中国生物多样性应对气候变化现状评估
摘要 气候变化与生态系统多样性密切关联,因为不仅生态系统在调节气候中发 挥重要作用,而且生物多样性高的生态系统对气候变化的影响的自我恢复能力更 高。如果不兼顾生物多样性,就不能解决气候变化问题,因为生态系统的生物多 样性和恢复力有助于其调节气候并减低气候变化对关键生态系统的影响,这些生 态系统提供对人类健康与褔祉和经济与社会可持续发展至关重要的支持生命的 关键服务功能。人类活动,如自然资源的过度利用、土地利用变化、环境污染等 及其副作用(如外来种入侵)将降低生态系统减缓与适应气候变化的能力与作用。 所以,保护与改善生态系统生物多样性有助于避免或减轻气候变化的负面影响。 评价气候变化与生物多样性之间的关联,特别是生物多样性对气候的适应 以及相应的减缓策略在中国尤为重要。本报告探讨中国版图下气候变化与生物多 样性之间的关联,焦点集中在以下几个方面: 生物多样性和生态系统在减缓气候变化中的作用与功能; 生物多样性丧失在加速气候变化中的作用; 气候变化对生物多样性的负面影响; 所采取的减缓和适应气候变化的政策与行动对生物多样性的潜在影响,最 大限度减低气候变化负面影响、寻求保护生物多样性和减缓气候变化之间协调的 可能选择、措施和途径。
1
本报告的最后,提出了一些建议:即响应《中国应对气候变化国家方案》、 《中国应对气候变化的政策与行动》白皮书和中国《国家生物多样性战略和行动 计划》(NBSAP),在国家和省级层面应将生物多样性纳入气候变化政策(减缓与 适应)之中。这里提出的关键讯息是,气候变化、生物多样性保护以及人类社会 的福祉与生计应纳入或在社会与经济可持续发展中得到综合考虑。为此,需要采 取有效的、协调一致的或连贯的行动保护生物多样性,进而减缓气候变化及其影 响。 生态系统及其生物多样性构成关键生态系统服务功能的基础,也是所有国 家的自然资本储备。中国拥有得天独厚的巨大自然资本储备,但它既不能被挥霍 殆尽,也不能在利用时付出严重环境灾难的代价,如气候变化。生物多样性保护 绝非奢望,而是中国长期获益的投资。
2
第一章 引言 1.1 背景 全球气候变化与生态系统健康与生物多样性密不可分,而后者则对生态系 统持续发挥其功能至关重要: 生物多样性越高,气候变化越小: 健康完整的生态系统具有缓减气候变化 及其影响的服务功能。 生物多样性越低,气候变化越大:仅热带毁林每年造成的 CO2 排放占全球 每年 CO2 排放量的 20%(Houghton, 2005)。其它关键生态系统如草地和泥炭地的 退化也导致 CO2 排放,同时降低其水源调节和其它生态系统服务的能力。 生物多样性越低,气候变化的影响越大: 一旦生态系统退化以及生物多样 性丧失,它们调节气候的能力就下降,进而对生态系统服务功能造成负面影响。 其中包括诸如限制干旱与洪涝发生与强度的调节功能。 气候变化越大,生物多样越低: 气候变化已经对中国生态系统和生物多样 性造成严重影响。例如,青藏高原冰川迅速融化,高山植被格局发生变化、湿地 逐渐消失等。由于人类活动引发的气候变化,生境退化与消失等合起来,对生态 系统完整性和生物多样性保护构成日益严重的威胁。 由于过去 30 年的快速经济发展,特别是工业化和城市化所引起的土地利用 变化,对我国的生态系统的功能与服务造成深刻影响。因为我国大范围的生态退 化、巨大的人口和大量的基础设施建设也受到生态系统缓减能力下降和气候格局 变化的威胁,因此,中国对于气候变化异常敏感,气候变化威胁着土地利用格局, 特别是传统的农业生产。 3
中国已经认识到气候变化的威胁,分别于 2007 年颁布了《中国应对气候变 化国家方案》、2008 年颁布了《中国应对气候变化的政策与行动》白皮书。两份 文件都认为,需要保护、恢复和可持续地管理生态系统,并将此列为整个应对气 候变化方案的基本要素。中国也正在修改《国家生物多样性战略和行动计划》 (NBSAP),其中包括了一个有关气候变化与生物多样性关系的重要章节。
1.2 中国气候变化与生物多样性:现状与趋势
中国按总土地面积位居世界第三(960 万平方公里),占全球陆地面积的 6.5%,主要位于温带,气候和生物群系复杂多样,且具有明显的纬向、径向和垂 直梯度或地带性。 气候: 现状 因为地理位置在决定季风(一个强烈影响我国降水格局的气候系统)活动强 度中起主要作用,所以中国气候复杂多样。与同纬度的其它地区相比,中国的绝 大多数地区大陆性季风气候具有显著的季节变化。由于季风气候的不确定性,中 国的降水的时空分布通常不稳定、不均匀,在最西端和最北部降水稀少。在中国 许多地方,极端气候或气象事件时有发生,而且强度大。华北四季明显,最靠北 端的黑龙江甚至具有亚北极(副极地)气候特征。我国南方夏季炎热湿润,从 4 月 至 9 月持续近半年时间。海南省,非常靠近赤道,具有典型的热带气候,季节性 不明显。青藏高原具有特殊的气候,不仅受到高原海拔的影响,也受到印度季风 的影响。 气候: 观测到的变化趋势 据中国气象局最新发布的信息,过去 100 年来(1908-2007),中国地表平均 气温升高了 1.1 oC;从 1986 年至 2007 年经历了 21 个暖冬,其中 2007 年是从 1951 4
年有系统气象观测以来最暖的一年。冬季和春季变暖最明显。在华北、东北和西 北地区观测到更显著的变暖趋势,而我国西南则趋于变冷 (Ding et al., 2007)。 全国的降水分布在上世纪后半叶经历了显著变化,西部和华南地区增加, 而华北和东北的大部分地区减少。尽管过去 100 年里年平均降水的长期变化趋势 不显著,但是观测到了降水的空间或地区差异。例如,在上世纪后半叶,黄河流 域和华北平原,特别是山东省,出现明显的变干趋势,而西北绝大多数地区和长 江流域则经历了可探测出的但不显著的变湿趋势,尤其是在夏季(国家发展与改 革委员会,2007;国务院,2008)。 人类活动引起的气候变化,在其它方面也观测到了变化,例如,冰川退缩、 海平面上升、极端或异常天气与气候事件(干旱、台风与暴雨、热浪和洪涝)的增 加等(见附件 1)。1998 年,我国经历了百年不遇的席卷 29 个省份的灾难性的夏 季洪水;2007 年,在我国部分省份发生了自 1940 年以来最严重的干旱;2008 年春季,在我国南方发生了严重的冰冻灾害。
生物多样性:现状 中国幅员辽阔、海域宽广,自然条件复杂多样,加之有着古老的地质历史, 为各种生物的产生、生存和繁衍提供了多样的生境,因而孕育了极其丰富的植物、 动物和微生物物种以及复杂多样的生态系统(Tang et al., 2006; Jordi et al., 2006)。 中国也因此成为世界上 12 个生物多样性特别丰富的国家之一,同时也是北半球 生物多样性最丰富的国家(McNeely et al., 1990)。例如中国是继巴西和哥伦比亚之 后第三大植物多样性最为丰富的国家,维管束植物有 33000 之多(Liu et al., 2003; Jordi et al., 2006)。中国有 173 个县被指定为植物属热点地区,154 个县被指定为
5
哺乳动物热点地区,这些地区共包括种子植物 2948 个属(占中国的 86%),以及 哺乳动物的 384 个属(占中国总数 81.9%)(图 1)。中国还是全球种子植物多样化分 布中心之一,包括史前劳亚大陆以及冈瓦纳古陆植物区系的孑遗成分(Qian and Ricklefs, 1999)。此外,中国特有物种多,且主要分布在山区(图 1):其中包括 667 个脊椎动物特有种和 17300 种子植物特有种。目前,集中在西南部地区的 302 个濒危物种已经被收录到《国家重点保护野生植物名录》中(图 2),其中包括极 危种 79 个,濒危种 99 个,易危种 112 个。
图1 县级水平的生物多样性密度分布格局:a)种子植物;b)哺乳动物;c)特有植物;d)哺乳 动物特有种。热点地区的国家用深橘色和棕色表示(根据 Tang et al., 2006修订)。
6
图 2 濒危植物在省级水平上的地理分布(Zhang and Ma, 2008)。
生物多样性:观测到的趋势 气候变化对生物多样性和生态系统功能已经产生了影响。一项对 1960 年以 来中国主要陆地生态系统变化的分析表明:变化的温度和降雨量导致了生命地带 多样性(Holdriges Life Zone diversity)的持续递减(Yue et al., 2005)。而对植被覆盖 率改变与气候变化间关系的研究表明:在 1982 到 1999 年间,中国北部地区春季 和秋季的植被覆盖也发生了改变,这可能是由于温度上升所引起的植物生长季的 提前和衰老的延迟导致的结果(李月臣 等, 2006)。有科学家研究还证明了气候变 暖造成了青藏高原土壤碳大量流失,生态系统退化严重。而在热带地区的西双版 纳,自 1950 年以来森林覆盖率从 65%锐减至 30%,森林斑块则从 1959 年的 256 7
个上升至 1998 年的 1219 个(Xu et al., 2001)。此外,气候变化还造成了大量的物 种灭绝,比如科学家在西双版纳的傣族“龙山”上发现,过去的 30 年中有 55 种物 种灭绝。中国北部的森林也同样有逐渐斑块化的趋势,特别是红松林破碎化最为 严重(Wang et al., 2003)。在长白山自然保护区,过去的 43 年间,优势种在逐渐 减少,阔叶林在逐渐增加,演替阶段的物种交替向更高纬度转移(Sang and Bai, 2009)。中国大部分的河流和湿地都被污染并且退化,造成了很多物种灭绝。例 如,对黄河流域的首曲湿地的研究表明,湿地从沼泽地转变为了沼泽草甸,从沼 泽草甸转变为了高山草甸,又从高山草甸转变为了草原草甸,而物种也由湿地植 物逐渐被中生植物和旱生植物所替代(后源 等, 2009)。尽管全盘估量特定生态系 统中生物多样性的变化仍然不是十分清晰的,但已经观察到的结果都证明了中国 生物多样性发生了变化,并且这种变化仍在继续进行着。
生物多样性面临的等级压力 1. 生境改变造成的生境丧失和退化 无论在地区、区域还是全球尺度上,生境改变所带来的生境丧失和退化都 是造成物种灭绝的主要原因。城市发展、水资源管理、道路修建、火灾、农业以 及伐木都造成了自然生境的破坏和退化。生境流失不单单对生物种是有害的,同 时也危害到了整个群落和生态系统。此外,生境的边缘容易受到周围环境的强烈 影响,从而生境的流失也会导致剩余生境破碎化。
2. 不可持续的物种开发利用 人类过度开发利用物种是造成物种灭绝的最显著因素。对物种进行可持续 8
开采,种群可以通过增长来补充流失。然而,大多数情况是开采过量造成了余下 的不足以及时更新。植物有时被整株获取( 比如伐木),有时仅是部分被开采利 用(比如生产中草药所需的叶片),无论哪种都有可能被过度利用。可持续开采的 度量主要由植物的生活型和生物学特性所决定。人类活动对物种的影响遍及全 球,从海洋的过渡捕捞到考古发现的史前人类造成的哺乳动物灭绝。
3. 外来物种入侵 外来物种的入侵被认为是造成生物多样性丧失的主要的直接驱动之一 (Sala et al. 2000)。入侵种不仅通过捕食、寄生、杂交以及对生境和资源的竞争来 减少当地物种多样性,而且还通过改变营养和水分条件来改变生态系统的功能。 入侵同样影响着社会经济,包括生计丧失和为了控制和缓解入侵种威胁的额外消 费。“千年生态系统评估”指出入侵种是造成生物多样性丧失的五大直接因素之一 (其它因素为:土地利用变化、气候变化、过度开采和污染)。
4. 气候变化 近年来观察到的气候变化已经对生物多样性和生态系统产生了显著影响, 特别是区域温度的上升(Klein et al. 2004),包括物种分布、种群大小、生殖迁移 时间的改变以及害虫疾病爆发频率的增加。尽管可以部分逆转,当地区海面温度 在一个月内增加了 0.5 到 1 摄氏度,甚至比最热月平均温度还要高时,很多珊瑚 礁都经历了变白过程。因而在 21 世纪末,气候变化及其带来的影响是全球生物 多样性丧失和生态系统服务改变的直接驱动力。 前面几段详细描述了对生物多样性和几种生态系统服务的威胁,并且也列
9
出了在中国导致这些威胁的不同层次的因素,这些与国际上的分析结果是一致的 (比如,EEA 2004)。根据这些分析,相比土地利用类型的改变和环境污染而言, 气候变化是威胁生物多样性的一个密切因素,但还不是主导因素。然而,随着气 候变化的增多,这种说法将会改变:到这个世纪中期,变化的温度和降雨格局将 成为生物多样性丧失的主要驱动力(Sala et al. 2000)。在人类可以控制水分供给和 蒸散的密集农业区域,这种威胁可能不是很明显,但是天然、 半天然区域以及 草地和沙漠边缘地区受到很大的影响。
相互作用 虽然目前气候变化还不是生物多样性丧失最重要的驱动力(尽管它的影响 已经被发现),但在这个世纪中期它将会成最重要的因素。因此,考虑到生物多 样性适应需要很长的滞后时期,我们现在需要制定能够帮助和支持生态系统适应 不可避免的气候变化的方案。这些方案应该尽可能多的减缓气候变化,阻止那些 引起气候变化的行为。另外气候保护量度也应该被定型,这样它们才可以保护而 不是破坏生物多样性,特别是当生态系统稳定时可以帮助形成稳定的小气候。方 案也要考虑到负反馈作用(比如 CO2 增加可以导致碳吸收的增加)和正反馈作用 以及它们加速危机的潜在能力(气候变化带来的生物多样性丧失可以直接-使泥 炭地和湿地变干来增加二氧化碳的排放--或间接地-加速沙漠化和改变折射率-来 加速气候变化)。可以毫无疑问的说,气候变化本身就可以显著影响生态系统生 产力、碳吸收以及它们减缓气候变化的能力。喻梅等(2001)指出净初级生产力在 中国的南部地区(纬度低于 33 度)将会增加,而在北部地区(纬度高于 33 度)将会 减少。长期的气候变化也将会减少生态系统的生产力(生物多样性的能量基础)和
10
碳储量,而二氧化碳增加和生态系统的管理也可能会增加生态系统减缓气候变化 的能力(Cao et al., 2003; Ju et al., 2007; Ji et al., 2008)。 “生物多样性和气候变化是紧密相连的。除非认可了人类、生物多样性和气 候之间的这种联系,否则生物多样性的丧失和气候变化都将得不到很好的重视。 如不这样做,在双方领域的有效性都会大打折扣。尽管这样做增加了复杂性,但 是也从另外一方面帮助鼓励了那些利于阻止生物多样性丧失和抵抗气候变化的 行为。”(摘自《欧盟生物多样性行动计划》中期报告) 经过漫长的地质时期,中国丰富多样的景观和气候使得不同物种、种群和 生态系统能够共同进化发展。而经过这长期的协同进化,它们之间的相互关系在 不同区域都是特定的,无论是在海洋生态系统、青藏高原、热带雨林、西南亚热 带雨林、西北沙漠,还是在干旱多雪的北部地区和有着肥沃草地和旱地的东部地 区。 显而易见,气候变化对所有这些区域的影响是不同的,而且各个区域的生 物多样性潜势也是不同的。任何尝试调节减缓气候变化和保护生物多样性关系或 者尝试支持生物多样性适应的行为,都必须将区域的特殊性考虑进去,“万全之 策”是没有的。所以政府或研究者建议的策略如果要付诸实践的话,要么就是特 别的、具体的;要么如果是一般的,就要和区域现状相符合。例如,西藏作为青 藏高原的主要组成,有着特殊和多样的生态系统,它需要特定的策略来应对全球 气候变化引起的生态环境变化。因此,中国政府提出的最新行动计划包括的建议 策略有:加强草地的保护,防止荒漠化,修复草原,增强对湿地和自然保护区的 保护,建立防止沙尘和暴风雪的防护带,努力提高森林覆盖率。
11
案例 由于对气候和生物多样性进行了一般性的讨论,本报告多次使用了案例数 据。使用这些数据时,请注意以下三项: • 案例并不是预测。IPCC 案例(低估了过去几年中观察到的气候变化)并没有 假定气候策略,严格的国际气候保护行动可以减少模拟影响。另外,他们 没有考虑临界点,阈值会突然或者不可避免地发生变化。 • 气候案例描述了大尺度发展趋势,也描述了为人类健康和农业增长状况基 本所需的地区小气候所受到的额外影响因素,比如植被覆盖和水资源利 用,而且地区小气候也会与大趋势显著相异。 • 生物多样性方案也描述了潜在发展势力。比如相比物种现在气候带上的分 布,从气候工程中得到的关于它们未来可能的分布格局。然而气候变化与 其他诸如土地利用改变、化学污染、外来入侵物种和水资源利用等因素之 间的相互关系并不包含在内,尽管它们在未来的生物多样性形势和分布中 是相关的。此外,因依赖于土地利用并且关系到种群和生态系统的可持续 性,地区小气候可能与大尺度的情形大不相同。 主要来自于 GCM 模拟模型的气候案例表明,中国气候变暖的趋势在未来 仍将继续并加剧。与 1961 到 1990 年的三十年间的平均温度相比,全国年平均气 温到 2020 年将增加 1.3 到 2.1 摄氏度,到 2050 年将增加 2.3 到 3.3 摄氏度(Ding et al., 2007)。未来五十年降雨也将增加,预计到 2020 年增加 2%到 3%,到 2050 年 增加 5%到 7%,而到 2100 年则会增加 10%到 12%(Ding et al., 2007)。 在中国东北地区、西北地区和青藏高原湿度增加的趋势更加明显,而在中 12
部地区却预计有干旱趋势(Gao et al., 2001; 丁一汇, 2002; Luo et al., 2005)。气候 模型同样显示:由于人类活动引起的气候变化,东亚地区冬季季风可能会变弱, 而夏季季风可能会变的更强(Ding et al. 2007)。 考虑生物多样性和气候变化将会有显著影响。比如,目前农作物多样化的 生长模式可能并不适应于那些受降雨分布变化、海平面上升、极端气候现象强烈 影响的区域,从而会影响到国家食品安全。 极端和异常的气候可能会加剧土壤沙漠化,草原和湿地面积减小,红树林 和珊瑚减少,林线后退,这些都会给全球变暖带来正反馈作用。从 1950 年以来, 中国北方地区的易干旱区域逐渐扩大,直接导致了农业产量的减少和不稳定。而 过去的二十年间,由于水资源的减少,诸如长江、松花江和黄河等大型水系都发 生过重大洪涝灾害。随着气候变化和海平面的升高,中国的海岸面积受到了严重 影响,而由此带来的暴雪、洪灾、暴雨、干旱和其它灾害天气均给经济造成了巨 大损失(IPCC,2007;国家发改委,2007;国务院,2008)。相比欠发达地区而言, 那些人口密集的区域由于集约化的农业和林业生产相关的基础设施发展建设,更 有可能遭受生物多样性的大量流失(Nellemann et al. 2005)。在内陆的西藏地区, 生物多样性将得到更多的保护,而对于其它很多高地,如新疆和青海居住地和灌 溉地延伸的区域以及四川和云南的森林,如不给以特别的关注,这些区域的生物 多样性丰富度将减小 20-40%(Nellemann et al. 2005)。预计未来的气候变化将给生 态系统和生物多样性带来巨大影响。如果不采取任何缓解和适应行动,到 2030 年,气候变化就将会引起中国总农作物产量降低 5-10%。而平均气温增长 2 摄氏 度,水稻产量将下降 5-10%。到本世纪中期,中国北方的一年三收种植边界将从 长江流域向黄河流域转移 500 公里,双收作物区域将向逐渐消失的单收作物区域
13
靠近,而单收作物区域将缩小 23%。到 2030 年中国沿海地区将上升 1cm 到 16 cm, 这将增加洪水和暴雪发生的机会,并随之带来海岸腐蚀以及诸如湿地、红树林和 珊瑚礁等海岸生态系统的退化。预计中国西部冰川的面积将减少 27.2%。如果仍 然以现在的变暖速度继续,青藏高原冰川的面积将从 1995 年的 50 万平方公里迅 速减小至 2030 年的 10 万平方公里(IPCC,2007;国家发改委,2007;国务院, 2008)。
第二章 生物多样性对气候变化的影响 生态系统通过其复杂的生物地球化学和生物物理功能调节着地球系统,其 中很多功能是维持人类社会的根本。它们被人们称之为生态系统服务(ESS)。 《 千 年生态系统评估》将其划分为支持、供给、调节和文化服务四大功能(图 3)。所 有这些功能都对人类福祉有所贡献,体现在美学、科学和艺术(文化)等方面,调 节水源涵养和水质、侵蚀和沙尘,提供食物、燃料、纤维,或支持这些服务功能 的实现,例如借助作为土壤肥力和生态系统健康基础的土壤养分循环来实现这些 功能(Stefanowicz 2006)。 生物多样性不仅仅指濒危物种和自然保护区,而是自然界功能的一个基本 组成,包括基因资源多样性(比如这对繁殖是最基本的)、物种和生态系统多样性 (包括农业生态系统、渔业、林业、畜牧业管理)。它决定了生态系统可为人类提 供服务的范围。基因多样性、物种丰富度、种群组成和数量都对生态系统服务的 提供具有强烈的且多层面的影响。生态系统服务对国民收入有重要贡献,特别对 贫困人口而言,因为这些服务都是无偿的。有研究计算了印度生态系统服务的价 值,约占其 GDP 的 7%;但在农区,生态系统服务所提供的价值超过了穷人收入
