣ ıțȑijIJİIJĮȚ ȞĮ ȤȡȘıȚȝȠʌȠȚȒıİȚ ȜȓȖȘ IJȡȚȖȦȞȠȝİIJȡȓĮ. Į) ȃĮ İijĮȡȝȩıİIJİ IJȠȞ ȞȩȝȠ IJȦȞ ıȣȞȘȝȚIJȩȞȦȞ ȖȚĮ IJȘȞ ȝİȖĮȜȪIJİȡȘ ȖȦȞȓĮ IJȠȣ IJȡȚȖȫȞȠȣ. ȕ) ȃĮ ȣʌȠȜȠȖȓıİIJİ IJȠ ıȣȞȘȝȓIJȠȞȠ IJȘȢ ȖȦȞȓĮȢ ĮȣIJȒȢ. Ȗ) ȃĮ İȟȘȖȒıİIJİ ȖȚĮIJȓ Ƞ īȚȫȡȖȠȢ įİȞ șĮ țĮIJĮijȑȡİȚ ȞĮ țĮIJĮıțİȣȐıİȚ IJȠ IJȡȓȖȦȞȠ ȝİ IJȚȢ įȠıȝȑȞİȢ ʌȜİȣȡȑȢ. ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/31


ªÊÈÐÒÊÀÅȐƺ ÁȐźͺ ¼Âº ȿÄÈÎË. ­ǷÇÀ ============================================================= ǼʌȚȝȑȜİȚĮ ȈIJȑijĮȞȠȢ ȀİǸıȠȖȜȠȣ 1) ȃĮ ȣʌȠȜȠȖȓıİIJİ ȩȜĮ IJĮ įȣȞĮIJȐ ȗİȪȖȘ (x, y) IJȦȞ ĮȡȚșȝȫȞ x, y ȠȚ ȠʌȠȓȠȚ ȚțĮȞȠʌȠȚȠȪȞ IJȚȢ ıȤȑıİȚȢ: x=x2+y2 țĮȚ y=2xy. 2) ȅȚ ʌȜȘȡȠijȠȡȓİȢ ȖȚĮ IJȠ įȚʌȜĮȞȩ ıȤȒȝĮ İȓȞĮȚ ȠȚ İȟȒȢ: Į) ǹǺīǻ İȓȞĮȚ IJİIJȡȐȖȦȞȠ ȕ) ǻǼǽ ȚıȩʌȜİȣȡȠ IJȡȓȖȦȞȠ IJȠȣ ȠʌȠȓȠȣ ȠȚ țȠȡȣijȑȢ Ǽ țĮȚ ǽ ȕȡȓıțȠȞIJĮȚ ʌȐȞȦ ıIJȚȢ ʌȜİȣȡȑȢ ǹǺ țĮȚ Ǻī ĮȞIJȓıIJȠȚȤĮ. Ȗ) IJȠ ȝȑIJȡȠ IJȦȞ ʌȜİȣȡȫȞ IJȠȣ ȚıȠʌȜİȪȡȠȣ ijĮȓȞİIJĮȚ ıIJȠ ıȤȒȝĮ. ȃĮ ȣʌȠȜȠȖȓıİIJİ IJĮ IJȝȒȝĮIJĮ ǹǼ țĮȚ ǺǼ. 3) ȂȓĮ įĮțIJȣȜȠȖȡȐijȠȢ ȣʌȠȜȠȖȓȗİȚ ȩIJȚ ĮȞ țȐșİ ȘȝȑȡĮ ʌȜȘțIJȡȠȜȠȖİȓ 2 ıİȜȓįİȢ ʌİȡȚııȩIJİȡİȢ Įʌȩ ĮȣIJȑȢ ʌȠȣ ıȣȞȘșȓȗİȚ ȞĮ ʌȜȘțIJȡȠȜȠȖİȓ șĮ ıȣȞIJȠȝİȪıİȚ IJȘȞ İȡȖĮıȓĮ IJȘȢ țĮIJȐ 3 ȘȝȑȡİȢ. ǹȞ ʌȜȘțIJȡȠȜȠȖİȓ 4 ıİȜȓįİȢ ʌİȡȚııȩIJİȡİȢ șĮ ıȣȞIJȠȝİȪıİȚ IJȘȞ İȡȖĮıȓĮ IJȘȢ țĮIJȐ 5 ȘȝȑȡİȢ. ȆȩıİȢ ıİȜȓįİȢ ıȣȞȠȜȚțȐ ȑȤİȚ ȞĮ ʌȜȘțIJȡȠȜȠȖȒıİȚ țĮȚ ʌȩıȠ ȤȡȩȞȠ șĮ ȤȡİȚĮıIJİȓ ĮȞ įİȞ ĮȣȟȒıİȚ IJȘȞ ʌĮȡĮȖȦȖȚțȩIJȘIJȐ IJȘȢ. 4) ȈIJȠ įȚʌȜĮȞȩ ȠȡșȠȖȫȞȚȠ IJȡȓȖȦȞȠ İȓȞĮȚ İȖȖİȖȡĮȝȝȑȞȠ IJȠ IJİIJȡȐȖȦȞȠ ʌȜİȣȡȐȢ 1 cm. Ǿ ȣʌȠIJİȓȞȠȣıĮ İȓȞĮȚ 3cm. ȃĮ ȕȡİșİȓ Ș ʌİȡȓȝİIJȡȩȢ IJȠȣ. ǹʌĮȞIJȒıİȚȢ șİȝȐIJȦȞ IJİȪȤȠȣȢ 107 1) ǹȞ x Ș ĮȟȓĮ IJȠȣ țȚȜȠȪ IJȠȣ ȜĮįȚȠȪ ǹ țĮȚ y Ș ĮȟȓĮ IJȠȣ țȚȜȠȪ IJȠȣ ȜĮįȚȠȪ Ǻ IJȩIJİ ȑȤȠȣȝİ: 550·x + 450·y=4.900 425·x+125āy=325āy+125āx Ș ȜȪıȘ IJȠȣ ıȣıIJȒȝĮIJȠȢ įȓȞİȚ x=4 țĮȚ y=6 2) DzıIJȦ ȩIJȚ ȤȡİȚȐȗȠȞIJĮȚ x ȫȡİȢ ȖȚĮ ȞĮ ȠȜȠțȜȘȡȫıȠȣȞ IJȠ ȑȡȖȠ ȩIJĮȞ İȡȖȐȗȠȞIJĮȚ țĮȚ ȠȚ įȪȠ ȝĮȗȓ. ȉȩIJİ Ƞ ǹ ȝȩȞȠȢ IJȠȣ ȤȡİȚȐȗİIJĮȚ x+8 ȫȡİȢ țĮȚ Ƞ Ǻ ȝȩȞȠȢ IJȠȣ ȤȡİȚȐȗİIJĮȚ x+4,5 ȫȡİȢ. ǹʌȩ ĮȣIJȩ 1 ʌȡȠțȪʌIJİȚ ȩIJȚ Ƞ ǹ ıİ ȝȓĮ ȫȡĮ ȠȜȠțȜȘȡȫȞİȚ IJȠȣ ȑȡȖȠȣ İȞȫ Ƞ Ǻ ıİ ȝȓĮ ȫȡĮ ȠȜȠțȜȘȡȫȞİȚ IJȠ x+8 1 1 1 IJȠȣ ȑȡȖȠȣ. Ȉİ ȝȓĮ ȫȡĮ țĮȚ ȠȚ įȪȠ ȝĮȗȓ ȠȜȠțȜȘȡȫȞȠȣȞ IJȠ IJȠȣ ȑȡȖȠȣ țĮȚ x+4,5 x+8 x+4,5 1 · § 1 İʌİȚįȒ İȡȖȐȗȠȞIJĮȚ ȝĮȗȓ x ȫȡİȢ șĮ ȚıȤȪİȚ x ¨ ¸ 1 Įʌȩ ȩʌȠȣ ʌȡȠțȪʌIJİȚ x=6. © x+8 x+4,5 ¹ 3) ǹʌȩ IJȠ ıȤȒȝĮ ʌȡȠțȪʌIJİȚ ȩIJȚ ĮȞ y=Įx2 + ȕx+Ȗ IJȩIJİ ȖȚĮ x=0 ȑȤȠȣȝİ y=4 ȐȡĮ Ȗ =4. īȚĮ x=1 ȑȤȠȣȝİ y=0 ȩȝȠȚĮ țĮȚ ȖȚĮ x=4 ȑȤȠȣȝİ y=0 Įʌȩ ȩʌȠȣ ʌȡȠțȪʌIJİȚ Į=1 țĮȚ ȕ=-5 ȐȡĮ IJȠ IJȡȚȫȞȣȝȠ ȑȤİȚ IJȘ ȝȠȡijȒ x2-5x+4. ȅȚ IJİIJȝȘȝȑȞİȢ IJȦȞ ıȘȝİȓȦȞ ǹ, Ǻ șĮ ʌȡȠțȪȥȠȣȞ Įʌȩ IJȘȞ İȟȓıȦıȘ x2-5x+4 = 10 ʌȠȣ ȑȤİȚ ȡȓȗİȢ IJȠȣȢ ĮȡȚșȝȠȪȢ -1 țĮȚ 6. DZȡĮ ǹǺ=7. 4) ȈIJȠ ȠȡșȠȖȫȞȚȠ IJȡȓȖȦȞȠ ǹǼī ȕ2=Į2-(5-Į)2 ĮijȠȪ ȅǼ=Į. ȈIJȠ ȠȡșȠȖȫȞȚȠ IJȡȓȖȦȞȠ īǼǺ Ȗ2=ȕ2+(5+Į)2. ȉȠ IJȡȓȖȦȞȠ ǹīǺ İȓȞĮȚ ȠȡșȠȖȫȞȚȠ (ȖȚĮIJȓ;) ȐȡĮ Į2+Ȗ2=100. ǹʌȩ IJĮ ʌĮȡĮʌȐȞȦ ʌȡȠțȪʌIJİȚ: Į2+Į2-(5-Į)2+(5+Į)2=100 țĮȚ Ș įİȣIJİȡȠȕȐșȝȚĮ İȟȓıȦıȘ Į2+10Į50=0 țĮȚ Į= 5 ( 3 1) 5) ǹȞ ʌĮȡĮȖȠȞIJȠʌȠȚȒıȠȣȝİ țȐșİ ʌĮȡȑȞșİıȘ ʌȡȠțȪʌIJİȚ Ȇ=(Į+ȕ)2ā(ȕ+Ȗ)2ā(Į+Ȗ)2 ȐȡĮ Ș IJİIJȡĮȖȦȞȚțȒ ȡȓȗĮ IJȘȢ Ȇ İȓȞĮȚ Ș =(Į+ȕ)ā(ȕ+Ȗ)ā(Į+Ȗ) ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/32


ƯĴDŽǃĂĴĸDždžNJȽ ¨DžĴǁǐLjDžķĂNJȽ =================================================== ÉÂÅȐľº: ÉÂÍÊÈÉȘ º¼ÒÆÂÌÅəÆ

35À ÄÄÀÆÂÃȘ ¦ºÁÀźÍÂÃȘ ©ÄÎÅÉÂǷ½º "© ÊÐÂÅȘ½ÀË" 3 ¦ºÊÍȯÈÎ 2018 ¢Ȑźͺ ÅÂÃÊəÆ ÍǷǾÒÆ ȆȡȩȕȜȘȝĮ 1 (Į) ȃĮ İȟİIJȐıİIJİ, ĮȞ ȣʌȐȡȤİȚ ʌȡĮȖȝĮIJȚțȩȢ ĮȡȚșȝȩȢ x, IJȑIJȠȚȠȢ ȫıIJİ ȠȚ ĮȡȚșȝȠȓ x 3 țĮȚ x 2 3 ȞĮ İȓȞĮȚ țĮȚ ȠȚ įȪȠ ȡȘIJȠȓ.

(ȕ) ȃĮ İȟİIJȐıİIJİ, ĮȞ ȣʌȐȡȤİȚ ʌȡĮȖȝĮIJȚțȩȢ ĮȡȚșȝȩȢ y IJȑIJȠȚȠȢ ȫıIJİ ȠȚ ĮȡȚșȝȠȓ y 3 țĮȚ

y 3 3 ȞĮ İȓȞĮȚ țĮȚ ȠȚ įȪȠ ȡȘIJȠȓ. ȁȪıȘ (Į) DzıIJȦ x 3

q, x 2 3

p ȝİ p , q _ . ȉȩIJİ

x q 3 x2

q 2 2q 3 3

ȠʌȩIJİ ĮȞ ĮȞIJȚțĮIJĮıIJȒıȠȣȝİ ıIJȘ įİȪIJİȡȘ ʌĮȓȡȞȠȣȝİ:

q

2

ȉȩIJİ ʌȡȑʌİȚ 2q 1 0 q (ȕ) DzıIJȦ y 3

2q 3 3 3

p q2 3

1 . Ȉİ ĮȣIJȒ IJȘȞ ʌİȡȓʌIJȦıȘ p q 2 3 q 2

q, y 3 3 y

p 3 2q 1

1 13 3 țĮȚ x 4 4

1 3 . 2

p ȝİ p , q _ . ȉȩIJİ

q 3 y3

q3 3q 2 3 9q 3 3

ȠʌȩIJİ ĮȞ ĮȞIJȚțĮIJĮıIJȒıȠȣȝİ ıIJȘ įİȪIJİȡȘ ʌĮȓȡȞȠȣȝİ:

q

3

3q 2 3 9q 3 3 3 3

p 3 3q 2 2

p q 3 9q

q 3 9q p _ 3q 2 2

ʌȠȣ İȓȞĮȚ ȐIJȠʌȠ. ȆȡȩȕȜȘȝĮ 2 ĬİȦȡȠȪȝİ IJİIJȡȐȖȦȞȠ ǹǺīǻ ʌȜİȣȡȐȢ 8 cm IJȠ ȠʌȠȓȠ ȣʌȠįȚĮȚȡȠȪȝİ ȝİ İȣșİȓİȢ ʌĮȡȐȜȜȘȜİȢ ʌȡȠȢ IJȚȢ ʌȜİȣȡȑȢ IJȠȣ ıİ 64 ȝȚțȡȐ IJİIJȡȐȖȦȞĮ ʌȜİȣȡȐȢ 1cm. ȋȡȦȝĮIJȓȗȠȣȝİ 7 ȝȚțȡȐ IJİIJȡȐȖȦȞĮ ȝĮȪȡĮ, İȞȫ ȩȜĮ IJĮ ȣʌȩȜȠȚʌĮ 57 ȝȚțȡȐ IJİIJȡȐȖȦȞĮ İȓȞĮȚ ȜİȣțȐ. ȊʌȠșȑIJȠȣȝİ ȩIJȚ ȣʌȐȡȤİȚ șİIJȚțȩȢ ĮțȑȡĮȚȠȢ k IJȑIJȠȚȠȢ ȫıIJİ ĮȞİȟȐȡIJȘIJĮ Įʌȩ IJȘ șȑıȘ IJȦȞ 7 ȝĮȪȡȦȞ ȝȚțȡȫȞ IJİIJȡĮȖȫȞȦȞ, ȣʌȐȡȤİȚ ȠȡșȠȖȫȞȚȠ 2 İȝȕĮįȠȪ k cm ȝİ ʌȜİȣȡȑȢ ʌĮȡȐȜȜȘȜİȢ ıIJȚȢ ʌȜİȣȡȑȢ IJȠȣ ǹǺīǻ țĮȚ ȝİ ȩȜĮ IJĮ ȝȚțȡȐ IJİIJȡȐȖȦȞĮ Įʌȩ IJĮ ȠʌȠȓĮ ĮʌȠIJİȜİȓIJĮȚ ȞĮ İȓȞĮȚ ȜİȣțȐ, ʌȠȣ ȝʌȠȡİȓ ȞĮ ĮʌȠțȠʌİȓ Įʌȩ IJȠ IJİIJȡȐȖȦȞȠ ǹǺīǻ. ȃĮ ȕȡİșİȓ Ș ȝȑȖȚıIJȘ įȣȞĮIJȒ IJȚȝȒ IJȠȣ k . ȁȪıȘ ȂʌȠȡȠȪȝİ ȞĮ ȤȦȡȓıȠȣȝİ IJȠ IJİIJȡȐȖȦȞȠ ǹǺīǻ ıİ 8 ȠȡșȠȖȫȞȚĮ 4 u 2 . DzIJıȚ ȝʌȠȡȠȪȝİ ȞĮ ȤȡȦȝĮIJȓıȠȣȝİ ıIJĮ İʌIJȐ 4 u 2 ȠȡșȠȖȫȞȚĮ Įʌȩ ȑȞĮ ȝĮȪȡȠ ȝȚțȡȩ IJİIJȡȐȖȦȞȠ, ȠʌȩIJİ Įʌȩ IJȘȞ ĮȡȤȒ IJȠȣ ȆİȡȚıIJİȡȫȞĮ șĮ ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/33


--------------------------------------------------------------------------------------------------- ȂĮșȘȝĮIJȚțȠȓ ǻȚĮȖȦȞȚıȝȠȓ -----------------------------------------------------------------------------------------------ȝİȓȞİȚ ȝİ ȜİȣțȐ ȝȚțȡȐ IJİIJȡȐȖȦȞĮ IJȠȣȜȐȤȚıIJȠȞ ȑȞĮ 4 u 2 ȠȡșȠȖȫȞȚȠ İȝȕĮįȠȪ 8 cm 2 .

