المحاكاه

Page 1

MONTE CARLO SAMPLING


MONTE CARLO SAMPLING

٢

:MONTE CARLO SAMPLING ‫( ﻃﺮﻳﻘﺔ ﻣﺎﻧﺘﻮ ﻛﺎرﻟﻮا‬١-١)

We considered before how a simple random sample

observations could be selected from a finite and existent

population using tables of random digits . We now discuss methods of generating observations from theoretical

distributions which are usually called Monte Carlo Sampling methods. We firstly present a key result from a theorem.

Theorem(1):

Let X be a continuous random variable with C.D.F. F(x). Then the random variable Z=F(x) is uniformly distribution over the 1 has the C.D.F. F(x).(The transformation x  F (z) interval(0,1)

z=F(x) is called the probability integral transformation).

*proof: Since F(x) is anon decreasing function of the argument x ,the 1 defined for any value of z between 0 and inverse function F (x)

x  F1 (z) satisfying F(x)  z .Now : 1 as the smallest value of p(Z  z)  p F(X)  z  p X  F1 (z)  FF1 (z) z

For 0<z<1

Which is the C.D.F. of the uniform distribution over(0,1). Conversely, if Z is uniformly distributed over (0,1), P(X  x)  P F1 (Z)  x  P Z  F(x)  F(x)


MONTE CARLO SAMPLING

٣

Since Z has a c.d.f. z(0<z<1).This completes the proof.

Example (1-1-1): Consider a random variable X having an exponential distribution with c.d.f. F(x)  1  exp(x), x  0 with F(x)=0 elsewhere . Then the random variable Z  F(X)  1  exp(X) Uniformly distributed over (0,1) . Also, since F1  x    1 log(1  x) ,it follows that if Z is a random variable 1 1 uniformly distributed over (0,1), then X  F (Z)   log(1  Z)

has the given exponential distribution.

The importance of theorem ( ) is clear. If we are able to option a stream of independent observation z1 ,z 2 ,..., on a random variable Z which is uniformly distributed over (0,1), we can generate a stream of observations x1 , x 2 ,..., from a continuous population 1 1 with a given c.d.f F(x) by setting x1  F (Z1 ), x 2  F (Z2 ),... This

method is known as the inverse transformation method. Observations for discrete random variable can also be

generated using observations on Z. Thus suppose that X is a discrete random variable which may assume the values x1 , x 2 ,..., x k with corresponding probabilities p1 , p 2 ,..., p k k

where

p i 1

i

 1.

Consider the use of the transformation


‫‪MONTE CARLO SAMPLING‬‬

‫‪٤‬‬

‫‪0  Z  P1‬‬

‫‪if‬‬

‫‪P1  Z  P1  P2‬‬

‫‪if‬‬

‫‪K 1‬‬

‫‪P  Z  P  P‬‬ ‫‪1‬‬

‫‪2‬‬

‫‪if‬‬

‫‪1‬‬

‫‪I1‬‬

‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ x1‬‬ ‫‪X   x 2‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪x‬‬ ‫‪ k‬‬ ‫‪‬‬

‫‪We see that:‬‬ ‫‪i‬‬

‫‪i 1‬‬

‫) ‪p(X  x i )  p( p j  Z   p j‬‬ ‫‪j1‬‬

‫‪j1‬‬

‫‪i 1‬‬

‫‪i‬‬

‫‪  p j   p j  pi‬‬ ‫‪j1‬‬

‫‪j1‬‬

‫‪As desired.‬‬ ‫أﻫـﻢ ﺗﻄﺒﻴـﻖ ﻟﻠﻨﻈﺮﻳـﺔ اﻟﺴـﺎﺑﻘﺔ )‪ (١‬ﻫـﻮ ﺗﻮﻟﻴـﺪ ﻣﺘﻐﻴـﺮات ﻋﺸـﻮاﺋﻴﺔ " ‪ “ pseudo‬ﻣـﻦ ﺗﻮزﻳﻌـﺎت ﻣﻌﻴﻨـﺔ‬

‫ﺑﺎﺳﺘﺨﺪام اﻟﺤﺎﺳﺐ اﻵﻟﻲ ‪ .‬ﺑﻤﻌﻨﻲ آﺧـﺮ ‪ ،‬ﻧﺤﺼـﻞ ﻋﻠـﻰ ﻋﻴﻨـﺔ ﻋﺸـﻮاﺋﻴﺔ ﻣـﻦ ﺗﻮزﻳـﻊ ﻣﻌـﻴﻦ ﺑﺪاﻟـﺔ ﺗﻮزﻳـﻊ ﺗﺠﻤﻴﻌـﻲ‬ ‫)‪ . F(x‬إذا ﻟـﺪﻳﻨﺎ ‪ n‬أﻋـﺪاد ﻋﺸـﻮاﺋﻴﺔ ‪ ،‬ﻟـﺘﻜﻦ ‪ y1 , y2 ,… , yn‬ﺗـﻢ ﺗﻮﻟﻴـﺪﻫﺎ ﻋﻠـﻰ اﻟﺤﺎﺳـﺐ اﻵﻟـﻲ‬

‫ﻣﻦ ﺗﻮزﻳﻊ ﻣﻨﺘﻈﻢ ﻓﻰ اﻟﻔﺘﺮة )‪ (0, 1‬وﺗﺒﻌﺎ ﻟﺬﻟﻚ ﻓﺈن ‪ x1 , x2 , … xn‬ﺗﺤﺴﺐ ﻛﺎﻵﺗﻲ ‪:‬‬ ‫‪i  1,2,..., n .‬‬

‫) ‪x i  G(y i‬‬

‫واﻟﺘــﻲ ﺗﻘﺎﺑــﻞ ﺗﻮﻟﻴــﺪ ﻋﻴﻨــﺔ ﻋﺸــﻮاﺋﻴﺔ ﻣــﻦ ﺗﻮزﻳــﻊ ﻟــﻪ )‪ . F(x‬ﺑــﺎﻟﻄﺒﻊ ﻓــﻲ ﻛﺜﻴــﺮ ﻣــﻦ اﻷﻣﺜﻠــﺔ ﻓــﺈن )‪ F(x‬ﺗﻜــﻮن‬ ‫‪1‬‬ ‫ﺗﻨﺎﻇﺮﻳﺔ وﻋﻠـﻰ ذﻟـﻚ ﻳﻤﻜـﻦ اﺳـﺘﺨﺪام ) ‪ . x i  F ( y i‬أﻳﻀـﺎ ﻳﻤﻜـﻦ اﺳـﺘﺨﺪام اﻟﻤﻌﺎدﻟـﺔ ﻟﻠﻤﺘﻐﻴـﺮات‬

‫اﻟﻌﺸﻮاﺋﻴﺔ ﻣﻦ اﻟﻨﻮع اﻟﻤﺘﻘﻄﻊ ‪.‬‬

‫ﻣﺜﺎل)‪:(٢-١-١‬‬ ‫إذا ﻛﺎن ‪X‬ﻣﺘﻐﻴﺮاً ﻋﺸﻮاﺋﻴﺎً ﺑﺤﻴـﺚ أن )‪ X ~ BIN(1,1/2‬ﻓـﺈن داﻟـﺔ اﻟﺘﻮزﻳـﻊ اﻟﺘﺠﻤﻴﻌـﻲ ﺗﻜـﻮن ﻋﻠـﻰ‬ ‫اﻟﺸﻜﻞ ‪:‬‬