14
的一半以上。
,2005) 图 3 生态系统服务类型和人类福祉的组成(来自《千年生态系统评估》
特别地,如果在一个稳定的(动态进化)生态系统内,由于人类直接或间接 的干预(生境丧失、改变和破碎化,外来入侵物种的释放等),造成生物多样性要 素的丧失或者被显著地改变,那么生态系统的功能及其所提供的服务将面临很大 风险(Foley et al. 2005)。例如,在四川省茂县,由于近期蜜蜂种群数量的下降, 导致免费的昆虫授粉不得不被劳动密集型的人工授粉所替代(FAO 2003)。因此, 生物多样性的损失可能造成生态系统气候调节功能的下降,继而可能加速气候变 暖和导致生态系统服务和功能不可逆转的变化(《千年生态系统评估》,2005)。 另一方面,在较长的时间尺度,生物多样性的增加,使生产力增加并促进生态系 统恢复力,将有助于维持生态系统服务和功能的可靠度。
15
与气候变化最为相关的生态系统服务在本节的后半部分加以叙述: 1. 减缓气候变化的影响 a) 调节区域气候和小气候; b) 水源涵养以抵御洪水,水分供应以抵抗干旱,海岸带保护,降低冰川融 化的影响; c) 保护土壤以防风蚀和水蚀,减少沙尘暴,维持土壤肥力。 2. 减缓气候变化 a) 自然减缓:碳固定(海洋、森林、草地、泥炭地、湿地、农业用地等)和 改变反照率; b) 人为减缓:保护、造林、土壤改造、改进土地和资源管理; c) 利用其它形式的可再生能源替代化石燃料能源。
2.1 减缓气候变化的影响 植被和土地覆盖的变化对植被和大气间的能量平衡非常重要。土地覆盖的 变化可以通过改变地表反照率、粗糙度和土壤湿度等影响水汽的大气传输。这些 变化将影响区域性降水、大气环流、温度和湿度格局(Zheng et al., 2002; Li and Ding, 2004; Wang and Yan, 2006)。
2.1.1 调节区域气候和小气候 植被具有减缓区域气候的潜力,然而其作用形式取决于其所在区域。许多 研究表明,土地覆盖的变化可以显著改变温度和降水,同时植被恢复可有效改善 局地或区域气候条件(Fu and Yuan, 2001)。Li 和 Ding(2004)指出,中国北方地区
16
大范围生态系统退化导致地表温度增加,减弱了东亚季风,进而引起中国北方地 区降水量减少和干旱增强。Du 等(2004)认为,在青藏高原存在一种正反馈机制, 即过度放牧引起的草地退化会增加潜在蒸散水平,进而促进青藏高原的气候变暖 和退化过程,建议今后应认真对待这一正反馈过程。Zhang 等(2003)研究了中国 不同区域的土地覆盖对夏季气候的影响,发现三个区域(东部干旱/半干旱地区、 中部地区和青藏高原地区)的植被变化对气候具有更强烈的反馈作用。归一化植 被指数(NDVI)和降水的滞后相关关系表明,在年际尺度上,土地覆盖在一定程 度上影响着夏季降水。Zhang 等(2005)指出,中国北方、南方和中部地区的土地 退化导致了这些地区降水量的下降。在植被发生变化的地区温度增加,而毗邻的 南部区域的温度反而出现下降。这些结果表明,中国北方过渡带及其周边区域的 土地退化以及相应的生物多样性损失,可能是中国气候异常,特别是中国北方干 旱的主要原因之一。 基于国家气候中心的区域气候模型(NCC/RegCM),Ding 等(2005)研究了中 国植被变化对区域气候的影响,其结果表明,大范围的植被变化显著影响区域降 水和温度,并且对温度的影响更为显著。内蒙古的荒漠化导致了诸如华北和西北 等许多区域的降水减少。相反地,中国西北的再造林导致黄河流域的降水增加, 但却不同程度地造成长江流域和中国南方夏季降水的减少。 植被变化还会显著影响东亚季风气候的强度。Zheng 等(2002a)指出,常绿 阔叶林的退化可能导致华北气候显著恶化,而中国南方的再造林将导致中国的气 候变得温和。Chen 等(2006)的研究也显示,由于 1700~1950 年间的植被退化,亚 洲夏季季风正在减弱,东亚地区气候呈现出夏季变暖、冬季变冷的趋势。Gao 等 (2007)揭示,当前土地覆盖变化加强了中国的冬季和夏季季风环流,导致中国南
17
方降水增加、北方降水减少。日最高、最低气温对植被变化更为敏感。 总之,陆地生态系统、植被覆盖和生物多样性与气候变化密切相关,互相 影响。显然,陆地生态系统减缓气候变化的作用,可以通过降低生态系统脆弱性、 提高生态系统恢复力得以增强,其中生物多样性发挥重要作用。
2.1.2 水源涵养以抵御洪水,水分供应以抵抗干旱,海岸带保护,降 低冰川融化的影响 在中国,洪水和干旱是发生最频繁的自然灾害。中国已经建立了国家抗洪 和抗旱的应急规划系统。生态系统在抵御洪水、抗旱、保护海岸带、降低冰川融 化影响等方面具有重要作用。荒漠化降低了蓄水能力,因而增加了洪水发生的几 率(Zhou and Wang, 1999)。我国颁布了《森林法》(1998)和《水土保持法》(1991) 以采取行动禁止毁林。在过去的 60 年里,中国已经建立了多种水资源复合系统, 通过加高和加固堤坝、整治河道、开辟下游地区导洪蓄洪区等来抵御普通洪水 (MWR, 2004)。三峡工程,作为世界上最大的水利工程,对提高长江蓄洪能力具 有重要作用。同样,许多其它水电站也同样具有防洪能力。根据官方统计,中国 共 完 成 了 280,000 km 的 防 洪 堤 坝 , 860,000 个 水 库 和 97 个 重 点 蓄 洪 区 (http://english.peopledaily.com.cn/90001/90776/90883/6618126.html)。 由于拉尼娜现象和异常大气环流,近年来中国北方经历了严重干旱,尤其 在 2009 年遭遇了过去半个世纪以来最严重的春季干旱。为预防旱情发生,应将 水土保持、水资源的综合和可持续管理、农业节水措施结合起来。通过“种子工 程”,中国培育了抗旱高产高质品种,具有抵御干旱、渍涝、高温和病虫害的特 性(国务院, 2008)。为帮助中国西部地区解决饮水困难,改善妇女生活水平和工
18
作条件,2001 年中国妇女发展基金会(CWDF)组织和启动了公益性项目“母亲水 窖”工程。在 2001~2005 年间,约有 2.7 亿元人民币用于建设近 1 万个水窖以存 储雨水;CWDF 建设了 1200 余个小规模供水工程,惠及中国中西部地区 22 个 省市和自治区近 100 万人口。中国约有一半左右耕地存在不同程度的缺水,所以 中国政府一直强调要发展和促进节水技术,同时在农业上要采用节水作物。为增 强国家的防洪抗旱能力,还建立了国家指挥和预警系统(国务院, 2008)。 中国十分重视海洋环境保护,正在采取一系列措施减缓和适应气候变化对 海岸地区的不利影响,提高对海洋灾害的防控能力(国务院, 2008)。其中包括保 护海洋生态系统、恢复沿海湿地、防治海岸和海洋污染等的技术研究与开发,建 立沿海防护林,加高和加固堤坝等。沿海和海洋保护区主要包括海湾、海岛、河 口、海岸、珊瑚礁、红树林湿地、沿海环礁湖、海洋自然历史遗址、海草床和湿 地保护区。中国已经建成了覆盖近海和远洋的海洋环境及灾害观测网络和预报、 警报系统。自 1980 年以来,中国已经或正在建立约 32 个红树林湿地和红树林保 护区(中国湿地保护行动计划(2002-2030))。在该计划中,将保护约 24700 公顷红 树林,新建 65900 公顷红树林,保护和恢复 160 万公顷海岸湿地。 由于气候变暖,中国西部的高山冰川(和永久冻土)(主要位于青藏高原)迅速 退缩。过去 40 年,尤其是自 1990 年代以来,整个青藏高原冰川退缩面积超过了 6000 km2 (IPCC, 2007)。由于亚洲境内的很多大河(包括黄河、长江、湄公河、萨 尔温江、雅鲁藏布江、恒河、萨特累季河、印度河)源自青藏高原,所以,冰川 退缩威胁到沿河居住人口的供水。绘制高山冰川湖泊和河流清查图,并对其进行 脆弱性评估,开发冰川湖泊爆发洪水的早期预警系统,分析冰川融化引起的洪水 的影响,实施应对冰川融化的适应性措施等势在必行。适应性措施包括工程性或
19
建筑性措施,比如建造挡土墙以保护危险湖泊,通过虹吸管、泵吸、挖掘通道等 降低洪峰。2003 年 8 月,世界自然基金会(WWF)驻尼泊尔、印度和中国办公室 共同发起了一个区域性的“喜马拉雅冰川和河流计划”,以应对气候变化对冰川的 影响,提出减缓和适应的选项。
2.1.3 土壤保护以防之风蚀和水蚀,减少沙尘暴,维持土壤肥力 土壤侵蚀是导致土地退化(以及降低土壤固碳能力,见下文)的关键问题(Lal, 2002, 2004)。因侵蚀造成的土壤有机碳的年损失量为 15.9 Tg (1 Tg = 1012 g) (Wen, 1993)。每年因侵蚀而释放到大气中的碳约为 32–64 Tg (Lal, 2002)。表层土壤厚 度和碳储量从 1930 年代到 1950 年代逐渐降低,在 1980 年代因土地利用变化又 开始增加(Lindert, 2000)。中国黄土高原土壤对水蚀和风蚀非常敏感。自 1970 年 代末以来,在黄土高原开始实施水土保持措施比如植树种草以控制土壤侵蚀。这 些措施对减少土壤侵蚀较为有效,但同时也严重影响区域生态水文过程,比如深 层土壤水分消耗、黄河上游地区径流下降等(Liu, 1999; ESD-CAS, 2001)。因此, 必需评估气候变化、水土保持措施及其对生态系统功能多样性的影响。到 2007 年底,中国控制水土侵蚀的面积超过 100 万平方公里,有效地保护了土壤和水资 源(国务院, 2008)。 已有的观测表明,中国西部和南部地区降水增加,而北方和东北的大部分 地区降水却在减少。在未来气候变化条件下,这一趋势很可能会加剧。这两种现 象都会导致侵蚀的加剧,即在因降水增加而导致骤发洪水的地区(尤其是在因无 植被覆盖以减少径流的地区),水蚀增加;而风暴强度的增加则使风蚀增加。降 水减少和风蚀是沙尘暴出现的基本条件,甚至会导致荒漠化的加剧。自然生态系
20
统的蓄水和储水功能有助于减轻气候变化引起的不利影响。 生态系统健康和生产力直接取决于养分的可利用条件以及适宜的养分周转 (即特定气候条件、土壤条件和生态系统类型下的周转特性)。这反过来又取决于 几乎完全靠土壤微生物(真菌和细菌)调节的死亡有机质的分解和矿化。任何一个 生态系统的有机化合物数量巨大,它们中的大部分都被高度特化的微生物所降 解。因此,一个生态系统中如果缺少了任何一种微生物,都会影响到养分周转的 正常进行。由此可见,土壤微生物的功能多样性是生态系统健康的一个重要指标, 是生态系统应对气候变化影响的恢复力的基础。
2.2 缓减气候变化 生物多样性对减缓气候变化最重要的贡献是在植物或土壤中的长期碳蓄 积,并且(从净碳平衡的角度)提供低碳能量载体。然而根据德国联邦政府的估算 结果(尽管其技术效率高达 90%),实际上全球固碳的技术潜力充其量也不到全球 燃煤电厂碳排放的三分之一,即 18 亿吨 CO2;当前陆地生态系统的固碳潜力约 为 70 亿吨 CO2;而将生物质作为碳汇的可被激活的固碳潜力约为 180 亿吨 (GDCh,2004)。 中国陆地生态系统的碳吸收在平衡和减少国家温室气体排放中起着重要作 用。在过去二十年中,基于生物清查、生态模型以及地表通量观测等多种研究手 段开展了大量研究,根据总初级生产力(GPP)、净初级生产力(NPP)、净生态系统 生产力(NEP)和碳储量等来确定中国陆地生态系统植被和土壤的固碳潜力。如图 3 所示,目前中国植被 NPP 处于国际 NPP 分布的中间范围,并随着气候和地域 的差异而变化。
21
NPP 减少不仅影响碳储量,同时也影响该生态系统的能量可用性,后者反 过来影响生态系统的其它方面,比如水分平衡、凋落物与养分循环,然后进一步 影响生态系统服务:这是一种可计量的平衡关系. 若仔细观察人类利用的初级生 产,分析人类通过毁林、采摘、收割/收获等对潜在初级生产的占用份额(HANPP), 很明显中国是世界上初级生产占用额最高的地区之一。因为 HANPP 与生物多样 性损失成正相关,所以土地利用对中国生物多样性的压力是显而易见的。图 4 也可以视作一幅生物多样性所面临压力的地图。 另一方面,这种相关性也意味着某种双赢的情况:经验数据表明,人的相 对占有量减少(即净碳固定增加)有利于生物多样性增加。但是,这一规律只有当 政策措施的实施既不以当地现有生物多样性的损失为代价,也不会导致因需要向 管理的人工林投入能源和经费而削弱这些正效果的情形下才是适用的。反之亦 然,促进生物多样性增加的政策措施(例如自然保护、或适宜的地方进行土地恢 复)也能增加净碳固定,从而成为减缓气候变化的有效措施。
22
图 3 全球现实植被的 NPP 分布图(g C m-2 年-1)
2.2.1 碳截存与生物多样性 生态系统功能与生物多样性高度相关。土地利用变化和气候变化引起的物 种和栖息地的丧失、生物入侵(或引入外来物种)已经在全球范围内对生态系统功 能产生了相当的影响(Tilman 1999; Mack et al. 2000)。全球变化对生态系统生物多 样性及其所提供的包括碳截存在内的服务功能造成威胁,因此生物多样性保护和 生态系统碳截存是全世界应对气候变化所考虑的主要问题。陆地生态系统固碳潜 力直接或间接地与其生物多样性相关(IPCC,2007)。因此我们需要进一步认识和 了解生物多样性和碳截存之间的关系。 陆地生态系统中采取适宜的土地管理(比如林业管理)具有吸收大气碳、提 供食物和商品、保护生物多样性等诸多益处。除非同时考虑社会、经济和环境的
23
可持续性发展,否则为固碳而采取的造林及其它森林管理措施有可能失败。在受 干扰或退化生态系统进行植被恢复能够增加碳截存,但同时也会影响植物群落的 多样性。退化土地和农业用地转变为林地时生物多样性增加(IPCC,2007)。但是, 当恢复植被(再造林)是利用外来速生种,或以前利用的土地具有较高生物多样性 是,情况并非如此(IPCC,2007)。因此,造林/再造林可能与《生物多样性公约》 的目标之间有冲突(Caparrós and Jacquemont, 2003)。 《京都议定书》和《马拉喀什 协议》认可通过造林/再造林的碳截存来抵消或减少温室气体排放,但是,造林/ 再造林可能会对生物多样性产生负面影响。生态系统生产力(碳吸收)与生物多样 性之间联系紧密(van Ruijven and Berendse. 2005; Bai et al. 2007; Cardinale et al. 2007)。在陆地生态系统中,最常见的生产力与生物多样性之间的关系为驼峰形 或单峰形,即物种多样性在低生产力水平时增加,而在高生产力水平时反而下降。 为此人们提出了许多假说来解释为什么生物多样性从中等生产力到高等生产力 下降。 与全球变化有关的重要问题之一是如何通过造林/再造林和生态系统管理 来增加碳固定。这一努力需要考虑土地利用变化与其对生态系统功能、碳蓄积和 碳固定、生物多样性保护、经济获益等的影响之间的联系。很多研究总体上表明: (1)中国森林是大气 CO2 的汇;(2)碳汇强度具有较大的时空变异;(3)造林/再造 林在提高中国森林碳固定和碳蓄积方面起着关键作用。中国自 20 世纪 70 年代开 始实施造林/再造林工程,目的在于增加碳固定进而减缓气候变化。基于卫星遥 感的 1982~1999 年间 NDVI(归一化植被指数)数据显示,中国平均植被覆盖度增 加了 7.4%(Fang et al., 2003)。除了造林,由于气温升高引起的生长季延长也对中 国平均植被覆盖度以及年 NPP 增加有重要贡献。1980-2005 年间,中国因造林和
24
再造林工程共吸收 30.6 亿吨 CO2,同期由于改善林业管理另外吸收 16.2 亿吨 CO2,此外,由于减少森林采伐抵消了 4.3 亿吨 CO2 排放量(中国人民共和国国 家林业局,2008)。草地和农田生态系统的碳汇/源状况在很大程度上取决于该生 态系统所处的地理位置和人类活动(如放牧、灌溉、施肥等)的影响。中国湿地生 态系统具有较大的固碳能力,但是人类对湿地的过度利用和生物多样性丧失已引 起中国湿地碳汇功能的减弱。中国内陆水体和近海生态系统在吸收大气 CO2 过 程中发挥重要作用(Song et al., 2008),估计仅近海生态系统每年就能吸收 0.027-0.061 Pg C (Song et al., 2008). Piao 等(2009)用三种不同的方法(生物量与土 壤碳清查法、生态系统模型和大气反演)研究发现,1980 年代和 1990 年代中国陆 地生态系统碳平衡是一个净碳汇,其碳汇强度约为 0.19–0.26 Pg C 年 -1,大约 相当于同期累计化石燃料燃烧碳排放的 28-37%。 中国北方草地生态系统生态环境十分脆弱,因受到频繁而强烈的干旱影响 以及人类的过度利用(尤其是过牧)而易发生退化和荒漠化。据估计,截止 2005 年我国沙漠化总面积已达到 263 万平方公里,占我国国土面积的 24.7%。恢复我 国受干扰和退化的生态系统使之能够长久固定大气 CO2 仍然是一个巨大挑战。 如果使我国各类荒漠化土地(在 1990 年代总面积约 10.7 万 km2)逆转一级,即由 轻度荒漠化土地(8.096 万 km2)转变为潜在荒漠化土地、中度荒漠化土地(6.0677 万 km2)转变为轻度荒漠化土地、严重荒漠化土地(3.4905 万 km2)转变为中度荒漠 化土地,那么通过荒漠化土地恢复 40 年能在土壤中蓄积 236.04 Tg C(Duan et al., 2001)。显而易见,生物多样性在这些措施的成功实施中起关键作用,而这些措 施又反过来影响生物多样性。 Fornara 和 Tilman (2008)的研究表明,与单一种植 相比,种植高多样性多年生混生草本植物能够引起土壤碳和氮各增加 500%和
25
600%。
2.2.2 替代能源:可再生能源 目前,化石燃料能源的生产和使用占到人类排放温室气体的 60%,而增加 使用可再生能源可以减少化石燃料燃烧从而减缓气候变化。潜在的可再生能源主 要包括水能(水力发电)风能、太阳能、海浪/潮汐能、地热和生物质能。所有这些 能源的能量密度[W/m2]都比化石燃料低 1 至 2 甚至更多数量级,因而需要更大 的面积,从而对土地利用模式产生显著影响: • 修建大的水电站会引起陆地和水生群落的生物多样性丧失、限制鱼类回 游(Fu et al., 2003),潮汐能源开发也存在同样的问题。 • 有报道称有些地方(德国)的风涡轮会撞击候鸟,而其它地方(丹麦)则不 会。因此建议选择修建风涡轮的地点和技术时,建议事先评估其对生物多样性的 影响。 • 像那些在中国计划修建的(Zhang,2009)太阳能热发电厂,占用的面积大, 大多位于温暖而干旱地区的边缘土地。然而,这些土地却可能具有非常丰富的生 物多样性,因此,有必要事先对生物多样性进行评估,并在建设中综合考虑生物 多样性保护。 • 生物质利用的来源多种多样,因而就出现不同形式的能源。 根据欧洲的经验 (EEA 2005), 最多并且可迅速获取的生物质来自工业和、 家庭(在较小的面积上数量可观)、农业和林业的有机废弃物。此外,也可从现存 的森林提取木材生物量,但必须加以限制以维持森林的完整性和有序的养分平衡 (过度使用天然林和其它相对未受干扰的自然生态系统作为燃料来源将会导致严
26
重的生物多样性丧失)。如果我们考虑这些限制因素,在上述两种情形,不需要 高强度的能量投入,就可以生产提供能源的生物质。这与能源植物园不同,这里 能源作物农业比能源树木种植园更糟。因为二者都是为了获得最大生物生产量, 而且因为植物生长过程需要氮、磷、矿物以及每生产 1 千克干物质最少需要消耗 300 升水,所以资源消耗以及种植园的能量投入都是非常显著的。基于效率的考 量,它们都是精耕细作的单一种植模式,因而对生物多样性产生负面的影响。 欧洲的农业主要集中在高产区,边际耕地和弃耕地都已被转变为生物燃料 种植园,从而改变了生态系统的特性和功能。已有报道指出,生物能源开发对生 物多样性的巨大压力,尤其是对珍贵的草原生态系统和物种,这也是欧盟修改其 最初雄心勃勃的使用生物燃料目标的原因之一。将半自然生境转变为精耕农业用 地后,可以预见的另一个压力:即集约式农区通常入侵种出现的程度最大(Chytry et al. 2008a; b)。因为这是在欧洲不同生物带和气候区都普遍存在的模式,可以预 见这种生境转变后会出现别的物种入侵现象(Chytry et al. 2009a)。所以,要么不 得不采取高成本的管理措施(过去成功的非常有限),要么就会对农业产量水平产 生影响。如果说限制这些趋势的生态工程尚无先例,那么至少在欧洲的雨养农业, 以前的证据表明成功的例证甚少 (Chytry 2009b).