ȈȤȒȝĮ 1 ȈIJȘ ıȣȞȑȤİȚĮ șĮ ĮʌȠįİȓȟȠȣȝİ ȩIJȚ ȣʌȐȡȤİȚ ȤȡȦȝĮIJȚıȝȩȢ IJȦȞ 7 ȝȚțȡȫȞ IJİIJȡĮȖȫȞȦȞ ȑIJıȚ ȫıIJİ ȞĮ ȝȘȞ ȣʌȐȡȤİȚ ȠȡșȠȖȫȞȚȠ ȝİ ȜİȣțȐ IJİIJȡȐȖȦȞĮ İȝȕĮįȠȪ ȝİȖĮȜȪIJİȡȠȣ IJȦȞ 8 cm 2 . ȈIJȠ IJİIJȡȐȖȦȞȠ IJȠȣ ʌĮȡĮțȐIJȦ ıȤȒȝĮIJȠȢ 2 ĮijȒȞȠȣȝİ ȩȜĮ IJĮ ıȣȞȠȡȚĮțȐ ȝȚțȡȐ IJİIJȡȐȖȦȞĮ ȜİȣțȐ țĮȚ ıIJȠ 6 u 6 İıȦIJİȡȚțȩ IJİIJȡȐȖȦȞȠ ȤȡȦȝĮIJȓȗȠȣȝİ 7 ȝȚțȡȐ IJİIJȡȐȖȦȞĮ ȝĮȪȡĮ, ȑIJıȚ ȫıIJİ ȞĮ ȝȘȞ ȣʌȐȡȤİȚ ȠȡșȠȖȫȞȚȠ ȝİ ȜİȣțȐ IJİIJȡȐȖȦȞĮ İȝȕĮįȠȪ ȝİȖĮȜȪIJİȡȠȣ IJȦȞ 8 cm 2 .

ȈȤȒȝĮ 2 ȈȘȝİȓȦıȘ: īȚĮ IJȠ ʌȡȫIJȠ țȠȝȝȐIJȚ IJȘȢ ȐıțȘıȘȢ ȝʌȠȡȠȪȝİ ȞĮ șİȦȡȒıȠȣȝİ IJȚȢ 8 ȖȡĮȝȝȑȢ Ȓ IJȚȢ 8 ıIJȒȜİȢ IJȠȣ ʌȓȞĮțĮ țĮȚ ȞĮ țȐȞȠȣȝİ IJȠ İʌȚȤİȓȡȘȝĮ ȩʌȦȢ ıIJȘȞ ʌĮȡĮʌȐȞȦ ȜȪıȘ ȝİ IJȘȞ ĮȡȤȒ IJȠȣ ȆİȡȚıIJİȡȫȞĮ. ȆȡȩȕȜȘȝĮ 3 ĬİȦȡȠȪȝİ IJȠȣȢ șİIJȚțȠȪȢ ĮțİȡĮȓȠȣȢ Į,b IJȑIJȠȚȠȣȢ ȫıIJİ Ƞ ĮȡȚșȝȩȢ

(a b)2 4a ab ȞĮ İȓȞĮȚ ĮțȑȡĮȚȠȢ. ȃĮ ĮʌȠįİȓȟİIJİ ȩIJȚ ĮȞ Ƞ b İȓȞĮȚ ʌİȡȚIJIJȩȢ, IJȩIJİ Ƞ Į İȓȞĮȚ IJȑȜİȚȠ IJİIJȡȐȖȦȞȠ. ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/34


--------------------------------------------------------------------------------------------------- ȂĮșȘȝĮIJȚțȠȓ ǻȚĮȖȦȞȚıȝȠȓ -----------------------------------------------------------------------------------------------ȁȪıȘ

( a b) 2 4a ab

DzıIJȦ

N ' . Ǿ IJİȜİȣIJĮȓĮ ȖȡȐijİIJĮȚ ȦȢ (a b)2 4a N ab (1)

ĬĮ įİȓȟȠȣȝİ ȩIJȚ Ƞ a İȓȞĮȚ ʌİȡȚIJIJȩȢ. (2) ȆȡȐȖȝĮIJȚ, ĮȞ 2 | a , IJȩIJİ șĮ ʌȡȑʌİȚ 2 | (a b) , IJȩIJİ șĮ ʌȡȑʌİȚ țĮȚ Ƞ b ȞĮ İȓȞĮȚ ȐȡIJȚȠȢ, ȐIJȠʌȠ. ĬİȦȡȠȪȝİ IJȫȡĮ IJȘȞ (1) ıĮȞ įİȣIJİȡȠȕȐșȝȚĮ İȟȓıȦıȘ ȦȢ ʌȡȠȢ b , ıIJȘ ȝȠȡijȒ: 2

b2 b(2 N )a a 2 4a 0 īȚĮ ȞĮ ȑȤİȚ ĮȣIJȒ ĮțȑȡĮȚİȢ ȜȪıİȚȢ, Ș įȚĮțȡȓȞȠȣıȐ IJȘȢ șĮ ʌȡȑʌİȚ ȞĮ İȓȞĮȚ IJȑȜİȚȠ IJİIJȡȐȖȦȞȠ. DzȤȠȣȝİ ȩIJȚ

' a 2 (N 2)2 4(a 2 4a) a(a(N 2)2 4a 16) . ǼʌȠȝȑȞȦȢ IJȠ ȖȚȞȩȝİȞȠ IJȦȞ a, a(N 2) 4a 16 İȓȞĮȚ IJȑȜİȚȠ IJİIJȡȐȖȦȞȠ. ǼʌİȚįȒ ȩȝȦȢ Ƞ a İȓȞĮȚ ʌİȡȚIJIJȩȢ İȓȞĮȚ ʌȡȫIJȠȚ ȝİIJĮȟȪ IJȠȣȢ, ȠʌȩIJİ Ƞ țĮșȑȞĮȢ IJȠȣȢ șĮ ʌȡȑʌİȚ ȞĮ İȓȞĮȚ IJȑȜİȚȠ IJİIJȡȐȖȦȞȠ, ȐȡĮ Ƞ a İȓȞĮȚ IJȑȜİȚȠ IJİIJȡȐȖȦȞȠ. 2

2ȠȢ IJȡȩʌȠȢ: DzıIJȦ d (a, b) țĮȚ ȖȡȐijȠȣȝİ a dx, b dy , ȝİ ( x, y ) 1 . ȆĮȡĮIJȘȡȠȪȝİ ȩIJȚ İʌİȚįȒ d | b țĮȚ Ƞ b İȓȞĮȚ ʌİȡȚIJIJȩȢ, șĮ ʌȡȑʌİȚ d ʌİȡȚIJIJȩȢ. ȉȩIJİ Ƞ ĮȡȚșȝȩȢ

( a b) 2 4a ab

d 2 ( x y ) 2 4dx d 2 xy

d ( x y )2 4 x dxy

İȓȞĮȚ ĮțȑȡĮȚȠȢ. DZȡĮ x | d ( x y ) 4 x x | dy țĮȚ İʌİȚįȒ ( x, y ) 1 , ʌȡȑʌİȚ x | d . ǼʌȓıȘȢ, 2

2

d | d ( x y)2 4 x d | 4 x țĮȚ ĮijȠȪ d ʌİȡȚIJIJȩȢ, d | x . ǹʌȩ IJȚȢ įȪȠ ĮȣIJȑȢ ıȤȑıİȚȢ ȑȤȠȣȝİ d a

x , ȐȡĮ

2

d .

ȆȡȩȕȜȘȝĮ 4 ǻȓȞİIJĮȚ IJȡȓȖȦȞȠ ǹǺī ȝİ ǹǺ<ǹī<Ǻī İȖȖİȖȡĮȝȝȑȞȠ ıİ țȪțȜȠ c ȝİ țȑȞIJȡȠ ȅ țĮȚ ĮțIJȓȞĮ R. ȅȞȠȝȐȗȠȣȝİ ǻ IJȠ ĮȞIJȚįȚĮȝİIJȡȚțȩ IJȘȢ țȠȡȣijȒȢ ǹ. ǻȓȞİIJĮȚ İʌȓıȘȢ Ƞ țȪțȜȠȢ c1 IJȠȣ ȠʌȠȓȠȣ IJȠ țȑȞIJȡȠ Ȁ ȕȡȓıțİIJĮȚ İʌȐȞȦ ıIJȠ IJȝȒȝĮ Ǻǻ țĮȚ ʌİȡȞȐİȚ Įʌȩ IJĮ ıȘȝİȓĮ Ǻ țĮȚ ī. ǹȞ Ƞ țȪțȜȠȢ c1 IJȑȝȞİȚ IJȘȞ ǹī ıIJȠ ıȘȝİȓȠ Ǽ, ȞĮ ĮʌȠįİȓȟİIJİ ȩIJȚ Ƞ ʌİȡȚȖİȖȡĮȝȝȑȞȠȢ țȪțȜȠȢ IJȠȣ IJȡȚȖȫȞȠȣ ǺȀǼ, ȑıIJȦ c2 , İijȐʌIJİIJĮȚ IJȠȣ ʌİȡȚȖİȖȡĮȝȝȑȞȠȣ țȪțȜȠȣ c. ȁȪıȘ (1ȠȢ ȉȡȩʌȠȢ)

DzıIJȦ = Ș IJȠȝȒ IJȠȣ țȪțȜȠȣ c2 ȝİ IJȘȞ $% țĮȚ 0 Ș IJȠȝȒ IJȘȢ .= ȝİ IJȘȞ %( . Ǿ ȖȦȞȓĮ $ % ' (ȐȡĮ

țĮȚ Ș ȖȦȞȓĮ =%. ) İȓȞĮȚ ȠȡșȒ įȚȩIJȚ ȕĮȓȞİȚ ıIJȘ įȚȐȝİIJȡȠ $' IJȠȣ ʌİȡȚȖİȖȡĮȝȝȑȞȠȣ țȪțȜȠȣ c O, R .

ǼijȩıȠȞ = %.

90q , Ș =. İȓȞĮȚ įȚȐȝİIJȡȠȢ IJȠȣ țȪțȜȠȣ c2 țĮȚ țĮIJȐ ıȣȞȑʌİȚĮ Ș =. șĮ İȓȞĮȚ ȝİıȠțȐșİIJȠȢ IJȘȢ țȠȚȞȒȢ ȤȠȡįȒȢ %( IJȦȞ țȪțȜȦȞ c1 țĮȚ c2 . Ǿ $% İijȐʌIJİIJĮȚ ıIJȠȞ țȪțȜȠ c1 , ȐȡĮ

%1

* . ǹʌȩ IJȠ ȠȡșȠȖȫȞȚȠ IJȡȓȖȦȞȠ %0= ȑȤȠȣȝİ:

l 90q % l 90q * . = 1 1 ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/35

(1)


--------------------------------------------------------------------------------------------------- ȂĮșȘȝĮIJȚțȠȓ ǻȚĮȖȦȞȚıȝȠȓ ------------------------------------------------------------------------------------------------

ȈȤȒȝĮ 3

ȅȚ ȖȦȞȓİȢ ' , * İȓȞĮȚ İȖȖİȖȡĮȝȝȑȞİȢ ıIJȠȞ țȪțȜȠ c țĮȚ ȕĮȓȞȠȣȞ ıIJȠ ȓįȚȠ IJȩȟȠ, ȐȡĮ '

ȠȡșȠȖȫȞȚȠ IJȡȓȖȦȞȠ $%' , ȑȤȠȣȝİ: $1 ǹʌȩ IJȚȢ ȚıȩIJȘIJİȢ ȖȦȞȚȫȞ 1

90q ' 90q *

* . ǹʌȩ IJȠ

2 .

m țĮȚ 2 ıȣȝʌİȡĮȓȞȠȣȝİ ȩIJȚ: $ 1

l , ȠʌȩIJİ IJĮ İȣșȪȖȡĮȝȝĮ IJȝȒȝĮIJĮ = 1

$' țĮȚ .= İȓȞĮȚ ʌĮȡȐȜȜȘȜĮ țĮȚ țĮIJȐ ıȣȞȑʌİȚĮ IJȠ IJİIJȡȐʌȜİȣȡȠ $'.= İȓȞĮȚ IJȡĮʌȑȗȚȠ. ǼijȩıȠȞ IJȠ 2 İȓȞĮȚ IJȠ ȝȑıȠ IJȘȢ $' , ıȣȝʌİȡĮȓȞȠȣȝİ ȩIJȚ Ș 2% șĮ įȚȑȡȤİIJĮȚ Įʌȩ IJȠ ȝȑıȠ IJȘȢ .= ʌȠȣ İȓȞĮȚ IJȠ țȑȞIJȡȠ IJȠȣ țȪțȜȠȣ c2 . DZȡĮ IJĮ țȑȞIJȡĮ IJȦȞ țȪțȜȦȞ c , c2 țĮȚ IJȠ ıȘȝİȓȠ % șĮ İȓȞĮȚ ıȣȞİȣșİȚĮțȐ. ǼȞĮȜȜĮțIJȚțȐ, IJȠ IJİȜȚțȩ ıȣȝʌȑȡĮıȝĮ (ʌȠȣ įȚĮIJȣʌȫȞİIJĮȚ ıIJȘȞ IJİȜİȣIJĮȓĮ ʌĮȡȐȖȡĮijȠ) șĮ ȝʌȠȡȠȪıİ ȞĮ ʌȡȠțȪȥİȚ țĮȚ ȝİ IJȘ ȕȠȒșİȚĮ IJȠȣ ȝİIJĮıȤȘȝĮIJȚıȝȠȪ IJȘȢ ȠȝȠȚȠșİıȓĮȢ: ǹʌȩ IJȚȢ ȚıȩIJȘIJİȢ ȖȦȞȚȫȞ 1

țĮȚ 2 ıȣȝʌİȡĮȓȞȠȣȝİ ȩIJȚ: $1

=1 , ȠʌȩIJİ IJĮ İȣșȪȖȡĮȝȝĮ IJȝȒȝĮIJĮ

$' țĮȚ .= İȓȞĮȚ ʌĮȡȐȜȜȘȜĮ țĮȚ țĮIJȐ ıȣȞȑʌİȚĮ ȠȝȠȚȩșİIJĮ ıIJȘȞ ȠȝȠȚȠșİıȓĮ ȝİ țȑȞIJȡȠ ȠȝȠȚȠșİıȓĮȢ IJȠ ıȘȝİȓȠ % . ǼijȩıȠȞ IJĮ IJȝȒȝĮIJĮ $' țĮȚ .= ( įȘȜĮįȒ, ȠȚ įȚȐȝİIJȡȠȚ IJȦȞ țȪțȜȦȞ c țĮȚ c2 ) İȓȞĮȚ ȠȝȠȚȩșİIJĮ ȝİ țȑȞIJȡȠ ȠȝȠȚȠșİıȓĮȢ IJȠ % țĮȚ ȠȚ țȪțȜȠȚ c țĮȚ c2 șĮ İȓȞĮȚ ȠȝȠȚȩșİIJȠȚ ȝİ IJȠ ȓįȚȠ țȑȞIJȡȠ ȠȝȠȚȠșİıȓĮȢ. ǻȘȜĮįȒ IJĮ țȑȞIJȡĮ IJȦȞ țȪțȜȦȞ c , c2 țĮȚ IJȠ ıȘȝİȓȠ % șĮ İȓȞĮȚ ıȣȞİȣșİȚĮțȐ. 2ȠȢ IJȡȩʌȠȢ ĬĮ ĮʌȠįİȓȟȠȣȝİ ȩIJȚ Ƞ c2 İijȐʌIJİIJĮȚ IJȠȣ țȪțȜȠȣ c (O , R ) ıIJȠ ıȘȝİȓȠ % . īȚĮ IJȠ ıțȠʌȩ ĮȣIJȩ șĮ įİȓȟȠȣȝİ ȩIJȚ ȠȚ įȪȠ ĮȣIJȠȓ țȪțȜȠȚ ȑȤȠȣȞ țȠȚȞȒ İijĮʌIJȠȝȑȞȘ ıIJȠ ıȘȝİȓȠ % . DzıIJȦ %5 Ș İijĮʌIJȠȝȑȞȘ IJȠȣ c (O , R )

n ıIJȠ ıȘȝİȓȠ % țĮȚ ȠȞȠȝȐȗȠȣȝİ .%5 Įȡțİȓ ȞĮ ĮʌȠįİȓȟȠȣȝİ ȩIJȚ

Z . īȚĮ ȞĮ įİȓȟȠȣȝİ ȩIJȚ Ș %5 İȓȞĮȚ İijĮʌIJȠȝȑȞȘ IJȠȣ c2 ıIJȠ % , n %(.