‫‪MONTE CARLO SAMPLING‬‬

‫‪٥‬‬

‫‪x0‬‬ ‫‪0  x 1‬‬

‫‪F( x )  0‬‬ ‫‪ 1/ 2‬‬ ‫‪1‬‬

‫‪1 x‬‬

‫واﻟﺪاﻟﺔ )‪ G(y‬ﺳﻮف ﺗﻜﻮن ﻋﻠﻰ اﻟﺸﻜﻞ ‪:‬‬ ‫‪G ( y)  0‬‬

‫‪0  y  1/ 2‬‬ ‫‪1‬‬ ‫‪ y  1.‬‬ ‫‪2‬‬

‫‪1‬‬

‫ﻋﻤﻮﻣﺎ ﻟﺘﻮﻟﻴﺪ ﻣﺸﺎﻫﺪات ﻷي ﻣﺘﻐﻴﺮ ﻋﺸﻮاﺋﻲ ‪ X‬ﻣﻦ اﻟﻨﻮع اﻟﻤﺘﻘﻄﻊ و ﻟﻴﻜﻦ ﻓﻀﺎء اﻟﻤﺘﻐﻴﺮ ‪ X‬ﻫﻮ { = ‪A‬‬ ‫}…‪ . b1 , b2 , b3 ,‬ﻓﻰ ﻫﺬﻩ اﻟﻤﻨﺎﻗﺸﺔ ﺳﻮف ﻧﻔﺘﺮض وﺟﻮد ﺳﺘﺔ ﻗﻴﻢ ﻓﻘﻂ ﻓﻰ اﻟﻔﻀﺎء ‪ R‬وأن ‪0‬‬ ‫‪ . < b1 < b2 < …. < b6‬ﻟـﻴﻜﻦ )‪ pi = P(X = bi) = f(bi‬ﺣﻴـﺚ ‪ . i  1,2,3,...,6‬ﻫـﺬﻩ‬ ‫اﻻﺣﺘﻤــﺎﻻت ﻣﻮﺿــﺤﺔ ﻣــﻊ )‪ F(x‬ﻓــﻰ ﺷــﻜﻞ ) ‪ .( ٤-٨‬ﻟﺘﻮﻟﻴــﺪ أي ﻣﺸــﺎﻫﺪة ﻣــﻦ ‪ ، X‬ﻧﻘــﻮم ﺑﺘﻮﻟﻴــﺪ ﻋــﺪد‬ ‫ﻋﺸﻮاﺋﻲ ‪ Y = y‬ﺣﻴﺚ ‪ Y‬ﻳﺘﺒﻊ اﻟﺘﻮزﻳﻊ اﻟﻤﻨﺘﻈﻢ ﻓﻰ اﻟﻔﺘﺮة ) ‪ . (0, 1‬إذا ﻛﺎﻧﺖ ‪ y  p1‬ﻓـﺈن ‪X = b1‬‬ ‫وإذا ﻛﺎﻧـ ـ ـ ــﺖ ‪ p1  y  p1  p 2‬ﻓـ ـ ـ ــﺈن‬ ‫‪ y  p1  ....  p 6  1‬‬

‫‪b2‬‬

‫=‬

‫‪ X‬وﻫﻜـ ـ ـ ــﺬا ﺣﺘـ ـ ـ ــﻰ اﻟﻮﺻـ ـ ـ ــﻮل‬

‫‪ p1  ...  p 5‬ﻓﺈن ‪ . X = b6‬ﻓﻌﻠﻰ ﻋﻠﻰ ﺳﺒﻴﻞ اﻟﻤﺜﺎل ‪:‬‬

‫‪P[p1  Y  p1  p 2 ]  p1  p 2  p1  p 2‬‬

‫وﻫﻮ اﻻﺣﺘﻤﺎل اﻟﺼﺤﻴﺢ ﻋﻨﺪﻣﺎ ‪ . X = b2‬ﺗﺒﻌﺎ ﻟﻬﺬﻩ اﻟﻄﺮﻳﻘﺔ ﻳﻤﻜﻨﻨﺎ اﻟﺤﺼﻮل ﻋﻠـﻰ اﻻﺣﺘﻤـﺎﻻت اﻟﻤﻄﻠﻮﺑـﺔ‬ ‫ﻋﻨﺪﻣﺎ ‪. X = b6 , … , X = b2 , X = b1‬‬


‫‪MONTE CARLO SAMPLING‬‬

‫‪٦‬‬

‫ﻣﺜﺎل )‪:(٣-١-١‬‬ ‫ﻣﺘﻐﻴﺮ ﻋﺸﻮاﺋﻲ ﻟﻪ داﻟﺔ اﻟﻜﺜﺎﻓﺔ اﻹﺣﺘﻤﺎﻟﻴﺔ اﻟﺘﺎﻟﻴﺔ‪X:‬إذا ﻛﺎن‬ ‫‪6‬‬

‫‪5‬‬

‫‪4‬‬

‫‪3‬‬

‫‪2‬‬

‫‪1‬‬

‫‪X‬‬

‫‪1/6‬‬

‫‪1/6‬‬

‫‪1/6‬‬

‫‪1/6‬‬

‫‪1/6‬‬

‫‪1/6‬‬

‫)‪P(X=x‬‬

‫اﻟﻤﻄﻠﻮب ﺗﻮﻟﻴﺪ ﺑﻴﺎﻧﺎت ﺗﺘﺒﻊ ﻫﺬا اﻟﺘﻮزﻳﻊ ﺑﺤﻴﺚ‪:‬‬

‫‪, x=1,2,3,4,5,6‬‬

‫‪f(x)=1/6‬‬ ‫‪=0 e.w‬‬

‫اﻟﺤﻞ‪:‬‬ ‫‪1‬‬ ‫‪ X 1‬‬ ‫‪6‬‬ ‫‪1‬‬ ‫‪1 1‬‬ ‫‪ Z  X 2‬‬ ‫‪6‬‬ ‫‪6 6‬‬ ‫‪2‬‬ ‫‪3‬‬ ‫‪ Z X 3‬‬ ‫‪6‬‬ ‫‪6‬‬ ‫‪3‬‬ ‫‪4‬‬ ‫‪ Z X 4‬‬ ‫‪6‬‬ ‫‪6‬‬ ‫‪4‬‬ ‫‪5‬‬ ‫‪ Z X 5‬‬ ‫‪6‬‬ ‫‪6‬‬ ‫‪5‬‬ ‫‪6‬‬ ‫‪ Z X 6‬‬ ‫‪6‬‬ ‫‪6‬‬

‫‪0 Z‬‬


‫‪MONTE CARLO SAMPLING‬‬

‫ﺣﻴﺚ ‪ Z‬ﺗﺘﺒﻊ اﻟﺘﻮزﻳﻊ اﻟﻤﻨﺘﻈﻢ‬

‫‪٧‬‬

‫)‪U(0,1‬‬

‫ﻣﺜﺎل )‪:(٤-١-١‬‬ ‫إذا ﻛﺎن )‪ Y ~ UNIF (0, 1‬أﺷﺮح ﻛﻴﻒ ﻳﻤﻜﻦ ﺗﻮﻟﻴﺪ ﻣﺸﺎﻫﺪة ﻟﻬﺎ داﻟﻪ ﻛﺜﺎﻓﺔ اﻻﺣﺘﻤﺎل اﻟﺘﺎﻟﻴﺔ ‪:‬‬ ‫‪1‬‬

‫‪1‬‬

‫‪‬‬ ‫‪1 ‬‬ ‫) ‪f ( x )  ( x 2  (1  x ) 2‬‬ ‫‪4‬‬

‫‪0  x 1‬‬

‫‪= 0 elsewhere .‬‬

‫اﻟﺤﻞ ‪:‬‬

‫ﻳﻤﻜﻦ ﻛﺘﺎﺑﺔ اﻟﺪاﻟﺔ ﻋﻠﻰ اﻟﺸﻜﻞ ‪:‬‬

‫ﺣﻴﺚ ‪:‬‬

‫‪f ( x )  a f1 ( x )  (1  a ) f 2 ( x ) , 0  a  1‬‬

‫‪f1 ( x )  ( 1 - a) f 2 ( x ) dx  1 .‬‬

‫‪a‬‬

‫‪‬‬ ‫‪‬‬ ‫‪ f ( x ) dx  ‬‬ ‫‪‬‬ ‫‪-‬‬

‫ﺣﻴﺚ داﻟﺔ ﻛﺜﺎﻓﺔ اﻻﺣﺘﻤﺎل ) ‪ f1 ( x‬ﺗﻜﻮن ﻋﻠﻰ اﻟﺸﻜﻞ ‪:‬‬ ‫‪1‬‬

‫‪0  x 1‬‬

‫‪2 x‬‬

‫‪f1 (x ) ‬‬

‫ﺑﺪاﻟﺔ ﺗﻮزﻳﻊ ﺗﺠﻤﻴﻌﻲ ﻋﻠﻰ اﻟﺸﻜﻞ ‪:‬‬ ‫‪F1 ( x )  x‬‬ ‫‪1‬‬

‫‪0  x 1‬‬ ‫‪x  1.‬‬

‫‪1‬‬ ‫‪2‬‬ ‫ﺑﻮﺿﻊ ‪ Y  F1 (X)  X‬ﻓﺈن ‪ . X  F1 (Y )  Y‬أﻳﻀﺎ داﻟﺔ ﻛﺜﺎﻓﺔ اﻻﺣﺘﻤﺎل ) ‪ f 2 ( x‬ﺗﻜﻮن‬