2.3 生物多样性减少了气候变化的成本 生态系统(包括农业生态系统)的适应能力取决于物种多样性和种群多样 性,生物多样性高则气候的逐渐变化所带来的严重影响就小。因此,人们发现多 样性高的生态系统往往具有较高的恢复力,进而降低气候冲击的影响。 前面已经提到,植被覆盖在很大程度上决定了小气候,而小气候与大尺度
27
气候及其变化趋势显著不同。良好的土地利用管理系统(包括生态工程技术)能够 稳定局地气候条件,有时与大气候的变化趋势截然不同,至少当只有有限的气候 变化时是如此,所以有助于维持农业和林业生态系统的生产力。 作为生态工程的一个重要因素,生物多样性有助于减少对化肥和农药的需 求,节约成本、减轻地下水污染(随着日益增加的水资源短缺这就显得更为重要)、 降低空气污染、稳定农业生产系统免受气候变化的影响,特别是水稻田农业,同 时维持生产力水平并提高营养价值。
28
第三章 气候变化对生物多样性的影响 3.1 影响机理与结果 3.1.1 气候变化对生物多样性的影响:机理与结果 气候是控制全球植被结构、生产力和物种组成的主要因子之一,其变化将 严重影响生物多样性。气候变化通过改变生物的物候,迁徙,生长速率,死亡速 率,生长季的长短,种群的地理分布与大小,以及种间的相互作用,从生态系统, 物种,乃至基因水平影响生物多样性。目前,越来越多的来自野外调查,试验和 模型的证据显示气候变化已经影响了中国的生物多样性。
3.1.2 生态系统水平上气候变化对生物多样性的影响 气候变化对生物多样性的影响不仅表现在物种水平上,也可以扩展到生态 系统水平上,包括影响生态系统结构(例如:优势种,物种组成),功能(例如:生 产力,分解,养分循环),及其在景观尺度上的分布。这种影响可以是直接通过 改变生物特性,或者是间接通过改变环境因子,例如水分和养分的有效性。 在生态系统水平上,气候变化对生物多样性的最大影响就是改变原生态系 统的优势种,这些新的优势种更加适应于变化后的环境。现今,温带陆地和水生 态系统的物种演替和丰富度已发生了改变(例如:常禹 等, 2003; Lemoine et al., 2007; Liu et al., 2008)。长白山自然保护区的高山冻原和云杉/冷杉林从 1975 年至 1997 年逐渐减少,而同时红松林和落叶/阔叶混交林增加(常禹 等, 2003)。生长 在 胶 州 湾 的 硅 藻 已 由 一 个 世 纪 前 的 冷 水 型 (Thalassiosira anguste-lineatus,
29
Thalassiosira eccentria, Coscinodiscus excentricus)变为温水型,例如 Cyclotella stylorum and Paralia sulcata(Liu et al., 2008),而且其丰富度都减少了(焦念志, 2001; 刘东艳, 2004)。通过比较 2006 年和 1963 年长白山自然保护区的维管束植物多样 性,人们发现原有的优势种出现减少的趋势,例如 P. koraiensis,而阔叶林增加, 不同物种分布的交界线向高海拔移动(白帆等, 2008)。 目前,已有很多模型用于预测各种气候变化情景对我国植被的影响(Ni et al., 2000; Yu et al., 2006; Weng and Zhou, 2006; Zhang and Zhou, 2008),结果表明我国 的植被分布模式,尤其是其原有的优势种可能灭绝或者被适应于新的气候条件的 其它物种取代(延晓冬 等, 1999; 延晓冬 等, 2000; 邓慧平 等, 2000; 郝占庆 等, 2001; He et al., 2005)。例如:经过一个世纪以后,长白山和小兴安岭的云杉-落 叶松林将完全变为橡树和榆树等落叶树种(郝占庆 等, 2001,邓慧平 等, 2000 ), 东北的落叶松也将消失(Leng et al., 2008),红松、云杉和冷杉将彻底被阔叶树种 替换(He et al., 2005)。 气候变化除了影响生态系统结构,综合模型模拟和野外调查的证据表明气 温升高和降水格局变化已导致部分生态系统的分布发生了改变(Bai et al., 2008; Yu et al., 2006; Weng and Zhou, 2006)。这种变化首先发生在高度敏感的各种生态 系统的交界处(Yu et al., 2006; Leng et al., 2008),例如:灌木-草地。Yu et al. (2006) 根据 Hadler RCM A2 气候情景模拟我国 21 世纪末的植被分布变化,如图 3。他 们发现中国的大部分植被类型将改变。许多草地将变成灌木,森林的面积将增加 58%,沙漠和裸地将减少 32%。 采用 BIOME1 模型,根据 SRES-A2 情景和 SERS-B2 情景,模拟中国在 2070-2100 年间的植被分布(Weng and Zhou, 2006),结果显示将有 39-49%的陆地
30
生态系统植被发生改变,其中热带森林和温带草地将大面积增加(表 1),针叶林 将撤退到大兴安岭的东北部,甚至撤出了中国北部国界,青藏高原上的苔原将大 面积减少,阔叶-针叶林将覆盖大部分的东北地区。从西北向东北延伸的草地和 从南向北扩展的常绿阔叶林将大大减少当前我国北方的温带落叶林。这些常绿阔 叶林甚至出现在目前以温带落叶林为主的山东省境内。当中国北方降水减少,干 旱可能改变干旱生态系统的分布((Thomas et al., 2008),促使草地生态系统迁移到 目前覆盖森林的中纬度地区(Yu et al., 2006)。
31
图 3. Hadley 区域气候变化模型预测的 A2 情景下中国植被的空间分布变化(Yu et al., 2006) 表1 BIOME1模型模拟的当前气候和将来气候情景下中国的各种生态系统面积 面 积 (103
生态系统
km2) 当前
A2 情景
B2 情景
热带雨林 热带季雨林 热带干旱林/稀疏林大 常绿阔叶林 温带落叶林 亚温带混交林 亚温带针叶林 亚寒带针叶林 寒带混交林 寒带落叶林 沙地林地/灌木 温带草地/灌木 亚温带草地/灌木 冻土地带 热带沙漠 半荒漠 冰原/极地沙漠
4.50 223.7 44.43 1814. 1129. 661.9 344.4 239.4 71.78 155.9 0.90 404.5 1014. 1733. 969.0 649.0 138.1
60.26 442.17 180.07 2140.15 627.82 815.26 94.44 56.31 182.05 232.24 8.27 1345.94 991.55 565.93 1238.90 613.06 5.58
53.0 356. 133. 212 770. 839. 139. 42.0 110. 292. 4.50 114 865. 930. 117 611. 11.8
我们已经观测到高山上的各种生态系统正向高海拔迁移,这种迁移致使部 分顶部的生态系统无处可去而消失。例如根据长期的相片记录,人们观察到在云
32
南的西北部林线正以每年 0.85 m 的速度向上迁入高山草甸,冻土地带也逐渐消 失(Moseley 2006; Baker and Moseley 2007)。从 1960 年,祁连山的森林面积减少 16.5%,盖度减少 10%,森林带向上迁移 400 m(Lin et al., 2007)。到 2030 年,高 山草地将继续向上移动 380-600 m,其面积将大大缩减(Lin et al., 2007)。这种迁 移可能导致各种生态系统,生物群落和气候带中的特有种的丧失。通常它们伴随 气候变化而迁徙的趋势很弱(特有种的迁徙能力较差),这样各种生态系统将会出 现很多强适应性,起源相同的物种。尽管大量的调查和模型研究表明生态系统水 平上的优势物种分布已发生变化,但是气候变化背景下的种间相互关系,特别是 入侵物种的研究还很少。 气候变化所带来的生态系统组成和结构的变化对生态系统的功能产生重要 的影响。例如:气温升高和二氧化碳倍增将增加草地灌木和半灌木的盖度(Sturm et al., 2001; Morgan et al., 2007)。冷蒿作为一种芳香植物,其在中国克氏针茅草 原的盖度增加了 5 倍(刘桂香, 2003)。冷蒿不适口,可以释放大量的挥发性有机 物,其产生的它感作用可能抑制其它生物的生长(Karlik et al., 2002, 左照江 等, 2009),进而将影响草地生态系统的功能,例如净初级生产力和碳储量。模型研 究表明到 20 世纪气温和降雨变化已经增加了全球的净初级生产力(Del Grosso et al. 2008)。1982-1999 年的植被均一化指数显示中国的植被覆盖度已增加了 7.4% (Fang et al. 2003),中国陆地的年初级生产力在 2.86-3.37 Gt C yr-1 之间波动, 1981-1998 年间的平均年增长率为 0.40%-1.03%(Cao et al. 2005; Piao et al. 2005), 其中气温升高所致的生长季延长对近几年的初级生产力的增加贡献较多(Fang et al. 2003)。然而,在中国北方的农牧交错区,气温升高和降水减少降低了 NPP 的 3.4%,增加了 HR 的 4.3%,90 年代比 80 年代的年均 NEP 降低了 33.7Tg C(Gao
33
et al., 2005)。而且,NPP 的变化也可能影响生态系统的的其它功能,例如水分平 衡,凋落物分解和养分循环。 此外,一些早期种,杂草和外来种具有很强的入侵性和适应性,易于入侵 那些受气候干扰的生态系统(陈兵和康乐, , 2003; 齐艳红 等, 2004)。据模型预测 气温升高 2°C 将增加草地中的杂草和灌木覆盖(Yu et al., 2006, 图 2)。而且,病 虫 害 爆 发 的 频 率 和 面 积 都 将 伴 随 气 温 的 升 高 而 增 加 和 北 迁 (Harding and McCullum, 1997, 赵铁良 等, 2003)。在森林生态系统中,害虫具有更强的适应气 候变化的能力,气温升高将增加森林中的病虫害,这包括松毛虫,例如油松毛虫 (Dendrolimus punctatus tabulaeformis)已由原来的河北,山西和向内蒙古迁移,白 蚁也由热带和亚热带扩展到北京,天津等温带地区(赵铁良 等, 2003)。而且中国 从 1986 至 2007 年经历了 21 个暖冬,这将提前和延长病虫害的爆发。像非典型 肺炎,禽流感等影响野生哺乳动物和人类生命的传染性疾病发生的频次和范围将 伴随气候变化而增加(Lin et al., 2007)
3.1.2 物种水平上气候变化对生物多样性的影响 政府间气候变化专业委员会第四次评估报告指出气候变化,特别是气温升 高和降水格局的改变,已经改变了生物的物候,各种动植物的分布范围,以及它 们之间的相互作用,这些变化将严重缩小部分物种的分布区域,导致生态系统结 构和功能的变化。一些具有种群小、迁移慢、受高度限制、要求特殊气候、或者 是只适合生存于特定斑块的物种将面临灭绝的风险(Menendez et al. 2006)。 大部分生物的物候都依据一定的自然信号,例如温度、日长。世界上很多 物种的物候已经受到了气候变化的影响,这包括植物的发芽、开花、结果期,动
34
物的孵化和迁徙等。在中国,很多研究表明气候变化已经改变了生物的物候(例 如:Chen et al. 2000; Piao et al. 2005; Zheng et al. 2006)。春秋的气温升高将在中 国的很多地区提前其春季物候,延长秋季物候,这些区域主要包括中国的东北, 北部和长江中下游地区。目前,观测到的春季物候显著提前的物种包括 38 种木 本植物、6 种草本植物和三种鸟(Zheng et al., 2002; Zhang et al., 2005; Zheng et al., 2006; 王传海 等, 2006; Qi et al., 2006a, b; Xu et al., 2006; 李荣平 等, 2006a, b; 马瑞俊和蒋志刚, 2005)。陈效逑和张福春(2001)发现自 1985 年北京的桃树、丁香 和合欢的开花期明显提前。从 1982 年到 1993 年,中国北方季风气候区中部,生 长季周期明显延长(Chen et al., 2000, 2001)。根据 1963-1996 年中国 16 个野外森 林站的观测结果,在北纬 33°N 周围地区,木本植物的早春物候每个世纪提前 1.1 -4.3 天,晚春物候提前 1.4-5.4 天,然而(Zheng et al., 2006)。 物候改变本身对生物多样性的影响很小。但是在一个生态系统中,各种生 物处于不同营养级,它们的物候变化不同。一些依赖温度的可能比依赖日长的物 种提前迁移或孵化。这种种间物候变化不同步,特别是一些关键的生长阶段或行 为,将导致生物间营养水平上的不匹配,例如第一次昆虫出现与侯鸟的到来 (Parmesan 2006; 2007),植物开花与传粉者的出现, 橡树发芽与冬季蛀虫卵孵化 (Visser, Holleman, 2001)。这种生物间原有的关系失调将严重影响生物多样性。例 如:侯鸟由于没有食物而无法按原路线停留,而昆虫,特别是病虫害,由于缺乏 天敌更易爆发。一些植物由于缺少传粉的昆虫而无法繁殖后代。气温升高和降水 格局的改变将对不同生物或功能群甚至同一营养级的生物的物候和生长产生不 同的影响,进而影响种间关系和生物多样性(Niu and Wan 2008)。大型增温试验 表明气温升高可以降低青藏高原 26-36%的物种丰富度,特别是在干旱的缺氮
35
区(Klein et al., 2004)。但是目前中国的研究仍仅仅关注物候本身,很少考虑到种 间关系。 通常,大部分生物只能在一定的气候区生活和繁衍后代。因此,气候的改 变将影响物种的分布,导致纬向或经向的迁徙,分布范围的缩小或扩大。许多模 型预测结果显示未来气候将促使北美和欧洲的许多植物、昆虫、鸟和哺乳动物向 北或高处迁徙(Fuller et al. 2008; Harrison et al. 2006; Huntley et al. 2006, 2008a, b; Morin et al. 2008;Virkkala et al. 2008; Lenoir et al. 2008; Kelly & Goulden 2008; Wilson et al. 2007; Moritz et al. 2008)。在中国,已观测到云南西北部的高山树线 和冰川溶退以每年 0.85 m 的速度向上推移(Moseley 2006; Baker and Moseley, 2007)。关于模型预测森林带的迁移已在上一节阐述。白蚁作为一种害虫,通常 生活在热带,目前由于气温升高,它已向北迁徙,甚至能在温带出现,例如北京 和天津,致使很多树木受害(赵铁良等, 2003)。很多侯鸟改变了习性,一部分侯 鸟已改变了其冬天的栖息地,或者变为留鸟,例如斑嘴鸭在 90 年代以前是渤海 湾的一种夏候鸟,而今的暖冬已使其成为留鸟(刘明玉, 1993)。历史上灰鹅在冬 季会迁徙到黄河以南越冬,而如今在天津的冬季也可发现(Sun and Zhang, 2000)。 叉尾太阳鸟、池鹭和红翅凤头鹃以前都是中国南方的候鸟,现在都可以在北方定 居了(例如:姚孝宗和李延娟,1997; 刘晓龙 等, 1998; 刘岱基和辛美云, 1998)。原 本迁移种变为定居或者向北迁徙,这种变化对原生态系统都有重要影响,可能产 生持续的食物胁迫,导致生态系统退化,进而影响区域气候。
3.2 适应性:生物多样性面对新气候条件的调整 受气候变化威胁的物种和群落面临着适应自身生活环境变化的重要选择和
36
机遇,以最大程度地避免灭绝。一定程度上,为适应变化了的气候条件,它们可 以通过向新的气候适宜的栖息地迁移或者适应本地的气候条件,得以生存和繁殖 (本地气候可能不同于宏观的气候变化趋势,参见第 2 部分)。但是,气候变化将 持续数个世纪,所有生态区系和生态系统都受到持续的压力,生态适应也并不是 一次性的行为,而将是一个持久的过程。在此前提下,将额外的人为干扰因素最 小化就显得至关重要,因为这些因素的组合很容易导致压力的超载,使适应成为 不可能。人类导致的重要干扰因素包括:
大气和水质污染(后者影响海洋生境)
捕猎、收割和放牧导致的过度开发
密集的旅游 在中国,物种对气候变化的自然适应随处可见。
3.2.1 自然适应:迁移 在对气候变化反应最敏感的区域,诸如东北平原、云贵高原、青藏高原以 及不同植被之间的过渡地带,预计植被将向更为适宜的栖息地迁移(Yu et al., 2006,参见上一节的例子)。对于动物而言,它们能够通过迁徙到相对适宜的生 境来适应全球气候变化(Rajpurohit et al., 2008)。在中国,东洋界的一些典型鸟类, 例如叉尾太阳鸟(Aethopyga christinae),已经迁往古北界。这类迁徙如此频繁而 大量,以致东洋界和古北界的界限已经模糊不清。因为全球变暖,生活在横断山 脉东部和四川邛崃山脉南部的大熊猫迁往北部和西部,以适应这一气候变化。 尽管如此,物种迁徙受限于地形地貌、中断的不宜生存的生态系统,以及 人类行为导致的栖息地丧失和破碎。其后果是大多数物种(以及大多数生态系统)
37
既不会局限于现有地点,也无法完全迁徙到所有气候适宜的地区。以蛱蝶为例, 欧洲的有关迁徙的最新研究成果揭示蛱蝶的迁徙速率明显存在差异(图 5)。 由于不同物种存在迁徙速率上的差异,生态系统及其组分也就不可能进行 同步迁移,因而片断化格局也会随之呈现,这将破坏食物链和生态系统的固有机 制。许多物种注定要在迁移中灭绝,其它物种则可能因为对于水分、土质、食物 或猎物的特殊要求而无法立足于气候适宜区。因此,我们不能期待生态系统的整 体迁移,而是一系列的重大转型,这将给生物多样性施以沉重负担。 图 5: 正常气候策略下未来的蛱蝶分布图 (Aglais urticae, Linnaeus 1759)
5a: 左图:蛱蝶。右图:实测物种分布图(黑圈)和气候生态位实际分布图。该模型很好 地描述了物种分布(AUC = 0.8)。类似的差别也将存在于未来的真实分布图和气候适宜的栖 息地之间。
38
2050
2080
5b: 正常情况下的气候生态位分布图。橙色区域表示适宜区域,灰色区域表示丧失区 域,褐色区域表示在完全迁移下能够恢复的区域。如果没有迁移(即没有地区可恢复),最多 将有 55%的气候生态位丧失。虽然欧洲北部仍可望继续作为适宜蛱蝶生存的区域,但是中 欧大部都将变得不适宜其生存。如果能够完全迁移,生态位的丧失将会明显减少,但是在气 候变化的假设前提下仍将达到 46%。
3.2.2 自然适应:气候适应 植物种类和种群也可以通过表型可塑性或适应进化来适应本地的气候变 化。如上节所述,植物的表型是中国气候变化条件下最具响应能力的因素之一(Xu et al., 2000; Chen et al., 2005; Piao et al., 2006; Zheng et al., 2006)。动物则可以改变 自身生长(速度、时间和大小)、行为和繁殖来适应气候变化。鸟类的窝卵数、两 栖动物的产卵数、一些昆虫的数量高峰与纯经济温度紧密相关(Sparks and Crick, 1999)。 尽管一些物种可以通过表型可塑性、适应进化或迁移来适应预期的气候变 化,但是人为干扰导致生态系统脆弱性的增加,使生态系统受到这种复杂过程的 影响,限制了物种和种群的自然适应。 人为干扰
39
对上面简略提到的人为干扰进一步考察,得出下列结论: 1.栖息地丧失和碎片化。如 Harvey 和 Pagel (1991)所言,物种和种群更 倾向于寻找气候适宜的栖息地,而不是欣然适应气候变化。如果某些生物因为多 种原因无法适应本地环境的变化,它们就将面临灭绝的威胁。 2.过度放牧和草场的严重退化。在过度放牧的环境中,高耐受能力的物种 (例如一年生物种)一般要比其它物种(例如灌木和肉质植物)具有更多的生存机 会。生长型对放牧的不同响应可以引起物种丰度和群落组成的变化,进一步导致 植物多样性的下降(Tsutsumi et al., 2003; Zhao et al., 2004)。中国 270 万平方千米 的草原中有一半以上因为长期过度放牧而退化,占到草原总面积的 1/4。退化的 环境加剧了气候变化所导致的后果,降低了一些物种对预期气候变化的适应能 力,特别是稀有种和敏感的物种。 3.动植物资源的过度开发。在中国, 越来越多的具有食用、药用和经济 价值的动植物物种,例如新疆虎、普氏野马、塞加羚羊、华南虎、肉苁蓉、锁阳, 遭受过度的捕猎和采集。过度开发导致种群规模的大幅缩小,从而减弱物种对气 候变化的适应能力。 4.来自大气污染的威胁。污染是影响生物对气候变化适应能力的又一大因 素。大气污染使那些对大气二氧化硫和氟化氢变化敏感的地衣受到严重威胁。因 为酸雨沉积而导致的酸化湖水和土壤威胁鱼类和无脊椎动物。在重度污染区,例 如华西南、华南、华中和华东,酸雨的年均 pH 值甚至低于 5.0。 5.外来物种入侵的影响。中国有长期地引入外来植物物种的历史,这使诸 多外来入侵物种广为散布(例如紫茎泽兰和松突圆蚧)。这种入侵可能导致本土物 种和外来物种的资源竞争,从而弱化本土物种对气候变化的适应能力。
40
6.旅游、采矿以及其它人类活动带来的不良影响。随着中国旅游产业的快 速发展(目前已成为世界上最大规模的国内旅游产业),其对生物多样性的负面影 响变得越来越严重,甚至威胁到一些物种的生存(例如华脐鳞、锦丝藓、塔藓)。 来自人类活动的频繁干扰可能会中断物种对气候变化的适应过程(例如迁移)。
41
第 4 章 国际背景下中国气候变化和生物多样性政策、法律和制度评 估 4.1 中国的气候变化和生物多样性政策 4.1.1 中国的气候变化政策 2006 年 2 月 9 日,中国颁布了《国家中长期科学和技术发展规划纲要 (2006━2020 年)》。为了完成纲要设定的目标,中国科技部联合其他 13 个政府部 门于 2007 年 3 月共同制定了《中国应对气候变化科技专项行动》。由于科技发展 在应对气候变化中发挥着关键作用,所以《中国应对气候变化科技专项行动》的 制定为实施后来发布的《中国应对气候变化国家方案》提供了科技支持。2007 年 6 月 4 日,中国发布了首个气候变化国家计划,即《中国应对气候变化国家方 案》。该《方案》是由国家发改委起草的,概括了通过实施旨在减缓、适应、科 学技术研究和增强公众意识的国家项目以应对气候变化的长期战略(附件 2 专栏 A)。2008 年 10 月,中国颁布了《中国应对气候变化的政策与行动》白皮书,概 括了在《联合国气候变化框架协议》和《京都议定书》下中国应对气候变化的政 策与行动。这两个文件强调了气候变化对生物多样性的负面影响,将生物多样性 保护,尤其是沿海地区和青藏高原,作为适应策略的核心。此外,为了减缓气候 变化对生物多样性的影响,急需大力发展用于生物多样性保护和恢复的技术,尤 其是与森林和野生动物保护区管理、湿地保护与恢复、以及濒危野生动植物保护 有关的技术。
42
4.1.2 中国的生物多样性政策 中国于 1992 年 6 月在联合国环境和发展大会上签署了《生物多样性公约》, 并于 1993 年 1 月 5 日获得全国人大的批准。为了执行《公约》,中国已经采取了 各种行动。 为了执行《公约》中的第 6 条款,中国于 1994 年 6 月颁布了“中国生物多 样性保护行动计划”,确定了需要优先保护的生态系统和物种,并提出了 18 个生 物多样性优先保护区项目。根据《生物多样性公约》下《卡塔赫纳生物安全议定 书》的要求,中国于 1999 年制定了“中国国家生物安全框架”,该框架包括了与 国家生物安全管理相关的政策和规范,及转基因生物及其产品风险评估和管理的 技术规范,生物安全管理的国家能力建设需求。 1992 年以来,与经济和社会发展有关的绝大多数国家五年计划和中长期发 展计划或政策都强调可持续发展的策略,其中考虑了包括生物多样性在内的环境 保护问题。除了与国家生物多样性有关的政策和行动外,国务院有关部门及各省 也将生物多样性保护纳入与经济活动相关的部门或省级政策、法规、计划和行动。 表 A4 展示了一些与中国生物多样性保护有关的政策、法规和行动计划。
4.1.3 生态工程 精心设计的造林和再造林工程能够通过栽植不同树龄的本土树种(而不是 商用短期诱人的速生树种)来构建半自然的和能够自我维持的生态系统,从而提 供相当大的生物多样性益处。然而种植单一物种可能会减少生物多样性,从而增 加了虫害发生的机会,并有可能增加管理成本和减少碳储存的持久性。此外,如 果造林、再造林工程的地点选择恰当,非林生态系统(如自然草地和湿地)代替人 43
工林,生物多样性的增加将有助于阻止沙漠化和其它气候变化的影响。如果计划 采取得不缜密,则有可能发生生物多样性减少(如生物质能,EEA, 2005)。因此, 在采取造林、再造林措施之前,深入分析被人工林取代的生态系统的生物多样性 是十分必要的。 森林管理(如很多土地利用活动)能够同时具有生物多样性和气候益处。 2001 年 2 月,中国开始实施 6 大的造林工程,包括:1)天然林保护工程;2)“三 北”和长江中下游地区等重点防护林建设工程;3)退耕还林还草工程;4)环北京 地区防沙治沙工程;5)野生动植物保护及自然保护区建设工程;6)重点地区速生 丰产用材林基地建设工程。
4.1.4 国际合作 中国积极参与“巴厘路线图”形成的国际谈判。2007 年 12 月,联合国主导 的气候变化峰会在印尼的巴厘岛举行,该会议是迄今世界关于气候变化规模最大 的一次会议。这次会议在历史和外交上的突破即是“巴厘路线图”协议,该协议对 应对气候变化具有重要意义。“巴厘路线图”为 2009 年前与会各方谈判,旨在达 成一个全球响应气候变化的协议,包括减缓、适应、金融和技术方面的措施。“巴 厘路线图”为 2009 年底在哥本哈根达成最终气候变化协议设置了最后期限。此 外,“巴厘路线图”推出了一个减少因森林砍伐和森林退化导致的温室气体排放 (REDD)的激励机制,。该机制具有很多好处,不仅可以减缓气候变化,而且可以 支持人类生计,维持关键生态系统服务功能和保护生物多样性。
44
4.3 国际背景下中国应对气候变化和生物多样性的政策 长久以来,气候变化和生物多样性丧失在议程上一直是分别对待的。直到 最近(即 2008 年在德国波恩举行的联合国气候框架公约缔约国第九次大会), 《 生 物多样性公约》把气候变化列为优先议程。相形之下,尽管只在可再生能源以及 碳固定(提得较少)的大背景下,有关气候变化的论述中也时而提及生物多样性。 在各利益攸关方前所未有的一致支持下,欧盟于 2006 年 6 月签署了一个委 员会公报,即《2010 年及未来阻止生物多样性丧失》,其中包括一个雄心勃勃的 生物多样性行动计划(BAP)。2008 年 12 月,欧洲委员会提出了一份有关 BAP 计 划执行进展情况的中期综述(EC2008)。该综述提供了第一份欧盟在实现 2010 年 目标过程中目前如何运作的综合报告。但是,分析综述报告时也发现了许多问题, 所提出的方法实现 2009 年 2 月 11 日欧洲议会在布鲁塞尔举行的高级别听证会上 达成一致的挑战。这里特别有趣的是第三政策领域的评估:‘生物多样性和气候 变化’,以及它的第 9 目标 “支持生物多样性对气候变化的适应性”。 在此背景下,欧洲委员会对欧盟的政策目标作了解释:认为“在科学和政治 上达成了广泛的共识,即我们已经进入了一个不可避免的且前所未有的气候变化 时期”。在欧盟,已观测到气候变化对生物多样性的影响。在几十年的时间尺度, 气候变化有可能削弱我们对生物多样性的保护和可持续利用上所作的努力。生物 多样性和气候变化是紧密联系的。除非认识到人类、生物多样性和气候变化之间 的联系,否则生物多样性丧失和气候变化问题就不能得到有效解决。一旦解决失 败,妥协的方法是同时在这两个领域寻求有效的措施。如此则增加了一层复杂性, 但也开辟了一条兼顾生物多样性和气候变化之间联系的应对途径,即鼓励采取既 有益于阻止生物多样性丧失也有益于减缓气候变化的措施。减缓气候变化对生物 45
多样性的长期威胁就需要大幅减少全球温室气体的排放。我们必须履行《京都议 定书》的义务。为了限制全球年平均温度的增加不比工业革命前水平高 2 oC, 需要制定 2012 年后全球温室气体减排的更宏大目标。由于森林、泥炭地和其它 生境(生态系统)可以储存碳,因此生物多样性的保护和可持续利用有助于限制大 气中温室气体浓度。健康的生态系统对于任何减缓和适应气候变化策略来说都是 至关重要的。生物多样性和生态系统对于适应气候变化具有双重作用: 1) 适应措施必须使生物多样性和生态系统具有适应性。 2) 生态多样性的保护和可持续利用可以通过增强生态系统的恢复力从而 有助于适应气候变化。 此外,需要制定政策有助于生物多样性适应不断变化的温度和水分格局。 这尤其需要保证欧盟保护稀有物种及其生境的“自然 2000 网络(Natura 2000 network)”的连贯性。我们必须注意防止、降低和缓减那些由适应和减缓气候变化 措施引发的对生物多样性的潜在危有害。 在 “到 2013 年大量减少与气候变化有关的对欧盟生物多样性具有破坏性 影响的可能性” 首要目标下,《生物多样性行动计划》规划了四个主要目标:1) 到 2010 年完成温室气体的减排;2)限制全球年平均温度的增加,使其不比工业 革命前水平高 2 oC;3)从 2006 年起,适应或减缓气候变化的措施应该带来生物 多样性的增加,防止或尽最大可能降低对生物多样性的负面影响;4)到 2010 年, 大大增强欧盟生物多样性对于气候变化影响的恢复力。 目标 3)和目标 4)在生物多样性和气候变化之间建立了桥梁。为了操控这些 目标(由于至今为止,各国反映不强烈,见附件 6),欧盟发布了关于“减小减缓气 候变化对生物多样性影响的措施”白皮书。由于健康生态系统是任何适应气候变
46
化策略的重要组成部分,因而该白皮书强调保持生态系统的完整性和增强生态系 统对快速变化和退化环境的恢复力之重要性。根据该白皮书,只有自然、科技和 人类个人之间的协调,才能使生态系统、社会和经济系统具有更强的抵抗力。这 即指依靠人力资本、绿色基本建设和灰色基本建设三方面的整合。使这些目标具 有可操作性的核心措施是建设一个“绿色基本建设”,即建设自然区,包括有些农 地、湿地、森林和海域之间相互联系的网络,因为这将保障关键的生态系统服务 功能(例如对暴风雨,温度,洪涝威胁,水、空气和生态系统质量的调节)。由于 快速的经济发展和城市化,中国正进行着与能源、交通运输和建筑有关的大规模 的基础设施建设,迫切需要减少由此产生的温室气体。在一些像北京、上海这样 的大都市,“绿色基本建设”已经被提高和整合进城市的发展中,特别是在北京奥 运年期间。
第五章 保护生物多样性和调节气候变化之间协同配合的建议 正如文中详细论述的那样,气候变化和生物多样性降低之间存在密切关系 和诸多问题,两者之间彼此互相依赖。为了解决目前存在的生态环境问题如碳储 备、生物多样性保护、土壤保持以及其它的环境问题,势必要求解决环境变化和 生物多样性之间的关系问题。因此,以下提出的建议旨在确立和发掘优势力量来 采取更有效的手段解决两方面的问题。 在中国未来气候变化趋势下,以下的措施在最大程度地降低不可逆的生物 多样性流失方面被认为是行之有效的管理方案。
47
5.1 自然保护建议 建立一个能够被有效保护、良好管理并且密切关联的自然保护区网络。根
据风险评估的结果,选取保护区中生物多样性丰富及对气候变化敏感的地 区进行优先保护。通过不同环境梯度的联结,破碎化的抑制以及建立有效 的缓冲区等方法,使现有的物种、种群以及生态系统能够得到更好的保护。 同时,建立有效的缓冲区还能够帮助生态系统更有效的抵御不利的气候变 化,并更快的适应新的环境条件。通过建立保护横断面来保护生态环境的 物种多样性是目前衡量过渡及敏感区域的气候变化不可缺少的指标。 新的自然保护区的确定和建立的同时,应该在保护区外围同时建立声音的
护障、重新安置的保护区域以及联结他们的廊道和/或者踏板石。比如一条 草原缓冲带的引入不仅能够降低养分流失的风险,同时对生物群落也会有 积极的作用。在欧洲,NATURA2000保护区的网络覆盖了15%的陆地景观, 现在它即将要拓展成覆盖相同比例的海洋生境。 建立有效和持久的自然保护区管理。自然保护区的管理应该受到系统性的