Z .

(1)

n Z . ǼʌȚʌȜȑȠȞ Ș $' İȓȞĮȚ įȚȐȝİIJȡȠȢ, ǼʌİȚįȒ Ș %5 Ș İijĮʌIJȠȝȑȞȘ IJȠȣ c (O , R ) , ȑȤȠȣȝİ ȩIJȚ '*% n 90q , ȠʌȩIJİ (*% n 90q Z . ǵȝȦȢ ȠʌȩIJİ $*' ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/36


--------------------------------------------------------------------------------------------------- ȂĮșȘȝĮIJȚțȠȓ ǻȚĮȖȦȞȚıȝȠȓ ------------------------------------------------------------------------------------------------

n 2%*( n 2(90q Z) 180q 2Z , %.( (2) Įʌȩ IJȘ ıȤȑıȘ İʌȓțİȞIJȡȘȢ İȖȖİȖȡĮȝȝȑȞȘȢ ıIJȠȞ c1 . ǵȝȦȢ IJȠ IJȡȓȖȦȞȠ %.( İȓȞĮȚ ȚıȠıțİȜȑȢ İʌȠȝȑȞȦȢ n .(% n Z , ȠʌȩIJİ Ș (1) ȚıȤȪİȚ țĮȚ ȑȤȠȣȝİ IJȠ ȗȘIJȠȪȝİȞȠ. ȜȩȖȦ IJȘȢ (2) șĮ İȓȞĮȚ .%(

ȅȚ ȜȪıİȚȢ IJȦȞ ĮıțȒıİȦȞ IJȠȣ IJİȪȤȠȣȢ 107 – ǼȣțȜİȓįȘ ǹ ǹ50. ȃĮ ȜȪıİIJİ ıIJȠȣȢ ʌȡĮȖȝĮIJȚțȠȪȢ ĮȡȚșȝȠȪȢ IJȠ ıȪıIJȘȝĮ:

{x2 xy xz

y, y 2 yz yx

z, z 2 zx zy

x} .

ȁȪıȘ. Ȃİ ʌȡȩıșİıȘ IJȦȞ ıȤȑıİȦȞ țĮIJȐ ȝȑȜȘ ȑȤȠȣȝİ x 2 y 2 z 2 2 xy 2 yz 2 zx

x y z ( x y z)2

ǹȞ x y z 1 , IJȩIJİ Įʌȩ IJȘȞ ʌȡȫIJȘ ıȤȑıȘ ȑȤȠȣȝİ x 1 . x y z 3 ǹȞ x y z 0 , IJȩIJİ Įʌȩ IJȘȞ ʌȡȫIJȘ ıȤȑıȘ ȑȤȠȣȝİ 0 x y z 0.

x y z.

x( x y z )

x 2 xy xz

y , ȠʌȩIJİ

x( x y z )

x 2 xy xz

y , ȠʌȩIJİ

A51. ǺȡİȓIJİ 2018 șİIJȚțȠȪȢ ĮțȑȡĮȚȠȣȢ, ȩȤȚ țĮIJ’ ĮȞȐȖțȘ įȚĮijȠȡİIJȚțȠȪȢ, IJȑIJȠȚȠȣȢ ȫıIJİ IJȠ ȐșȡȠȚıȝĮ IJȠȣȢ ȞĮ ȚıȠȪIJĮȚ ȝİ IJȠ ȖȚȞȩȝİȞȩ IJȠȣȢ. ī33. Ȉİ ȠȟȣȖȫȞȚȠ IJȡȓȖȦȞȠ ǹǺī Ș įȚȤȠIJȩȝȠȢ ǹǻ, IJȠ ȪȥȠȢ ǺǼ țĮȚ Ș ȝİıȠțȐșİIJȠȢ IJȘȢ ʌȜİȣȡȐȢ ˆ . ǹǺ ʌİȡȞȠȪȞ Įʌȩ IJȠ ȓįȚȠ ıȘȝİȓȠ. ǺȡİȓIJİ ʌȩıİȢ ȝȠȓȡİȢ İȓȞĮȚ Ș ȖȦȞȓĮ %$* ī34. ȈIJȚȢ ʌȜİȣȡȑȢ Ǻī țĮȚ ǹǺ IJȡȚȖȫȞȠȣ ǹǺī İʌȚȜȑȖȠȣȝİ ıȘȝİȓĮ $1 țĮȚ *1 , ĮȞIJȓıIJȠȚȤĮ, ȑIJıȚ ˆ ȫıIJİ IJĮ İȣșȪȖȡĮȝȝĮ IJȝȒȝĮIJĮ $$1 țĮȚ **1 ȞĮ İȓȞĮȚ ȓıĮ țĮȚ țȐșİIJĮ. ǹȞ İȓȞĮȚ $%* 45D , ȞĮ ĮʌȠįİȓȟİIJİ ȩIJȚ $*

$$1 .

ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/37


¡ °ÊÎÌȘ ­ÈÅȘ ÌÍÈ Ìɉ¼ÐÊÈÆÈ design ======================= ȂĮȡȓĮ ȇȠȣıȠȪȜȘ, īȚȫȡȖȠȢ ȀĮȡĮijȑȡȘȢ, ȆĮȞĮȖȚȫIJȘȢ Ĭ. ĬİȠįȫȡȠȣ ȆĮȡĮIJȘȡȒıIJİ IJȚȢ 3 ʌĮȡĮțȐIJȦ ȠȝȐįİȢ ıȤȘȝȐIJȦȞ țĮȚ Įʌȩ țȐșİ ȠȝȐįĮ İʌȚȜȑȟIJİ İțİȓȞȠ IJȠ ıȤȒȝĮ ʌȠȣ ıĮȢ İȓȞĮȚ ȠʌIJȚțȐ ʌȚȠ İȣȤȐȡȚıIJȠ. 1Ș ȠȝȐįĮ ıȤȘȝȐIJȦȞ.

2Ș ȠȝȐįĮ ıȤȘȝȐIJȦȞ.

3Ș ȠȝȐįĮ ıȤȘȝȐIJȦȞ.

ǼȜȐIJİ ȞĮ įȠȪȝİ IJȚ ĮʌȐȞIJȘıĮȞ 150 ȝĮșȘIJȑȢ ȁȣțİȓȦȞ IJȘȢ ȀĮıIJȠȡȚȐȢ. ȉĮ ʌȠıȠıIJȐ IJȦȞ ĮʌĮȞIJȒıİȦȞ IJȦȞ ȝĮșȘIJȫȞ ijĮȓȞȠȞIJĮȚ ıIJȠȞ ʌĮȡĮțȐIJȦ ʌȓȞĮțĮ: Ș

1 ȅȂǹǻǹ Ș

2 ȅȂǹǻǹ 3Ș ȅȂǹǻǹ

1Ƞ ȈȋǾȂǹ

2Ƞ ȈȋǾȂǹ

36% (Ȝ = 1,61) 20% (Ȝ = 7) 12,67% (Ȝ = 1,92)

17,33% (Ȝ = 2,5) 35,33% (Ȝ = 2,02) 42% (Ȝ = 1,61)

3Ƞ ȈȋǾȂǹ

37,33% O 1, 25 36,67% (Ȝ = 1,6) 29,33% Ȝ = 1,37

4Ƞ ȈȋǾȂǹ

9,33% Ȝ= 3 8% Ȝ=1 16% Ȝ = 1,2

Ǽįȫ ȞĮ ıȘȝİȚȫıȠȣȝİ ȩIJȚ ıIJȘȞ ʌȡȫIJȘ ȠȝȐįĮ ȝİ Ȝ ıȣȝȕȠȜȓȗȠȣȝİ IJȠȞ ȜȩȖȠ ȝȒțȠȢ ʌȡȠȢ ʌȜȐIJȠȢ. ȈIJȘ įİȪIJİȡȘ ȠȝȐįĮ ȝİ Ȝ ıȣȝȕȠȜȓȗȠȣȝİ IJȠȞ ȜȩȖȠ IJȠȣ ȝİȖȐȜȠȣ IJȝȒȝĮIJȠȢ ʌȡȠȢ IJȠ ȝȚțȡȩ ȈIJȘȞ IJȡȓIJȘ ȠȝȐįĮ ȝİ Ȝ ıȣȝȕȠȜȓȗȠȣȝİ IJȠȞ ȜȩȖȠ IJȘȢ ȣʌȠIJİȓȞȠȣıĮȢ ʌȡȠȢ IJȘȞ țĮIJĮțȩȡȣijȘ țȐșİIJȘ ʌȜİȣȡȐ. ȆĮȡĮIJȘȡȒıIJİ IJȘȞ ȚįȚĮȓIJİȡĮ ȝİȖȐȜȘ ʌȡȠIJȓȝȘıȘ ıIJĮ ıȤȒȝĮIJĮ ʌȠȣ ȑȤȠȣȞ ȜȩȖȠ Ȝ=1,6. ǼȓȞĮȚ IJȣȤĮȓȠ; Ǿ ĮʌȐȞIJȘıȘ İȓȞĮȚ ȩȤȚ, įİȞ İȓȞĮȚ IJȣȤĮȓȠ țĮșȫȢ ȩIJĮȞ įȪȠ İȣșȪȖȡĮȝȝĮ IJȝȒȝĮIJĮ ȑȤȠȣȞ ȜȩȖȠ țȠȞIJȐ ıIJȠ 1,61 IJȩIJİ Ȝȑȝİ ȩIJȚ ȕȡȓıțȠȞIJĮȚ ıİ ȝȓĮ «șİȧțȒ» ĮȞĮȜȠȖȓĮ, İȞȫ Ƞ ȜȩȖȠȢ ĮȣIJȩȢ İȓȞĮȚ ʌĮȖțȠıȝȓȦȢ ȖȞȦıIJȩȢ ȝİ IJȠ ȖȡȐȝȝĮ ij.

ȅ ȣʌȑȡȠȤȠȢ ij

ȈIJȚȢ ĮȡȤȑȢ IJȠȣ 20Ƞȣ ĮȚȫȞĮ Ƞ ĮȝİȡȚțĮȞȩȢ ȝĮșȘȝĮIJȚțȩȢ Mark Barr ȩȡȚıİ IJȠȞ ȜȩȖȠ ij, Įʌȩ IJȠ ĮȡȤȚțȩ ȖȡȐȝȝĮ IJȠȣ ȠȞȩȝĮIJȠȢ IJȠȣ ȖȜȪʌIJȘ ĭİȚįȓĮ Ƞ ȠʌȠȓȠȢ ȜȑȖİIJĮȚ ȩIJȚ ȒIJĮȞ Įʌȩ IJȠȣȢ ʌȡȫIJȠȣȢ ʌȠȣ IJȠȞ ȤȡȘıȚȝȠʌȠȓȘıİ ıIJĮ ȑȡȖĮ IJȠȣ. ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/38


--------------------------------------------------------------------------------------- Ǿ ȋȡȣıȒ ȉȠȝȒ ıIJȠ ıȪȖȤȡȠȞȠ design -----------------------------------------------------------------------------------

ȉȠȞ ʌȡȫIJȠ ȠȡȚıȝȩ IJȘȢ ȤȡȣıȒȢ IJȠȝȒȢ ȕȡȓıțȠȣȝİ ıIJĮ ȈIJȠȚȤİȓĮ IJȠȣ ǼȣțȜİȓįȘ (ʌİȡȓʌȠȣ IJȠ 300 ʌ.Ȥ.) "ȂȚĮ İȣșİȓĮ ȖȡĮȝȝȒ ȜȑȖİIJĮȚ ȩIJȚ ȑȤİȚ țȠʌİȓ ıİ ȐțȡȠ țĮȚ ȝȑıȠ ȜȩȖȠ, ȩIJĮȞ ȩȜȘ Ș İȣșİȓĮ İȓȞĮȚ ȖȚĮ IJȠ ȝİȖĮȜȪIJİȡȠ țȠȝȝȐIJȚ ȩ,IJȚ İȓȞĮȚ IJȠ ȝİȖĮȜȪIJİȡȠ țȠȝȝȐIJȚ ȖȚĮ IJȠ ȝȚțȡȩIJİȡȠ". ȈȪȝijȦȞĮ ȝİ IJȠȞ ȠȡȚıȝȩ IJȠȣ ǼȣțȜİȓįȘ, ȑȞĮ İȣșȪȖȡĮȝȝȠ IJȝȒȝĮ ǹǺ IJȠ ȠʌȠȓȠ ȤȦȡȓıĮȝİ ıİ įȪȠ ȝȑȡȘ ȝİ ȝȒțȘ ǹī = Į țĮȚ īǺ = ȕ (ȈȤȒȝĮ 1), ȑȤİȚ Į+ȕ Į = (1) įȚĮȚȡİșİȓ ıİ ȝȑıȠ țĮȚ ȐțȡȠ ȜȩȖȠ ĮȞ ȚıȤȪİȚ Į ȕ Į ȕ 1 1 īȚĮ ȞĮ ȣʌȠȜȠȖȓıȠȣȝİ IJȠ ij șȑIJȠȣȝİ =I ıȣȞİʌȫȢ = țĮȚ Ș ıȤȑıȘ (1) ȖȓȞİIJĮȚ 1 I ȕ Į I I Ș ȠʌȠȓĮ țĮIJĮȜȒȖİȚ ıIJȘȞ I 2 I 1 0 ȝİ ȡȓȗİȢ I

1 5 Ȓ I 2 įİțIJȒ

1 5 . ǹȜȜȐ IJȠ I İȓȞĮȚ ȜȩȖȠȢ 2 İȓȞĮȚ Ș IJȚȝȒ

İȣșȣȖȡȐȝȝȦȞ IJȝȘȝȐIJȦȞ ıȣȞİʌȫȢ 1 5 =1.618033988749894848… 1.618. I 2 ȉĮ ıȤȒȝĮIJĮ ʌȠȣ İȝʌİȡȚȑȤȠȣȞ ıIJȘ ȖİȦȝİIJȡȓĮ IJȠȣȢ IJȠ ȜȩȖȠ ij, ȠȞȠȝȐȗȠȞIJĮȚ ȤȡȣıȐ. DzIJıȚ ȠȡȓȗȠȞIJĮȚ: Į) ȉȠ Ȥȡȣıȩ ȠȡșȠȖȫȞȚȠ IJȠȣ ȠʌȠȓȠȣ Ƞ ȜȩȖȠȢ IJȦȞ įȚĮıIJȐıİȫȞ IJȠȣ İȓȞĮȚ I . ȀĮIJĮıțİȣȒ ȤȡȣıȠȪ ȠȡșȠȖȦȞȓȠȣ ȝİ țĮȞȩȞĮ țĮȚ įȚĮȕȒIJȘ. x x x

ȈȤİįȚȐȗȠȣȝİ ȑȞĮ IJİIJȡȐȖȦȞȠ ǹǺīǻ ȝİ ʌȜİȣȡȐ 1. ȆĮȓȡȞȠȣȝİ IJȠ ȝȑıȠ Ȃ ȝȚĮȢ ʌȜİȣȡȐȢ țĮȚ IJȠ İȞȫȞȠȣȝİ ȝİ IJȘȞ ĮʌȑȞĮȞIJȚ țȠȡȣijȒ ī. Ȃİ țȑȞIJȡȠ IJȠ Ȃ țĮȚ ĮțIJȓȞĮ Ȃī ȖȡȐijȠȣȝİ IJȩȟȠ ʌȠȣ IJȑȝȞİȚ IJȘȞ ʌȡȠȑțIJĮıȘ IJȘȢ ǹǺ ıIJȠ Ǽ.