‫ﻋﻠﻰ اﻟﺸﻜﻞ ‪:‬‬

‫‪1‬‬

‫‪0  x 1‬‬

‫ﺑﺪاﻟﺔ ﺗﻮزﻳﻊ ﺗﺠﻤﻴﻌﻲ ﻋﻠﻰ اﻟﺸﻜﻞ ‪:‬‬

‫‪‬‬ ‫‪1‬‬ ‫‪f 2 ( x )  (1  x ) 2‬‬ ‫‪2‬‬ ‫‪ 0 elsewhere .‬‬


‫‪MONTE CARLO SAMPLING‬‬

‫‪0  x 1‬‬

‫‪٨‬‬ ‫‪1‬‬ ‫‪x) 2‬‬

‫‪F2 ( x )  (1 ‬‬

‫‪x0‬‬

‫‪0‬‬

‫‪x 1‬‬

‫‪1‬‬

‫ﺑﻮﺿﻊ ‪:‬‬ ‫‪1‬‬ ‫‪Y  F2 (X )  (1  X ) 2‬‬

‫ﻓـﺈن ‪:‬‬

‫أي أن اﻟﺪاﻟﺔ ﻳﻤﻜﻦ ﻛﺘﺎﺑﺘﻬﺎ ﻋﻠﻰ اﻟﺸﻜﻞ ‪:‬‬

‫‪X  F21 (X )  1  Y 2‬‬ ‫‪1‬‬

‫‪1‬‬

‫‪‬‬ ‫‪1 1 2‬‬ ‫‪1‬‬ ‫‪f ( x )  ( x )  ((1  x ) 2 ).‬‬ ‫‪2 2‬‬ ‫‪2‬‬

‫اﻵن ﻧﻠﻘﻰ ﻋﻤﻠﺔ وﻧﻜﺘﺐ ‪ X = Y2‬إذا ﻛﺎن اﻟﻨﺎﺗﺞ وﺟﻪ ﺑﻴﻨﻤﺎ )‪ X = ( 1-Y2‬إذا ﻛﺎن اﻟﻨﺎﺗﺞ ﻛﺘﺎﺑﺔ‪.‬‬

‫ﻣﺜﺎل)‪:(٥-١-١‬‬

‫إذا ﻛﺎن ‪Y‬ﻣﺘﻐﻴﺮاً ﻋﺸﻮاﺋﻴﺎً ﺣﻴﺚ ) ‪ Y ~ UNIF (0,1‬أﺷﺮح ﻛﻴﻒ ﻳﻤﻜﻦ اﺳﺘﺨﺪام ‪ Y‬ﻟﻠﺤﺼﻮل ﻋﻠﻰ‬

‫ﻣﺘﻐﻴﺮ ﻋﺸﻮاﺋﻲ ﺑﺪاﻟﺔ ﻛﺜﺎﻓﺔ اﺣﺘﻤﺎل ‪:‬‬ ‫‪0  x 1‬‬

‫‪1‬‬ ‫‪1 2 1‬‬ ‫‪f ( x )  3 (( x  )  1  2x 2 ) ,‬‬ ‫‪2‬‬ ‫‪8‬‬

‫‪= 0 elsewhere .‬‬

‫اﻟﺪاﻟﺔ ﻳﻤﻜﻦ ﻛﺘﺎﺑﺘﻬﺎ ﻋﻠﻰ اﻟﺸﻜﻞ ‪:‬‬ ‫‪1‬‬

‫‪1‬‬

‫‪‬‬ ‫‪‬‬ ‫‪12‬‬ ‫‪1‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪f ( x )  ( x  ) 2  (1  2 x ) 2  ( 2x  1) 2‬‬ ‫‪4‬‬ ‫‪2‬‬ ‫‪8‬‬ ‫‪8‬‬ ‫‪2‬‬ ‫‪3‬‬ ‫‪3‬‬ ‫‪ f1 ( x )  f 2 ( x )  f 3 ( x ).‬‬ ‫‪8‬‬ ‫‪8‬‬ ‫‪8‬‬

‫ﺣﻴﺚ داﻟﺔ ﻛﺜﺎﻓﺔ اﻻﺣﺘﻤﺎل ) ‪ f1 ( x‬ﺗﻜﻮن ﻋﻠﻰ اﻟﺸﻜﻞ ‪:‬‬


‫‪MONTE CARLO SAMPLING‬‬

‫‪٩‬‬ ‫‪1‬‬ ‫‪f1 ( x )  12 ( x  ) 2‬‬ ‫‪2‬‬

‫‪0  x 1‬‬

‫‪ 0 elswhere.‬‬

‫ﺑﺪاﻟﺔ ﺗﻮزﻳﻊ ﺗﺠﻤﻴﻌﻲ ﻋﻠﻰ اﻟﺸﻜﻞ ‪:‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪F1 ( x )  4( x  ) 3 ‬‬ ‫‪2‬‬ ‫‪2‬‬ ‫‪0‬‬ ‫‪x 0‬‬ ‫‪1‬‬ ‫‪x  1.‬‬

‫‪0  x 1‬‬

‫ﺑﻮﺿـﻊ ‪:‬‬ ‫‪Y 1 1/ 3 1‬‬ ‫‪1‬‬ ‫‪1‬‬ ‫‪ ) ‬‬ ‫‪Y  F1 (X )  4( X  ) 3 ‬‬ ‫‪4 8‬‬ ‫ﻓـﺈن ‪2‬‬ ‫‪2‬‬ ‫‪2‬‬

‫( ‪X  F 1 ( y) ‬‬

‫أﻳﻀﺎ داﻟﺔ ﻛﺜﺎﻓﺔ اﻻﺣﺘﻤﺎل ) ‪ f 2 ( x‬ﺗﻜﻮن ﻋﻠﻰ اﻟﺸﻜﻞ ‪:‬‬ ‫‪1‬‬ ‫‪2‬‬

‫‪0x‬‬

‫‪1‬‬ ‫‪2‬‬

‫‪‬‬

‫| ‪| 1  2x‬‬

‫‪1‬‬ ‫‪2‬‬

‫‪‬‬

‫) ‪f 2 ( x )  (1  2x‬‬

‫‪ 0 elsewhere .‬‬ ‫‪1‬‬ ‫) ‪(1  Y 2‬‬ ‫‪2‬‬ ‫ﻟﻬﺬﻩ اﻟﺪاﻟﺔ ﻧﺄﺧﺬ‬

‫‪X‬‬

‫وذﻟﻚ ﻷن ‪:‬‬

‫ﺣﻴﺚ ‪ X‬ﻫﻨﺎ ﻣﺘﻐﻴﺮا ﻋﺸﻮاﺋﻴﺎ ﻟﻪ داﻟﺔ ﻛﺜﺎﻓﺔ اﻻﺣﺘﻤﺎل ) ‪f 2 ( x‬‬

‫‪1‬‬ ‫) ‪P (X  x )  P( (1  Y 2 )  x‬‬ ‫‪2‬‬ ‫‪1‬‬ ‫‪ 1  (1  2x ) 2 .‬‬

‫ﺗﻤﺜﻞ داﻟﺔ اﻟﺘﻮزﻳﻊ اﻟﻤﻘﺎﺑﻠﺔ ﻟﺪاﻟﺔ ﻛﺜﺎﻓﺔ اﻻﺣﺘﻤﺎل ) ‪. f 2 ( x‬‬ ‫وأﺧﻴﺮا داﻟﺔ ﻛﺜﺎﻓﺔ اﻻﺣﺘﻤﺎل ) ‪ f 3 ( x‬ﻋﻠﻰ اﻟﺸﻜﻞ ‪:‬‬ ‫‪1‬‬ ‫‪ x 1‬‬ ‫‪2‬‬