评估,旨在关注与高物种多样性监测能力的发展,促进生物资源的系统性 管理,并且探求自然保护区抵抗气候变化的管理模式。另外,在不同的生 态系统和区域中应执行不同的衡量指标。在中国少数民族地区,巨大的生 物多样性往往伴随着民族文化的多样性,因此,再利用当地生物资源的时 候系统性地运用当地的传统文化知识能够在发展保护和恢复生态环境的实 践中发挥重要的作用。 维持多样化生物栖息地中的较大种群是适应环境以及分散分布的前提。功
能上更丰富的生态系统能够更好的适应气候的变化。 48
维持和恢复当地的生态系统能够保护和促进生态系统的功能并降低生态系
统对气候变化的敏感性。物种的选择对于处于恢复中的生态系统是极其重 要的。入侵物种,比如紫茎泽兰和松突圆蚧是都应该要避免的。因此,对 于外来物种的输入和扩散进行严格的控制是十分必要的。 避免或者/同时降低森林的砍伐对于缓解气候变化是十分重要的。从森林采
伐和退化中减少排放的诱发机制不仅是缓解气候变化的应对策略,同时也 能够帮助维持生态系统的功能以及森林生态系的物种多样性。将生态系统 的管理仅仅局限于一种生态系统的功能往往会导致生态系统的退化以及物 种的流失。 林业管理的改进措施,包括植树造林以及重新造林。 为保护种质和遗传资源,建立区域性保护中心。通过为遗传资源提供“安全
性网络”,物种多样性在气候变化的减轻以及适应方面发挥了重要的作用。 遗传资源的多样性能够保证物种在环境变迁中能够继续生存、适应继而进 化。遗传多样性为物种多样性的适应提供了更多的机会。保护遗传资源及 其多样性,需要依赖于生物种源异地保存,比如保存在动物园、植物园、 受控饲养设备、基因或种质库中。 为了协助或激活正在进行的物种适应进程,例如物种的分散和迁移,种群
的死亡率和殖民化,群落成分或优势物种的变化,以及生活制度的改变等。 比如,森林种植园应该包含有轮作时间的修改、稀释进程的改变,以及对 从其他分布区域引入的物种或种群的再种植。这些都是最有成本效益的长 期解决方法,同时对物种多样性的维持也有好处。
49
5.2 科学和研究建议 为如何通过适应或减缓气候变化来抵御物种多样性的流失提供信息和建
议,特别是改进保护区的策略。 将现有的关于气候变化及其对物种多样性影响的资料汇总编辑,并且在未
来气候变化的模式中,导入一种物种多样性动态变化的模型。 组织全国范围内的典型生态系统的物种多样性调查,并且提供气候变化对
物种多样性影响方面的背景信息,特别是通过文献综述的撰写以及对领衔 科学家和生物学家的采访等形式,来进行优势物种对气候变化敏感性的评 估。 通过运用基于网络的监控和测量、3S技术以及模型模拟等技术来评估气候
变化及生物多样性流失对生态水文过程的影响。通过监测、绘图及模型模 拟等手段来评估重点生态地区的某些典型生态系统的气候变化敏感性将有 利于确定关键生态系统的生物多样性流失的气候风险性,同时寻求适当的 减缓措施。作为生物多样性变化的结果,气候变化如何影响生态系统的产 量、恢复力/稳定力和持久力也应包含在此种评估之内。同时也应包括对生 物多样性保持策略的改进方案以及针对大多数为生物多样性所建立的PA网 络的恢复力的综合评估。这将有助于加深对气候变化对关键物种的潜在影 响的理解。 我们需要做更多的研究来了解现在及将来的气候变化对物种多样性以及生
态系统功能的影响,特别是在一些过渡性的区域,例如高纬度地区。比如, 由气候变暖所引起的冰川融化如何影响高山湿地以及Tibetan Plateau地区的 草地生态环境的。 50
向公众传播生态多样性同气候变化之间的关系的理论以及实践知识,特别
是可以通过举办培训班、研讨会的形式,同从事生物多样性及气候变化的 领衔科学家、以及相关的政府和非政府组织的成员共同谈论。 通过普及气候变化的适应和缓解的相关实用方法,增加公众对环境保护、
物种多样性保护以及气候变化的影响的关注程度。 加强对物种多样性缓解和适应气候变化,以及气候变化对中国物种多样性
的影响等方面的研究,进而对研究的缺陷进行评估。加强对自然物种及种 群的研究,同时寻求促进气候变化的适应和缓解的有效方法。 建立长期、网络化的监测系统,用以监测气候的动态变化,时效性评估气
候变化对中国物种多样性的影响,并将此系统标准化以做适应性研究。从 此系统中得到的物种多样性及气候变化的信息能够帮助阐释气候引起的物 种多样性变化的状况,并寻求有效的应对措施。 为了更好的理解如何优化排列区域同时提供更多、更广泛的选择,进行大
尺度整合风险评估是必要的。在“国家重点保护野生植物”中,通过将濒危 植物物种地图与国家自然保护区分布地图的叠画,我们可以确认保护区域 的间隙。根据如上的评估,新建立的自然保护区能够更为有效的保护物种 多样性。 通过对动植物繁殖、培养、病虫害控制等技术的发展,农业物种多样性的
保持和发展将势必带来农作物产量的提高,病害的减轻,以及对未来正常 或极端气候变化敏感性的降低。
51
5.3 政策建议 针对生物多样性和气候变化的宣传和教育。针对公众的宣传,应侧重于通
过不同的媒体进行气候变化及其对生物多样性的影响等方面的知识和信息 的普及,这样做有利于保持生物多样性的整合,促进地区经济的发展及社 会的进步,同时对气候适应计划地施行也具有积极的意义。 既然气候同生物多样性之间存在的千丝万缕的联系,更为全面的制度及政
策上的保证是必需的。对有关的国际环境协定的国家机关之间的协调,不 仅仅是联合国对气候变化的协定和生物多样性协定,而且也包括湿地保护 和土壤沙漠化等等。气候变化和生物多样性之间的双向协定会将两者之间 的联系拓展至更广泛的领域。 为了减轻或适应气候变化所制定的策略、计划和行动也会影响生物多样性。
因此,这些计划或行动,包括造林和再造林,农业适应策略,沿海基础建 设以及新能源技术的发展,在地区、省市及国家范围内都应顾及到气候及 生物多样性两个方面的需要。 寻求政府、个人、社会团体间的创新性的合作形式及新的资金来源,以此
来投入气候变化和生物多样性的行动中。 在全国范围内针对气候变化对农业及食品安全等方面的影响进行评估,这
将有利于在农业实践中增加生物多样性,同时在不减产的前提下减小气候 变化的不利影响。特别是,运用生态工程学手段进行化学物质代换(氮、杀 虫剂),最小化耕种和施肥,水土保持,残渣回收,麦秸、覆盖物等得再利 用,间作和混作,多种耕作,农作物的培植,病害、虫害等。 通过在土地中使用规划及促进景观内部的流动等栖息地恢复方法,促进它 52
们之间的联系来创建栖息地网络及嵌合体,以此来促进生物多样性同时帮 助减轻气候变化所带来的不利影响。
53
主要参考文献 Araújo, M.B., Nogue´s-Bravo, D., Reginster, I., Rounsevell, M., Whittaker, R.J. (2008). Exposure of European biodiversity to changes in human-induced pressures. Environmental science & policy 11 (2008): 38 – 45 Baker BB, Moseley RK, 2007. Advancing treeline and retreating glaciers: Implications for conservation in Yunnan, PR china. Arctic Antarctic and Alpine Research, 39, 200-209. Bai F, Sang W, Li G, et al. 2008. Long-term protection effects of national reserve to forest vegetation in 4 decades: biodiversity change analysis of major forest types in Changbai Mountain Nature Reserve, China. Science in China (Series C) 51: 948-958. Bai Y.F., J.G. Wu, Q.M. Pan, J.H. Huang, Q.B. Wang, F.S. Li, A. Buyantuyev, X.G. Han. 2007. Positive linear relationship between productivity and diversity: evidence from the Eurasian Steppe. Journal of Applied Ecology, 44: 1023-1034. Baker B. B., R. K. Moseley. 2007. Advancing Treeline and Retreating Glaciers: Implications for Conservation in Yunnan, P.R. China. Arctic, Antarctic, and Alpine Research 39: 2, 200-209 Benton, T.G. et al. (2007). Ecology: Managing Farming's Footprint on Biodiversity Science 315, 341. DOI: 10.1126/science.1137650 Cao MK, Prince SD, Li KR, Tao B, Small J, Shao XM. 2003. Response of terrestrial carbon uptake to climate interannual variability in China. Global Change Biology, 9, 536–546.
Caparrós, A. and Jacquemont, F., 2003. Conflicts between biodiversity and carbon offset programs: economic and legal implications. Ecological Economics, 46: 143-157. Cardinale, B. J., J. P. Wright, M. W. Cadotte, I. T. Carroll, A. Hector, D. S. Srivastava, M. Loreau, and J. J. Weis. 2007. Impacts of plant diversity on biomass production increase through time due to complementary resource use: a metaanalysis. Proceedings of the National Academy of Sciences (USA) 104:18123–18128. CEC Commission of the European Communities (2008). The Cost of Policy Inaction (COPI): The case of not meeting
the
2010
biodiversity
target.
Policy
Report,
Brussels.
Download
from:
http://ec.europa.eu/environment/nature/biodiversity/economics/pdf/copi.zip Chang Y, Li Y, Hu Y, 2003. The preliminary reconstruct of historical forest landscapes in Changbai Mountain natural reserve. Quat. Sci. 23, 309–317 (in Chinese). Chen B, Kang L, 2003. Biological invasion and its relation with global changes. Chinese Journal of Ecology, 22, 31-34 (in Chinese with English abstract) Chen L, Wang X, Wang S. 1993. Chinese Biodiversity — Status and Conservation Strategy. Science Press, Beijing. Chen X, Hu B, Yu R. 2005. Spatial and temporal variation of phonological growing season and climate change impacts in temperate eastern China. Global Change Biology 11: 1118–1130. Chen X, Lei M, Tang JP. 2006. Simulating the effect of changed vegetation on the climate change in Eurasia. Advances in Earth Science, 21 (10), 1075–1082 (In Chinese with English abstract). Chen X, Tan Z, Schwartz M, et al. 2000. Determining the growing season of land vegetation on the basis of plant phenology and satellite data in Northern China, International Journal of Biometeorology 44, 97–101. Chen X, Xu C, Tan Z, 2001. An analysis of relationships among plant community phenology and season metrics of Normalized Difference Vegetation Index in the northern part of the monsoon region of China, International Journal of Biometeorology 45, 170–177. Chen X, Zhang F, 2001. Spring phenological Change in Beijing in the Last 50 years and its response to the climate changes. Chinese Journal of Agrometeorology 22, 1–5 (in Chinese with English abstract). Chu ZY, Ren GY, Shao XM et al. 2005. Preliminary reconstruction of mean surface air temperature over the past
54
1000 years in China. Climatic and Environmental Research, 10 (4): 826-836 (in Chinese with English abstract) Chytrý M., Maskell L., Pino J., Pyšek P., Vila M., Font X. & Smart S. (2008a). Habitat invasions by alien plants: a quantitative comparison between Mediterranean, subcontinental and oceanic regions of Europe. Journal of Applied Ecology 45: 448–458. Chytrý M., Jarošík V., Pyšek P., Hájek O., Knollová I., Tichý L. & Danihelka J. (2008b). Separating habitat invasibility by alien plants from the actual level of invasion. Ecology 89: 1541–1553. Chytrý M., Pyšek P., Wild J., Maskell L. C., Pino J. & Vilà M. (2009a). European map of alien plant invasions, based on the quantitative assessment across habitats. Diversity and Distributions 15: 98–107. Chytry, M. (2009b). Personal communication to Joachim H. Spangenberg on the ALARM project results, 17 Feb. 2009. Costanza, R., Cumberland, John, Daly, Herman, Goodland, Robert, Norgaard, Richard (1998). An Introduction to Ecological Economics. Boca Raton, FL,
CRC Press LLC.
Del Grosso S, Parton W, Stohlgren T, et al. 2008. Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology 89, 2117-2126. Deng HP, Wu ZF, Zhou DW, 2000. Response of broadleaved Pinus Koraiensis in Xiaoxinganling Mt. to global climate change—a dynamic modeling. Chin. J. Appl. Ecol. 11, 43–46. (in Chinese with English abstract). Ding YH, Li QP, Dong WJ. 2005. A numerical simulation study of the impacts of vegetation changes on regional climate in china. Acta Meteorologica Sinica, 63 (5), 613–621 (In Chinese with English abstract). Ding YH, Ren GY, Shi GY, Gong P, Zheng XH, Zhai PM, Zhang DE, Zhao ZC, Wang SW, Wang HJ, Luo Y, Chen DL, Gao XJ, Dai XS. 2007. National assessment report of climate change (I): Climate change in China and the future trend. Advances in Climate Change Research, 3 (Suppl.): 1-5. Ding YH. 2002. Assessment of Environmental Change of Western China (Vol. 2): Projection of Environmental Change in Western China. Beijing: Science Press, pp.1-239 (in Chinese) Du MY, Kawashima S, Yonemura S, Zhang XZ, Chen SB. 2004. Mutual influence between human activities and climate change in the Tibetan Plateau during recent years. Global and Planetary Change, 41, 241–249. Duan ZH, Xiao HL, Dong ZB, He HD,Wang G. 2001. Estimate of total CO2 output fromdesertified sand land in China. Atmos Env. 35: 5915–5921. Earth Sciences Division of Chinese Academy of Sciences (ESD-CAS). 2001. Advice on the ecological construction and industrial structure adjustment in speeding up the development of western China. Advance in Earth Sciences 16, 1–4 (in Chinese). EC European Commission (2008). Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions: A mid-term assessment of implementing the EC biodiversity action plan, COM(2008) 864 final. European Commission, Brussels. EEA European Environment Agency (2004). Impact of Europe's changing climate. EEA Report 2/2004. EEA European Environment Agency. EEA Reports: Copenhagen, EEA. 94. . EEA European Environment Agency (2005). How much biomass can Europe use without harming the environment? EEA Briefing 02/2005. EEA European Environment Agency. EEA Briefing Sheets: Copenhagen, EEA. 4. Ehrlich P.R. (1988) The loss of Diversity. Causes and consequences. Biodiversity. Ed E.O.Wilson. National Academic Press. Washington, D.C. Fang JY, Chen AP, Peng CH et al. 2001. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292: 2320-2322. Fang JY, Guo ZD, Piao SL, Chen AP. 2007. Terrestrial vegetation carbon sinks in China, 1981-2000. Science in China (Series D: Earth Sciences), 50(9):1341-1350 Fang JY, Piao SL, Tang Z Y, Peng C H, Ji W. 2001. Interannual variability in net primary productivity and
55
precipitation. Science, 293:1723a Fang J, Piao S, He J, et al. 2003. Increasing terrestrial vegetation activity in China, 1982-1999. Science in China (Series C), 47: 229-240. FAO (Food & Agriculture Organization of the UN). 2003. Chapter 9: Soil biodiversity management for sustainable and productive agriculture: lessons from case studies. In Biodiversity and the Ecosystem Approach in Agriculture, Forestry and Fisheries. Proceedings of the Satellite Event on the Occasion of the Ninth Regular Session of the Commission on Genetic Resources for Food and Agriculture. Rome 12-13 October 2002. Rome: Food and Agriculture Organization of the United Nations. 312pp. Feng Q, Cheng GD, Masao M. 2001. The carbon cycle of sandy lands in China and its global significance. Climatic Change 48: 535–549. Feng X, Liu G, Chen JM, Chen M, Liu J, Ju WM, Sun R, Zhou W. 2007. Net primary productivity of China’s terrestrial ecosystems from a process model driven by remote sensing. Journal of Environmental Management, 85, 563–573. Foley JA, Defries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK. 2005. Global consequences of land use. Science 309:570-574. Fornara, D.A., Tilman, D. (2008). Plant functional composition influences rates of soil and nitrogen accumulation. Journal of Ecology. 96: 314-322 Fu CB, Yuan HL. 2001. An virtual numerical experiment to understand the impacts of recovering natural vegetation on the summer climate and environmental conditions in East Asia. Chinese Science Bulletin, 46 (14), 1199-1202. Fu CZ, Wu JH, Chen JK, Wu QH and Lei GC. 2003. Freshwater fish biodiversity in the Yangtze River basin of China: patterns, threats and conservation. Biodiversity and Conservation 12(8):1649-1685. Fuller T, Morton DP, Sarkar S, 2008. Incorporating uncertainty about species' potential distributions under climate change into the selection of conservation areas with a case study from the Arctic Coastal Plain of Alaska. Biological Conservation, 141, 1547-1559. Gallai N, Salles J-M, Settele J, Vaissière BE (2008). Economic valuation of the vulnerability of world agriculture confronted to pollinator decline. Ecological Economics. (doi 10.1016/j.ecolecon.2008.06.014). Gao Q, Yu M, Yang X, 2000. An analysis of sensitivity of terrestrial ecosystems in China to climatic change using spatial simulation. Climate Change 47:373–400. Gao XJ, Zhang DF, Chen ZX. Jeremy SP, Filippo G. 2007. Simulation of land use effects on climate in China by Regcm3. Science in China (Series D: Earth Sciences), 50 (4), 620-628. Gao XJ, Zhao ZC, Ding YH et al. 2001. Climate change due to greenhouse effects in China as simulated by a regional climate model. Adv. Atmos. Sci., 18 (6): 1224-1230. Gao Z, Liu J, Cao M, et al., 2005. Impacts of land-use and climate changes on ecosystem productivity and carbon cycle in the cropping-grazing transitional zone in China. Science in China (Series D: Earth Sciences) 48, 1479-1491. GDCh Fachgesellschaft Deutscher Chemiker, "A propos ... CO2 Emissionen", Mitteilungen der Fachgruppe Umweltchemie und Ökotoxikologie 10(1), 2004: 76-77.Fang J, Piao S, He J, et al. 2003. Increasing terrestrial vegetation activity in China, 1982-1999. Science in China (Series C) 47, 229-240. Ge QS, JH Dai, FN He, Y Pan and MM Wang. 2008. Land use changes and their relations with carbon cycles over the past 300 a in China. Science in China (Series D: Earth Sciences), 51(6): 871-884. Guo Q, Xu D, Yan H. 1995. A study on the impacts of climate change on the distribution of Pinus tabulaeformis in China. Scientia Silvae Sinicae 31: 393-402 (in Chinese with English abstract).