ȈIJȠ Ǽ ijȑȡȞȠȣȝİ țȐșİIJȘ ʌȠȣ IJȑȝȞİȚ IJȘȞ ʌȡȠȑțIJĮıȘ IJȘȢ ǻī ıIJȠ ǽ (ȈȤȒȝĮ 3). ȉȩIJİ IJȠ ǹǼǽǻ 5 țĮȚ IJȠ ǺǼǽī İȓȞĮȚ ȤȡȣıȐ ȠȡșȠȖȫȞȚĮ. ǹʌȩ IJȠ Ȇ.Ĭ. Ș Ȃī = ȂǼ = țĮȚ ıIJȠ ǹǼǽǻ ȚıȤȪİȚ 2 $( 5 1 5 1 (= țĮȚ IJİȜȚțȐ I . ǵȝȠȚĮ ıIJȠ ǺǼǽī Ș %( I . ȈȣȞİʌȫȢ ȑȞĮ ȠȡșȠȖȫȞȚȠ $' %( 2 2 ȝİ ȝİȖȐȜȘ ʌȜİȣȡȐ Į țĮȚ ȝȚțȡȒ ȕ İȓȞĮȚ Ȥȡȣıȩ, ĮȞ ĮʌȠțȩʌIJȠȞIJĮȢ ȑȞĮ IJİIJȡȐȖȦȞȠ ȝİ ʌȜİȣȡȐ ȕ ʌĮȓȡȞȠȣȝİ ȑȞĮ ȩȝȠȚȠ ȠȡșȠȖȫȞȚȠ. ȆĮȡĮIJȘȡȠȪȝİ ʌȦȢ ȠȚ ȜȩȖȠȚ IJȦȞ İȝȕĮįȫȞ IJȠȣ ȝİȖȐȜȠȣ ȠȡșȠȖȦȞȓȠȣ ʌȡȠȢ IJȠȣ IJİIJȡĮȖȫȞȠȣ, țĮșȫȢ țĮȚ IJȠȣ IJİIJȡĮȖȫȞȠȣ ʌȡȠȢ IJȠȣ ȝȚțȡȠȪ ȠȡșȠȖȦȞȓȠȣ, İȓȞĮȚ ȓıȠȚ ȝİ I . Ǿ ȤȡȣıȒ Ȓ șİȧțȒ ĮȞĮȜȠȖȓĮ Ȓ ȤȡȣıȒ IJȠȝȒ Ȓ ȤȡȣıȩȢ ȜȩȖȠȢ ıȣȞİʌĮȓȡȞİȚ ȝĮșȘȝĮIJȚțȠȪȢ țĮȚ įȚĮȞȠȠȪȝİȞȠȣȢ ȖȚĮ IJȠȣȜȐȤȚıIJȠȞ 2400 ȤȡȩȞȚĮ, ȩıȠ țĮȞȑȞĮȢ ȐȜȜȠȢ ĮȡȚșȝȩȢ ıIJȘȞ ȚıIJȠȡȓĮ IJȦȞ ȝĮșȘȝĮIJȚțȫȞ. ǼȓȞĮȚ ȑȞĮ ȝĮȖİȣIJȚțȩ IJĮȟȓįȚ ĮȞȐȝİıĮ ıİ ȝĮșȘȝĮIJȚțȐ țĮȚ ijȣıȚțȒ, IJȑȤȞȘ țĮȚ ĮȡȤȚIJİțIJȠȞȚțȒ, ȕȠIJĮȞȚțȒ țĮȚ ȕȚȠȜȠȖȓĮ, ijȚȜȠıȠijȓĮ țĮȚ ȥȣȤȠȜȠȖȓĮ. ȉȘȞ ĮȡȝȠȞȓĮ țĮȚ IJȘȞ İȣȤĮȡȓıIJȘıȘ Įʌȩ ĮȚıșȘIJȚțȒȢ ȐʌȠȥȘȢ ʌȠȣ įȓȞİȚ Ș ʌĮȡȠȣıȓĮ IJȘȢ ȤȡȣıȒȢ ĮȞĮȜȠȖȓĮȢ ıIJȠ ĮȞșȡȫʌȚȞȠ ȝȐIJȚ ȕȡȓıțȠȣȝİ ıİ țĮIJĮıțİȣȑȢ Įʌȩ ĮȡȤĮȚȠIJȐIJȦȞ ȤȡȩȞȦȞ, ȩʌȦȢ ıIJȘȞ ĮȡȤȚIJİțIJȠȞȚțȒ IJȠȣ ȆĮȡșİȞȫȞĮ, ıIJȘ ȝİȖȐȜȘ ʌȣȡĮȝȓįĮ IJȘȢ īțȓȗĮȢ țĮȚ ıIJĮ ȝȣıIJȘȡȚȫįȘ ȠțIJĮȖȦȞȚțȐ İȡİȓʌȚĮ ıIJȠ Newark IJȠȣ Ohio. ȅ ȤȡȣıȩȢ ȜȩȖȠȢ țȐȞİȚ ʌȠȜȪ ĮȚıșȘIJȒ IJȘȞ ʌĮȡȠȣıȓĮ IJȠȣ țĮȚ ıIJȠ ıȤİįȚĮıȝȩ ȝİȖȐȜȠȣ ʌȜȒșȠȣȢ ıȪȖȤȡȠȞȦȞ ĮȞIJȚțİȚȝȑȞȦȞ țĮȚ țIJȘȡȓȦȞ, ĮȞIJȚʌȡȠıȦʌİȣIJȚțȐ įİȓȖȝĮIJĮ IJȦȞ ȠʌȠȓȦȞ ʌĮȡȠȣıȚȐȗȠȞIJĮȚ ıIJȘȞ ʌĮȡȠȪıĮ İȡȖĮıȓĮ. ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/39


--------------------------------------------------------------------------------------- Ǿ ȋȡȣıȒ ȉȠȝȒ ıIJȠ ıȪȖȤȡȠȞȠ design -----------------------------------------------------------------------------------

ȋȡȣıȑȢ țĮIJĮıțİȣȑȢ Ȃİ ĮijȠȡȝȒ IJĮ ıȤȒȝĮIJĮ IJȠȣ İȡȦIJȘȝĮIJȠȜȠȖȓȠȣ ʌİȡȚȠȡȚıIJȒțĮȝİ ıİ ĮȞIJȚʌȡȠıȦʌİȣIJȚțȐ ıȪȖȤȡȠȞĮ ĮȞIJȚțİȓȝİȞĮ țĮȚ țIJȒȡȚĮ ȝİ ĮȞĮȜȠȖȓİȢ ȤȡȣıȒȢ IJȠȝȒȢ. ȅȡșȠȖȫȞȚĮ ȅȡșȠȖȫȞȚĮ İȓȞĮȚ: ȠȚ ʌȚıIJȦIJȚțȑȢ țȐȡIJİȢ (ȈȤȒȝĮ 6) ȝİ įȚĮıIJȐıİȚȢ 54mm x 86mm țĮȚ ȜȩȖȠ įȚĮıIJȐıİȦȞ I = 1,618. ȁȠȖȩIJȣʌĮ İIJĮȚȡİȚȫȞ ȩʌȦȢ IJȘȢ Honda (ȈȤȒȝĮ 7) ıIJȠ ȠʌȠȓȠ ĮȞ ȣʌȠȜȠȖȓıȠȣȝİ IJȠȣȢ İʌȓ ȝȑȡȠȣȢ $* $% $* *= *' ȜȩȖȠȣȢ ȕȡȓıțȠȣȝİ I $% %* *= '= '( țĮȚ IJȘȢ Toyota (ȈȤȒȝĮ 8) ʌȠȣ İȓȞĮȚ ȤȡȣıȒ ȑȜȜİȚȥȘ ʌȠȣ ȤȦȡȓȗİIJĮȚ ıİ ȠȡșȠȖȫȞȚĮ țĮȚ IJĮ İʌȓ ȝȑȡȠȣȢ IJȝȒȝĮIJĮ ıȣȞįȑȠȞIJĮȚ ȝİ ȤȡȣıȒ ĮȞĮȜȠȖȓĮ $' $' '0 4+ +. 4, 13 13 I , I , I. $* '% (0 %+ += 4+ 12 3;

ɇʖɼʅɲ 6

ȉȠ țIJȒȡȚȠ IJȘȢ īȡĮȝȝĮIJİȓĮȢ IJȦȞ ǾȞȦȝȑȞȦȞ ǼșȞȫȞ ȉȠ țIJȒȡȚȠ IJȘȢ ȖȡĮȝȝĮIJİȓĮȢ IJȦȞ ǾȞȦȝȑȞȦȞ ǼșȞȫȞ (ȈȤȒȝĮ 10) ȕȡȓıțİIJĮȚ ıIJȘȞ ʌİȡȚȠȤȒ Manhattan IJȘȢ ȃȑĮȢ ȊȩȡțȘȢ, ıȤİįȚȐıIJȘțİ Įʌȩ IJȠȣȢ ĮȡȤȚIJȑțIJȠȞİȢ Oscar Niemeyer țĮȚ IJȠȞ ȖȐȜȜȠ-İȜȕİIJȩ Le Corbusier. ȉȠ țIJȒȡȚȠ İȓȞĮȚ ȑȞĮȢ ȪȝȞȠȢ ıIJȘ ȤȡȣıȒ IJȠȝȒ. ȉĮ ȠȡșȠȖȫȞȚĮ IJȘȢ ʌȡȩıȠȥȘȢ İȓȞĮȚ ıȤİįȚĮıȝȑȞĮ ıȪȝijȦȞĮ ȝİ IJȠ ĮȞĮȜȠȖȚțȩ ıȪıIJȘȝĮ modulor ʌȠȣ ĮȞȑʌIJȣȟİ Ƞ Le Corbusier , ȑIJıȚ ȫıIJİ IJȠ ȪȥȠȢ țȐșİ ȠȡșȠȖȦȞȓȠȣ İȓȞĮȚ 1,618 ijȠȡȑȢ IJȠȣ ȪȥȠȣȢ IJȠȣ ʌȡȠȘȖȠȪȝİȞȠȣ. ȋȡȣıȐ ȠȡșȠȖȫȞȚĮ İȝijĮȞȓȗȠȞIJĮȚ ıIJȘȞ İȓıȠįȠ, ıIJȠ ıȤİįȚĮıȝȩ IJȦȞ ʌĮȡĮșȪȡȦȞ țĮȚ IJȦȞ ȣĮȜȠʌİIJĮıȝȐIJȦȞ IJȠȣ țIJȘȡȓȠȣ, țĮșȫȢ țĮȚ ıIJȚȢ țĮIJȩȥİȚȢ IJȦȞ ȠȡȩijȦȞ. ɇʖɼʅɲ 10

ȆȪȡȖȠȚ

O ʌȪȡȖȠȢ IJȘȜİʌȚțȠȚȞȦȞȚȫȞ țĮȚ ʌĮȡĮIJȒȡȘıȘȢ CN IJȠȣ ȉȠȡȩȞIJȠ (ȈȤȒȝĮ11) ȑȤİȚ ȪȥȠȢ 553.33 ȝ, Ș ʌȜĮIJijȩȡȝĮ ʌĮȡĮIJȒȡȘıȘȢ İȓȞĮȚ ıİ ȪȥȠȢ 342ȝ. țĮȚ Ƞ ȜȩȖȠȢ IJȦȞ ȣȥȫȞ İȓȞĮȚ 1.618= I . Ǿ ȤȡȣıȒ ĮȞĮȜȠȖȓĮ İȝijĮȞȓȗİIJĮȚ țĮȚ ıIJȠȞ Burj Khalifa (ȈȤȒȝĮ12) IJȠȞ ȥȘȜȩIJİȡȠ ʌȪȡȖȠ IJȠȣ țȩıȝȠȣ ȝİ ȪȥȠȢ 829,8ȝ, IJȠȣ ȠʌȠȓȠȣ Ș țĮIJĮıțİȣȒ ȠȜȠțȜȘȡȫșȘțİ IJȠȞ ȅțIJȫȕȡȚȠ IJȠȣ 2009. ȂȑȤȡȚ IJĮ 512ȝ. Ș ʌȡȩıȠȥȘ İȓȞĮȚ Įʌȩ 829,8 ɇʖɼʅɲ 12 ĮȜȠȣȝȓȞȚȠ țĮȚ ȖȣĮȜȓ [14] țĮȚ Ƞ ȜȩȖȠȢ = 1.618 = I 512 Ȃİ ĮȞĮȜȠȖȓİȢ ȤȡȣıȒȢ IJȠȝȒȢ İȓȞĮȚ țĮIJĮıțİȣĮıȝȑȞȠȢ țĮȚ Ƞ ʌȪȡȖȠȢ IJȠȣ DZȚijİȜ. ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/40


--------------------------------------------------------------------------------------- Ǿ ȋȡȣıȒ ȉȠȝȒ ıIJȠ ıȪȖȤȡȠȞȠ design -----------------------------------------------------------------------------------

Ǿ ʌȣȡĮȝȓįĮ IJȠȣ ȁȠȪȕȡȠȣ

Ǿ ȝİȖȐȜȘ ʌȣȡĮȝȓįĮ ȕȡȓıțİIJĮȚ ıIJȘȞ ĮȣȜȒ IJȠȣ ȃĮʌȠȜȑȠȞIJĮ (Cour Napoléon) IJȠȣ ȝȠȣıİȓȠȣ IJȠȣ ȁȠȪȕȡȠȣ ıIJȠ ȆĮȡȓıȚ (ȈȤȒȝĮ13) ʌȠȣ İȓȞĮȚ țĮȚ Ș țȪȡȚĮ İȓıȠįȠȢ IJȠȣ ȝȠȣıİȓȠȣ. ǹʌȠIJİȜİȓIJĮȚ Įʌȩ ȝȓĮ IJİIJȡĮȖȦȞȚțȒ ʌȣȡĮȝȓįĮ ȝİ ʌȜİȣȡȐ ȕȐıȘȢ 35ȝ. țĮȚ ȪȥȠȢ 21,6ȝ.. Ǿ țĮIJĮıțİȣȒ ȑȤİȚ ȝȩȞȠ ȖȣȐȜȚȞĮ țĮȚ ȝİIJĮȜȜȚțȐ IJȝȒȝĮIJĮ, ȝİ 603 ȖȣȐȜȚȞĮ țȠȝȝȐIJȚĮ ıİ ıȤȒȝĮ ȡȩȝȕȠȣ țĮȚ 70 IJȡȚȖȦȞȚțȐ. Ǿ țĮIJĮıțİȣȒ IJȘȢ ȠȜȠțȜȘȡȫșȘțİ IJȠ 1989 țĮȚ ĮʌȠIJİȜİȓ ȑȞĮ Įʌȩ IJĮ ıȘȝĮȞIJȚțȩIJİȡĮ ĮȟȚȠșȑĮIJĮ IJȠȣ ȆĮȡȚıȚȠȪ. ȂȓĮ țȐșİIJȘ IJȠȝȒ IJȘȢ ʌȣȡĮȝȓįĮȢ ĮʌȠIJİȜİȓIJĮȚ Įʌȩ įȪȠ ȠȡșȠȖȫȞȚĮ IJȡȓȖȦȞĮ ȝİ ʌȜİȣȡȑȢ 21,6ȝ., 17,5ȝ. țĮȚ 27,8 ȝ. (ȈȤȒȝĮ 14), įȘȜĮįȒ ʌİȡȓʌȠȣ ĮȞȐȜȠȖİȢ ʌȡȠȢ IJȠ 1, I țĮȚ I . 27,8 ȆĮȡĮIJȘȡȠȪȝİ ȩIJȚ 1,59 ʌȠȣ İȓȞĮȚ ʌȠȜȪ țȠȞIJȐ ıIJȠ I . 17,5 ȈȤİįȓĮıȘ ĮȣIJȠțȚȞȒIJȦȞ. ȆĮȡȠȣıȚȐȗȠȣȝİ įȪȠ ȝȠȞIJȑȜĮ ȝİ ĮȞĮȜȠȖȓİȢ ʌȠȣ țȩȕȠȣȞ IJȘȞ ĮȞȐıĮ! ȉȘȞ Aston Martin Rapide S țĮȚ IJȘȞ Aston Martin DB9 IJȦȞ ȠʌȠȓȦȞ Ș ıȤİįȓĮıȘ İȓȞĮȚ ȕĮıȚıȝȑȞȘ ıIJȘ ȤȡȣıȒ IJȠȝȒ. ȋĮȡĮțIJȘȡȚıIJȚțȐ, ȩʌȦȢ ĮȞĮijȑȡİIJĮȚ ıIJȘȞ ȚıIJȠıİȜȓįĮ IJȘȢ Aston Martin, Ș ȋȡȣıȒ ȉȠȝȒ ȕȡȓıțİIJĮȚ ıIJȘȞ țĮȡįȚȐ țȐșİ Aston Martin. ǵȞIJĮȢ ȚıȠȡȡȠʌȘȝȑȞİȢ Įʌȩ țȐșİ ȠʌIJȚțȒ ȖȦȞȓĮ, ȠȚ İȟȦIJİȡȚțȑȢ ȖȡĮȝȝȑȢ IJȘȢ Rapide S ȕȡȓıțȠȞIJĮȚ ıİ ĮʌȩȜȣIJȘ ĮȡȝȠȞȓĮ, İȞȫ ȠȚ ĮȞĮȜȠȖȓİȢ IJȘȢ ȑȤȠȣȞ țĮșȠȡȚıIJİȓ ȝİ ĮțȡȓȕİȚĮ ȫıIJİ ȞĮ įȘȝȚȠȣȡȖȒıȠȣȞ ȝȚĮ țȠȝȥȒ țĮȚ țĮșĮȡȒ ȝȠȡijȒ (ȈȤȒȝĮIJĮ 15, 16).