‫‪1‬‬

‫‪ 1- 2 x 2‬‬

‫‪1‬‬ ‫‪2‬‬

‫‪‬‬

‫)‪f 3 ( x )  ( 2x  1‬‬

‫‪ 0 elsewhere .‬‬


MONTE CARLO SAMPLING

١٠

F3 ( x )

1  ( 2x  1) 2

1 (1  Y 2 ) 2 ‫وذﻟﻚ ﻷﻧﻪ ﻳﻤﻜﻦ إﺛﺒﺎت أن داﻟﺔ اﻟﺘﻮزﻳﻊ‬ ‫ﻟﻬﺬﻩ اﻟﺪاﻟﺔ ﻧﺄﺧﺬ‬ . f 3 ( x ) ‫ﻫﻲ ﻟﻤﺘﻐﻴﺮ ﻋﺸﻮاﺋﻲ ﻟﻪ اﻟﺪاﻟﺔ‬ X

A ‫( ﻧﻠﻘﻰ ﻋﻤﻠﺔ ﺛﻼث ﻣﺮات وﺑﻔﺮض أن‬٨-٨ ) ‫وﻋﻠﻰ ذﻟﻚ ﻟﺘﻮﻟﻴﺪ ﻣﺸﺎﻫﺪة ﺗﺘﺒﻊ داﻟﺔ ﻛﺜﺎﻓﺔ اﻻﺣﺘﻤﺎل ﻓﻰ‬

‫ اﻟﺤﺎدﺛﺔ اﻟﺤﺼﻮل ﻋﻠﻰ وﺟﻬﻴﻦ وﻛﺘﺎﺑﺔ ﻓﻰ‬B‫اﻟﺤﺎدﺛﺔ ﻇﻬﻮر ﺛﻼﺛﺔ وﺟﻮﻩ أو ﺛﻼﺛﺔ ﻛﺘﺎﺑﺔ ) ﻓﻰ أي ﺗﺮﺗﻴﺐ ( و‬ ‫ اﻟﺤﺎدﺛﺔ اﻟﺤﺼﻮل ﻋﻠﻰ أﺛﻨﻴﻦ ﻛﺘﺎﺑﺔ ووﺟﻪ‬C ‫أى ﺗﺮﺗﻴﺐ و‬

: ‫ ﻛﺎﻟﺘﺎﻟﻲ‬X ‫) ﻓﻰ أي ﺗﺮﺗﻴﺐ ( وﻋﻠﻰ ذﻟﻚ ﻧﻌﺮف اﻟﻤﺘﻐﻴﺮ اﻟﻌﺸﻮاﺋﻲ‬ 1

 Y 13 1 X    2  4 8

A ‫إذا وﻗﻌﺖ‬

X

1 (1  Y 2 ) 2

B ‫إذا وﻗﻌﺖ‬

X

1 (1  Y 2 ) 2

C ‫إذا وﻗﻌﺖ‬

Example(1-1-6): Suppose that a random sample of 10 observation is required from the standard exponential distribution with p.d.f.

f(x)=exp(-x),x>0. using the first five columns of digits we obtain the observations shown below which serve as a sample of independent observations from the uniform distribution

over(0,1).The associated observations from the exponential

distribution can be generated using the transformation X=log(1-Z) ,or since 1-Z is itself uniformly distributed , by using X=- log Z


MONTE CARLO SAMPLING

١١ z1  0.55463

x 1   log(0.55463)  0.589

z 2  0.15389

x 2   log(0.15389)  1.872

z 3  0.85941

x 3   log(0.85941)  0.151

z 4  0.61149

x 4   log(0.61149)  0.492

z 5  0.05219

x 5   log(0.05219)  2.953

z 6  0.41417

x 6   log(0.41417)  0.881

z 7  0.283 57

x 7   log(0.28357)  1.260

z 8  0.17783

x 8   log(0.17783)  1.727

z 9  0.40950

x 9   log(0.40950)  0.893

z10  0.82995

x 10   log(0.82995)  0.186

(1-2)GENERATION OF OBSERVATIONS FROM SOME STANDARD DISTRIBUTION In this section we discuss how the Monte Carlo sampling

method may be used to draw random samples of observation from some of the more important statistical distributions. In

some cases we shall see that the inverse transformation method form being available for the which relies on a simple analytical

c.d.f. of the underlying distribution is not applicable ,so other

techniques have to be used. Throughout the discussion we shall

let Z denote a random variable having the uniform distribution over(0,1).

(1-2-1)Exponential Distribution


MONTE CARLO SAMPLING

١٢

Let X be arandom variable having the exponential

distribution with p.d.f.

x  1  exp(  ), f (x)    e.w o

0x

The c.d.f. is F(x)  1  exp( x / ), 0  x   and is zero elsewhere . 1 Sitting Z  F(X)  1  exp(x / ) ,we option X   log(1  Z)  F (Z) .

Thus using the inverse transformation method ,values for X

may be generated from values for the uniform random variable Z using X   log(1  Z) ,or since 1-Z is it self uniformly distributed, from

X   log(Z)

(1-2-2)Weibull Distribution: Let X be random variable having the Weibull distribution

with p.d.f.

   1     x exp (x / )  ,0  x   f (x)     o elsewhere 

The c.d.f. is

F(x)  1  exp ( x / )  ,0  x  

elsewhere. Setting

Z  F(X)  1  exp ( X / )  ,

and is zero

we option or since 1

 (1-Z) has the same distribution as Z we use X   (log Z) 1

X   log(1  Z) 

*Proof:


MONTE CARLO SAMPLING

١٣

   X   F(X)  1  exp      ,     

0X

  X   Z  1  exp             X   1  Z  exp             X   ln 1  Z             

X  ln 1  Z      1   ln 1  Z     X    1 

   ln 1  Z    X 1 

(  ln Z)  X

(1-2-3)Gamma Distribution with Integer Shape Parameter Let X be random variable having the gamma distribution  exp   x /   x 1 ,0  x    () f (x)   o ,x  0 

Where the parameter is a positive integer. Instead of using the inverse transformation method which requires the inverse function F ,we use the result that the random variables X may 1

be thought of as the sum of exponentially distributed random x 1 exp( )  .Thus if Z1 , Z2 ,..., Z variables each with p.d.f.

represent a set of independent random variables uniformly


MONTE CARLO SAMPLING

١٤

distributed over ( 0,1 ) , then we may set 

   X     log Zi     log   Zi  i 1  i1  We require  observations from the uniform distribution over

( 0,1 ) to generate a single observation form this special gamma distribution .

Proof: f (x)  0

1 x x 1 exp( ), 0  x    ()  elsewhere

‫ ﻳﻤﻜﻦ اﻟﺘﻌﺒﻴﺮ ﻋﻨﻪ‬X ‫ﺑﺪﻻ ﻣﻦ اﺳﺘﺨﺪام اﻟﻨﻈﺮﻳﺔ ﻓﺈﻧﻨﺎ ﺳﻮف ﻧﺴﺘﺨﺪم اﻟﻨﺘﻴﺠﺔ أن‬. ‫ ﻗﻴﻤﺔ ﺻﺤﻴﺤﺔ‬ ‫ﺣﻴﺚ‬ :‫ﻛﻤﺠﻤﻮع ﻣﺘﻐﻴﺮات ﻋﺸﻮاﺋﻴﺔ ﺗﺘﺒﻊ اﻟﺘﻮزﻳﻊ اﻷﺳﻲ وﻛﻞ ﻣﺘﻐﻴﺮ ﻟﻪ ﺗﻮزﻳﻊ أﺳﻲ ﻋﻠﻰ اﻟﺸﻜﻞ‬ 1 x f (x)  exp( )    X (t)  (1  t)1 

  (t)   (1  t)1 i 1  xi i 1

 (1  t)

.‫واﻟﺘﻲ ﺗﻤﺜﻞ اﻟﺪاﻟﺔ اﻟﻤﻮﻟﺪة ﻟﺘﻮزﻳﻊ ﺟﺎﻣﺎ‬

(1-2-4) Beta Distribution:

:‫ﺗﻮزﻳﻊ ﺑﻴﺘﺎ‬

:‫ ﻣﺘﻐﻴﺮ ﻋﺸﻮاﺋﻲ ﻳﺘﺒﻊ ﺗﻮزﻳﻊ ﺑﻴﺘﺎ ﺑﺪاﻟﺔ ﻛﺜﺎﻓﺔ اﺣﺘﻤﺎﻟﻴﺔ‬X ‫ﻟﻴﻜﻦ‬


MONTE CARLO SAMPLING

١٥

 (  )x 1 (1  x)1   ()() f (x)    0 elsewhere  Z1  Uniform

,0  x  1

Z2  Uniform 1 

Y1  Z1 ,Y2  Z2

1 

Y1  Z1 ,Y2  Z2 f (y1 , y 2 )  f (z1 ,z 2 ) | J |

| J |

z1 y1

z1 y 2

z 2 y1

z 2 y 2

y11

0

0

y 21

 y11y 21 0  y1  1, 0  y 2  1

:‫ﺳﻮف ﻧﺄﺧﺬ اﻟﺘﺤﻮﻳﻠﺔ اﻟﺘﺎﻟﻴﺔ‬


MONTE CARLO SAMPLING

١٦ X

Y1 , W  Y1  Y2 Y1  Y2

y1  xw y 2  w  y1  w  wx  w(1  x) dy1 dy1 dx dx J dy 2 dy 2 dx dx w x  w 1  x  w(1  x)  xw  w  wx  wx  w h(x | 0  W  1) 1

 g(x, w)dw 

1

0 1

 (1  1)

  g(x, w)dxdw 0

0

sin ce : 1

1

 g(x, w)dw   x 0

1

(1  x)1 w 1dw

0

1

  x

1

(1  x)

1

w    0

 x 1 (1  x)1   sin ce : 1

1

 (1  2)

1

 x 1 (1  x)1 0 g(x, w)dxdw  0  

 (, ) ( )()    (   )  (    )

0

 (1  3)


MONTE CARLO SAMPLING

١٧

:(1-1) ‫( واﻟﺘﻌﻮﻳﺾ ﻓﻲ‬1-3) ‫ ( و‬1-2) ‫ﻣﻦ‬  x 1 (1  x)1            h(x | 0  w  1)       ()() 

1 x 1 (1  x)1 ,0  x  1   ,  

Example (1-2-1): Suppose that we require a sample of four independent

observations from the beta distribution with parameters   2 and

  14

Use the following stream of uniform observations on z : 0.706, 0.392, 0.020, 0.882, 0.670, 0.922, 0.441, 0.717, 0.577, 0.799, 0.055, 0.628 These are arranged in pairs and the transformations applied in the above steps. Z1

0.706

0.020

0.670

0.441

0.577

0.055

Z2

0.392 0.840

0.882 0.141

0.922 0.819

0.717 0.664

0.799 0.760

0.628 0.235

0.024 0.864

0.605 0.746

0.722 1.541

0.264 0.928

0.408 1.168

0.156 0.391

0.972

0.189

Re ject

0.716

Re ject

0.601

1

Y 1  Z1 2 Y 2  Z 24 Y 1 Y 2 X 

Y1 Y 1 Y 2

(1-2-5) normal Distribution:

:‫اﻟﺘﻮزﻳﻊ اﻟﻄﺒﻴﻌﻲ‬

: (0,1) ‫ ﻣﺘﻐﻴﺮﻳﻦ ﻋﺸﻮاﺋﻴﻴﻦ ﻣﺴﺘﻘﻠﻴﻦ ﻳﺘﺒﻌﺎن ﺗﻮزﻳﻊ ﻣﻨﺘﻈﻢ ﻓﻲ اﻟﻔﺘﺮة‬X1 ,X 2 ‫إذا ﻛﺎن ﻟﺪﻳﻨﺎ‬


MONTE CARLO SAMPLING

١٨ X1 

 2 ln Z 1 cos(2  Z 2 )

X2 

 2 ln Z 1 sin(2  Z 2 )

x 1 2   2 ln z 1 cos 2 (2  z 2 ) x 2 2   2 ln z 1 sin 2 (2  z 2 ) x 1 2  x 2 2   2 ln z 1  cos 2 (2  z 2 )  sin 2 (2  z 2 )    2 ln z 1 x 12  x 2 2  ln z 1 2  x 12  x 2 2  exp     z1 2   x2 sin 2  z 2   tan  2  z 2  x 1 cos 2  z 2 

tan  1

x2  2 z 2 x1

x  tan 1  2   x1  z2  2

J

z1 x1 z 2 x1

z1 x 2

 x1e

q 2

 x 2  1  1   2 z 2 2  x 2   x1  1   x 2  x1 

x 2e 1 2

x12  x 2 2  q

 x1e  



q 2

x2 1 2 2  x1  x 2 2 

 x 2e

q 2

x1 1 2 2  x1  x 2 2 

1 x12  x 2 2 q 1 q exp( )   exp ( ) 2  x12  x 2 2  2 2 2

q 2

 1     x 2   x1  1    x1  1

2


MONTE CARLO SAMPLING

١٩

w1  x1  (1  2 )x 2 w 2  x1 1   

0

 1 0  1    2  0 1 1     0

  2  1  

 1     1  var(w1 )  1 var(w 2 )  1  w1 ,w 2  

:(٢-٢-١) ‫ﻣﺜﺎل‬ ‫إذا ﻛﺎن ﻟﺪﻳﻨﺎ ﻋﻴﻨﻪ ﻋﺸﻮاﺋﻴﺔ ﻣﻦ ﺧﻤﺲ ﻣﺸﺎﻫﺪات ﻣﻦ ﺗﻮزﻳﻊ ﻃﺒﻴﻌﻲ‬ E(X1 )  10

,E(X 2 )  20

Z: .186 .345

, var(X1 )  4

.976

,   .7

:‫اﻟﻤﻄﻠﻮب ﺗﻮﻟﻴﺪ ﺑﻴﺎﻧﺎت ﺣﻴﺚ‬

.577

.927 .455

, var(X 2 )  9

.305 .279 .779 .231

:‫اﻟﺤﻞ‬ 1 2

X1  (2log 0.186) cos 2(0.927)  1.390 1 2

X 2  (2log 0.186) sin 2(0.927)  1.197 1 2

W1  (0.7)(1.390)  (1  .49) (1.197)  1.828 W2  X1  1.390 V1  10  4(1.828)  13.656 V2  20  9(1.390)  24.170

:‫وﺑﺎﻟﻤﺜﻞ ﻟﺒﺎﻗﻲ اﻟﻘﻴﻢ ﺗﺼﺒﺢ ﺑﺎﻟﺼﻮرة‬


‫‪MONTE CARLO SAMPLING‬‬

‫‪٢٠‬‬

‫‪ V1  13.656  12.733  10.574   6.920  12.478 ‬‬ ‫‪ V    24.170   21.854  18.497  12.067   24.773‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪‬‬ ‫‪ 2 ‬‬

‫‪(1-2-6) Binomial Distribution:‬‬

‫ﺗﻮزﻳﻊ ذي اﻟﺤﺪﻳﻦ‪:‬‬

‫ﻟﻴﻜﻦ ‪ X‬ﻣﺘﻐﻴﺮ ﻋﺸﻮاﺋﻲ ﻳﺘﺒﻊ ﺗﻮزﻳﻊ ذي اﻟﺤﺪﻳﻦ‬ ‫‪n‬‬ ‫‪P(X  x)    p x (1  p) n  x , x  0,1,2,...,n‬‬ ‫‪x‬‬ ‫‪n‬‬

‫‪and X i  0‬‬

‫‪where X i  1 with probablity p‬‬

‫‪X   Xi‬‬ ‫‪i 1‬‬

‫‪with probablity (1  p),i  1,...,n‬‬ ‫‪we set X i  1 if 0  Z  p‬‬ ‫‪and X i  0 if p  Z  1‬‬