56
Guo Q, Yan H, Xu D, Wang B. 1998. Effects of climate changes on geographical distribution of Pinus koraiensis in China. Acta Ecologica Sinica, 18: 484-488 (in Chinese with English abstract).. Hao Z, Dai L, He H, 2001. Potential response of major tree species to climate warming in Changbai Mountain. Northeast China Chin. J. Appl. Ecol. 12, 653–658 (in Chinese with English abstract). Harding LE, McCullum E, 1997. Ecosystem response to climate change in British Columbia and Yukon: threats and opportunities for biodiversity. In Responding to global climate change in British Columbia and Yukon, Vol. 1. E. Taylor and B. Taylor (editors). BC Ministry of Environment, Lands and Parks, Victoria, BC. url: http://www.pyr.ec.gc.ca/EN/_pdf/Climate_impact_vol1.pdf
Harrison PA, Berry PM, Butt N, et al. 2006. Modelling climate change impacts on species' distributions at the European scale: implications for conservation policy. Environmental Science & Policy, 9: 116-128. He H, Hao Z, et al. 2005. Simulating forest ecosystem response to climate warming incorporating spatial effects in north-eastern China. Journal of Biogeography 32, 2043-2056. He Q, Yuan J, Chen Z. 1996. Possible effects of the climate changes on the distribution of Pinus massoniana and Pinus yunnanensis in South China. Journal of Beijing Forestry University 18: 22-28 (in Chinese with English abstract). Hooper D U, Chapin III F S, Ewel J J, Hector A, Inchausti P, Lavorel S, Lawton J H, Lodge D M, Loreau M, Naeem S, Schmid B, Setälä H, Symstad A J, Vandermeer J and Wardle D A. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs, 75(1):3–35. Hou Y, Guo Z, Long R. 2009. Changes of plant community structure and species diversity in degradation process of Shouqu wetland of Yellow River. Chin. J. Appl.Ecol. 20:27-32.
Houghton R.A. 2005. Tropical deforestation as a source of greenhouse gas emissions. In: Moutinho P, Schwartzman S, editors. Tropical deforestation and climate change. IPAM, Environmental Defense; Belém, Washington, DC: pp. 13–22. Huang Y and Sun WJ. 2006. Changes in topsoil organic carbon of croplands in mainland China over the last two decades. Chinese Science Bulletin, 51(15): 1785-1803.
Huntley B, Collingham YC, Green RE, et al. 2006. Potential impacts of climatic change upon geographical distributions of birds. Ibis, 148: 8-28. Huntley B, Green RE, Collingham YC et al. 2008a. A Climatic Atlas of European Breeding Birds. Lynx Ediciones. Huntley B, Collingham YC, Willis SG et al. 2008b. Potential impacts of climatic change on European breeding birds. Plos One, 3, e1439. doi:10.1371/journal.pone.0001439. IPCC. 2007. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland, 104 pp. Janssens, I.A., A. Freibauer, P. Ciais, P. Smith, G.J. Nabuurs, G. Folberth, B. Schlamadinger, R.W. Hutjes, R. Ceulemans, E.D. Schulze, R. Valentini and A.J. Dolman. 2003. Europe’s terrestrial biosphere absorbs 7 to 12% of European anthropgenic CO2 emission. Science, 300: 1538-1542 Ji JJ, Huang M, Li KR. 2008. Prediction of carbon exchanges between China terrestrial ecosystem and atmosphere in 21st century. Science in China (Series D: Earth Sciences), 51(6): 885-898. Jiao N, 2001. Ecological Processes and Sustainable Development of Typical Coastal Water Ecosysytems in China. Science Press, Qingdao, China, p. 338 (in Chinese). Jordi L, Zhang F, Ge S. 2006. Plant biodiversity in China: richly varied, endangered, and in need of conservation. Biodiversity and Conservation 15:3983-4026.
57
Ju WM, Chen JM, Harvey D, Wang S. 2007. Future carbon balance of China’s forests under climate change and increasing CO2. Journal of Environmental Management, 85, 538–562. Ju X, Xing G, Chen X, et al. 2009. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. PNAS, doi:10.1073/1.pnas.0813417106. Karlik JF, McKay AH, Welch JM et al., 2002. A survey of California plant species with a portable VOC analyzer for biogenic emission inventory development. Atmos. Environ. 36: 5221-5233.
Kelly AE, Goulden ML, 2008. Rapid shifts in plant distribution with recent climate change. PNAS, 105: 11823-11826. Klein JA, Harte J, Zhao X, 2004. Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecology Letters 7(12), 1170-1179. Lal R. 2002. Soil carbon sequestration in China through agricultural intensification, and restoration of degraded and desertified ecosystems. Land degradation and development, 13, 469–478. Lal R. 2004. Soil carbon sequestration in India [ J ]. Climatic Change, 65: 2772296. Lemoine N, Schaefer HC, Bohning-Gaese K, 2007. Species richness of migratory birds is influenced by global climate change. Global Ecology and Biogeography, 16, 55-64. Leng W, He H, et al. 2008. Predicting the distributions of suitable habitat for three larch species under climate warming in Northeastern China. Forest Ecology and Management 254(3), 420-428.
Lenoir J, Gegout JC, Marquet PA, et al. 2008. A significant upward shift in plant species optimum elevation during the 20th century. Science, 320: 1768-1771. Li HQ, Fan GZ, Zhou DW, Hua W, Liu YQ, Li XM. 2008. Character of spring vegetation change in the Qinghai-Tibet Plateau and its influence on summer air temperature. Scientia Geographica Sinica, 28 (2), 259–265 (In Chinese with English abstract). Li QP, Ding YH. 2004. Research progress in the effect of vegetation change on regional climate. Journal of Nanjing Institute of Meteorology, 27 (1), 131–140 (In Chinese with English abstract). Li R, Liu X, Zhou G, 2006a. The characteristics of Phragmites phenology in Panjin wetland and its responses to climatic change. Journal of Meteorology and Environment 22, 30-34 (in Chinese with English abstract). Li R, Zhou G, Wang Y, et a1. 2006b. Phenological responses of Leymus chinesis to climate factors. Chinese Journal of Ecology 25, 277-280 (in Chinese with English abstract). Li YC, Gong P, Liu CX, Chen J, Yu DY. 2006. Vegetation cover changes and correlation with climatic factors in northern China during 1982-1999. Resources Science, 28, 109–117 (In Chinese with English abstract). Lin ED, Xu YL, Wu SH, Ju H, Ma SM. 2007. China’s national assessment report on climate change (Ⅱ): Climate change impacts and adaptation. Advances in Climate Change Research, 1673-1719, Suppl.-0006-06. Lindert PH. 2000. Shifting Ground: The Changing Agricultural Soils of China and Indonesia. MIT Press: Cambridge, MA. 351pp. Liu D, 2004. Community structure succession study of phytoplankton and sediment diatoms in Jiaozhou Bay. Ocean University of China, P.R. China, pp. 123 (Ph.D thesis, in Chinese with English abstract). Liu D, Sun J, Zhang J. et al. 2008. Response of the diatom flora in Jiaozhou Bay, China to environmental changes during the last century. Marine Micropaleontology 66, 279-290 (in Chinese with English abstract). Liu D, Xin M, 1998. New bird record in Shandong- Clamator coromandus. Sichuan Animal 17, 175(in Chinese with English abstract). Liu G, 2003, Analysis on dynamics in grassland of Xilinguole based on technology of remote sensing, geographical information and global position system. Inner Mongolia Agricultural University, P.R. China, pp.68, (Ph.D. thesis, in Chinese with English abstract). Liu G. 1999. Soil conservation and sustainable agriculture on the Loess Plateau: challenges and prospects. Ambio
58
28, 663–668. Liu J, Ouyang Z, Pimm SL, Raven PH, Wang X, Miao H, Han N. 2003. Protecting China’s biodiversity. Science 300: 1240-1241. Liu M, 1993, Surveys on seabirds in the coastal area in Liaoning. Wildlife 106, 16-17 (in Chinese with English abstract). Liu, Q.-H., X.-Z. Shi, D. C. Weindorf, D.-S. Yu, Y.-C. Zhao, W.-X. Sun, and H.-J. Wang (2006), Soil organic carbon storage of paddy soils in China using the 1:1,000,000 soil database and their implications for C sequestration, Global Biogeochem. Cycles, 20, GB3024, doi:10.1029/2006GB002731. Liu X, Zhao W, Guo Y, et al. 1998. Tree new bird records in Heilongjiang. Sichuan Animal 17, 175 (in Chinese with English abstract). Lopez-Pujol J, Zhang FM, Ge S. 2006. Plant biodiversity in China: richly varied, endangered, and in need of conservation, Biodiversity and Conservation 15: 3983-4926. Luo Y, Ding YH, Zhao ZC et al. 2005. Projection of the future anthropogenic climate change in China. In Qin DH, Ding YH, Su JL (eds). Climate and Environment Changes in China (Vol. 1). Beijing: Science Press, pp507-555 (in Chinese). Ma R, Jiang Z, 2005. Impact of global climate change on wildlife. Acta Ecologica Sinica 25, 3061-3066 (in Chinese with English abstract). Mack R.N., Simberloff D., Lonsdale W.M., Evans H., Clout M. and Bazzaz F.A. 2000. Biotic invasions: causes, epidemiology, global consequences, and control. Ecological Applications 10: 689-710. McNeely JA, Miller KR, Reid WV, Mittermeier RA, Werner TB. 1990. Conserving the World's Biological Diversity. IUCN, Gland, Switzerland. Menendez R, Megias AG, Hill JK, et al. 2006. Species richness changes lag behind climate change. Proceedings of the Royal Society B: Biological Sciences, 273, 1465-1470. Meng J, Wang J. 2007. The response of vegetation dynamics to climate change in the southwestern karst region of China since the early 1 980s. Geographical Research 26: 857-866 (in Chinese with English abstract). Millennium Ecosystem Assessment 2005. Ecosystems and Human Well-being: Biodiversity Synthesis. Washington D.C., World Resources Institute. Ministry
of
Water
Resources
(MWR).
2004.
Water
Resources
in
China.
(http://www.mwr.gov.cn/english1/20040802/38161.asp) Morgan JA, Milchunas DG, LeCain DR et al., 2007. Carbon dioxide enrichment alters plant community structure and accelerates shrub growth in the shortgrass steppe. PNAS 104:14724-14729. Morin X, Viner D, Chuine I, 2008. Tree species range shifts at a continental scale: new predictive insights from a process-based model. Journal of Ecology, 96: 784-794. Moritz C, Patton JL, Conroy CJ, et al. 2008. Impact of a Century of Climate Change on Small-Mammal Communities in Yosemite National Park, USA. Science, 322: 261-264. Moseley R K, 2006. Historical landscape change in northwestern Yunnan,China.Mountain Research and Development 26, 2l4-2l9 (in Chinese with English abstract). Naidoo, R., Balmford, A., Costanza, R., et al. (2008). Global mapping of ecosystem services and conservation priorities. Proceedings of the National Academy of Sciences. 105: 9495-9500. Nellemann, C. (ed.) 2005. The fall of the water: Emerging threats to the water resources and biodiversity at the roof of the world to Asia’s lowland from land-use changes associated with large-scale settlement and piecemeal development. UNEP/GRID-Arendal, Arendal, Norway (available at http://www.globio.info) Niu S, Wan S. 2008. Warming changes plant competitive hierarchy in a temperate steppe in northern China, Journal of Plant Ecology. 1: 103-110.
59
Parmesan C, 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37, 637-669. Parmesan C, 2007. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Global Change Biology 13, 1860-1872. Piao S, Fang J, et al. 2005. Changes in vegetation net primary productivity from 1982 to 1999 in China. Global Biogeochemical Cycles 19(2) Piao S, Fang J, Zhou L, et al. 2006. Variations in satellite-derived phenology in China’s temperate vegetation. Global Chang Biology 12: 672-685. Piao SL, Fang JY, Chen AP. 2003. Seasonal Dynamics of Terrestrial Net Primary Production in Response to Climate Changes in China. Acta Botanica Sinica, 45 (3): 269 – 275. Piao S-L, Fang J-Y, Ciais P, Peylin P, Huang Y, Sitch S and Wang T. 2009. The carbon balance of terrestrial ecosystems in China. Nature 458, 1009-1013. Oi R, Yan J, Wang Q, 2006a, Change of the phenologlcal phase of Populustorner-tosaanditsresponse to climate change. Chinese Journal ofAgrometeorology 22, 41-45. Qi R, Wang Q, Shen H, 2006b. Analysis of phonological—phase variation of herbage plants over Qinghai and impact of meteorological conditions.Meteorological Science and Technology 34, 306-310. Qi Y, Zhao Y, Yin X, 2004. Ecological distribution of biological invasion in China, Ecology and Environment 13, 414-416 (in Chinese with English abstract). Qian H, Ricklefs RE. 1999. A comparison of the taxonomic richness of vascular plants in China and the United States. Am. Nat. 154: 160-181. Qiu, J. 2009. Nitrogen fertilizer warning for China. Farmers could cut use by two-thirds without lowering crop yield. Nature online 16 February 2009. doi: 10.1038/news.2009.105 Qin DH, Ding YH, Su JL et al. 2005. Climate and Environment Changes in China (Vol. 1). Beijing: Science Press, 2005 (in Chinese) Raich J W, Schlesinger W H. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44: 81- 89. Rajpurohit S, Parkash R, Ramniwas S. 2008. Climatic changes and shifting species boundaries of Drosophilids in the Western Himalaya. Acta Entomologica Sinica 5: 328-335. Ravindranath NH. 2007. Mitigation and adaptation synergy in forest sector. Mitigation and Adaptation Strategies for Global Change, 12(5): 843-853. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, and Wall DH. 2000. Biodiversity - Global biodiversity scenarios for the year 2100. Science 287, 1770-1774 Sang W, Bai F. 2009. Vascular diversity patterns of forest ecosystem before and after a 43-year interval under changing climate conditions in the Changbaishan Nature Reserve, northeastern China. Plant Ecology 201:115-130. Settele, J., Biesmeijer, J., Bommarco, R. (2008). Switch to ecological engineering would aid independence. Correspondence, Nature 456: 570. Sha W, Shao X, Huang M. 2002. Climate warming its impact on natural regional boundaries in China in the 1980s. Science in China 45: 1099-1113. Song JM, Xu YF, and Hu WP. 2008. Biogeochemsitry of marginal sea and lake ecosystems in China. Beijing: Science Press, pp. 1-533. Song M, Zhou C, Yang H. 2005. Simulated distribution of vegetation types in responses to climate change on the Tibetan Plateau. Journal of Vegetation Science 16: 341-350.
60
Spangenberg, J.H., Settele, J. (2009). The promises and limits of bioenergy: Biofuels for Biofools? Journal of International Relations, 6/20 Spangenberg, J. H. (2008). Biomass or Biomess? The promises and limits of bioenergy. In F. Barbir, S. Ulgiati (eds), Sustainable Energy Production and Consumption. NATO Science for Peace and SecuritySeries – C: Environmental Security. Dordrecht, NL, Springer: 55-66. Sparks T, Crick H. 1999. Opinion: The times they are a-changing. Bird Conservation 9: 1-7. State Forestry Administration of the People's Republic of China. 2008. Briefing on Forestry and Ecological Construction in China (http://www.forestry.gov.cn/sub/FstArticle.aspx?id=lyyw.1132.2008-01-21). Stefanowicz, A. 2006. The Biolog plates technique as a tool in ecological studies of microbial communities. Polish Journal of Environmental Studies 15 (5): 669-676 Sturm M, Racine C, Tape K. 2001, Climate change-Increasing shrub abundance in the Artic. Nature 411: 546-547. Tang Z, Wang Z, Zheng C, et al. 2006. Biodiversity in China’s mountains. Front. Ecol. Environ. 4:347-352. Tao B, Cao MK, Li KR, Gu FX, Ji JJ, Huang M, Zhang LM. 2007. Spatial patterns of terrestrial net ecosystem productivity in China during 1981-2000. Science in China (Series D: Earth Sciences), 50 (5), 745–753. The State Council of China. 2008. White paper: China's policies and actions on climate change. The State Development and Reform Commission. 2007. China’s National Climate Change Program. Thomas CD, Ohlemuller R, Anderson B, et al. 2008. Exporting the ecological effects of climate change Developed and developing countries will suffer the consequences of climate change, but differ in both their responsibility and how badly it will affect their ecosystems. Embo Reports, 9, S28-S33. Thomson AM, RC Izaurralde, NJ Rosenberg, X He. 2006. Climate change impacts on agriculture and soil carbon sequestration potential in the Huang-Hai Plain of China. Agriculture, Ecosystems and Environment 114(2-4):195-209. Tilman D. 1999. The ecological consequences of changes in biodiversity: a search for general principles. Ecology, 80:1455-1474. Tilman D, Reich PB and Knops JMH. 2006. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441: 629-632. Tsutsumi M, Shiyomi M, Wang Y, et al. 2003. Species diversity of grassland vegetation under three different grazing intensities in the Heilongjiang steppe of China. Grassland Science, 48(6):510-516. van Ruijven, J. and Berendse, F. 2005. Diversity-productivity relationships: initial effects, long-term patterns, and underlying mechanisms. Proceedings of the National Academy of Sciences (USA), 102:695–700. Vilà M., Basnou C., Pyšek P., Josefsson M., Genovesi P., Gollasch S., Nentwig W., Olenin S., Roques A., Roy D. B., Hulme P. E. (2009). How well do we understand the impacts of alien species on ecological services? A pan-European cross-taxa assessment. Frontiers in Ecology and the Environment (in press). Virkkala R, Heikkinen RK, Leikola N, et al. 2008. Projected large-scale range reductions of northern-boreal land bird species due to climate change. Biological Conservation, 141: 1343-1353. Visser ME, Holleman LJM, 2001. Warmer springs disrupt the synchrony of oak and winter moth phenology. Proceedings of the Royal Society B: Biological Sciences 268, 289-294. Wang C, Wu F, Li S, et a1. 2006. Phenological changes of woody plants in Xi’an Botanical Garden in last 15 years. Chinese Journal of Agrometeorlogy 27, 261-264 (in Chinese with English abstract). Wang GX, Wang YB, Li YS, Cheng HY. 2007. Influences of alpine ecosystem responses to climatic change on soil properties on the Qinghai–Tibet Plateau, China. Catena, 70, 506–514. Wang SW, Cai JN Zhu JH and Gong DY. 2002. Studies on climate change in China. Climatic and Environmental Research, 7(2): 137–145. Wang X, Sun L, Zhou X, et al., 2003. Dynamic of forest landscape in Heilongjiang Province fro one century.
61
Journal of Forest Research, 14:39-45. Way, M.J. Heong K.L. 1994. The role of biodiversity in the dynamics and management of insect pests of tropical irrigated rice – A review. Bulletin of Entomological Research 84: 567-587. Wen D. 1993. Soil erosion and conservation in China. In World Soil Erosion and Conservation, Pimentel D (ed.). Cambridge University Press, 63–86. Weng E, Zhou G, 2006. Modeling distribution changes of vegetation in China under future climate change. Environmental Modeling and Assessment 11, 45-58. Wilson RJ, Gutierrez D, Gutierrez J, et al. 2007. An elevational shift in butterfly species richness and composition accompanying recent climate change. Global Change Biology, 13, 1873-1887. Wu Z, Jin Y,. Liu J, et al. 2003. Response of vegetation distribution to global climate change in Northeast China. Scientia Geographica Sinica 23: 564-570 (in Chinese with English abstract). Xu W, He X, Chen W, et a1. 2006. Response of Shenyang urban tree phenology to climate warming. Chinese Journal of Applied Ecology 17, 1777-1781. Xu XF, Tian HQ, Wan SQ. 2007. Climate warming impacts on carbon cycling in terrestrial ecosystems. Journal of Plant Ecology, 31 (2), 175–188 (In Chinese with English abstract). Xu Z, Zhu H, Liu H, et al. 2001. Tropical rainforest fragmentation and strategies for conservation in the lower-Lancan/upper-Mekong River Basin, International Symposium on Biodiversity Management and Sustainable Development in the Lancang-Mekong River Basin. December 4-7, 2001, Xishuangbanna, China. Yan X, Shugart HH, 2000. Simulating the effects of climate changes on XiaoXing’an Mountain forests. Acta Phytoecol. Sin. 24, 312–319 (in Chinese with English abstract). Yan X, Zhao S, 1999. How should the Xiao Hinggan Mt. Forests change with potential climate change: a simulation study. J. Nat. Res. 14, 372–376 (in Chinese with English abstract). Yang YH, A Mohammat, JM Feng, R Zhou and JY Fang. 2007. Storage, patterns and environmental controls of soil organic carbon in China. Biogeochemistry, 84(2): 131-141. Yao Z, Li Y, 1997. New bird record in Henan- Aethopya christinae. Sichuan Animal 16,31 (in Chinese with English abstract). Yu L, Cao M, Li K, 2006. Climate-induced changes in the vegetation pattern of China in the 21st century. Ecological Research 21, 912-919. Yu M, Gao Q, Xu HM, Liu YH. 2001. Response of vegetation distribution and primary production of the terrestrial ecosystems of China to climate change. Quaternary Science, 21 (4), 281–293 (In Chinese with English abstract). Yue T, Fan Z, Liu J, 2005. Changes of major terrestrial ecosystems in China since 1960. Global and Planetary Change 48:287-302. Zhang JY, Dong WJ, Fu CB. 2005. Impact of land surface degradation in northern China and southern Mongolia on regional climate. Chinese Science Bulletin, 50 (1), 75–81. Zhang JY, Dong WJ, Ye DZ, Fu CB. 2003. New evidence for effects of land cover in China on summer climate. Chinese Science Bulletin, 48 (4), 401–405. Zhang
Q.
2009.
Beijing
to
get
solar
thermal
power.
China
Daily, http://www.chinadaily.com.cn/bizchina/2009-02/19/content_7491243.htm Zhang X, Ge Q, Zheng J, et a1. 2005. Response of spring phenology to clima te changes in Reijing in last 150 years. Chinese Journal of Agrometeorology 26, 263-267 (in Chinese with English abstract). Zhang Y, Ma K. 2008. Geographic distribution patterns and status assessment of threatened plants in China. Biodiversity and Conservation 17:1783-1798. Zhang Y, Zhou G, 2008. Terrestrial transect study on driving mechanism of vegetation changes. Science in China
62
Series D: Earth Sciences 51:984-991. Zhang YQ, Tang YH, Jiang J and Yang YH. 2007. Characterizing the dynamics of soil organic carbon in grasslands on the Qinghai-Tibetan Plateau. Science in China (Series D: Earth Sciences), 50(1): 113-120. Zhao H, Li S, Zhang T, et al. 2004. Sheep gain and species diversity: in sandy grassland, Inner Mongolia. Rangeland Ecology & Management, 57(2): 187-190. Zhao T, Geng H, Zhang X, et al. 2003. Influence of temperature change on forest pests in China. Forest Pest and Disease 22, 29-32 (in Chinese with English abstract). Zheng J, Ge Q, Hao Z, 2002. Impacts of climate warming on plants phenophascs in China for the last 40 years. Chinese Science Bulletin 47, 1582-1587. Zheng J, Ge Q, Hao Z, et a1. 2006, Spring phenophases in recent decades over eastern China and its possible link to climate changes. Climatic Change 77, 449-462. Zheng YQ, Qian YP, Miao MQ, Yu G, Kong YS, Zhang DH. 2002a. The effects of vegetation change on regional climate I: Simulation results. Acta Meteorologica Sinica, 60 (1), 1–16 (In Chinese with English abstract). Zheng YQ, Qian YP, Miao MQ, Yu G, Kong YS, Zhang DH. 2002b. The effects of vegetation change on regional climate II: Mechanism. Acta Meteorologica Sinica, 60 (1), 17–30 (In Chinese with English abstract). Zhou GS, Wang YH. 1999. The feedback of land use/cover change on climate. Journal of Natural Resources, 14 (4), 318–322 (In Chinese with English abstract). Zhu H, Xu Z, Wang H et al., 2001. Over 30-year changes of floristic compostion and population structure from an isolated fragment of tropical rain forest in Xishuangbanna. Acta Botanica Yunnanica, 23:415-427. Zuo Z, Zhang R, Zhu J et al., 2009. Effects of volatile organic compounds (VOCs) from Artemisia frigida on germination and growth of four plant types. Journal of Zhejiang Forestry College 26: 76-82 (In Chinese with English abstract).