ȈȣȝʌİȡȐıȝĮIJĮ Ǿ ĮȟȓĮ IJȘȢ ȤȡȣıȒȢ IJȠȝȒȢ ĮȞĮȖȞȦȡȓȗİIJĮȚ įȚĮȤȡȠȞȚțȐ ʌȡȠțİȚȝȑȞȠȣ ȞĮ İʌȚIJȣȖȤȐȞȠȞIJĮȚ țĮȜȪIJİȡĮ ĮȚıșȘIJȚțȐ ĮʌȠIJİȜȑıȝĮIJĮ țĮȚ ĮȣIJȩ ijĮȓȞİIJĮȚ Įʌȩ IJȘ ȤȡȘıȚȝȠʌȠȓȘıȘ IJȘȢ Įʌȩ ʌȜȒșȠȢ İʌȚıIJȘȝȫȞ țĮȚ IJİȤȞȫȞ ıİ įȚȐijȠȡİȢ İijĮȡȝȠȖȑȢ IJȘȢ. ǵʌȦȢ ȑįİȚȟİ țĮȚ Ș ıȪȞIJȠȝȘ ȑȡİȣȞĮ ıIJȠȣȢ ȝĮșȘIJȑȢ IJȦȞ ıȤȠȜİȓȦȞ ȝĮȢ Ș ȤȡȣıȒ ĮȞĮȜȠȖȓĮ İʌȚȜȑȖİIJĮȚ ĮȣșȩȡȝȘIJĮ Įʌȩ IJȠȣȢ ĮȞșȡȫʌȠȣȢ ȦȢ Ș ʌȚȠ țĮȜĮȓıșȘIJȘ ĮȞĮȜȠȖȓĮ țĮȚ įȘȝȚȠȣȡȖİȓ ıIJȠ ĮȞșȡȫʌȚȞȠ ȝȐIJȚ IJȘȞ ĮȓıșȘıȘ IJȘȢ ĮȡȝȠȞȓĮȢ țĮȚ IJȘȢ İȣȤĮȡȓıIJȘıȘȢ. DzIJıȚ ıIJȘȡȚȗȩȝİȞȠȚ ʌȐȞȦ ıİ ĮȣIJȒ IJȘȞ ĮȓıșȘıȘ IJȠȣ ĮȞșȡȫʌȚȞȠȣ ȝĮIJȚȠȪ, ȠȚ ʌİȡȚııȩIJİȡȠȚ ıȪȖȤȡȠȞȠȚ ĮȡȤȚIJȑțIJȠȞİȢ țĮȚ țȐșİ İȓįȠȣȢ ıȤİįȚĮıIJȑȢ ıȪȖȤȡȠȞȦȞ ĮȞIJȚțİȚȝȑȞȦȞ, ȤȡȘıȚȝȠʌȠȚȠȪȞ ȦȢ ȕĮıȚțȩ İȡȖĮȜİȓȠ țĮȚ ȖȞȫȝȠȞĮ IJȠȣ ıȤİįȚĮıȝȠȪ IJȠȣȢ IJȘ ȤȡȣıȒ ĮȞĮȜȠȖȓĮ, ȖȚĮ ȞĮ ʌȡȠıİȜțȪıȠȣȞ IJȠ İȞįȚĮijȑȡȠȞ țĮȚ IJȘȞ ʌȡȠıȠȤȒ IJȦȞ İʌȚıțİʌIJȫȞ Ȓ IJȠȣ ĮȖȠȡĮıIJȚțȠȪ țȠȚȞȠȪ ĮȞȐȜȠȖĮ ȝİ IJȠ ĮȞIJȚțİȓȝİȞȠ ʌȠȣ ıȤİįȚȐȗȠȣȞ. ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/41


ÎÍȿ ÍÈ ÇȐʺ;; ¦ºÁÀźÍÂÃǷ ÆǷľÃͺ =================================================================================== ȈȣȞIJĮțIJȚțȒ ǼʌȚIJȡȠʌȒ.

1) Ǿ ʌİȡȓʌIJȦıȘ IJȠȣ ĮȡȚșȝȠȪ 13. ȅ ĮȡȚșȝȩȢ 13 șİȦȡİȓIJİ ȑȞĮȢ ĮȡȚșȝȩȢ ʌȠȣ ıȣȞįȑİIJĮȚ ȝİ IJȘȞ țĮțȠIJȣȤȓĮ țĮȚ ıȣȞȒșȦȢ ĮʌȠijİȪȖİIJĮȚ. ȊʌȐȡȤȠȣȞ ʌİȡȚʌIJȫıİȚȢ ȩʌȠȣ ĮțȩȝĮ țĮȚ ıIJȠȞ ĮȞİȜțȣıIJȒȡĮ ȝȚĮȢ ʌȠȜȣțĮIJȠȚțȓĮȢ ĮʌȠijİȪȖȠȣȞ ȞĮ ȕȐȜȠȣȞ țȠȣȝʌȓ ȝİ ĮȡȚșȝȩ 13. ǹțȩȝȘ ȝİȖĮȜȪIJİȡȘ țĮțȠIJȣȤȓĮ șİȦȡİȓIJĮȚ ȞĮ ıȣȝʌȑıİȚ Ș 13Ș IJȠȣ ȝȒȞĮ ȝİ IJȘȞ ȘȝȑȡĮ ȆĮȡĮıțİȣȒ. īİȞȚțȐ ȆĮȡĮıțİȣȒ țĮȚ 13 ıIJȠȞ ʌȠȜȪ țȩıȝȠ ȑȤİȚ ʌİȡȐıİȚ ıĮȞ ȝȓĮ țĮțȩIJȣȤȘ ıȪȝʌIJȦıȘ. ȂİȡȚțȑȢ ijȠȡȑȢ IJĮ ʌȠȜȪ ıȣȝʌĮșȘIJȚțȐ ȗȦȐțȚĮ, ȠȚ ȖȐIJİȢ ȝĮȪȡȠȣ ȤȡȫȝĮIJȠȢ, İȞȚıȤȪȠȣȞ IJȘȞ ʌȡȠțĮIJȐȜȘȥȘ ȖȚĮ IJȘȞ ȆĮȡĮıțİȣȒ 13 IJȠȣ ȝȘȞȩȢ. ǹʌȩ ʌȠȣ ʌȡȠȑȡȤİIJĮȚ ȩȝȦȢ ĮȣIJȒ Ș ĮȞIJȓȜȘȥȘ; ȁȑȞİ ȩIJȚ ıIJȠ ȂȣıIJȚțȩ ǻİȓʌȞȠ ȕȡȓıțȠȞIJĮȞ 13 ȐIJȠȝĮ țĮȚ ĮȣIJȩ ȒIJĮȞ țĮȚ IJȠ IJİȜİȣIJĮȓȠ įİȓʌȞȠ IJȠȣ ȋȡȚıIJȠȪ. ǼʌȚʌȜȑȠȞ Ș ıIJĮȪȡȦıȘ ȑȖȚȞİ ȘȝȑȡĮ ȆĮȡĮıțİȣȒ. ǹȢ ȑȡșȠȣȝİ IJȫȡĮ ȞĮ ıțİijIJȠȪȝİ ȜȓȖȠ ıIJĮIJȚıIJȚțȐ ʌȐȞȦ ıIJȘȞ İȝijȐȞȚıȘ ĮȣIJȒȢ IJȘȢ ıȪȝʌIJȦıȘȢ. ȉȠ İȡȫIJȘȝĮ İȓȞĮȚ ʌȩıȠ ıȣȤȞȐ İȝijĮȞȓȗİIJĮȚ Ș 13Ș IJȠȣ ȝȒȞĮ ȞĮ İȓȞĮȚ ȆĮȡĮıțİȣȒ. īȚĮ ȞĮ ȝİȜİIJȒıȠȣȝİ ıIJĮIJȚıIJȚțȐ IJȚ ıȣȝȕĮȓȞİȚ ȤȡİȚĮȗȩȝĮıIJİ ȝİȖȐȜȠ ȤȡȠȞȚțȩ įȚȐıIJȘȝĮ ʌ.Ȥ 400 ȤȡȩȞȚĮ. Ȉİ 400 ȤȡȩȞȚĮ ȣʌȐȡȤȠȣȞ 146.097 ȘȝȑȡİȢ Ȓ 4.800 ȝȒȞİȢ, ȐȡĮ Ș 13Ș IJȠȣ ȝȒȞĮ İȝijĮȞȓȗİIJĮȚ 4.800 ijȠȡȑȢ ıIJĮ 400 ȤȡȩȞȚĮ. ȆȡȠıȑȟIJİ IJȫȡĮ IJȠȞ ʌĮȡĮțȐIJȦ ʌȓȞĮțĮ ǾȂǼȇǹ ǾȂǼȇȅȂǾȃǿǹ 13 ȆȅȈȅȈȉȅ 14,313% ȀȣȡȚĮțȒ 687 ǼȓȞĮȚ ʌȡȠijĮȞȑȢ ȩIJȚ Ș ıȪȝʌIJȦıȘ IJȘȢ 14,271% ǻİȣIJȑȡĮ 685 ȆĮȡĮıțİȣȒȢ ȝİ IJȘȞ 13Ș İȞȩȢ ȝȒȞĮ İȓȞĮȚ ȝİȖĮȜȪIJİȡȘ 14,271% ȉȡȓIJȘ 685 Įʌȩ țȐșİ ȐȜȜȘ. 14,313% ȉİIJȐȡIJȘ 687 ȈȣȝʌȑȡĮıȝĮ Ș 13Ș įİȓȤȞİȚ ȝȓĮ țȐʌȦȢ 14,250% ȆȑȝʌIJȘ 684 ȝİȖĮȜȪIJİȡȘ ʌȡȠIJȓȝȘıȘ ıIJȘȞ ȆĮȡĮıțİȣȒ!! 14,333% ȆĮȡĮıțİȣȒ 688 14,250% ȈȐȕȕĮIJȠ 684

2) Ǿ ʌİȡȓʌIJȦıȘ IJȠȣ ȂĮșȘȝĮIJȚțȠȪ ȆȦȜ DzȡȞIJȠȢ (Paul Erdos 1913-1996) O Paul Erdos ȒIJĮȞ ȑȞĮȢ ȅȪȖȖȡȠȢ ȂĮșȘȝĮIJȚțȩȢ țĮȚ ȣʌȒȡȟİ ȑȞĮȢ Įʌȩ IJȠȣȢ ʌȚȠ ʌĮȡĮȖȦȖȚțȠȪȢ ȂĮșȘȝĮIJȚțȠȪȢ IJȠȣ 20Ƞȣ ĮȚȫȞĮ. DzȗȘıİ ıĮȞ ȑȞĮȢ ȝȠȞĮȤȚțȩȢ ȜȐIJȡȘȢ IJȦȞ ȂĮșȘȝĮIJȚțȫȞ ȤȦȡȓȢ ȝȩȞȚȝȘ țĮIJȠȚțȓĮ țĮȚ İȡȖĮıȓĮ, țȣȡȚȠȜİțIJȚțȐ ȑȞĮȢ ȞȠȝȐȢ. Ȃİ ĮʌȠıțİȣȑȢ ȝȓĮ ȝȚțȡȒ ȕĮȜȓIJıĮ ȖȪȡȚȗİ ıİ ȤȫȡİȢ ȖȚĮ ȞĮ ıȣȞİȡȖĮıIJİȓ ȝİ ȐȜȜȠȣȢ ıʌȠȣįĮȓȠȣȢ ȂĮșȘȝĮIJȚțȠȪȢ. ǹțȩȝĮ țĮȚ ıIJĮ IJİȜİȣIJĮȓĮ ȤȡȩȞȚĮ IJȘȢ ȗȦȒȢ IJȠȣ, ıİ ȘȜȚțȓĮ 83 İIJȫȞ ıȣȞȑȤȚȗİ ȞĮ İʌȚȞȠİȓ țĮȚ ȞĮ įȚĮIJȣʌȫȞİȚ șİȦȡȒȝĮIJĮ țĮȚ ȞĮ įȓȞİȚ įȚĮȜȑȟİȚȢ ĮȥȘijȫȞIJĮȢ ĮȣIJȩ ʌȠȣ ʌȚıIJİȪȠȣȞ ʌȠȜȜȠȓ ȩIJȚ įȘȜĮįȒ IJĮ ȂĮșȘȝĮIJȚțȐ İȓȞĮȚ ȑȞĮ ıʌȠȡ ȝȩȞȠ ȖȚĮ ȞȑȠȣȢ. ȅ Paul Hofman ıIJȠ ȕȚȕȜȓȠ IJȠȣ ¨ȅ ȐȞșȡȦʌȠȢ ʌȠȣ ĮȖȐʌȘıİ ȝȩȞȠ IJĮ ȂĮșȘȝĮIJȚțȐ¨ ȝĮȢ ȜȑİȚ ȩIJȚ Ƞ Erdos ĮıȤȠȜȒșȘțİ ȝİ IJĮ ʌİȡȚııȩIJİȡĮ ʌȡȠȕȜȒȝĮIJĮ ȝİ IJĮ ȠʌȠȓĮ ȑȤİȚ ʌȠIJȑ ĮıȤȠȜȘșİȓ ȂĮșȘȝĮIJȚțȩȢ. ȈIJȘȞ ȘȜȚțȓĮ IJȦȞ IJȡȚȫȞ İIJȫȞ ȝʌȠȡȠȪıİ ȞĮ ȣʌȠȜȠȖȓıİȚ ʌȩıĮ įİȣIJİȡȩȜİʌIJĮ İȓȤĮȞ ȗȒıİȚ ȠȚ ijȓȜȠȚ IJȘȢ ȠȚțȠȖȑȞİȚĮȢ. ȂʌȠȡȠȪıİ ȞĮ ĮȞĮȜȪİȚ IJȚȢ ȜİʌIJȠȝȑȡİȚİȢ Įʌȩ țȐșİ ȝȓĮ Įʌȩ IJȚȢ 1.500 İȡȖĮıȓİȢ ʌȠȣ İȓȤİ ȖȡȐȥİȚ. ȆȓȞȠȞIJĮȢ ıȣȞİȤȫȢ țĮijȑ İȡȖĮȗȩIJĮȞ ʌİȡȓʌȠȣ 19 ȫȡİȢ IJȘȞ ȘȝȑȡĮ ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/42


--------------------------------------------------------------------------------- ǹȣIJȩ IJȠ ȟȑȡĮIJİ; ȂĮșȘȝĮIJȚțȐ ǹȞȐȜİțIJĮ -----------------------------------------------------------------------------

țĮȚ ȩIJĮȞ ȠȚ ijȓȜȠȚ IJȠȞ ıȣȝȕȠȪȜİȣĮȞ ȞĮ ʌȐİȚ ȞĮ ȟİțȠȣȡĮıIJİȓ ĮȣIJȩȢ ıȣȞȒșȚȗİ ȞĮ ĮʌĮȞIJȐ: «ĬĮ ȑȤȦ ȐijșȠȞȠ ȤȡȩȞȠ ȞĮ ȟİțȠȣȡĮıIJȫ ȩIJĮȞ șĮ ĮȞĮʌĮȪȠȝĮȚ ıİ țȐʌȠȚȠȞ IJȐijȠ».