‫ﻋﻤﻠﻴﻪ ﺑﻮاﺳﻮن‬

‫‪(1-2-7) Poisson Distribution:‬‬

‫ﻳﻮﺟﺪ ﻋﺪد ﻛﺒﻴﺮ ﻣﻦ اﻟﻀﻮاﻫﺮ اﻟﺘﻲ ﺗﺘﻐﻴﺮ ﺧﻼل اﻟﺰﻣﻦ ‪ . t‬ﻓﺈذا ﻛﺎن ﻋﺪد اﻟﺘﻐﻴﺮات ﺧﻼل اﻟﻔﺘﺮﻩ اﻟﺰﻣﻨﻴﻪ )‬

‫‪ (0,t‬ﻫﻮ )‪ X (t‬ﻓﻴﻜﻮن ) ‪ X ( t‬ﻋﺒﺎرﻩ ﻋﻦ داﻟﻪ ﻓﻲ اﻟﺰﻣﻦ وﻳﺘﺒﻊ ﺗﻮزﻳﻊ اﺣﺘﻤﺎل ﻣﻌﻴﻦ ‪ .‬ﻓﻲ ﻫﺬﻩ اﻟﺤﺎﻟﻪ‬

‫ﻻﻧﻜﻮن ﺑﺼﺪد ﻣﺘﻐﻴﺮ ﻋﺸﻮاﺋﻲ واﺣﺪ ‪ X‬ﺑﻞ ﻟﻜﻞ ‪ t>0‬ﻳﻜﻮن ﻟﺪﻳﻨﺎ ﻣﺘﻐﻴﺮ ) ‪ X( t‬وﻫﺬﻩ اﻟﻤﺠﻤﻮﻋﻪ ﻣـﻦ‬ ‫اﻟﻤﺘﻐﻴﺮات اﻟﻌﺸﻮاﺋﻴﻪ ﺗﺪﻋﻰ ﺑﺎﻟﻌﻤﻠﻴﺔ اﻟﻌﺸﻮاﺋﻴﺔ‪.‬‬

‫ﻓﺈذا ﻛﺎﻧﺖ ‪ t‬ﺗﺄﺧﺬ ﻗﻴﻤﺎ ﻣﺘﺼﻠﻪ ﻓﺄن اﻟﻌﻤﻠﻴﻪ ﺗﺴﻤﻰ ﻋﻤﻠﻴﻪ ﺗﺼﺎدﻓﻴﻪ ﺑﺰﻣﻦ ﻣﺘﺼﻞ وﻳﺮﻣﺰ ﻟﻬﺎ‬

‫ﺑﺎﻟﺮﻣﺰ )‪(X (t ), t  0‬‬

‫وﺗﺴﻤﻰ اﻟﻌﻤﻠﻴﻪ اﻟﺘﺼﺎدﻓﻴﻪ ﺑﻌﻤﻠﻴﻪ ﺑﻮاﺳﻮن أذا ﻛﺎن ﻗﺎﻧﻮن اﺣﺘﻤﺎﻟﻬﺎ ﻳﺘﺒﻊ ﺗﻮزﻳﻊ ﺑﻮﺳﻮان ‪.‬‬ ‫أي ان اﻟﻤﺘﻐﻴﺮ اﻟﻌﺸﻮاﺋﻲ ) ‪ X ( t‬ﻳﻤﺜﻞ ﻋﺪد ﺣﺎﻻت اﻟﻨﺠﺎح ) اﻟﺘﻐﻴﺮات ( ﻓﻲ اﻟﻔﺘﺮﻩ ) ‪ ( 0,t‬ﻳﺘﺒﻊ ﺗﻮزﻳﻊ‬ ‫ﺑﻮاﺳﻮن ‪.‬‬

‫ﻫﻨﺎك ﻇﻮاﻫﺮ ﻛﺜﻴﺮﻩ ﻳﻜﻮن ﻋﺪد اﻟﺘﻐﻴﺮات ﻓﻴﻬﺎ ) ‪ X ( t‬ﻳﺘﺒﻊ ﺗﻮزﻳﻊ ﺑﻮاﺳﻮن ‪ .‬ﻓﺈذا ﻛﻨﺎ ﻧﺮاﻗﺐ او ﻧﻼﺣﻆ‬

‫وﻗﻮع اﺣﺪاث ﻳﻤﻜﻦ ان ﺗﻘﻊ ﻓﻲ أي وﻗﺖ ﻣﻦ اﻟﺰﻣﻦ ﻣﺜﻼ اذا ﻛﻨﺎ ﻧﺮاﻗﺐ ‪-:‬‬

‫‪ #‬ﻋﺪد اﻟﻄﺎﺋﺮات ) ‪ X ( t‬اﻟﺘﻲ ﺗﺤﻴﻂ ﻓﻲ اﻟﻄﺎﺋﺮﻩ ﻣﻦ ﺧﻼل اﻟﻔﺘﺮﻩ اﻟﺰﻣﻨﻴﻪ ) ‪. (0,t‬‬

‫‪ #‬ﻋﺪد اﻟﺴﻴﺎرات ) ‪ X (t‬اﻟﺘﻲ ﺗﺼﻞ اﻟﻰ ﻣﺤﻄﺔ ﺑﻨﺰﻳﻦ ﻣﻦ ﺧﻼل اﻟﻔﺘﺮﻩ اﻟﺰﻣﻨﻴﻪ ) ‪. (0,t‬‬ ‫‪ #‬ﻋﺪد اﻟﺒﻮاﺧﺮ ) ‪ X( t‬اﻟﺘﻲ ﺗﺼﻞ اﻟﻰ ﻣﻴﻨﺎء ﻣﻦ ﺧﻼل اﻟﻔﺘﺮﻩ اﻟﺰﻣﻨﻴﻪ ) ‪. ( 0,t‬‬


‫‪MONTE CARLO SAMPLING‬‬

‫‪٢١‬‬

‫‪ #‬ﻋﺪد ﺣﻮادث اﻟﺴﻴﺎرات ) ‪ X( t‬اﻟﺘﻲ ﺗﻘﻊ ﻋﻠﻰ اﻟﻄﺮﻳﻖ ﺧﻼل اﻟﻔﺘﺮة اﻟﺰﻣﻨﻴﺔ ) ‪. ( 0,t‬‬

‫‪ #‬ﻋﺪد اﻟﻌﻤﻼء ) ‪ X ( t‬اﻟﺬﻳﻦ ﻳﺼﻠﻮن اﻟﻰ ﺷﺒﺎﺑﻴﻚ اﺣﺪ اﻟﺒﻨﻮك ﺧﻼل اﻟﻔﺘﺮة اﻟﺰﻣﻨﻴﺔ ) ‪. ( 0,t‬‬ ‫‪ #‬ﻋﺪد اﻟﻤﻜﺎﻟﻤﺎت اﻟﺘﻠﻔﻮﻧﻴﻪ ) ‪ X ( t‬اﻟﺘﻲ ﺗﺼﻞ اﻟﻰ ﺳﻨﺘﺮال ﻣﻦ ﺧﻼل اﻟﻔﺘﺮة اﻟﺰﻣﻨﻴﺔ ) ‪. ( 0,t‬‬ ‫‪ #‬ﻋﺪد اﻟﺠﺰﻳﺌﺎت اﻟﺘﻲ ﺗﺼﺪر ﻣﻦ ﻣﻌﺪن ﻣﺸﺒﻊ ﺧﻼل اﻟﻔﺘﺮﻩ اﻟﺰﻣﻨﻴﻪ ) ‪. ( 0,t‬‬

‫اﻟﺪاﻟﻪ اﻻ ﺣﺘﻤﺎﻟﻴﻪ ﻟﻌﺪد اﻟﺤﻮادث ) ‪ x ( t‬اﻟﺘﻲ ﺗﻘﻊ ﻓﻲ اﻟﻔﺘﺮﻩ اﻟﺰﻣﻨﻴﻪ )‪ ( 0,t‬ﻫﻲ‬