63
附件 附件 1 中国气候变化 附件 2《中国应对气候变化国家方案》概要 附件 3 中国气候变化和生物多样性的政策与行动 附件 4 中国的生物多样性 附件 5 生态系统服务价值的货币化 附件 6 欧盟生物多样性行动计划
64
附件 1 中国气候变化 The trend of climate change in China is generally consistent with that of global climate change. The major observed evidence of climate change in China includes the following (The State Development and Reform Commission, 2007; The State Council of China, 2008): Temperature: The latest information released by the China Meteorological Administration shows that the average temperature of the Earth's surface in China has risen by 1.1 oC over the past century, from 1908 to 2007, and that China experienced 21 warm winters from 1986 to 2007, the latter being the warmest year since the beginning of systematic meteorological observations in 1951. Precipitation: The national distribution of precipitation in the past half century has undergone marked changes, with increases in western and southern China and decreases in most parts of northern and northeastern China. Although there is no significant long-term change in annual precipitation on average over China during the past 100 years, somewhat the spatial or regional discrepancy in change of precipitation has been observed. For example, during the later half of 20th century, the Yellow River Basin and the North China Plain, especially Shandong Province, witnessed an obvious tendency of drying, while most parts of western China and the Yangtze River Basin experienced a detectable but insignificant wetting trend in terms of precipitation. Extreme climate/weather events: Extreme climate phenomena, such as high temperatures, heavy precipitation and severe droughts, have increased in frequency and intensity. The number of heat waves in summer has grown, and droughts have grown worse in some areas, especially in northern China; heavy precipitation has increased in southern China (more flood in the middle and lower reaches of the Yangtze River and southeastern China); and the occurrence of snow disasters has increased in western China. Sea surface temperature and sea level: In China's coastal zones, the sea surface temperature and sea level have risen by 0.9 oC and 90 mm, respectively, over the past 30 years. Glaciers: Due to the global warming, the mountain glaciers on the Qinghai -Tibet Plateau are receding at a faster rate than any glaciers on the planet. Since these glaciers are the major store of freshwater and feed seven of the great rivers of Asia, their disappearance jeopardizes the water security in the region. Scientific research predicts, mainly from the GCMs simulation, that the trend of climate warming in China will further intensify in the future: Temperature: The nationwide annual mean air temperature would increase by 1.3~2.1 oC in 2020 and 2.3~3.3 oC by 2050 as compared with that in 2000 (Ding et al., 2006). The warming magnitude would increase from south to north in China, particularly in northwestern and 65
northeastern China where significant temperature rise is projected. It is estimated that by 2030, the annual temperature would likely increase by 1.9~2.3 oC in northwestern China, 1.6~2.0 oC in southwestern China, and 2.2~2.6 oC in the Qinghai-Tibetan Plateau. Precipitation: Precipitation in China would possibly increase during the next 50 years, with a projected nationwide increase of 2~3 percent by 2020 and 5~7 percent by 2050 (Ding et al., 2006). The most significant increase might be experienced in southeastern coastal regions. The occurrence of heavy precipitation will increase, and drought will expand in scope. However, it is also projected that climate change will result in wet areas becoming wetter and dry areas becoming drier in some places. Besides, it is claimed that north China is expected to have more precipitation, but water shortages will increase because of faster evaporation caused by higher temperatures Extreme climate/weather events: The possibility of more frequent occurrence of extreme weather/climate events would increase in China, which will have immense impacts on the socio-economic development and people's living. The arid area in China would probably become larger and the risk of desertification might increase. Sea surface temperature and sea level: The sea level along China's coasts would continue to rise. Glaciers and permafrost: The glaciers in the Qinghai-Tibetan Plateau and the Tianshan Mountains would retreat at an accelerated rate, and some smaller glaciers would disappear. Glacier in western China is estimated to shrink 27.7% by the year 2050. The spatial distribution pattern of permafrost in Qinghai-Tibet Plateau will be altered significantly in the next 50 years with the decrease in area of 10-15%.
Figure AI 1 Annual mean surface air temperature anomalies of China during 1905-2001 (From Ding et al. 2007).
66
Temperature abnormal (oC)
Baseline: 1970~2000
Annual mean surface air temperature anomalies in China (from National Climate Centre of China)
67
Figure AI 2 Net primary production of the terrestrial ecosystems in China from 1981-2000 (Cao et al. 2003)
Figure AI 3 Net primary production (NPP) of the terrestrial ecosystems in China from 1981-2000 (Cao et al. 2003)
附件 2《中国应对气候变化国家方案》概要 China, a nation with a large population and low per capita average of natural resources, remains lower than the global average in terms of economic development as well as scientific and technological levels, even though the economy growth has been at an rate close to 10% over the past 30 years beginning in 1978. With the growth of both economy and population, China is now in a position or crossroad at which the shortage of resources, especially energy sources, and the environmental pressures, especially climate change, among others, are becoming a critical bottle-necklace issue. In order to maintain the coordinated sustainable development between the economy, society and environment, China has long enacted and implemented a series of laws, 68
policies, regulations, and measures for addressing the issue of climate change such as optimizing economy structure, promoting energy efficiency, developing and using clean, alternative or renewable energy sources, restoring and protecting vegetation, among others. As early as September 1979, the ‘Environmental Protection Law of PRC’ (revised in December 1989) was adopted and promulgated. The Law emphasizes the coordinated development between economic construction, social progress and environmental protection, the basic principle that should be abided by the governments and individuals at all levels. A lot of special laws on the environmental protection and on the rational use of natural resources have been also enacted and promulgated in China thereafter (Annex Table A1). However, it should be pointed out that the legislative work on climate change adaptation and mitigation in China needs to be further improved. Some of the promulgated laws and regulations are yet to be amended to meet the requirements for sustainable development.
(1) National Laws and Policies for Climate Change Climate change brings about a big challenge to the development of China’s economy and society. In order to tackle this big challenge, since early 1990s, through implementing a series of national policies and actions, and through international collaborations and exchanges, China has made much more progresses in the studies on the mechanisms of climate change, the impacts of climate change and climate change adaptation and mitigation measures. These include, among others, adjustment of economic structure, alternation of development mode, energy saving practice, promotion of energy use efficiency, optimization of energy consumption structure, and afforestation and reforestation. These have proved to be effective since their implementation. 1) Sustainability, adjustment of economic structure and the optimization and escalation of industrial structure As early as August of 1992, shortly after the ‘Earth Summit 92’ (the United Nations Conference on Environment and Development) held in June 1992 in Rio de Janerio, Brazil, the ‘Ten Key Countermeasures for Environment and Development in China’ was issued, clearly pointing out that the sustainable development is the must choice for China at present and in the future. In March of 1996, the Fourth Session of China's Eighth National People's Congress examined and adopted the ‘Ninth Five-Year Plan of the People's Republic of China for National Economic and Social Development’ and the ‘Outline of the Long-Term Target for the Year up to 2010’. Both the Plan and Outline take the sustainability as the strategy and guideline for social and economic development and modernization. In 2003, immediately after the 2002 World Summit on Sustainable Development (Johannesburg, South Africa, 26 August - 4 September 2002), the Chinese government has compiled the ‘Action Program for Sustainable Development in China in the Early 21st Century’ that included the key fields and action plans for the sustainable development. In the same year, the Third Plenary Session of the 16th CPC Central Committee deliberated and approved a decision of the CPC Central Committee on issues regarding the improvement of the socialist market economic system, outlining the economic reform tasks for China in the new century in which the scientific outlook of people-oriented, harmonious, environment-friendly and sustainable development, as the guiding ideology and principles, was emphasized to deepen economic reform and all-round social progress.
69
In March of 2006, the State Council of China released the ‘Guidelines of the Eleventh Five-Year Plan for National Economic and Social Development (2006-2010)’. The guideline stressed the alternation of economy growth mode in which resource saving is regarded as one of the basic state policies, recycling economy is advocated, and environment is protected in order to build a resources conservative and environment-friendly society and to enhance the harmony among population, resources and environment. The 11th Five-Year Guidelines set out to reduce energy consumption by 20%, and emissions of major pollutants by 10% through to 2010 from 2005 levels. According to this five-year plan, the energy consumption per-unit GDP is expected to drop by about 20 percent by 2010 compared to that of 2005. In 9 February 2006, China issued the ‘Outline of the National Program for Medium- and Long-term Science and Technology Development (2006-2020)’ stressing that the energy and environment are key areas of science and technology development and that the monitoring of global environment changes and response measures are the priority themes thereof. In order to achieve the major goals set by the Outline, the Ministry of Science and Technology of China (MOST), together with other 13 governmental agencies, jointly initiated the ‘China’s Scientific and Technological Actions on Climate Change’ in March 2007. The Action will provide scientific and technological support for implementing the National Climate Change Program (CNCCP) released in June 2007 since the development of science and technology play a key role in addressing climate change. 2) Energy saving, promotion of energy efficiency, and development of renewable energy sources In November 1 of 1997, ‘the Law of the People’s Republic of China on Conserving Energy’ was adopted at the 28th Meeting of the Standing Committee of the Eighth National People’s Congress of the People’s Republic of China. In March of 2005, ‘Renewable Energy Law of People's Republic of China’ was adopted and issued at the Fourteenth Session of China's Tenth National People's Congress. In 2005, the use of renewable energy (about 166 million tons of carbon-equivalent, or tce) in China accounted for 7.5% of China’s total energy consumption. This is equivalent to reduction of 380 million tons of CO2 emission. In June of 2007, the State Council delivered the ‘Notice of Strict Enforcement of Construction Standards for Air-conditioning Temperature Control for the Public Buildings’. In June of 2007, the National Development and Reform Commission and other government departments worked out a ‘General Work Plan for Energy Conservation and Pollutant Discharge Reduction’. For further examination of its implementation, in the same year (November, 2007), the State Council of China issued the ‘Monitoring and Appraisal of Energy Saving and Pollutant Discharge Reduction’ to examine if the key enterprises complete their tasks of reduction in energy consumption and key pollutants. Those who cannot complete their tasks are required to take the responsibility. In October of 2007, the National Development and Reform Commission issued the ‘China’s Medium-and Long-term Nuclear Power Development Program’. In 2007, China also issued ‘the 11th Five-Year Plan of the Development of Renewable Energy’ and ‘China's Energy Conditions and Policies’. In August of 2008, the Chinese Government worked out ‘Middle- and Long-term Program of Renewable Energy Development’, increasing the fraction of hydropower, biogass, bioenergy, solar 70
energy, geothermal usage in energy consumption so that this ratio can reach up to 10% by 2010 (about 0.3 billion tons of standard coal equivalent or reduction of 0.6 billion tons of CO2 emissions) and 15% by 2020 (0.6 billion tons of coal equivalent or reduction of 1.2 billion tons of CO2 emissions), respectively. The total investment in this program reaches 2000 billion RMB. 3) Reduction of GHG emissions and promotion of low-carbon and circular economy In May of 2000, the Ministry of Construction (now the Ministry of Housing and Urban-Rural Construction), the Bureau of Environment Protection (now the Ministry of Environment Protection), and Ministry of Science and Technology of China jointly issued ‘Technological Policy for Treatment of Municipal Solid Wastes and Its Pollution Control’. In June of 2002, China enacted and put in force the ‘Clean Production Promotion Law. In June of 2004, the Ministry of Construction enacted ‘Technical Specification of Municipal Solid Waste Landfill’. In December of 2004, the ‘Law on the Prevention and Control of Environmental Pollution by Solid Wastes’ was issued. In April of 2007, the ‘Management and Recycle of Municipal Solid Waste’ was enacted. In May of 2007, the State Council of China issued the ‘General Work Plan for Energy Conservation and Pollutant Discharge Reduction’. The targets set for energy conservation and pollutant discharge reduction include: 1) total pollution discharge will be reduced by 10% in 2010 from the 2005 level; 2) energy consumption will be reduced by 20% per 10000 RMB GDP in 2010 as compared to the level of 2005; 3) over 70% of urban sewage will be treated; 4) the comprehensive use of industrial solid waste will reach 60%; 5) water consumption per unit of industrial net profit will drop by 30%; and 6) non-harmful treatment rate of municipal solid waste will be raised to no lower than 60% by 2010. National energy conservation and pollutant discharge reduction calls for actions and wide participation from governments, enterprises and the whole society. In April of 2008, the Ministry of Environment Protection issued ‘Emission Standard of Coalbed Methane/Coal Mine Gas’. In August of 2008, the central government enacted ‘Circular Economy Promotion Law of the People's Republic of China’. The main purposes of the Law are: 1) to promote development of the ‘circular economy’, 2) to promote the more efficient use of resources, 3) to protect and improve the environment; and 4) to realize sustainable development. 4) Promotion of scientific research on climate change In February of 2006, Chinese government promulgated the ‘Outline of the National Plan for Medium- and Long-term Scientific and Technological Development (2006-2020)’. The outline gives the top priority to the development of energy technologies and the environmental research, in which monitoring the consequences of global environmental change and their countermeasures are taken as the key fields. In June of 2006, the Ministry of Science and Technology of China and other government departments jointly enacted the ‘China's Special SciTech Campaign to Cope with Climate Change’. The Campaign put forward the mid- (2006-2010) and long-term (2010-2020) goals for the study on climate change, including mainly mechanisms underlying climate change, technologies for offsetting GHG emissions, and strategies and technologies for the adaptation and mitigation of climate change. In December of 2006, China’s National Assessment Report on Climate Change was released. 71
The report is first-ever authoritative and comprehensive review compiled over four years by scientists and experts from 12 government departments including the Ministry of Science and Technology, the China Meteorological Administration, and the Chinese Academy of Sciences. The report includes three parts: 1) the past and future of climate change, 2) the impact and adaptation of climate change, and 3) the socio-economic impact of climate change. The report summarizes China’s scientific achievements in climate change and outlines future research focuses on climate change and its economic, environmental and ecological impacts, providing scientific basis for developing long-term strategy of national economic and social development, and international actions on climate change. On 4 June 2007, China released its first national climate change plan, i.e. the ‘National Climate Change Program (NCCP)’, which was prepared by the National Development and Reform Commission of China to outline the long-term strategies for addressing climate change through implementing national programs aimed at mitigation, adaptation, science and technology research, and increasing public awareness (Box A presents the key points of NCCP). NCCP is China’s first comprehensive policy document on response to climate change, also the first national climate change program in developing countries. It outlines objectives, basic principles, key areas of actions, as well as policies and measures to address climate change for the period up to 2010. On 14 June 2007, the Ministry of Science and Technology of China, together with other 13 ministries and agencies, delivered the ‘China’s Scientific and Technological Actions on Climate Change (STACC)’, covering four major fields related to the issue of climate change including: 1) Scientific aspects of climate change. The priorities include development of new generations of climate system models, monitoring and prediction of climate change, the mechanisms of Asia monsoon climate, extreme weather/climate events and associated disasters in China, and the dynamics of cryospheric processes. 2) GHG emissions control and climate change mitigation. The priorities include development of the technologies for energy saving and energy efficiency improvement, the development of new, clean and renewable energy sources, the efficient use of coal, natural gases and petroleum, the technologies for safe use of nuclear energy, the techniques for CO2 capture and storage, the enhancement of biospheric carbon sequestration, the techniques for GHG emission control, the improvement of agricultural and forest ecosystem management, the adjustment of land use practices, and etc. 3) Climate change adaptation technologies and measures. The priorities include the development of impact assessment model for climate change, the adaptation technologies and measures suitable to major sectors, the impacts of extreme weather/climate events and related disasters, the development of the risk management system for climate change impacts in vulnerable regions, the climate change impacts on major construction projects and corresponding adaptation measures, the interactions of climate change with other global environmental issues and their response measures, the case studies on climate change adaptation, and etc. 4) Key strategies and policies on climate change. The priorities include China’s energy security strategies related to climate change, China’s position on climate change in the international communities, China’s long-term strategies for energy development, the future GHG emission scenarios under sustainable economic development, the clean development mechanism and carbon trading system in China, the development of low-carbon economy under climate change scenarios, and the national programs and actions on GHG emissions reduction, climate 72
change and international trade system, and the scientific and technological strategies and actions for fighting climate change. The STACC document also outlines six supportive measures to be taken: 1) Strengthening leadership and coordination for jointly promoting S&T research on climate change; 2) Increasing inputs from diverse channels to increase financial support to scientific research and technological development on climate change; 3) Strengthening human resource development and its introduction from overseas and enhancing disciplinary build-up in the field of climate change; 4) Strengthening S&T basic infrastructures and platforms in support to research on climate change; 5) Strengthening popularization of scientific knowledge, and increasing public awareness of climate change; and 6) Fully making use of global resources, strengthening international S&T cooperation, and promoting international technology transfer. The STACC provides scientific and technological support to the implementation of NCCP. Since the China’s 8th five year plan, especially during the 10th and 11th five-year plan, MOST have initiated and financially supported a lot of research and development programs on climate change and its adaptation and mitigation.
(2) National Laws and Policies for Sectoral Climate Change Adaptation The Chinese government has made great efforts to enforce various laws and make policies in the sectoral scale to adapt to climate change. 1) Laws for agriculture: the Agriculture Law (enacted in 1993 and revised in 2002), the Grassland Law (enacted in 1985 and revised in 2002), the Fisheries Law (enacted in 1986 and revised in 2000 and 2004), the Law on Land Management (enacted in 1984 and revised in 1998 and 2004), the Regulations on Grassland Fire Prevention (enacted in 1993), and etc. 2) Laws for forestry: the Forest Law (enacted in 1984), the Law on the Protection of Wildlife (enacted in 1989), the Forest Fire Prevention Regulations (enacted in 1988), the Regulations on Forest Diseases and Insect Pest Prevention and Control (enacted in 1989), the Law on Water and Soil Conservation (enacted in 1991), the Law on Prevention and Control of Desertification (enacted in 2001), and the Regulations on Conversion of Farmland to Forests (enacted in 2002). 3) Laws for water resources: the Regulations on River Administration (enacted in 1988), the Flood Control Law (enacted in 1997), and the Water Law (enacted in 2002). 4) Laws for the coastal areas: the Marine Environment Protection Law (enacted in 1999), the Law on the Use and Administration of Sea Areas (enacted in 2001), and etc.
(3) Promotion of the public awareness of climate change and establishment of special institutions for addressing climate change Chinese government has long attached great importance to enhancing the public awareness of global climate change by means of publicizing and implementing such advanced ideas as the Scientific Outlook on Development that stress the harmony between human being and the nature, building a resource-conserving and environmental-friendly society, and sustainable development of economy and society. To achieve this purpose, a number of publications and audio-video products on climate change have been published in recent years, and the public can also access to knowledge about the climate change through the mass media such as TV programs and newspapers. A lot of international symposiums, seminars and workshops, small or large, have been held in China over the past decades, e.g. ‘the International Forum on Climate Change and Science and Technology Innovation’ (April 24-25, 2008, Beijing), ‘the International Workshop on
73
Biodiversity and Climate Change’ (6-7 March 2007, Beijing), and ‘Eco Summit’ (22-27 May, 2007, Beijing). There have been staged 18 sessions of the National Energy Conservation Publicity Week since 1992 with the focus on disseminating scientific knowledge of climate change and energy conservation. In August of 2007, China issued the ‘Public Action Plan on Energy Conservation and Emission Reduction’ to establish the mechanism of energy conservation and emission reduction and ‘conservation-minded governance’ that involves in participation of the public, the companies as well as the central and local governments. For this purpose, the MOST also issued the Booklet of Public Energy Conservation and Pollutant Discharge Reduction in August of 2007. The booklet outlines 36 behaviours in people’s daily life, covering clothing, foods, housing, transportation and others, that are helpful to energy conservation and pollutant discharge reduction. In China, some special institutions were established as early as 1990 to deal with climate change. A Coordination Committee on climate change was established under the Environmental Protection Committee of the State Council at that time. The National Coordination Committee on Climate Change (NCCCC), was established in 1998, and is currently composed of 17 ministries and agencies under the State Council (e.g. National Development and Reform Commission (NDRC): being responsible for the coordination on climate change policies and actions adopted by various departments; Ministry of Foreign Affairs: taking the lead for participating in international climate change negotiation; State Meteorological Administration: taking the lead for participating in the work of Intergovernmental Panel on Climate Change). The NCCCC is the State Council's consultancy and coordination agency for addressing the issue of climate change in China. The NCCCC’s principal task is to study matters relating to the UNFCCC and Kyoto protocol, and develop a national policy on climate change. There are not yet the coordination sub-committees on climate change at the provincial, city and county levels. In 2007, the National Leading Group to Address Climate Change and Energy Conservation and Pollutant Discharge Reduction, headed by Chinese premier, was set up to strengthen the leadership of the organizing and coordinating work on climate change across China, provide suggestions on policy-making, and enhance international cooperation and nongovernmental activities (White Paper: China's Policies and Actions on Climate Change, 2008).