3) ȉĮ ʌȑȞĮȜIJȚ ıIJĮ 11 ȝȑIJȡĮ. ȉȠȞ ȑıIJȘıİ ıIJĮ 11 ȝȑIJȡĮ¨. ǼȓȞĮȚ ȝȓĮ ijȡȐıȘ ʌȠȣ ȤȡȘıȚȝȠʌȠȚȠȪȝİ ȩIJĮȞ șȑȜȠȣȝİ ȞĮ ʌİȡȚȖȡȐȥȠȣȝİ ȗȦȘȡȐ IJȘ įȪıțȠȜȘ șȑıȘ ıIJȘȞ ȠʌȠȓĮ ȑȤİȚ ȕȡİșİȓ țȐʌȠȚȠȢ. Ǿ İȚțȩȞĮ ʌȠȣ ijȑȡȞȠȣȝİ ıIJȠ ȝȣĮȜȩ ȝĮȢ ĮȝȑıȦȢ İȓȞĮȚ ĮȣIJȒ IJȠȣ IJİȡȝĮIJȠijȪȜĮțĮ ʌȠȣ ȖİȝȐIJȠȢ ĮȖȦȞȓĮ ʌİȡȚȝȑȞİȚ IJȠ țIJȪʌȘȝĮ IJȠȣ ʌȑȞĮȜIJȚ Įʌȩ ȑȞĮȞ ĮȞIJȓʌĮȜȠ ʌĮȓțIJȘ.

DzȤİIJİ ʌȠIJȑ ĮȞĮȡȦIJȘșİȓ ȖȚĮIJȓ ȑȤȠȣȝİ İʌȚȜȑȟİȚ IJĮ 11 ȝȑIJȡĮ; Ȉ įȠȪȝİ IJȚ ȜȑȞİ ȠȚ țĮȞȠȞȚıȝȠȓ IJȠȣ ʌȠįȠıijĮȓȡȠȣ ĮȜȜȐ țĮȚ ʌȦȢ IJĮ ȂĮșȘȝĮIJȚțȐ ȑȤȠȣȞ ȣʌĮȖȠȡİȪıİȚ ĮȣIJȠȪȢ IJȠȣȢ țĮȞȠȞȚıȝȠȪȢ. ǹȡȤȚțȐ Ș ʌȡȩșİıȘ ȒIJĮȞ ȞĮ ȣʌȐȡȤİȚ țĮȚ țȐʌȠȚȠ İȞįȚĮijȑȡȠȞ ȖȚĮ IJȠȣȢ șİĮIJȑȢ, ȞĮ IJȠȣȢ ĮȣȟȐȞİȚ IJȘȞ ĮȖȦȞȓĮ ĮȜȜȐ țĮȚ ȞĮ șİȦȡȠȪȞ ȩIJȚ ȝȐȜȜȠȞ șĮ ȝʌİȚ țȐʌȠȚȠ ȖțȠȜ. ȈțȑijIJȘțĮȞ ȩIJȚ șĮ ȒIJĮȞ țĮȜȩ ȞĮ İȓȞĮȚ ȝİȖȐȜȘ Ș ʌȚșĮȞȩIJȘIJĮ ȞĮ ȝȘȞ ȝʌİȚ ȖțȠȜ ĮȜȜȐ ȩIJȚ țĮȚ Ƞ IJİȡȝĮIJȠijȪȜĮțĮȢ șĮ ʌȡȑʌİȚ ȞĮ ȑȤİȚ țȐʌȠȚȠ ȜȩȖȠ ıİ ĮȣIJȩ. ǼʌȑȜİȟĮȞ ȜȠȚʌȩȞ Ș ʌȚșĮȞȩIJȘIJĮ ȞĮ ȝʌİȚ ȖțȠȜ ȞĮ İȓȞĮȚ 75% țĮȚ ȝİ ȕȐıȘ ĮȣIJȩ ȞĮ İʌȚȜȑȟȠȣȞ țĮȚ IJȘȞ ĮʌȩıIJĮıȘ ʌȠȣ șĮ ıIJȘșİȓ Ș ȝʌȐȜĮ. ǹȢ įȠȪȝİ IJȚ ȜȑȞİ ȠȚ ĮȡȚșȝȠȓ. ȉȠ IJȑȡȝĮ ȑȤİȚ ȐȞȠȚȖȝĮ 7,32 ȝȑIJȡĮ țĮȚ ȪȥȠȢ 2,44. ǹʌȩ ĮȣIJȩ ʌȡȠțȪʌIJİȚ ȩIJȚ Ș İʌȚijȐȞİȚȐ ʌȡȠȢ IJȘȞ ȠʌȠȓĮ șĮ ʌȡȑʌİȚ ȞĮ țĮIJİȣșȣȞșİȓ Ș ȝʌȐȜĮ ȑȤİȚ İȝȕĮįȩȞ ʌİȡȓʌȠȣ 18 IJİIJȡĮȖȦȞȚțȐ ȝȑIJȡĮ. ǹȢ ȣʌȠșȑıȠȣȝİ IJȫȡĮ ȩIJȚ Ƞ IJİȡȝĮIJȠijȪȜĮțĮȢ İȓȞĮȚ ʌİȡȓʌȠȣ 2 ȝȑIJȡĮ țĮȚ IJȠ ȐȞȠȚȖȝĮ IJȦȞ ȤİȡȚȫȞ IJȠȣ ʌİȡȓʌȠȣ 2 ȝȑIJȡĮ, ȐȡĮ țĮȜȪʌIJİȚ ȝȓĮ İʌȚijȐȞİȚĮ țȠȞIJȐ ıIJĮ 4 IJİIJȡĮȖȦȞȚțȐ ȝȑIJȡĮ ʌȠȣ ĮȞIJȚıIJȠȚȤİȓ ıIJȠ 22% ʌİȡȓʌȠȣ IJȘȢ İʌȚijȐȞİȚĮȢ IJȠȣ IJȑȡȝĮIJȠȢ. DZȡĮ ȝȑȞİȚ IJȠ 78% ĮțȐȜȣʌIJȠ, ʌȠȣ İȓȞĮȚ țȠȞIJȐ ıIJȠ 75%. ǹȢ įȠȪȝİ IJȫȡĮ IJĮ ȂĮșȘȝĮIJȚțȐ ıİ ıȣȞįȣĮıȝȩ ȝİ IJȘ ĭȣıȚțȒ. ȈIJĮ ʌȑȞĮȜIJȚ Ƞ ȝȑıȠȢ ȩȡȠȢ IJȘȢ IJĮȤȪIJȘIJĮȢ IJȘȢ ȝʌȐȜĮȢ İȓȞĮȚ ʌİȡȓʌȠȣ 100 ȤȚȜȚȩȝİIJȡĮ IJȘȞ ȫȡĮ. ǹȣIJȩ ıȘȝĮȓȞİȚ ȩIJȚ Ș ȝʌȐȜĮ ȤȡİȚȐȗİIJĮȚ ʌİȡȓʌȠȣ 0,4 įİȣIJİȡȩȜİʌIJĮ ȖȚĮ ȞĮ ijIJȐıİȚ ıIJȠ IJȑȡȝĮ. DzȞĮȢ ȐȞșȡȦʌȠȢ ȤȡİȚȐȗİIJĮȚ 0,2 įİȣIJİȡȩȜİʌIJĮ ȖȚĮ ȞĮ ĮȞIJȚȜȘijșİȓ ʌȡȠȢ IJȠ ʌȠȪ țĮIJİȣșȪȞİIJĮȚ Ș ȝʌȐȜĮ, ȐȡĮ IJȠȣ ȝȑȞȠȣȞ 0,2 ĮțȩȝȘ ȖȚĮ ȞĮ ĮȞIJȚįȡȐıİȚ. Ǿ İțIJȓȞĮȟȘ İȞȩȢ țĮȜȠȪ IJİȡȝĮIJȠijȪȜĮțĮ ʌȡĮȖȝĮIJȠʌȠȚİȓIJĮȚ ȝİ IJĮȤȪIJȘIJĮ 40 ȤȚȜȚȩȝİIJȡĮ IJȘȞ ȫȡĮ țĮȚ țĮȜȪʌIJİȚ IJȘȞ ĮʌȩıIJĮıȘ IJȦȞ 3,66 ȝȑIJȡȦȞ (IJȠ ȝȚıȩ IJȑȡȝĮ) ıİ 0,33 įİȣIJİȡȠȜȑʌIJĮ. ǹȣIJȩ ıȘȝĮȓȞİȚ ȩIJȚ Ƞ IJİȡȝĮIJȠijȪȜĮțĮȢ șĮ ʌȡȑʌİȚ İț IJȦȞ ʌȡȠIJȑȡȦȞ ȞĮ ȑȤİȚ ĮʌȠijĮıȓıİȚ ıİ ʌȠȚĮ ȖȦȞȓĮ șĮ ʌȑıİȚ. http://www.tovima.gr/science/article/?aid=337336 (ȝİ ȕȐıȘ țİȓȝİȞȠ IJȠȣ ǹ. īǹȁǻǹǻǹ) ǼȊȀȁǼǿǻǾȈ ǹǯ 108 IJ.4/43


1Ƞ īȊȂȃǹȈǿȅ ȈȀǹȁǹȈ ȍȇȍȆȅȊ ǹȉȉǿȀǾȈ

6Ș ǼȀĬǼȈǾ ȂǹĬǾȂǹȉǿȀȍȃ

ǿȋȃǾȁǹȉȍȃȉǹȈ ȉǹ ǼȂȆȃǼȊȈȂǼȃǹ ȂȅȃȅȆǹȉǿǹ ȉȅȊ Ȃ. C. ESCHER ============== ȆĮȡȠȣıȓĮıȘ : ȈIJȐȝȘ ȉıȚțȠʌȠȪȜȠȣ ȉȘȞ ʌȡȠȘȖȠȪȝİȞȘ ıȤȠȜȚțȒ ȤȡȠȞȚȐ 2016-2017, Ș țĮșȘȖȒIJȡȚĮ IJȦȞ ȂĮșȘȝĮIJȚțȫȞ ț. ȂĮȡĮȖțȠȪ īİȦȡȖȓĮ ȜİȚIJȠȪȡȖȘıİ, ȖȚĮ 6Ș ıȣȞİȤȒ ıȤȠȜȚțȒ ȤȡȠȞȚȐ, IJȠ ȂǹĬǾȂǹȉǿȀȅ ǼȇīǹȈȉǾȇǿ ıIJȠ 1Ƞ īȣȝȞȐıȚȠ ȈțȐȜĮȢ ȍȡȦʌȠȪ ǹIJIJȚțȒȢ. ȅȚ ȝĮșȘIJȑȢ IJȘȢ īǯ IJȐȟȘȢ ʌȠȣ IJȘȞ ʌȡȠȘȖȠȪȝİȞȘ ȤȡȠȞȚȐ ȝİ ĮijȠȡȝȒ IJĮ țĮȞȠȞȚțȐ ʌȠȜȪȖȦȞĮ İȓȤĮȞ ĮıȤȠȜȘșİȓ ȝİ IJȚȢ ʌȜĮțȠıIJȡȫıİȚȢ țĮȚ İȓȤĮȞ ĮȞĮțĮȜȪȥİȚ IJȠ ȑȡȖȠ IJȠȣ Ǽııİȡ, ʌȡȠıʌȐșȘıĮȞ ȞĮ «ʌȜȘıȚȐıȠȣȞ» IJĮ ȤĮȡĮțIJȚțȐ IJȠȣ țĮȚ ıIJȘ ıȣȞȑȤİȚĮ ȞĮ įȘȝȚȠȣȡȖȒıȠȣȞ țȚ İțİȓȞȠȚ IJĮ įȚțȐ IJȠȣȢ ȑȡȖĮ ʌȠȣ ȞĮ IJȠȣȢ ȝȠȚȐȗȠȣȞ! Ȉİ ĮȣIJȒȞ IJȘȞ ʌȡȠıʌȐșİȚĮ İȞİʌȜȐțȘıĮȞ țĮȚ ȠȚ ȝȚțȡȩIJİȡȠȚ ȝĮșȘIJȑȢ IJȘȢ Ǻǯ IJȐȟȘȢ.

ȆȠȚȩȢ ȩȝȦȢ İȓȞĮȚ Ƞ Ǽııİȡ; O ȅȜȜĮȞįȩȢ ȂȐȠȣȡȚIJȢ ȀȠȡȞȑȜȚȢ Dzıİȡ (17 ǿȠȣȞȓȠȣ 1898 – 27 ȂĮȡIJȓȠȣ 1972), șİȦȡİȓIJĮȚ įȚțĮȓȦȢ ȦȢ Ƞ ȤĮȡȐțIJȘȢ ʌȠȣ ȠȚ ȚįȑİȢ țĮȚ ȠȚ įȘȝȚȠȣȡȖȓİȢ IJȠȣ ȑȤȠȣȞ IJȘ ȝİȖĮȜȪIJİȡȘ ıȣȞȐijİȚĮ ȝİ IJĮ MĮșȘȝĮIJȚțȐ. ȉȠ ȑȡȖȠ ʌȠȣ IJȠȞ ȑțĮȞİ ʌĮıȓȖȞȦıIJȠ ȒIJĮȞ Ș ıȣıIJȘȝĮIJȚțȒ įȚĮȓȡİıȘ IJȠȣ İʌȚʌȑįȠȣ țĮȚ ȠȚ ʌİȡȓijȘȝİȢ ʌȜĮțȠıIJȡȫıİȚȢ IJȠȣ. DzȞĮ ȑȡȖȠ ıIJȠ ȠʌȠȓȠ țȣȡȚĮȡȤİȓ Ș ȖİȦȝİIJȡȓĮ. ȅ ȓįȚȠȢ İȓȤİ ʌİȚ : «ȆȡȩțİȚIJĮȚ ȖȚĮ IJȘȞ ʌȜȠȣıȚȩIJİȡȘ ʌȘȖȒ ȑȝʌȞİȣıȘȢ ʌȠȣ İȓȤĮ ʌȠIJȑ: ȅ IJȡȩʌȠȢ ȝİ IJȠȞ ȠʌȠȓȠ ȝȚĮ İʌȚijȐȞİȚĮ ȝʌȠȡİȓ ȞĮ įȚĮȚȡİșİȓ, Ȓ ȞĮ ȖİȝȓıİȚ ȝİ ȠȝȠȚȩȝȠȡijĮ ıȤȒȝĮIJĮ ʌȠȣ İijȐʌIJȠȞIJĮȚ ȤȦȡȓȢ ȞĮ ĮijȒȞȠȣȞ țĮșȩȜȠȣ țİȞȐ.» ȉȠ ʌȡȩȕȜȘȝĮ ȜȠȚʌȩȞ ıIJȚȢ ʌȜĮțȠıIJȡȫıİȚȢ İȓȞĮȚ ȞĮ «ȖİȝȓıȠȣȝİ» IJȠ İʌȓʌİįȠ ȤȦȡȓȢ țİȞȐ țĮȚ İʌȚțĮȜȪȥİȚȢ, μİ IJĮ ʌȜĮțȐțȚĮ – țȠȝȝĮIJȐțȚĮ ʌȠȣ μĮȢ įȓȞȠȞIJĮȚ țĮȚ ĮȣIJȩ įİȞ İȓȞĮȚ ʌȐȞIJĮ İijȚțIJȩ. ǼȟĮȚIJȓĮȢ IJȘȢ ȠȚțȠįȠȝȚțȒȢ ȤȡȘıȚȝȩIJȘIJȐȢ IJȘȢ, ȖȚĮ IJȘȞ țȐȜȣȥȘ įĮʌȑįȦȞ țĮȚ IJȠȓȤȦȞ ȝİ ʌȜĮțȐțȚĮ, Ș ȖİȦȝİIJȡȚțȒ «ʌȜĮțȩıIJȡȦıȘ», ȑȤİȚ ĮʌĮıȤȠȜȒıİȚ IJĮ ȝİȖĮȜȪIJİȡĮ ʌȞİȪȝĮIJĮ Įʌȩ IJȘȞ ĮȡȤĮȚȩǼȊȀȁǼǿǻǾ ǹǯ 108 IJ.4/44