‫ﻣﺜﺎل )‪:(٣-٢-١‬‬

‫‪exp(t)(t) x‬‬ ‫‪, x  0,1,...‬‬ ‫!‪x‬‬

‫‪f (t) ‬‬

‫إذا ﻛﺎﻧﺖ اﻟﺒﻮاﺧﺮ ﺗﺼﻞ اﻟﻰ ﻣﻴﻨﺎء ﻣﺎ ﺑﻤﻌﺪل ‪ ٣‬ﺑﻮاﺧﺮ ﻓﻲ اﻟﺴﺎﻋﻪ ﻓﻤﺎ اﺣﺘﻤﺎل أن ﺗﺼﻞ ﺑﺎﺧﺮﺗﺎن ﺧﻼل ‪٤٠‬‬ ‫دﻗﻴﻘﻪ ؟‬ ‫اﻟﺤﻞ‪:‬‬ ‫‪3‬‬ ‫ﻣﻌﺪل وﺻﻮل اﻟﺒﻮاﺧﺮ ﻓﻲ اﻟﺪﻗﻴﻘﻪ ‪60‬‬

‫‪‬‬

‫اﻟﻔﺘﺮة اﻟﺰﻣﻨﻴﺔ ‪ t=40‬دﻗﻴﻘﺔ‬

‫ﻓﺈذا ﻛﺎن ‪ X‬ﻫﻲ ﻋﺪد اﻟﺒﻮاﺧﺮ ﻓﺈن ‪ X‬ﻳﺘﺒﻊ ﺗﻮزﻳﻊ ﺑﻮاﺳﻮن ﺑﻤﻌﻠﻤﺔ‬ ‫‪3‬‬ ‫‪)2‬‬ ‫‪60‬‬ ‫‪e 2 2 x‬‬ ‫‪f (x) ‬‬ ‫‪, x  0,1, 2,3...‬‬ ‫!‪x‬‬ ‫‪e 2 2 2‬‬ ‫‪p(X  2) ‬‬ ‫‪ .27‬‬ ‫!‪2‬‬ ‫(‪t  40‬‬

‫ﺗﻮزﻳﻊ اﻟﻔﺘﺮات ﺑﻴﻦ اﻟﺤﻮادث‪:‬‬

‫إذا ﻛﺎن ﻋﺪد اﻟﺤﻮادث )‪ X(t‬اﻟﺘﻲ ﺗﻘﻊ ﻓﻲ اﻟﻔﺘﺮة )‪ ( 0,t‬ﻣﺘﻐﻴﺮا ﻋﺸﻮاﺋﻴﺎ ﻣﺘﻘﻄﻌﺎ ﻳﺘﺒﻊ ﺗﻮزﻳﻊ ﺑﻮاﺳﻮن‬

‫ﺑﻤﻌﻠﻤﺔ ‪) t‬ﻣﺘﻮﺳﻂ ﻋﺪد اﻟﺤﻮادث ﻓﻲ وﺣﺪة اﻟﺰﻣﻦ( ﻓﺈن أﻃﻮال اﻟﻔﺘﺮات اﻟﺰﻣﻨﻴﺔ اﻟﺘﻲ ﺗﻔﺼﻞ ﺑﻴﻦ ﻟﺤﻈﺎت‬

‫وﻗﻮع اﻟﺤﻮادث ﺗﻤﺜﻞ ﻣﺘﻐﻴﺮا ﻋﺸﻮاﺋﻴﺎ ﻣﺘﺼﻼ ﻟﻪ ﺗﻮزﻳﻊ اﺳﻲ ‪ .‬ﺑﻔﺮض أن ‪ T‬ﻃﻮل اﻟﻔﺘﺮة ﻣﻦ ﺑﺪاﻳﺔ اﻟﺰﻣﻦ إﻟﻰ‬

‫اﻟﺤﺎدﺛﺔ اﻷوﻟﻰ ﻳﻤﻜﻦ اﻟﺤﺼﻮل ﻋﻠﻰ ﺗﻮزﻳﻊ ‪ T‬ﻣﻦ ﺗﻮزﻳﻊ )‪.X(t‬‬

‫إذا ﻟﻢ ﺗﻘﻊ ﺣﺎدﺛﺔ ﻓﻲ اﻟﻔﺘﺮة )‪ (0,t‬ﻓﻬﺬا ﻳﻌﻨﻲ أن ‪ T>t‬أي أن ‪:‬‬


‫‪MONTE CARLO SAMPLING‬‬

‫‪٢٢‬‬

‫)‪P(T>t)=P(X(t)=0‬‬ ‫‪=e - t‬‬ ‫‪f (T)   e - t‬‬

‫ﻓﺈذا ﻛﺎﻧﺖ ‪ T1‬ﺗﻤﺜﻞ ﻃﻮل اﻟﻔﺘﺮة ﻣﻦ اﻟﺒﺪاﻳﻪ اﻟﻰ اﻟﺤﺎدﺛﺔ اﻷوﻟﻰ‬

‫‪ T2‬ﺗﻤﺜﻞ ﻃﻮل اﻟﻔﺘﺮة ﻣﻦ اﻟﺤﺎدﺛﺔ اﻷوﻟﻰ اﻟﻰ اﻟﺤﺎدﺛﺔ اﻟﺜﺎﻧﻴﺔ‬ ‫‪ T3‬ﺗﻤﺜﻞ ﻃﻮل اﻟﻔﺘﺮة ﻣﻦ اﻟﺤﺎدﺛﺔ اﻟﺜﺎﻧﻴﺔ اﻟﻰ اﻟﺤﺎدﺛﺔ اﻟﺜﺎﻟﺜﺔ‬

‫ﻓﺈن اﻟﻤﺘﻐﻴﺮات …‪ T1,T2,‬ﻫﻲ ﻣﺘﻐﻴﺮات ﻋﺸﻮاﺋﻴﺔ ﻣﺴﺘﻘﻠﺔ ﻳﺘﺒﻊ ﻛﻞ ﻣﻨﻬﺎ ﺗﻮزﻳﻊ اﺳﻲ ﺑﺪﻻﻟﺔ ﻛﺜﺎﻓﺔ‬ ‫اﺣﺘﻤﺎل ‪f (t)  et‬‬

‫اذا ﻛﺎن ‪ T1  T2 ,...  Tn‬اﻟﺰﻣﻦ ﻣﻦ اﻟﺒﺪاﻳﺔ اﻟﻰ ﻇﻬﻮر اﻟﺤﺎدﺛﺔ ‪ n‬أي أﻧﻪ ﻳﻤﺜﻞ ﻣﺠﻤﻮع ‪ n‬ﻣﻦ اﻟﻤﺘﻐﻴﺮات‬ ‫اﻟﻌﺸﻮاﺋﻴﺔ اﻟﻤﺴﺘﻘﻠﺔ ﻛﻞ ﻣﻨﻬﺎ ﻳﺘﺒﻊ ﺗﻮزﻳﻊ اﺳﻲ ﺑﻤﻌﻠﻤﺔ ‪ ‬وﻋﻠﻰ ذﻟﻚ ‪ T1  T2 ,...  Tn‬ﻳﺘﺒﻊ ﺗﻮزﻳﻊ ﺟﺎﻣﺎ‬ ‫ﺑﻤﻌﺎﻟﻢ ‪ ‬و‪. n‬‬