(4) International Cooperation To tackle the issue of climate change requires the real global participation and cooperation as highlighted by many international conferences and meetings. In June of 1992, ‘Agenda 21’, ‘the Rio Declaration on Environment and Development’, and ‘the Statement of Principles for the Sustainable Management of Forests’ were adopted by more than 178 Governments at the United Nations Conference on Environment and Development (UNCED) held in Rio de Janerio, Brazil. This conference, which became known as the ‘Earth Summit 92’, was held twenty years after the United Nations Conference on the Human Environment (UNCHE) took place in 1972 in Stockholm, Sweden. The venue established two key global conventions: one on ‘Convention on Biological Diversity (CBD)’, and the other ‘the United Nations Framework Convention on Climate Change (UNFCCC)’. China signed and ratified the UNFCCC and CBD in 1992, and the ‘Agenda 21’ in 1994. China signed the Kyoto Protocol to the Convention on Climate Change in 1997 and ratified it in 1998. In March 1994 the Chinese government approved and promulgated the ‘China's Agenda 21 -- White Paper on China's Population, Environment, and Development in
74
the 21st Century’. This document covers China's overall strategy, measures and actions taken for the sustainable development. Based on the “mutually beneficial, pragmatic and effective” principle, China is now one of the major active participants in many international exchanges, multilateral and bilateral, for tackling climate change. These include the outreach session of the G8 summit, Asia-Pacific Economic Cooperation (APEC) meeting, East Asia Summit (EAS) and Boao Forum for Asia. Over the past two decades, as a responsible developing country, China has actively participated in and contributed much to the formulation and implementation of the United Nations Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol. Chinese scientists have energetically involved in compiling and reviewing the group work reports of the Inter-governmental Panel on Climate Change (IPCC). To fulfill its duties stipulated by the UNFCCC and the Kyoto Protocol, the central government issued the ‘China’s Initial National Communications on Climate Change’ in 2004, and the ‘National Plan for Coping with Climate Change and China's Special Sci-Tech Campaign to Cope with Climate Change’ in June 2007, and the ‘White Paper: China's Policies and Actions on Climate Change’ in October 2008. This latest released document states China’s efforts to address climate change, and earnestly observes the United Nations Framework Convention on Climate Change and the Kyoto Protocol. An landmark initiative, entitled ‘The Provincial Programs for Climate Change Mitigation and Adaptation in China’, was launched on 30 June 2008, aiming at assisting provincial governments in China (including 14 provinces and municipalities) to take action on climate change mitigation and adaptation following the ‘China’s National Climate Change Program’. This initiative is a joint effort conducted by the United Nations Development Program (UNDP), the China’s National Development and Reform Commission (NDRC), the China International Centre for Economic and Technical Exchanges (CICETE) under Ministry of Commerce, the Government of Norway, and the European Union (EU). The project contains the development of Provincial Climate Change Programs, capacity building for provincial climate change institutions, promotion of public awareness on climate change, and the popularization of international knowledge and practices for climate change adaptation and mitigation. Therefore, the project will help adapt to and mitigate the adverse effects of climate change through assessing potential risks posed by climate change, developing and implementing provincial strategies and associated actions and measures to respond to these specific challenges, especially in some of the poorest and most vulnerable regions and communities in China. In addition, the project will work with the largest coal producing provinces of Shanxi and Inner Mongolia to reduce greenhouse gas emissions by improving energy efficiency and reducing pollutions. The project will also work with governments of Ningxia and Gansu Provinces, where climate change and water shortages threaten food security, to develop crop adaptation techniques and increase water use efficiency to mitigate the effects of warming on agriculture. It is estimated from one cost-benefit analysis that as one of options for agriculture adaptation to climate change, adopting the assumed land use change from high water consuming rice cultivation to other crops is an effective approach to overcome the water shortage in the northern China. Other options for adaptation to global warming include intensive management and improved agricultural practices such as no-tillage, residual return and crop rotation. Over decades, China has being working with UNDP to achieve what now is the Millennium Development Goals, by establishing an equitable well-being society and thereby reducing poverty and promoting environmental sustainability. 75
China is one of the official members of many bi- and multi-lateral international cooperation organizations and programs: for example, the Carbon Sequestration Leadership Forum, the Methane-to-Market Partnership, the Asia-Pacific Partnership on Clean Development and Climate, the World Climate Research Program (WCRP) under the framework of the Earth System Science Partnership (ESSP), the International Geosphere-Biosphere Program (IGBP), the Global Carbon Project (GCP), the Global Land Project (GLP), the International Human Dimensions Program on Global Environmental Change (IHDP), the Global Ecosystem Observation System of Systems (GEOSS), the intergovernmental Group on Earth Observations (GEO), the Global Climate Observation System (GCOS), the Global Ocean Observation System (GOOS), the Array for Real-Time Geostrophic Oceanography (ARGO), and the International Polar Year. China actively participated in relevant negotiations for shaping ‘Bali road map’. The UN-led summit held in December 2007 in Bali, Indonesia was to date the world’s largest-ever conference on climate change with around 11000 participants. The historic and diplomatic breakthrough at this conference is the agreement of ‘Bali road map’, which have an implication for addressing the issue of climate change. The Bali road map outlined a framework until 2009 for negotiations among the parties to the conference, with the aim of reaching an agreement on a global response to climate change, which will include measures on mitigation, adaptation, finance and technology. The Bali road map sets the deadline for a final climate deal in 2009 at Copenhagen. Box A The key points of the China’s National Climate Change Program (NCCP) Ⅰ.CHINA AND CLIMATE CHANGE 1. Adverse Impacts on China China is the most populous country in the world, with a relatively low level of economic development, a coal-dominated energy mix, and relatively weak capability to address climate change. Climate change has caused and will continue to cause adverse impacts on China's natural ecosystem and socio-economic system. 2. Low Historical Emissions and Low per capita Emissions China's per capita CO2 emissions from fossil fuel combustion in 2004 are 3.65 tons, about 33% of that of OECD countries. The CO2 emission intensity per unit GDP is generally on a declining trend, with a decrease of 49.5% in 2004 as compared to1990, while only 16.1% for OECD countries. 3. Serious Efforts and Outstanding Achievements -By restructuring economy and improving energy efficiency, 1,800 Mt CO2 emissions avoided from 1990 to 2005; -By developing low-carbon and renewable energy to optimize the energy mix, which increased the share of renewable energy in the total energy consumption to 7.5%, 380 Mt CO2 emissions avoided; -By afforestation, forest management and deforestation avoidance, 5,110 Mt CO2 emissions avoided from 1980 to 2005; -By controlling population growth, which avoided over 300 million births by 2005, 1,300 Mt CO2 emissions avoided in 2005 alone; and -Laws and regulations strengthened, institutions and mechanisms improved, climate change research and capacity building enhanced, and public awareness raised. Ⅱ.PRINCIPLES, OBJECTIVES AND MEASURES 1.
Six Guiding Principles
-To address climate change within the framework of sustainable development; -To place equal emphasis on both mitigation and adaptation;
76
-To integrate climate change policy with other interrelated policies; -To rely on the advancement and innovation of science and technology; -To follow the principle of "common but differentiated responsibilities"; and -To actively engage in wide international cooperation. 2.
Overall Objective
-To make achievements in controlling greenhouse gas(GHG) emissions; -To enhance adaptation capacity; -To make new progress in advancing science and technology R&D; -To remarkably raise public awareness; and -To further strengthen institutions and mechanisms. 3.
Objectives by 2010
a.
Endeavours to control GHG emissions
-To reduce energy consumption per unit GDP by 20%; -To increase the share of renewable energy to 10% in primary energy supply; -To stabilize nitrous oxide emissions from industrial processes at 2005 level; -To control the growth rate of methane emissions; -To increase the forest coverage rate to 20%; and -To increase carbon sink by 50 million tons over 2005 level. b.
Endeavours to enhance adaptation capability
-To increase improved grassland by 24 million hectares, to restore the grassland suffering from degradation, desertification and salinity by 52 million hectares, and to increase the efficient utilization coefficient of agricultural irrigation water to 0.5; -To place 90% of typical forest ecosystems and national key wildlife under effective protection; -To increase nature reserve area to 16% of the total territory; -To improve 22 million hectares of desertified lands; -To reduce the vulnerability of water resources to climate change, to complete the construction of anti-flood engineering systems in large rivers, and to enhance the capability of farmland to resist drought; and -To recover and expand mangroves area so as to remarkably raise the capability to resist marine disasters. c.
Efforts to strengthen scientific research and technology innovation
-To reach advanced levels in research on climate change in some fields; -To make remarkable progress in technology R&D on energy development, energy conservation and clean energy; and -To improve adaptation technology in agriculture and forestry. d.
Efforts to raise public awareness and to enhance management
-To widely disseminate knowledge related to climate change to raise public awareness on climate protection; and -To establish and strengthen institutions and mechanisms to address climate change. 4.
Projected Results by 2010
-By developing hydropower, 500 Mt CO2 emissions to be avoided; -By developing nuclear power, 50 Mt CO2 emissions to be avoided; -By expediting technological advancement in thermal power generation, 110 Mt CO2 emissions to be avoided; -By utilizing coal mine methane, 200 Mt CO2 emissions to be avoided; -By developing biomass energy, 30 Mt CO2 emissions to be avoided; -By developing wind, solar and geothermal energy, 60 Mt CO2 emissions to be avoided; and -By implementing 10 key energy conservation priority Programs, 550 Mt CO2 emissions to be avoided.
77
â…˘.CHINA'S POSITION ON CLIMATE CHANGE Climate change is mainly caused by the massive GHG emissions originated in developed countries since industrial revolution, but its adverse impacts are global. China is willing and ready to strengthen cooperation with all countries to address climate change. Developed countries should fulfill their commitments under the UNFCCC to provide financial resources and transfer technology to developing countries so as to enhance the latter's capability and capacity to address climate change. 1. Mitigation Parties included in Annex I to the UNFCCC should take the lead in reducing GHG emissions according to the principle of "common but differentiated responsibilities". The overriding priority of developing countries is to achieve sustainable development. China will, in accordance with its sustainable development strategy, take effective measures to improve energy efficiency, promote energy conservation, develop renewable energy, strengthen ecological preservation as well as carry out tree planting and afforestation in an Endeavour to control its GHG emissions and to make contribution to mitigating climate change. 2. Adaptation Adaptation is indispensable in the fight against climate change. The international community should place more emphasis on adaptation to enhance the adaptation capability and capacity of developing countries. China will actively engage in international cooperation on adaptation. 3. Technology Cooperation and Transfer Technology plays a central role in addressing climate change. An effective mechanism on technology cooperation and transfer should be established to promote R&D, deployment and transfer of climate-sound technologies. It is crucial to remove various obstacles to, and provide necessary incentives for technology cooperation and transfer. A fund for international technology cooperation and transfer shall be established in order to make climate-sound technologies accessible and affordable to developing countries. 4. Implementation of the Convention and Its Protocol The UNFCCC provides the objective, principles and commitments to address climate change. The Kyoto Protocol further sets up specific GHG emissions reduction targets for Annex I Parties for the period 2008 to 2012. The developed countries should fulfill their commitments to take the lead in reducing their GHG emissions and to provide financial resources and transfer technologies to developing countries. As a responsible country, China will do its part in implementing the commitments under the UNFCCC and its Kyoto Protocol. 5. Regional Cooperation The UNFCCC and its Kyoto Protocol is the fundamental legal framework for the international community to combat climate change. Other regional cooperation mechanisms are to complement and supplement the UNFCCC and its Kyoto Protocol, rather than to replace or weaken them. China will actively engage in regional dialogue and practical cooperation on climate change accordingly.
78
附件 3
中国气候变化和生物多样性的政策与行动
表 A1 中国与气候变化相关的部分法律 (源自:中华人民共和国气候变化初始国家信息通报-第四章) Annex Table A1 Some climate change related laws in China (Source: Initial National Communications on Climate Change of the People's Republic of China) 颁布时间 Date
of
法律法规名称
最新修订时间
Name of laws
Date of the latest revision
Issuance 2002-10-28
《中华人民共和国环境影响评价法》 Law of the People’s Republic of China (PRC) on Environmental Impact Assessment
2002-6-29
《中华人民共和国清洁生产促进法》 Law of PRC on Promoting Clean Production
2002-6-29
《中华人民共和国安全生产法》Production Safety Law of PRC
2001-8-31
《中华人民共和国防沙治沙法》 Law of PRC on Desert Prevention and Transformation
1999-10-31
《中华人民共和国气象法》 Meteorology Law of PRC
1997-11-1
《中华人民共和国节约能源法》 Law on Energy Conservation of PRC
1997-11-1
《中华人民共和国建筑法》
1997-8-29
《中华人民共和国防洪法》
Architectural Law of PRC
Flood Control Law of PRC 1996-10-29
《中华人民共和国乡镇企业法》 Township Enterprises Law of PRC
1996-8-29
《中华人民共和国煤炭法》 Law of PRC on the Coal Industry
1995-12-28
《中华人民共和国电力法》 Electric Power Law of PRC
1995-10-30
《中华人民共和国固体废物污染环境防治法》Law of PRC on the Prevention and Control of Enviromental Pollution by Solid Wastes
1993-7-2
《中华人民共和国农业法》
2002-12-28
Agriculture law of PRC 1991-6-29
《中华人民共和国水土保持法》 Law of PRC on Water and Soil Conservation
1988-11-8
《中华人民共和国野生动物保护法》
2004-8-28
Wildlife Protection Law of PRC 1988-1-21
《中华人民共和国水法》
2002-8-29
Water Resources Law of PRC 1987-9-5
《中华人民共和国大气污染防治法》
2000-4-29
79
Law of PRC on the Prevention and Control of Atmospheric Pollution 《中华人民共和国土地管理法》
1986-6-25
1998-8-29
Land Administration Law of PRC 《中华人民共和国矿产资源法》
1986-3-19
1996-8-29
Mineral Resources Law of PRC 《中华人民共和国渔业法》
1986-1-20
2000-10-31
Fisheries Law of PRC 《中华人民共和国草原法》
1985-6-18
2002-12-28
Grassland Law of PRC 《中华人民共和国水污染防治法》
1984-5-11
1996-5-15
Law of PRC on Prevention and Control of Water Pollution 《中华人民共和国海洋环境保护法》
1982-8-23
1999-12-25
Maritime Environment Protection Law of PRC 《中华人民共和国环境保护法》
1979-9-13
1989-12-26
Environmental Protection Law of PRC 《中华人民共和国森林法》
1979-2-23
1998-4-29
Forest Law of PRC 《中华人民共和国宪法》
1954-9-20
2004-03-14
The Constitution of PRC 表 A2 气候变化的法规及相关政策文件目录 Annex Table A2 List of climate change related regulations and policies 序 号 No.
文件名称
发布单位
Name
Issuer
《中国 21 世纪初可持续发展行动纲要》 1
the
Program
of
Action
for
Sustainable
Development in China in the Early 21st Century
发布时间 Date
of
issuance
发改委 State
Development
and
Reform
July 2003
Commission
《中华人民共和国国民经济和社会发展第十 一个五年规划纲要》 2
The Outline of the Eleventh Five-Year Plan for National
Economic
and
Social
国务院 the State Council
March 2006
Development of the People’s Republic of China (2006 to 2010) 《关于加快发展服务业的若干意见》 3
Opinions of the State Council concerning Accelerating the Development
of the
国务院 the State Council
March 2007
Service Sector 《节能减排综合性工作方案》 4
Comprehensive Working Program on Energy Saving and Emission Elimination
80
发改委 State Development and Reform Commission
June 2007
《节能减排统计监测及考核实施方案和办 5
法 》 Statistic
and
Supervision
and
Examination Plans to Reducing Energy
November
国务院 the State Council
2007
Consumption and Pollution Discharge 《中华人民共和国节约能源法》 6
人大 National People's Congress
Energy Conservation Law of PRC
November 1997
《关于严格执行公共建筑空调温度控制标准 的通知》The Notice of Strict Enforcement 7
of
Construction
Standards
for
国务院 the State Council
June 2007
人大 National People's Congress
March 2005
Air-conditioning Temperature Control from the Office of the Stale Council 《可再生能源法》 8
Renewable Energy Law of PRC 《可再生能源中长期发展规划》
9
Middle and long term program of renewable energy development 《核电中长期发展规划》
10
Medium-and
Long-term
Nuclear
Power
Development Program (2005-2020) 《清洁生产促进法》 11
Law of PRC on Promoting Clean Production
国家发改委 Development and Reform Commission 国家发改委 Development and Reform Commission
August 2007
August 2007
人大 National People's Congress
June 2002
建设部 Ministry of Construction
April 2007
人大 National People's Congress
August 2008
国务院 the State Council
July 2005
《城市生活垃圾管理办法》 12
Administrative Measures for Urban Living Garbage 《循环经济促进法》
13
Circular Economy Promotion Law of the People’s Republic of China 《关于加快发展循环经济的若干意见》
14
Several Opinions of the State Council on Speeding up the Development of Circular Economy 《城市生活垃圾处理及污染防治技术政策》
15
Technological Policy for Treatment of Municipal Solid Wastes and Its Pollution Control
建设部、国家环境保护总局、科学技 术部 Ministry of Construction, State Environmental
Protection
May 2000
Administration, Ministry of Science and Technology
《生活垃圾卫生填埋技术规范》 16
Technical code for municipal solid waste
建设部 Ministry of Construction
June 2004
环保部 Ministry of Environment
April 2008
中 华 人 民 共 和 国 国 务 院 the State
Februry
sanitary landfill 《煤层气(煤矿瓦斯)排放标准》 17
Emission Standard of Coalbed Methane/Coal Mine Gas 《国家中长期科学和技术发展规划纲要》
18
(2006━2020 年 ) 》 National Guideline on
Council
2006
81
Medium- and Long-Term Program for Science
and
Technology
Development
(2006-2020) 科学技术部、国家发展改革委、外交
19
《中国应对气候变化科技专项行动》
部等联合发布 Ministry of Science
China’s Scientific and Technological Action on
and Technology, Development and
Climate Change
June 2007
Reform Commission, Ministry of Foreign Affairs
《中华人民共和国农业法》 20
Agriculture law of PRC 《中华人民共和国草原法》
21
22
23
24
Grassland Law of PRC 《渔业法》Fisheries Law of PRC 《土地管理法》Land Administration Law of PRC 《草原防火条例》Grassland Fire Prevention Regulations 《中华人民共和国森林法》
25
26
27
28
29
30
31
Forest Law of PRC 《野生动物保护法》Wildlife Protection Law of PRC 《水土保持法》Law of PRC on Water and Soil Conservation 《 防 沙 治 沙 法 》 Law of PRC on Desert Prevention and Transformation 《退耕还林条例》Regulations on Restoring Farmland to Forest 《 森 林 防 火 条 例 》 Forest Fire Prevention Regulations 《森林病虫害防治条例》Forest Disease and Pest Damage Prevention Regulations
人大 National People's Congress 人大 National People's Congress 人大 National People's Congress 人大 National People's Congress 国务院 the State Council 人大 National People's Congress
国务院 the State Council 国务院 the State Council 国务院 the State Council
34
《河道管理条例》
国务院 the State Council
37
82
June 1986 October 1993 September 1984
August 2001
人大 National People's Congress
Administration of the Use of Sea Areas
1986
国务院 the State Council
《防洪法》Flood Control Law of PRC
《 海 域 使 用 管 理 法 》 Law of PRC on the
January
June 1991
33
36
2002
人大 National People's Congress
人大 National People's Congress
of PRC
December
March 1989
《水法》Water Law of PRC
《海洋环境保护法》Maritime Protection Law
2002
人大 National People's Congress
32
35
December
October 2002 January 1988 December 1989 August 2002 年8月 August 1997 年8月 1988 年 6 月 December
人大 National People's Congress
1999 年 12 月
人大 National People's Congress
《 节 能 减 排 全 民 行 动 实 施 方 案 》 Energy
中宣部、发改委 the Central Propaganda
Savings and Carbon Emission Reduction
Department, State Development and
October 2001 August 2007
National Program Implementation Plan
Reform Commission
关于限制生产销售使用塑料购物袋的通知 38
Notice of a Ban on Production and Distribution of Ultra-thin Plastic Bags in
December
国务院 the State Council
2007
Supermarkets and Shops 《中国 21 世纪议程》 China’s 39
sustainable
China
Agenda
国家计划委员会、国家科学技术委员
development 21-China’s
strategy,
population,
Enviromental and Development in the 21st century
40
《 中 国 应 对 气 候 变 化 国 家 方 案 》 China’s National Climate Change Program
会牵头 State Planning Commission, State
Science
and
Technology
March 1994
Commissions 中 国 国 家 发 展 和 改 革 委 员 会 State Development
and
Reform
June 2007
Commission
《中国的能源状况与政策》白皮书 41
White paper: China's Energy Conditions and
December
国务院 the State Council
2007
Policies 《中国应对气候变化的政策与行动》白皮书 42
White paper: China's policies and actions
October
国务院 the State Council
2008
on climate change 《清洁发展机制项目运行管理暂行办法》 43
Interim Measures for the Operation and Management
of
Clean
Development
Mechanism Projects
国家发展改革委、科学技术部、外交 部 State Development and Reform Commission, Ministry of Science
May 2004
and Technology, Ministry of Foreign Affairs 国家发展和改革委员会、科技部、外
《清洁发展机制项目运行管理办法》 44
Measures for the Operation and Management of Clean Development Mechanism Projects
交部、财政部 State
Development
and
Reform
October
Commission, Ministry of Science
2005
and Technology, Ministry of Foreign Affairs, Ministry of Finance
《中华人民共和国气候变化初始国家信息通 报》 45
Initial National Communication on Climate Change
国 家 气 候变 化 对策 协 调小 组办 公 室 The
Office
of
the
National
Coordination Committee on Climate
December 2004
Change
表 A3 环境保护行政法规 Annex Table A3 List of administrative decrees regarding environmental protection The Chinese government has also enacted more than 30 administrative decrees regarding environmental protection. To implement the state's environmental protection laws and regulations, people's congresses and people's governments at local levels, proceeding from specific conditions in their own areas, have enacted and promulgated more than 600 local laws on environmental protection. In addition, departments concerned have also issued a number of administrative rules and decrees on environmental protection.
83
序 号
文件名称
发布单位
No. Name
Issuer
发布时间 Date
of
issuance
《噪声污染防治条例》the Regulations for the Prevention and Control of Noise
1
Pollution 《自然保护区条例》Regulations on Nature Reserves
2
《放射性同位素与射线装置放射防护条例》Regulations on the Prevention of and
3
Protection Against Radiation from Radio Isotopes and Radioactive Device 《化学危险品安全管理条例》Regulations on the Safe Administration of Chemicals
4
and Other Dangerous Materials 《淮河流域水污染防治暂行条例》Provisional Regulations on the Prevention and
5
Control of Water Pollution in the Huaihe River Drainage Area 《海洋石油勘探开发环境保护管理条例》Regulations Governing Environmenta
6
Protection Administration in Offshore Oil Exploration and Development 《海洋倾废管理条例》Regulations on the Control of Marine Wastes Dumping
7
《 陆 生 野 生 动 物 保 护 实 施 条 例 》 Regulations for the Implementation of the
8
Protection of Terrestrial Wildlife 《风景名胜区管理暂行条例》Provisional Regulations on the Administration of
9
National Parks
10 《基本农田保护条例》Regulations on the Protection of Basic Farmland 11 《城市绿化条例》Regulations on Urban Afforestation 表 A4 与生物多样性保护有关的政策、法规和行动计划 Annex Table A4 Laws, regulations and actions related to biodiversity conservation in China
序号
文件名称
发布单位
No.