ǦǦ 1Ƞ īȊȂȃǹȈǿȅ ȈȀǹȁǹȈ ȍȇȍȆȅȊ ǹȉȉǿȀǾȈ ǿȋȃǾȁǹȉȍȃȉǹȈ ȉǹ ǼȂȆȃǼȊȈȂǼȃǹ ȂȅȃȅȆǹȉǿǹ ȉȅȊ Ȃ. C. ESCHER ǦǦǦ

IJȘIJĮ ȝȑȤȡȚ țĮȚ IJȘ ıȪȖȤȡȠȞȘ İʌȠȤȒ. ȅ Dzııİȡ ȩIJĮȞ İʌȚıțȑijIJȘțİ IJȠ 1922, IJĮ ȝĮȣȡȚIJĮȞȚțȐ ʌĮȜȐIJȚĮ IJȘȢ ǹȜȐȝʌȡĮȢ ıIJȘȞ ǿıʌĮȞȓĮ, ȖȠȘIJİȪIJȘțİ Įʌȩ IJĮ ʌİȡȓIJİȤȞĮ įȚĮțȠıȝȘIJȚțȐ ıȤȑįȚĮ ȝİ IJĮ İʌĮȞĮȜĮȝȕĮȞȩȝİȞĮ ȝȠIJȓȕĮ ʌȠȣ ıIJȠȜȓȗȠȣȞ įȐʌİįĮ țĮȚ IJȠȓȤȠȣȢ țĮȚ ȟİțȓȞȘıİ ȝȚĮ İțIJİIJĮȝȑȞȘ ȝİȜȑIJȘ ıȤİIJȚțȐ ȝİ IJȘ ıȣȝȝİIJȡȓĮ țĮȚ IJȠȞ įȚĮȤȦȡȚıȝȩ IJȠȣ İʌȚʌȑįȠȣ ıİ ȓıĮ ıȤȒȝĮIJĮ Įʌȩ ȩʌȠȣ ʌȡȠȑțȣȥĮȞ țĮȚ ȠȚ ʌİȡȓijȘȝİȢ ʌȜĮțȠıIJȡȫıİȚȢ IJȠȣ. Ȉİ ȝȚĮ ʌȡȠıʌȐșİȚĮ ȞĮ įȫıİȚ ʌİȡȚııȩIJİȡȠ ȞȩȘȝĮ ıIJĮ ĮijȘȡȘȝȑȞĮ ȖİȦȝİIJȡȚțȐ ıȤȑįȚĮ IJȦȞ ȂĮȣȡȚIJĮȞȫȞ, ʌȠȣ ȖȚĮ ǻȚĮțȠıȝȘIJȚțȩ ȝȠIJȓȕȠ ıİ IJȠȓȤȠ șȡȘıțİȣIJȚțȠȪȢ ȜȩȖȠȣȢ ȦȢ ȝȠȣıȠȣȜȝȐȞȠȚ, įİȞ ıȤİįȚȐȗȠȣȞ IJȘȢ ǹȜȐȝʌȡĮ. ȑȝȥȣȤİȢ ȝȠȡijȑȢ, Ƞ Dzııİȡ ıȤİįȓĮıİ ıIJĮ įȚțȐ IJȠȣ ıȤȑįȚĮ, ıȪȝȕȠȜĮ ȝİ ĮȞĮijȠȡȑȢ ıIJȠȞ ijȣıȚțȩ țȩıȝȠ (ĮȞșȡȫʌȚȞİȢ ijȚȖȠȪȡİȢ, İȡʌİIJȐ, țIJȜ.). ǹȣIJȒ Ș IJİȤȞȠIJȡȠʌȓĮ ȝİIJĮȝȠȡijȫșȘțİ ıİ ȝȚĮ ıİȚȡȐ ȟȣȜȩȖȜȣʌIJĮ, ʌȠȣ įȘȝȚȠȣȡȖȒșȘțĮȞ Įʌȩ IJȠ 1936 țĮȚ ȪıIJİȡĮ țĮȚ IJĮ ȠʌȠȓĮ Ƞ ȓįȚȠȢ Ƞ Dzııİȡ įȘȝȠıȓİȣıİ IJȠ 1958, ıIJȠ ȕȚȕȜȓȠ IJȠȣ ‘The Regular Division of the Plane'’. ǹʌȩ ĮȣIJȒ IJȘ ıȣȜȜȠȖȒ IJȠȣ Dzııİȡ İȓȞĮȚ țĮȚ IJĮ ʌĮȡĮțȐIJȦ ȑȡȖĮ IJȠȣ.

ǿʌIJȐȝİȞĮ ȥȐȡȚĮ

ǿʌʌİȓȢ

ȈĮȪȡİȢ țĮȚ ȕȐIJȡĮȤȠȚ

ȆȦȢ ȩȝȦȢ țĮIJȩȡșȦıİ Ƞ Dzııİȡ ȞĮ įȘȝȚȠȣȡȖȒıİȚ ĮȣIJȑȢ IJȚȢ ʌȠȜȪʌȜȠțİȢ țĮȚ İȞIJȣʌȦıȚĮțȑȢ ʌȜĮțȠıIJȡȫıİȚȢ ȝİ IJĮ İʌĮȞĮȜĮȝȕĮȞȩȝİȞĮ ȓıĮ ȝȠIJȓȕĮ; ȅȚ ȝĮșȘIJȑȢ ʌĮȡĮIJȒȡȘıĮȞ ʌȡȠıİțIJȚțȐ, ȠȡȚıȝȑȞĮ Įʌȩ IJĮ ʌȚȠ ĮʌȜȐ ıȤȑįȚĮ IJȠȣ Dzııİȡ țĮȚ ʌȡȠıʌȐșȘıĮȞ ȞĮ țĮIJĮȜȐȕȠȣȞ IJȠ ȖİȦȝİIJȡȚțȩ IJȠȣȢ ȣʌȩȕĮșȡȠ țĮȚ įİȞ ȐȡȖȘıĮȞ ȞĮ IJȠ ĮȞĮțĮȜȪȥȠȣȞ. ǹʌȩ IJȘȞ ʌȡȠȘȖȠȪȝİȞȘ IJȐȟȘ ȖȞȫȡȚȗĮȞ ȩIJȚ IJĮ ȝȩȞĮ țĮȞȠȞȚțȐ ʌȠȜȪȖȦȞĮ ʌȠȣ țĮȜȪʌIJȠȣȞ IJȑȜİȚĮ ȝȓĮ İʌȚijȐȞİȚĮ (ȑȞĮ İʌȓʌİįȠ) ȤȦȡȓȢ ȞĮ ĮijȒȞȠȣȞ țİȞȐ ȝİIJĮȟȪ IJȠȣȢ țĮȚ ȤȦȡȓȢ ȞĮ İʌȚțĮȜȪʌIJȠȣȞ IJȠ ȑȞĮ IJȠ ȐȜȜȠ İȓȞĮȚ IJȠ ȚıȩʌȜİȣȡȠ IJȡȓȖȦȞȠ, IJȠ IJİIJȡȐȖȦȞȠ țĮȚ IJȠ țĮȞȠȞȚțȩ İȟȐȖȦȞȠ, IJȠ ȠʌȠȓȠ ȤȡȘıȚȝȠʌȠȓȘıİ țĮȚ Ƞ ȝĮșȘIJȒȢ IJȠȣ İȡȖĮıIJȘȡȓȠȣ IJȘȢ įȚʌȜĮȞȒȢ ijȦIJȠȖȡĮijȓĮȢ, ȖȚĮ ȞĮ įȘȝȚȠȣȡȖȒıİȚ IJȘȞ įȚțȒ IJȠȣ ʌȜĮțȩıIJȦıȘ. ǼȓȞĮȚ IJĮ ȝȩȞĮ țĮȞȠȞȚțȐ ʌȠȜȪȖȦȞĮ İʌİȚįȒ, IJȠ ȐșȡȠȚıȝĮ IJȦȞ ȖȦȞȚȫȞ IJȠȣȢ, ȩIJĮȞ IJĮ IJĮȚȡȚȐȟȠȣȝİ ȖȪȡȦ Įʌȩ ȝȚĮ țȠȚȞȒ țȠȡȣijȒ, ȚıȠȪIJĮȚ ȝİ 3600 , įȘȜĮįȒ ıȤȘȝĮIJȓȗȠȣȞ ȝȚĮ ʌȜȒȡȘ ȖȦȞȓĮ.

ȆȡȐȖȝĮIJȚ : - 3·1200 = 3600 ȖȚĮ IJȠ țĮȞȠȞȚțȩ İȟȐȖȦȞȠ - 4·900 = 3600 ȖȚĮ IJȠ IJİIJȡȐȖȦȞȠ țĮȚ - 6·600 = 3600 ȖȚĮ IJȠ ȚıȩʌȜİȣȡȠ IJȡȓȖȦȞȠ.

īȚĮ ȞĮ įȘȝȚȠȣȡȖȒıİIJİ ȜȠȚʌȩȞ ȝȚĮ … țĮȜȜȚIJİȤȞȚțȒ ʌȜĮțȩıIJȡȦıȘ ȟİțȚȞȒıIJİ ȝİ ȑȞĮ IJİIJȡȐȖȦȞȠ. ǹijĮȚȡȑıIJİ įȪȠ ȓıĮ IJȡȓȖȦȞĮ Įʌȩ IJȘȞ țȐIJȦ ĮȡȚıIJİȡȒ țĮȚ țȐIJȦ įİȟȚȐ ȖȦȞȓĮ IJȠȣ țĮȚ ȝİIJĮijȑȡİIJİ IJĮ IJȘȞ țȠȡȣijȒ IJȠȣ. ǹȞ ʌȡȠıșȑıİIJİ ıIJȠȚȤİȓĮ Įʌȩ IJȘ ijĮȞIJĮıȓĮ ıĮȢ IJȩIJİ ȑȤİIJİ IJȠ țİijȐȜȚ ȝȚĮȢ ǼȊȀȁǼǿǻǾ ǹǯ 108 IJ.4/45


ǦǦ 1Ƞ īȊȂȃǹȈǿȅ ȈȀǹȁǹȈ ȍȇȍȆȅȊ ǹȉȉǿȀǾȈ ǿȋȃǾȁǹȉȍȃȉǹȈ ȉǹ ǼȂȆȃǼȊȈȂǼȃǹ ȂȅȃȅȆǹȉǿǹ ȉȅȊ Ȃ. C. ESCHER ǦǦǦ

ȖȐIJĮȢ. ǹȞIJȚȖȡȐȥIJİ IJȠ ıȤȑįȚȠ țĮȚ ȑȤȠȞIJĮȢ IJȠ ȦȢ ʌȡȩIJȣʌȠ, ıȤȘȝĮIJȓıIJİ IJȠ ʌİȡȓȖȡĮȝȝȐ IJȠȣ ʌȠȜȜȑȢ ijȠȡȑȢ ĮijȠȪ IJȠ ȝİIJĮijȑȡİIJİ ʌȐȞȦ, țȐIJȦ țĮȚ įİȟȚȐ Įʌȩ IJȠ ĮȡȤȚțȩ ıȤȑįȚȠ țĮȚ șĮ įȘȝȚȠȣȡȖȒıİIJİ ȝȚĮ ʌȜĮțȩıIJȡȦıȘ. ȀĮȚ ĮȞ ĮȣIJȩ IJȠ țİijȐȜȚ IJȘȢ ȖȐIJĮȢ IJȠ șİȦȡİȓIJİ ʌȠȜȪ ĮʌȜȩ, įȠțȚȝȐıIJİ țĮȚ ĮȣIJȩ ʌȠȣ ȑijIJȚĮȟĮȞ IJĮ ʌĮȚįȚȐ IJȠȣ İȡȖĮıIJȘȡȓȠȣ ȝİ ȕȐıȘ IJȠ ʌȡȠȘȖȠȪȝİȞȠ. ǹȡțİȓ ȞĮ ʌȡȠıșȑıİIJİ ĮȡȚıIJİȡȐ țĮȚ įİȟȚȐ (ıȣȝȝİIJȡȚțȐ) IJȠȣ, įȪȠ ȓıĮ ıȤȒȝĮIJĮ țĮȚ IJȩIJİ, ȩIJĮȞ IJȠ IJİȜȚțȩ ıȤȑįȚȠ IJȠ ȝİIJĮțȚȞȒıİIJİ țĮIJȐȜȜȘȜĮ, șĮ ʌȐȡİIJİ ȝȚĮȞ ʌȚȠ İȞįȚĮijȑȡȠȣıĮ ʌȜĮțȩıIJȡȦıȘ.

ȆȡȠıȠȤȒ ıIJȠ ıȤȒȝĮ ʌȠȣ șĮ ʌȡȠıșȑıİIJİ, ȫıIJİ ȞĮ ȝȘȞ ȖȓȞİIJĮȚ İʌȚțȐȜȣȥȘ ȝȑȡȠȣȢ IJȠȣ Įʌȩ IJȠ İʌȩȝİȞȠ țĮIJȐ IJȘ ȝİIJĮijȠȡȐ. ȆİȚȡĮȝĮIJȚıIJİȓIJİ țĮȚ șĮ țĮIJĮȜȐȕİIJİ ʌȦȢ ȞĮ IJȠ ıȤȘȝĮIJȓıİIJİ. ȆȠȜȪ İȞIJȣʌȦıȚĮțȑȢ ʌȜĮțȠıIJȫıİȚȢ ȝʌȠȡİȓIJİ ȞĮ įȘȝȚȠȣȡȖȒıİIJİ țĮȚ ȝİ IJȠ ȚıȩʌȜİȣȡȠ IJȡȓȖȦȞȠ. ȃĮ ʌȦȢ IJȠ ʌȑIJȣȤĮȞ ȠȚ ȝĮșȘIJȑȢ IJȠȣ İȡȖĮıIJȘȡȓȠȣ: ȈIJȘȞ ĮȡȤȒ ıȤİįȓĮıĮȞ ȑȞĮ ȚıȩʌȜİȣȡȠ IJȡȓȖȦȞȠ. ȈIJȘ ıȣȞȑȤİȚĮ ȑțȠȥĮȞ Įʌȩ ȝȚĮ ʌȜİȣȡȐ IJȠȣ ȑȞĮ ıȤȒȝĮ țĮȚ IJȠ ʌȡȩıșİıĮȞ ıİ ȝȚĮ ȐȜȜȘ ʌȜİȣȡȐ IJȠȣ. ȉȠ ȓįȚȠ ȑțĮȞĮȞ țĮȚ ȝİ ȐȜȜĮ ıȤȒȝĮIJĮ ȝİIJĮȝȠȡȫȞȠȞIJĮȢ IJȠ ĮʌȜȩ ĮȡȤȚțȩ ȚıȩʌȜİȣȡȠ IJȡȓȖȦȞȠ ıİ ȑȞĮ ıȤȒȝĮ ʌȠȣ șȣȝȓȗİȚ ʌȠȣȜȓ (!). ȉȠ ȞȑȠ ĮȣIJȩ ıȤȒȝĮ IJȠ ȑțȠȥĮȞ țĮȚ IJȠ ȤȡȘıȚȝȠʌȠȓȘıĮȞ ȦȢ ʌȡȩIJȣʌȠ. ȈIJȘ ıȣȞȑȤİȚĮ ĮijȠȪ ʌȡȫIJĮ ıȤİįȓĮıĮȞ IJȠ ʌİȡȚȖȡĮȝȝȐ IJȠȣ, IJȠʌȠșȑIJȘıĮȞ IJȠ ʌȡȩIJȣʌȠ įȓʌȜĮ IJȠȣ țĮȚ IJȠ ĮȞIJȓȖȡĮȥĮȞ ȖȚĮ ȝȚĮ ĮțȩȝĮ ijȠȡȐ. īȚĮ ȞĮ įȘȝȚȠȣȡȖȘșİȓ Ș ʌȜĮțȩıIJȡȦıȘ ȤȡİȚȐıIJȘțİ ȞĮ ĮȞIJȚȖȡȐȥȠȣȞ IJȠ ʌİȡȓȖȡĮȝȝȐ IJȠȣ ʌȠȜȜȑȢ ijȠȡȑȢ. ȉȑȜȠȢ ʌȡȩıșİıĮȞ IJȘȞ įȚțȒ IJȠȣȢ țĮȜȜȚIJİȤȞȚțȒ ʌȚȞİȜȚȐ, ȤȡȦȝĮIJȓȗȠȞIJĮȢ ȝİ įȪȠ įȚĮijȠȡİIJȚțȐ ȤȡȫȝĮIJĮ IJĮ ıȤİįȚȐ IJȠȣȢ, ʌȡȩıșİıĮȞ țĮȡįȠȪȜİȢ țĮȚ ȐȜȜĮ ıIJȠȚȤİȓĮ țĮȚ įȘȝȚȠȪȡȖȘıĮȞ IJȘ įȚțȒ IJȠȣȢ ʌȜĮțȩıIJȡȦıȘ ʌȠȣ șȣȝȓȗİȚ IJȠ ȑȡȖȠ IJȠȣ Dzııİȡ.