‫‪(1-2-8)Geometric Distribution:‬‬

‫إذا ﻛﺎن‪:‬‬

‫‪, x  1, 2,....‬‬ ‫‪w 1‬‬

‫‪p‬‬

‫‪x 1‬‬

‫‪f  x   1  p ‬‬

‫‪x‬‬

‫‪ p  w    1  p ‬‬ ‫‪w 1‬‬

‫‪Fx  ‬‬

‫‪w x‬‬

‫‪w‬‬

‫‪x 1‬‬

‫‪ p  1  p ‬‬ ‫‪w 0‬‬

‫ﻟﺤﺴﺎب ﻫﺬا اﻟﻤﺠﻤﻮع ﺳﻮف ﻧﺴﺘﻔﻴﺪ ﻣﻦ اﻟﻌﻼﻗﺎت اﻟﺘﺎﻟﻴﺔ‪:‬‬ ‫‪a 1 p‬‬ ‫‪k  x 1‬‬

‫‪1  a k 1‬‬ ‫‪1 a‬‬

‫‪k‬‬

‫‪ aw ‬‬

‫‪w 0‬‬

‫‪x 11‬‬

‫‪1  1  p ‬‬ ‫‪Fx   p‬‬ ‫‪1  1  p ‬‬ ‫‪x‬‬

‫‪1  1  p ‬‬ ‫‪x ‬‬ ‫‪p‬‬ ‫‪ 1  1  p  , x  1‬‬ ‫‪11p‬‬

‫‪‬‬ ‫‪‬‬ ‫‪ p  Z  1  p  ‬‬ ‫‪x‬‬

‫‪ p Z  1  1  p  , Z  F  x ‬‬ ‫‪x‬‬

‫‪Z‬‬

‫ﻣﻨﺘﻈﻢ‬


MONTE CARLO SAMPLING

٢٣

‫ ﻣﻨﺘﻈﻢ‬1  Z

P  X  x   P Z  1  1  p 

x

   P 1  Z  1  p    P  Z  1  p    P Z  1   1  p 

x

x

x

 P  X  x   P  X  x   P  X  x  1

  P  1  p 

  p  Z  1  p    Z  1  p  

 p Z  1  p 

1  p  e

x

x ln 1 p 

x

x

x 1

x 1

Z Z

x ln 1  p   ln z

x

ln Z ln 1  p 

x  s 

. s ‫ أﺻﻐﺮ رﻗﻢ ﺻﺤﻴﺢ ﻳﺴﺎوي أو أﻛﺒﺮ ﻣﻦ‬s ‫ﺣﻴﺚ‬

let Z  0.2 1 p 2 ln Z S ln 1  p 

 S 

s ‫أﻗﻞ رﻗﻢ ﺻﺤﻴﺢ أﻛﺒﺮ أو ﻳﺴﺎوي‬

1.609 1.609   2.32 0.693 0.693 s ‫أﻗﻞ رﻗﻢ ﺻﺤﻴﺢ أﻛﺒﺮ ﻣﻦ أو ﻳﺴﺎوي‬

X3


‫‪MONTE CARLO SAMPLING‬‬

‫‪٢٤‬‬

‫ﻣﺜﺎل )‪:(٤-٢-١‬‬ ‫إذا ﻛﺎﻧﺖ داﻟﺔ ﻛﺜﺎﻓﺔ اﻻﺣﺘﻤﺎل ﻟﻤﺘﻐﻴﺮ ﻋﺸﻮاﺋﻲ ‪ x‬ﻋﻠﻰ اﻟﺸﻜﻞ‪:‬‬ ‫‪x‬‬ ‫‪,0  x  2‬‬ ‫‪2‬‬ ‫‪ 0 , e.w .‬‬

‫‪f x  ‬‬

‫اﻟﺤﻞ‪:‬‬ ‫‪x‬‬

‫‪t‬‬ ‫‪t2 x x2‬‬ ‫‪F  x    dt  |  ,0  x  c 2‬‬ ‫‪2‬‬ ‫‪4 0 4‬‬ ‫‪0‬‬ ‫‪ 0, x  0‬‬ ‫‪ 1, x  2‬‬ ‫‪let‬‬ ‫‪x2‬‬ ‫‪4‬‬ ‫‪4Z  x 2  x  2 Z‬‬ ‫‪F x   Z ‬‬

‫ﻧﻘﻮم ﺑﺘﻮﻟﻴﺪ ﺑﻴﺎﻧﺎت‬ ‫‪Z1 , Z2 ,....., Zn‬‬

‫ﻧﺘﺒﻊ اﻟﺘﻮزﻳﻊ ﻣﻨﺘﻈﻢ ‪ u  0,1‬وﺑﺎﻟﺘﻌﻮﻳﺾ ‪ x  2 Z‬ﻧﺤﺼﻞ ﻋﻠﻰ اﻟﻘﻴﻤﺔ اﻟﻌﺸﻮاﺋﻴﺔ اﻟﺘﻲ ﻣﺸﺎﻫﺪﺗﻬﺎ ﺗﺘﺒﻊ‬ ‫‪x‬‬ ‫‪f  x   ,0  x  2‬‬ ‫‪2‬‬ ‫اﻟﺘﻮزﻳﻊ‬

‫ﻣﺜﺎل )‪:(٥-٢-١‬‬ ‫إذا ﻛﺎن ‪ X‬ﻣﺘﻐﻴﺮاً ﻋﺸﻮاﺋﻴﺎً ﺑﺪاﻟﺔ ﻛﺜﺎﻓﺔ اﺣﺘﻤﺎل )ﺗﻮزﻳﻊ ﻟﻮﺟﺴﺘﻲ( ﻋﻠﻰ اﻟﺸﻜﻞ‪:‬‬ ‫‪,   x  ‬‬

‫‪ex‬‬ ‫‪2‬‬

‫‪1  e x ‬‬

‫‪f x ‬‬

‫‪ 0 elsewhere‬‬

‫اﻟﺤﻞ‪:‬‬

‫داﻟﺔ اﻟﺘﻮزﻳﻊ ﻟﻠﻤﺘﻐﻴﺮ ‪ x‬ﻋﻠﻰ اﻟﺸﻜﻞ‪:‬‬


MONTE CARLO SAMPLING

٢٥ x

F x  



e t

1  e  t

dt

2

x

2

 e 1  e  t

t

dt



x

 1  e  t  1



F x  

1 ,   x   1  e x 

x  F1  z  Z  F x  

1 1  e x 

1 z 1 1   1  e  x  ln   1    x z z  1  x   ln   1  z  Z1  1  e  x  

:(٦-٢-١) ‫ﻣﺜﺎل‬

‫ ﺗﺘﺒﻊ ﺗﻮزﻳﻊ ﻛﻮﺷﻲ؟‬n=10 ‫اﻟﻤﻄﻠﻮب ﺗﻮﻟﻴﺪ )ﻣﺤﺎﻛﺎة( ﻋﻴﻨﺔ ﻋﺸﻮاﺋﻴﺔ ﻣﻦ اﻟﺤﺠﻢ‬ :‫اﻟﺤﻞ‬

: ‫داﻟﺔ اﻟﺘﻮزﻳﻊ اﻟﺘﺠﻤﻴﻌﻲ ﻟﺘﻮزﻳﻊ ﻛﻮﺷﻲ ﻫﻲ‬ F(x) 

1  1 tan  x    

 2 

:‫وﻟﺪي ﺑﻴﺎﻧﺎت ﺗﺘﺒﻊ ﻫﺬا اﻟﺘﻮزﻳﻊ‬ 

1 1 F x    dt   1  t 2 x

1  tan 1  t   


MONTE CARLO SAMPLING

٢٦

1  1  tan x      2 

 x  

1  1  tan  x      2  z  tan 1  x   2   1 (1-2)  z    tan  x  2    x  tan  z   (1-1) 2  1  1 ‫ ﺛﻢ ﻧﻌﻮض ﻓﻲ اﻟﻤﻌﺎدﻟﺔ‬ 0,1 ‫ ﻣﻦ ﺗﻮزﻳﻊ ﻣﻨﺘﻈﻢ ﻓﻲ اﻟﻔﺘﺮة‬Z1, Z2 ,....., Zn ‫ﻧﻘﻮم ﺑﺘﻮﻟﻴﺪ‬ z

1  2  ‫ ﻣﻦ اﻟﻤﺸﺎﻫﺪات ﺗﺘﺒﻊ اﻟﺘﻮزﻳﻊ ﻓﻲ‬n ‫ﻋﻠﻰ أن‬ :(٦-٢-١) ‫ﻣﺜﺎل‬ :‫إذا ﻛﺎﻧﺖ داﻟﺔ ﻛﺜﺎﻓﺔ اﻻﺣﺘﻤﺎل ﻟﻤﺘﻐﻴﺮ ﻋﺸﻮاﺋﻲ ﻋﻠﻰ اﻟﺸﻜﻞ‬ x f  x   ,0  x  2 2 0 e.w

:‫اﻟﺤﻞ‬ x

x

t t2 x2 F  x    dt   2 40 4 0  0, x  0  2 x F  x    ,0  x  2 4  1, x  2 x2 z  F x   4 2 4z  x x2 z


٢٧

MONTE CARLO SAMPLING


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.