ĬĮ ʌȡȑʌİȚ İįȫ ȞĮ İʌȚıȘȝȐȞȠȣȝİ ȩIJȚ ȠȚ ȝĮșȘIJȑȢ IJȠȣ İȡȖĮıIJȘȡȓȠȣ ȤȡİȚȐıIJȘțİ ȞĮ ʌİȚȡĮȝĮIJȚıșȠȪȞ ʌȠȜȜȑȢ ijȠȡȑȢ ȖȚĮ IJȠ ʌȠȚȐ ıȤȒȝĮIJĮ ȑʌȡİʌİ ȞĮ țȠʌȠȪȞ Įʌȩ ȝȚĮ ʌȜİȣȡȐ IJȠȣ ȚıȠʌȜİȪȡȠȣ IJȡȚȖȫȞȠȣ, ıİ ʌȠȚȐ Įʌȩ IJȚȢ ȣʌȩȜȠȚʌİȢ ȐȜȜİȢ įȪȠ ʌȜİȣȡȑȢ țĮȚ ıİ ʌȠȚȐ șȑıȘ IJȠȣȢ ȑʌȡİʌİ ȞĮ İʌȚțȠȜȘșȠȪȞ ȫıIJİ ȩIJĮȞ IJȠʌȠșİIJȘșȠȪȞ įȚĮįȠȤȚțȐ IJȠ ȑȞĮ įȓʌȜĮ ıIJȠ ȐȜȜȠ, ȞĮ “țȠȣȝʌȫȞȠȣȞ”. ȉȠ ĮʌȠIJȑȜİıȝĮ ȩȝȦȢ IJȠȣȢ ĮʌȠȗȘȝȓȦıİ. ȀĮȚ ȞĮ IJĮ ıȤİįȚȐ IJȠȣȢ.

ǼȊȀȁǼǿǻǾ ǹǯ 108 IJ.4/46


ǦǦ 1Ƞ īȊȂȃǹȈǿȅ ȈȀǹȁǹȈ ȍȇȍȆȅȊ ǹȉȉǿȀǾȈ ǿȋȃǾȁǹȉȍȃȉǹȈ ȉǹ ǼȂȆȃǼȊȈȂǼȃǹ ȂȅȃȅȆǹȉǿǹ ȉȅȊ Ȃ. C. ESCHER ǦǦǦ

Ȃİ ȑȟȚ ȓıĮ IJȡȚȖȦȞȚțȐ ıȤȒȝĮIJĮ, ʌȠȣ ʌȡȠȑțȣȥĮȞ Įʌȩ ȑȞĮ ȚıȩʌȜİȣȡȠ IJȡȓȖȦȞȠ, įȘȝȚȠȪȡȖȘıĮȞ ȠȚ ȝĮșȘIJȑȢ IJȠȣ İȡȖĮıIJȘȡȓȠȣ ȝȚĮ ĮțȩȝĮ ʌȜĮțȩıIJȡȦıȘ ıİ ȝĮȪȡȠ țĮȚ țȩțțȚȞȠ ȤȡȫȝĮ, IJȠʌȠIJİIJȫȞIJĮȢ IJĮ ȖȪȡȦ Įʌȩ ȑȞĮ țȠȚȞȩ ıȘȝİȓȠ. ȈȤİįȓĮıĮȞ ʌȡȫIJĮ ȑȞĮ ıȤȒȝĮ țĮȚ ıIJȘ ıȣȞȑȤİȚĮ ȝİ ıIJȡȠijȒ IJȠȣ ʌȡȠIJȪʌȠȣ țĮIJȐ 60Ƞ ıȤİįȓĮıĮȞ IJȠ įİȪIJİȡȠ țĮȚ IJȠ IJȡȓIJȠ ĮȜȜȐ țĮȚ ȩȜĮ IJĮ ȣʌȩȜȠȚʌĮ ȖȚĮIJȓ ȩʌȦȢ ȖȞȦȡȓȗİIJİ IJȠ țĮȞȠȞȚțȩ İȟȐȖȦȞȠ ĮʌȠIJİȜİȓIJĮȚ Įʌȩ ȑȟȚ ȚıȩʌȜİȣȡĮ IJȡȓȖȦȞĮ.

\

ǵıȠ ʌȚȠ ʌȠȜȪʌȜȠțȠ İȓȞĮȚ IJȠ IJȡȚȖȦȞȚțȩ ıȤȒȝĮ ʌȠȣ ʌȡȠțȪʌIJİȚ Įʌȩ IJȠ ȚıȩʌȜİȣȡȠ IJȡȓȖȦȞȠ IJȩıȠ ʌȚȠ İȞįȚĮijȑȡȠȣıİȢ ʌȜĮțȠıIJȡȫıİȚȢ įȘȝȚȠȣȡȖȠȪȝİ. ǺĮıȚțȩ ȡȩȜȠ ȩȝȦȢ ʌĮȓȗȠȣȞ IJĮ ȤȡȫȝĮIJĮ țĮȚ ȠȚ İʌȚʌȜȑȠȞ įȚĮțȠıȝȒıİȚȢ ʌȠȣ ȤȡȘıȚȝȠʌȠȚİȓ Ƞ țȐșİ ȝĮșȘIJȒȢ.

OȚ ȝĮșȘIJȑȢ IJȠȣ 1Ƞȣ īȣȝȞĮıȓȠȣ ȈțȐȜĮȢ ȍȡȦʌȠȪ ĮȟȚȠʌȠȓȘıĮȞ IJȚȢ ȕĮıȚțȑȢ ȖİȦȝİIJȡȚțȑȢ ȖȞȫıİȚȢ ʌȠȣ ȒįȘ İȓȤĮȞ ȖȚĮ IJĮ țĮȞȠȞȚțȐ ʌȠȜȪȖȦȞĮ țĮȚ IJȚȢ ȚįȚȩIJȘIJİȢ IJȠȣȢ țĮșȫȢ țĮȚ ȕĮıȚțȑȢ ȖȞȫıİȚȢ IJȠȣȢ ıIJȘ ıȣȝȝİIJȡȓĮ, IJȚȢ ȠʌȠȓİȢ ȤȡİȚȐıIJȘțİ ȞĮ IJȚȢ İʌĮȞĮțIJȒıȠȣȞ ȝİ İʌĮȞȐȜȘȥȘ IJȘȢ ıȤİIJȚțȒȢ șİȦȡȓĮȢ, țĮșȫȢ țĮȚ ȝİ İʌȓȝȠȞȘ İȟȐıțȘıȘ ıIJȘ ȤȡȒıȘ IJȦȞ ȖİȦȝİIJȡȚțȫȞ ȠȡȖȐȞȦȞ. ȍıIJȩıȠ ȝȑıȦ IJȦȞ ǼȊȀȁǼǿǻǾ ǹǯ 108 IJ.4/47


ǦǦ 1Ƞ īȊȂȃǹȈǿȅ ȈȀǹȁǹȈ ȍȇȍȆȅȊ ǹȉȉǿȀǾȈ ǿȋȃǾȁǹȉȍȃȉǹȈ ȉǹ ǼȂȆȃǼȊȈȂǼȃǹ ȂȅȃȅȆǹȉǿǹ ȉȅȊ Ȃ. C. ESCHER ǦǦǦ

ȖİȦȝİIJȡȚțȫȞ ȝİIJĮıȤȘȝĮIJȚıȝȫȞ (ȝİIJĮijȠȡȐ, ıIJȡȠijȒ, ĮȞȐțȜĮıȘ) ĮʌȑțIJȘıĮȞ İȣİȜȚȟȓĮ ıIJȠȞ IJȡȩʌȠ IJȘȢ ȖİȦȝİIJȡȚțȒȢ IJȠȣȢ ıțȑȥȘȢ țĮȚ IJȠȣȢ ȤȡȘıȚȝȠʌȠȓȘıĮȞ ȦȢ İȡȖĮȜİȓȠ ȖȚĮ IJȘ ȝİȜȑIJȘ țĮȚ ĮȚIJȚȠȜȩȖȘıȘ IJȦȞ ȚįȚȠIJȒIJȦȞ IJȦȞ ȖİȦȝİIJȡȚțȫȞ ıȤȘȝȐIJȦȞ. ȅȚ ȝİIJĮıȤȘȝĮIJȚıȝȠȓ ȝİ IJȠȣȢ ȠʌȠȓȠȣȢ ĮıȤȠȜȒșȘțĮȞ ȠȚ ȝĮșȘIJȑȢ ȒIJĮȞ İțİȓȞȠȚ ıIJȠȣȢ ȠʌȠȓȠȣȢ įİȞ ĮȜȜȐȗȠȣȞ ȝȠȡijȒ IJĮ ıȤȒȝĮIJĮ țĮȚ IJȠȣȢ ȒIJĮȞ IJİȜȚțȐ ȤȡȒıȚȝȠȚ ıIJȠ ȞĮ ıȤİįȚȐıȠȣȞ țĮȚ IJȚȢ įȚțȑȢ IJȠȣȢ ʌȜĮțȠıIJȡȫıİȚȢ. ǻİȞ ȑȜİȚȥĮȞ țĮȚ ȠȚ ʌȡȠıʌȐșİȚİȢ ȝİ IJȠȞ Ǿ/Ȋ. Ȃİ IJȠ İțʌĮȚįİȣIJȚțȩ ȜȠȖȚıȝȚțȩ ȠȚ ȝĮșȘIJȑȢ İȓȤĮȞ IJȘȞ İȣțĮȚȡȓĮ ȞĮ İijĮȡȝȩıȠȣȞ IJȠȣȢ ȖİȦȝİIJȡȚțȠȪȢ ȝİIJĮıȤȘȝĮIJȚıȝȠȪȢ (ĮȞȐțȜĮıȘ, ıIJȡȠijȒ țĮȚ ȝİIJĮijȠȡȐ) ȝİ ĮʌȜȠȪıIJİȡȠ țĮȚ ʌȚȠ țĮIJĮȞȠȘIJȩ IJȡȩʌȠ. ȅ ȝĮșȘIJȒȢ IJȘȢ ijȦIJȠȖȡĮijȓĮȢ ȤȡȘıȚȝȠʌȠȚİȓ ȦȢ ʌȡȩIJȣʌȠ IJȠ țİijȐȜȚ IJȘȢ ȖȐIJĮȢ.

ȀĮȚ ȩʌȦȢ țȐșİ ȤȡȩȞȠ ıIJȠ IJȑȜȠȢ IJȘȢ ıȤȠȜȚțȒȢ ȤȡȠȞȚȐȢ ȠȚ ȝĮșȘIJȑȢ IJȠȣ İȡȖĮıIJȘȡȓȠȣ ȝİ IJĮ ȑȡȖĮ IJȠȣȢ ȑıIJȘıĮȞ ȝȚĮ DzțșİıȘ ȖȚĮ ȞĮ ʌĮȡȠȣıȚȐıȠȣȞ IJȘ įȠȣȜİȚȐ IJȠȣȢ ıIJȠȣȢ ıȣȝȝĮșȘIJȑȢ IJȠȣȢ, ıIJȠȣȢ țĮșȘȖȘIJȑȢ IJȠȣȢ țĮȚ ıIJȠȣȢ ȖȠȞİȓȢ IJȠȣȢ. ȉȘȞ ȘȝȑȡĮ IJȦȞ İȖțĮȚȞȓȦȞ IJȘȢ ǼțșİıȘȢ IJȦȞ ȝĮșȘȝĮIJȚțȫȞ țĮIJĮıțİȣȫȞ IJȠȣ İȡȖĮıIJȘȡȓȠȣ, ȠȚ ȝĮșȘIJȑȢ țȐȜȣȥĮȞ ȑȞĮ ȝȑȡȠȢ IJȘȢ ĮȣȜȒȢ IJȠȣ ıȤȠȜİȓȠȣ ȝİ IJȘȞ ıĮȜĮȝȐȞįȡĮ IJȘȞ ʌȠȚȠ ȖȞȦıIJȒ ıĮȪȡĮ Įʌȩ IJĮ İȡʌİIJȐ ʌȠȣ ıȤİįȓĮıİ Ƞ Dzııİȡ.

ǼȜʌȓȗȠȣȝİ ijȓȜȠȚ ȝĮȢ ȠȚ țĮIJĮıțİȣȑȢ IJȦȞ ȝĮșȘIJȫȞ IJȠȣ ȂĮșȘȝĮIJȚțȠȪ İȡȖĮıIJȘȡȓȠȣ IJȠȣ 1Ƞȣ ȖȣȝȞĮıȓȠȣ ȈțȐȜĮȢ ȍȡȦʌȠȪ ȞĮ ıĮȢ įȫıȠȣȞ ȝȚĮȞ ĮijȠȡȝȒ ȖȚĮ ȞĮ ĮıȤȠȜȘșİȓIJİ țĮȚ İıİȓȢ ȝİ IJȚȢ ʌȜĮțȠıIJȡȫıİȚȢ.

ǼȊȀȁǼǿǻǾ ǹǯ 108 IJ.4/48


ยญยบ ยฆยบร ร ร ยบร ร ร วท ร ยบร ยฝร ยบร ร ยพยฝวทยฟร ร ร

;

โ , . ; ! 20 , Walt Disney. 1. 7 6 3 . ; 2. ! "# 5+5+5=550; 3. $ # % % 1000; 4. & ' # ( , ' ' # . 5. ) *&- # /-=2cm. $ " ' , ; 4 " /-= . 6.

' .

7. 4 " z a.

107

1) 37ร 27=999 2) 12.345.678ร 8+8=98.765.432 12345678ร 8+6 = 98.765.430 3) * x ' % 10 % % ( ' ) 84+ x # 6 9

% x 4 10 9 ' . ? 84+ x = x x= 144. 6 4 4) # 3. 27. 5) / 3 # 3ยท1,5=3+1,5. 6) * ( ' % 12 20 ' . 108 .4/49


Ελληνική Μαθηματική Εταιρεία 1918-2018

100 Χρόνια

Νέο βιβλίο της ΕΜΕ για ανήσυχους μαθητές Οι λέξεις και οι αριθμοί στην εξέλιξη της ζωής ... Που σε πάνε παντού

Χρήσιμο βοήθημα για ερευνητικές εργασίες

Αυτοτελείς ιστορίες ... με απρόοπτο περιεχόμενο


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.