Name
Issuer
《中华人民共和国环境保护法》
全国人民代表大会常务委员会
1
Environmental Protection Law of PRC 《中华人民共和国森林法》
2
Forest Law of PRC 《中华人民共和国海洋环境保护法》
3
Maritime Environment Protection Law of PRC 《中华人民共和国草原法》
4
Grassland Law of PRC 《中华人民共和国渔业法》
5
Fisheries Law of PRC
6
Date issuance 1979-9-13 1979-2-23
National People's Congress 全国人民代表大会常务委员会
1982-8-23
National People's Congress 全国人民代表大会常务委员会
1985-6-18
National People's Congress 全国人民代表大会常务委员会
1986-1-20
National People's Congress 全国人民代表大会常务委员会
Land Administration Law of PRC
National People's Congress
Law of PRC on the Prevention and Control of
84
全国人民代表大会常务委员会
《中华人民共和国土地管理法》 《中华人民共和国大气污染防治法》 7
National People's Congress
发布时间
全国人民代表大会常务委员会 National People's Congress
1986-6-25
1987-9-5
of
Atmospheric Pollution 《中华人民共和国水法》 8
全国人民代表大会常务委员会
Water Resources Law of PRC
National People's Congress 全国人民代表大会常务委员会
《中华人民共和国野生动物保护法》 9
10
Wildlife Protection Law of PRC 《中华人民共和国水土保持法》
全国人民代表大会常务委员会
Law on Water and Soil Conservation of PRC
National People's Congress
Import and Export Animal and Plant Quarantine Law of PRC 《中华人民共和国固体废物污染环境防治法》
12
Law of PRC on the Prevention and Control of Environmental Pollution by Solid Wastes
全国人民代表大会常务委员会
Regulation
on
Aquatic
Product
Resource
1991-6-29
1992-4-1
National People's Congress 全国人民代表大会常务委员会
1995-10-30
National People's Congress
《中华人民共和国水产资源繁殖保护条例》 13
1988-11-8
National People's Congress
《中华人民共和国进出境动植物检疫法》 11
1988-1-21
1979-2-10 国务院 State Council
Breeding and Conservation 《中华人民共和国进出口动植物检疫条例》 14
Import and Export Animal and Plant Quarantine
1982-6-4 国务院 State Council
Regulations of PRC 《严格保护珍贵稀有野生动物的通令》 15
1983-4-13
General Order of Strictly Protecting Rare Wild
国务院 State Council
Animals 《森林和野生动物类型自然保护区管理办法》 16
Regulation on the Management of Forest and
1985-7-6 林业部 Ministry of Forestry
Wild Animal Nature Reserves 《中华人民共和国渔业法实施细则》 17
1987-10-20
Regulations for the Implementation of the Fishery
国务院 The State Council
Law of PRC 《野生药材资源保护管理条例》 18
Regulation
on
Wild
Medicinal
1987-10-30
Material
国务院 State Council
Resource Conservation and Management 《中华人民共和国种子管理条例》 19
Regulation on Seed Management 《中华人民共和国森林病虫害防治条例》
20
Regulations about Control of Forest Pests
国务院 State Council 国务院 State Council
《中华人民共和国陆生野生动物保护实施条例》 21
Implementing Regulation on Terrestrial Wild
1989-3-13
1989
1992-3-1 林业部 Ministry of Forestry
Animal Conservation of PRC 《城市绿化管理条例》 22
Regulations on Urban Afforestation
国务院 State Council
中华人民共和国水生野生动物保护实施条例 23
Implementing Regulation on Aquatic Wild
1992-6-22
1993-9-17 农业部 Ministry of Agriculture
Animal Conservation 24
中华人民共和国自然保护区条例
国务院 The State Council
1994-10-9
85
Regulations of PRC on Nature Reserves 《中华人民共和国野生植物保护条例》 25
国务院 The State Council
Regulation on Wild Plant Conservation of PRC 《中国生物多样性保护行动计划》
26
1994
China Biodiversity Conservation Action Plan 《中华人民共和国森林法实施条例》
27
1996-9-30
2000-1-29
Regulations for the Implementation of the Forest Law
国务院 The State Council
of PRC 《中华人民共和国防治海洋工程建设项目污染损 28
害海洋环境管理条例》Administrative Regulations about Prevention of Pollution and Damage of Marine
2006-8-30 国务院 The State Council
Environment by Seashore Construction Projects 《中华人民共和国森林防火条例》 29
Regulations about Control of Forest Fires of PRC
国务院 The State Council 国家环保局、国家计划委员会会 同 有 关 部 门 与
China
Environmental
Protection
Action
1995-1997
National
Environmental Protection Agency
《中国环境保护行动计划(1996-2000)》 30
2008-12-1
Plan
(1996-2000)
(NEPA),
the
State
Planning
Commission (SPC), together with sectors of forestry, agriculture, oceanic
administration,
construction and mineral resources 国家环保局、国家计划委员会会 同 有 关 部 门 与 《中国自然保护区发展规划纲要(1996-2000)》 31
China's Plan for Development of Nature Reserves (1996-2000)
1997-11-24
National
Environmental Protection Agency (NEPA),
the
State
Planning
Commission (SPC), together with sectors of forestry, agriculture, oceanic
administration,
construction and mineral resources National Ninth Five-year Plan for Environmental
NEPA, SPC and State Economic
Protection and Long- term Program for 2010
and Trade Commission (SETC)
《中国生物多亲性国情研究报告》
1996
1997
China's Biodiversity: A Country Study 《中国履行生物多样性公约国家报告》 《中国国家生物安全框架》 National Biosafety Framework of China 《生物多样性公约》第一次国家报告
1998 国
家
环
保
局
National
1999
Environmental Protection Agency (NEPA) 1997
China's First National Report to the CBD 《生物多样性公约》第二次国家报告
2001
China's Second National Report to the CBD 《生物多样性公约》第三次国家报告 China's Third National Report to the CBD
86
2005
《中国跨世纪绿色工程规划》 China Trans-Century Green Engineering Plan
1996.9
国务院 The State Council
National Ecological Environment Construction Plan Compendium of National Ecological Conservation Compendium of Development Plan for Nature Reserves in China (1996-2010) China Biodiversity Conservation Action Plan for Forestry China Biodiversity Conservation Action Plan in Agricultural Sectors China Marine Biodiversity Conservation Action Plan 《中国湿地保护行动计划》
2002
China National Wetlands Conservation Action Plan Action Plan for Ex situ Protection of Giant Panda 《中国的环境保护(1996-2005)》 Environment Protection in China (1996-2005) 《中国 21 世纪议程》 China's Agenda 21
21st
Century
Agenda
1994.3
国务院 The State Council
《中国环境保护 21 世纪议程》 The
2006-6
国务院 The State Council
国 on
Environmental
Protection 《中国生物多样性保护行动计划》 Action Plan for the Conservation of Biodiversity 《中国 21 世纪议程林业行动计划》 Action Plan for Forestry in the 21st Century Agenda
家
环
保
局
National
1994
Environmental Protection Agency (NEPA) 1994
国务院 The State Council 国家林业部 Ministry of Forestry
《中国海洋 21 世纪议程》
国
家
海
洋
局
the 21st Century Marine Agenda
Administration of China
Oceanic
1995
1996.4
87
附件 4 中国的生物多样性 Three levels of biodiversity
Categories
Number
Plants
Species diversity
Algae
9000
Lichens
2000
Bryophytes
2200
Pteridophytes
2600
Gymnosperms
250
Angiosperms
260000
Animals Invertebrates
Inestimable
Insects Vertebrata Forests Bamboo forests Shrub lands Ecosystem diversity
6500 212 36 113
Meadows
77
Marshlands
37
Steppes
55
Deserts
52
Alpine tundra
17
Crops
Genetic diversity
51000
600
Domestic Animals
2222
Aquatic Products
20278
Economic Forest Trees
1100
Ornamental Plants
7000
Medicinal Plants
11000
附件 5 生态系统服务价值的货币化
Introduction Feeling that biodiversity is valuable (in whatever sense), scientists have taken resort to the economic definition of value to make their point understood and in order to stimulate policy resonance. Thus schemes for “Payment for Ecosystem Services (PES)” - based on a ‘beneficiary pays’ rather than the ‘polluter pays’ principle – are suggested and promoted e.g. by UNEP. Properly understood, they are not conceived as a ‘silver bullet’ but tailored to address a specific set of problems: those in which ecosystems are mismanaged because many of their benefits are 88
externalities (i.e. they accrue to external persons not paying for them) from the perspective of ecosystem managers (Engel et al. 2008). The benefits can be local, but also global, and their value is usually expressed in monetary terms. However, what does this imply? What are the limits of economic valuations (the listing of benefits is commonplace)? Does the economic objective (ecosystem resources should be allocated to those uses that yield the highest gain to society, as measured through valuation in terms of benefits of each use adjusted by its costs) lead to the same results as pursuing ecological objectives?
From traits to functions to services to valuation The step from ecosystem traits to functions is one from a descriptive approach listing observed facts and figures to analytical science, characterising any ecosystem phenomenon contributing to something else (i.e. almost everything) as an ecosystem function. This step provides new insights on the interaction of the observed traits, but also risks some loss of information by introducing structures and hierarchies into the observation data. The next step, from functions to services, is one from scientific analysis to subjective selection and classification: ecosystem functions are not distinct but mutually defining and interdependent – while services are so by definition. Functions are services if and only if they affect human needs or values (de Groot et al. 2002). Thus the MA defines ecosystem services as “benefits people can obtain from ecosystems”, distinguishing provisioning, regulating, supporting and cultural services (MA 2005). Bonnedahl & Eriksson (2007, p.101) point to the inherent risk of this transition: “ecosystem services is a perspective that certainly highlights the importance and degradation of the systems, but the raison d’être of the ecosystems is to serve humans. Thus, ecosystems are, in principle, exchangeable, and the perspective appears open for negotiation, if human needs would call for higher harvests.” Thus the ecosystem service approach introduces externally set definitions into the scientific discourse regarding which states, structures and processes do in fact contribute to human production and consumption, and which – to the best of our current knowledge and the valuation task at hand – do not. In the next step, valuation, two basic concepts currently prevail: a) ecological valuation based on bio-physical accounting (either using an energy theory of value, or economy-ecology analogies) most often with total neglect of human needs, and b) economic valuation based upon consumer preferences out of context of system characteristics, i.e with neglect of limits (Winkler 2006). Both represent specific concepts of value needing closer scrutiny (for a list of relevant meanings of “value” see table 1; other notions of value, such as nutritional value or moral value are not taken into account here). Both concepts, based upon an agreement in a human society, are not necessarily anthropocentric, although they are definitely anthropogenic. Agreeing on a value system and enforcing it is part of the political process. As is evident from the description above, in the economic valuation approach subjective interpretations play a decisive role in establishing what to measure as the value of an ecosystem and its services. The political argumentation (ecosystem functions as a basis for survival and development) has not been extremely successful in the communication to decision makers and the lay public, and it left hardly any footprint on the inner-science discourse (except in the concept of Ecosystem Management as promoted by IUCN and adopted by the CBD). Opposed to that, the economic 89
argumentation (ecosystem services are valuable) has had severe impacts, but more on science itself than on decision makers – again with a remarkable exception in the field of climate: the Stern Report. Little wonder then that relevant agents like the EU Commission and the German government tried to replicate this effect by funding a “Biodiversity Stern Report”, a project lead by the Indian investment banker Pavan Sukhdev, called TEEB “The Economics of Ecosystems and Biodiversity”. The interim report, published in summer 2008, provided a number of interesting data and insights, but the development of a standardised valuation method (for the difficulties see below), and the delineation of monetary and non-monetary valuation domains remains a challenge to the work on the main report in 2009/2010. (Environmental) Scientists these days use the economic terminology, talk about services, productivity, (natural) capital stocks, efficiency etc., in order to get their science-based messages across to decision makers. More often than not, when talking about the value of ecosystems and their services, they understand this as a metaphor, usable to communicate science-based insights. Opposed to that, economists such as Pearce (1994) perceive valuation as an economic exercise, and claim the superiority of financial mechanisms over more traditional ecosystem management approaches: “Payments for Environmental Services (PES) have been distinguished from more common integrated conservation and development projects on the grounds that PES are direct, more cost-effective, less complex institutionally, and therefore more likely to produce the desired results” (Frost and Bond 2008, p. 776) Regarding ecosystem value, IUCN’s Sriyanie Miththapala (Miththapala 2008) argues that the importance of ecosystems and their services is widely unaccounted for, leading to wrong policy priorities. She gives the example that tourism, based on marine biodiversity and coastal ecosystem services, provides the basis for the Maldives economy, accounting for 20% of the GDP and 40% of the employment. Including associated services, the sector generates 74% of the GDP, 60% of foreign exchange earnings, and 90% of the government revenues. Beyond these macroeconomic data, she argues that ecosystem services are often the basis for household production, largely unaccounted for in macroeconomic accounting, in particular in subsistence economies. This is obviously true, but quantifying the economic value of these unpaid services is a challenge. Miththapala (2008) estimates the traditional use of mangrove forests to contribute US$3,000/ha*yr (50% of the household income of the poorest) to local income in parts of Indonesia, and US$1,300/ha*yr to inshore fisheries income on the Belutchistan coast of Pakistan (plus another US$900/ha*yr to offshore commercial fishing). These are impressive and detailed figures, and the hopes are flying high regarding the impacts of ecosystem valuation. Unfortunately, such economic figures do only cover part of the overall value of ecosystems (for instance, a monetary valuation is accepted to be not feasible only for environmental goods and services with a religious or spiritual value), and they are neither robust nor necessarily reproducible. Natural scientists (as well as policy makers and other “lay” groups) are most often either not familiar with or do not reflect the connotations of the underlying valuation methods and thus the implicit implications of the economic argumentation.
The economics behind valuation In economics, the value of every good is defined to be nothing else than its price. The price is not 90
intrinsic to any good but exclusively the result of exchange processes between homini economici in the market. This implies that where there is no market, there is no price and thus there is no economic value. For every good and service there is a functionally equivalent substitute, almost by definition (if not yet, rising prices will certainly stimulate technological development to provide one). However, in economics parlance, functionally equivalent does not refer to a multitude of characteristics, but just to one: the contribution of the respective good to utility generation. As the utility is defined one-dimensionally (as a scalar, but not quantifiable), the different elements can simply be added up to give the whole: all elements are distinct and independent. This permits the separate valuation of individual services (but requires neglecting the multidimensional attributes of ecosystems). In this view, man-made goods can indeed replace natural or social goods, targeting one service after the other. These assumptions are indispensable for any kind of economic valuation, as economists openly admit; “The monetisation of environmental impacts can smoothen the problem of multidimensionality and thus provide a decision support in cost-benefit analyses” (Schägner 2008, translation). Table 1: A compilation of meanings of the word ‘value’ Market value
The exchange value or price of a commodity in the open market
Intrinsic value
The value of entities that may have little or no market value, but have use value.
Intrinsic, non-use
The value attached to the environment and life forms for their own sake.
Existence value
The value attached to the knowledge that species, natural environments and other ecosystem services exist, even if the individual does not contemplate ever making active use of them.
Bequest/vicarious
A willingness to pay to protect the environment for the benefit of other people, intra and
values
intergenerationally.
Present value
The value today of a future asset, discounted to the present.
Option value
A willingness to pay a certain sum today for the future use of an asset.
Quasi option value
The value of maintenance of options for future use assuming an expectation of increasing knowledge about the functioning of the natural environment.
Source: after Kumar & Kumar 2008, p.809
If market prices are the mechanism to determine the current value of any good, what about future gains, e.g. from exploiting a resource? Provided with all information about current and future prices (only recently economics began to take incomplete information into account), homo economicus - as a death-prone individual - will do nothing but maximise his utility by exploiting and exhausting his resource during his lifetime (there is no utility from leaving something behind). He will value the resource by comparing the surplus generated with what he would have earned by selling it immediately and putting the income into a bank to generate interests. For planning the optimal utility maximising strategy, since demand and thus prices depend on preferences, future preferences must also be known to homini economici – they are assumed to be inherently constant, changeable only by external influences. Then the future gains are calculated based on the future price times the volume that can be sold (also part of the full information available). The result is depreciated by what the interest in the bank would have generated to calculate the current value of future gains and damages (like those expected from biodiversity conservation). This way, even a 91
high gain (or damage) in the distant future (e.g. 50 or more years from now) becomes irrelevant as compared to a lower but sooner profit. Not investing in the mitigation of climate change is then justified as the current value of damages is limited and future, richer generations might be better suited to carry that burden.
Economic valuation methods and results An example is the valuation of “pollination services, which recently have become threatened by honeybee colony collapse disorder [They] contribute to fruit, nut, and vegetable production worth $75 billion in 2007” (Swinton et al 2007, p. 246, quoting figures from USDA 2007; see also Klein et al. 2007). The global value of pollination dependent crops – and thus the value of pollination services for direct human consumption – has been identified as being 153 billion € in 2005 (based on world market prices and FAO statistics; Gallai et al., in press). As these examples illustrate, valuing ecosystem services is easiest if they are traded on markets – then the official market price describes the value of the service. Furthermore, Swinton et al. (2007, p. 248) highlight that “food, fiber and fuel have market prices that provide both incentives to produce those ES [ecosystem services] as well as measures of their value to society. But many other ES lack markets.” In these cases, PES permit to translate external, non-market environmental services into financial assets traded on markets. If for instance the carbon fixing by forests is made a tradable good by including forests in the carbon trading schemes as currently under discussion, the market establishes a price and thus a value for this service. Customers would then pay for the non-use of a forest, thus preventing it from felling (forest destruction makes up for about a fifth of global CO2 emissions) – provided the market price for non-emission certificates is higher than the market value of the timber felling the same forest would provide. A global minimum of US$10 billion from non-use certificates has been estimated as necessary to compensate for the profits from felling (Bethge et al. 2008), and it seems questionable if this achievable, and can be sustained: the price of EU emission certificates collapsed in the current economic crisis (from 60 €/t CO2 to less than half), and thus would forest protection on this basis. If the focus is less on emission prevention and more on sequestration certificates – another ongoing debate – massive and uncorrupted state intervention is required, and the short term volatility of tradable certificate prices would make the financial basis of any such long term undertaking fragile. In these cases, the valuation is limited to one selected service provided by forests, carbon restraining or sequestration. When applied to whole ecosystems and all their services, valuation is more difficult and estimates are no longer straight forward as they have to deal with the complexity of such systems. For instance, “neighbouring ecosystems provide food, refugia, and reproductive habitat for pollinators and biocontrol agents; they provide wildlife habitat; and they help to attenuate some of the unwelcome effects of agricultural production, including the escape of nitrogen, phosphorus, and pesticides into non-agricultural ecosystems where they may produce undesirable impacts” (Swinton et al. 2007, p. 248; see also Klein et al. 2007; for biocontrol services e.g.: Way & Heong 1994). For instance, the value estimates for pollination services quoted above are questionable I the sense that they equate the potential damage caused by the loss of this one ecosystem service to its value. However, pollination is but one of many factors in
92
co-producing fruit, and if the value of pollination, water retention, and nutrient recycling were calculated, the same production value would be counted three times, as the yield is dependent on all these factors. Market values can also be expressed indirectly as damage costs, based on the damages caused by a disservice (like biological invasions) or the costs avoided by a certain service (avoided damage cost). For instance, the value of the UV-B radiation protection service provided by the ozone layer expressed as avoided damage is significant (sum up all potential agricultural losses and the cost of medical treatment), but it was zero before the protective function was discovered: there was no demand for this service, as the consumers did not know about it, and thus no market, no price and no economic value. Based on damage cost calculations, Miththapala (2008) quantifies the value of coral reefs due to their coastal protection service at more than US$100,000/km in Indonesia and at nearly US$1,000,000/km in the Philippines. Coastal wetlands, providing flood protection and water purification services are valued at US$2,500/ha for Sri Lanka. It also makes some sense to measure real or hypothetical economic expenditures, e.g. for management or repair costs (e.g. eradicating invasive species or keeping them under control: the hypothetical cost is used in a cost-benefit analysis supporting policy decisions, before real expenditures are made, see e.g. Perrings 2000; 2005). However, the meaning of the figures derived needs to be explained to decision makers in order to avoid misunderstandings and subsequent misallocation of resources. For instance, for invasive species it is well possible to calculate yield losses (damage cost) and the costs of increased pesticide use (management cost): these are the economic costs (see e.g. Pimentel et al. 2000). However, this does not say anything about the social, ecological or other costs, nothing about the amenity and spiritual services affected, etc. More speculative are estimates of the future costs of artefacts substituting for specific (ecosystem) services (replacement cost), as they have to be based on currently known technologies and their prices, and they have to deal with economic discounting. Even more speculative is the estimation of avoidance cost or averting costs (what would have had to be invested in the past to avoid a current damage: a figure to be compared with the actual damage cost). In all these cases, what is calculated is the hypothetical cost of providing an economic service substituting for a part of the ecosystem functions, and this is taken to be equivalent to the value of the ecosystem services under analysis (with different services analytically treated as independent but commensurable). However, measurement remains tricky, in particular as the “lack of low cost measurability and valuation methods currently precludes efficient allocation of many ecosystem services through market-based approaches” (Kroeger & Casey 2007, p. 321). This leads to such proposals as the one by W. Köck (2008, p. 18, own translation): “In order not to unnecessarily restrict economic activities, it has been suggested to permit the destruction a habitat if a certificate is presented confirming that an equitable habitat has been created somewhere else. Making the certificates tradable would create a global market, supporting a flexible and cost-effective biodiversity protection”. Ecologists may be tempted to ask ‘where, and for what? And how do you create an ecosystem?’ However, the utility thinking, the principle of substitutability, and neglect of real time and space in economics makes such proposals sound reasonable in an economic context and increasingly seem to form the basis for the insurance of
93
biodiversity damages. For avoidance cost calculations, the least cost option may be identified based on production function assessments (assuming linear functions). This requires to find the second-best production technology for each function, and to calculate the opportunity cost (i.e. asking “which utilities have I missed by investing time and money here and not at another, e.g. the optimal location?”) of switching behaviour, both for each service separately. Elegant as it may be from a neoclassical economic point of view, in an ecological perspective it is bound to fail with complex service sets and non-linear effects (Nunes & van den Bergh 2001). Most scholars are aware that the common people’s perception of and relation to ecosystems is quite different to what is conceptualised in economics: for them, the natural environment has a value beyond its immediate utility, i.e. beyond – from a psychoanalytical point of view – the “abstruse quantification and reductionism of economics” (Kumar & Kumar 2008, p.814). In particular, the public character of ecosystem services, meaning that a variety of services accrues to society as a whole, beyond the individual utility gain, escapes economic valuation. The axiomatic approach makes any deeper understanding of key determinants of human decision making, and their interaction impossible. It furthermore disregards the diversity of human values and their linkages to environment and ecosystems. Nonetheless, economists need a market to be able to determine a price and thus the value of a good. And if there is no market, they imagine one, and derive hypothetical prices from this imagination. This imagination is necessary as ecosystem services are rather frequently non-market goods (public option value goods, insurance goods, merit goods, …), thus escaping the primary measurement instrument of economists. In this case, economists derive price and value calculations either from revealed preferences or from stated preferences. Revealed preferences are based on indirect calculations, deriving value figures from the effects of behavioural change associated with the service (or the lack of it) in real markets. They comprise non-use values (existence values) like knowing about the existence of a deer population in the region; non-consumptive use values (watching them) and consumptive use values (hunting them). The two main assessment methods are hedonic pricing and travel cost estimates. The latter is mainly applicable to leisure and holiday activities where travelling is voluntary. In these cases, as the homo economicus is always maximising his utility, he will only be travelling to a certain place if the stay there provides more utility then saving the cost and abstaining from the visit. Then the travel cost is a stand-in for the value of what has been enjoyed at the destination. For instance, Knoche & Lupi (2007) calculate the value of the white-tailed deer (Odocoileus virginianus) by assessing the demand for deer hunting via the hunters’ travel costs. As a result, the value of 10,000 deer more per county is calculated as the result of additional travel expenditures of US$3.94 per hunting trip for firearm hunters, and of US$1.75 per trip for archery hunters. “Hedonic valuations use relationships between land property prices and property characteristics to value changes in the characteristics.” (Swinton et al. 2007, p. 248). They go from the assumption that services/disservices like improved or diminished environmental quality change the willingness to pay for a good associated with them, and this is reflected in the market price (assuming full knowledge and perfect markets), in particular in the housing market. The price change is then a measure of the value of the ecosystem services enjoyed, like a price increase due 94
to the establishment of a nature reserve in the neighborhood. However, empirical work comparing the changes in individual well-being caused by pollution to housing prices have shown that they do not reflect the local environmental quality changes at all (Rehdanz & Maddison 2008).
Figure 1: Clustering economic valuation approaches according to objects and methods
Source: Spangenberg, Settele i.pr.
The alternative to revealed is stated preferences. In this methodological approach (probably the most frequently used one, at least in the economics literature), hypothetical markets are introduced and interview partners have to define a price, in different ways, for the respective ecosystem service within these markets. According to Barkman et al (2008, p. 51), “qualitative investigations of the pre-theoretic concepts, beliefs and values that non-expert respondents are likely to bring to the valuation task are a standard requirement for any lege artis empirical stated preference study.” Then ecosystem services are described in terms of a benefit from ecosystems the respondents really care for (an assessment depending on the social group, the respective culture, attitudes of the researcher and thus due to change over time). The total welfare would then be derived by multiplying the gains calculated per capita with the size of the respective group. “Ecosystem functions for which the analyst finds no such benefit are not considered services and excluded from the valuation” (ibid). For the services identified, preferences are asked for, most often in monetary terms. As usual with questionnaires, the responses are not taken at face value, but processed and interpreted. Questions can be asked in different ways: Choice modelling offers different set of alternatives (choice sets), in which one of the parameters is a price. People’s choices then indicate which price they consider adequate in the context described (a multi-alternative regression analysis is needed). For instance, Brey et al (2007) used this methodology to estimate the value of aforestation areas in Catalonia, North-Eastern Spain (table 2). Different potential user groups were identified and their answers transformed into monetary values for different ecosystem services. It is obvious that the
95
choice of the respondent group has a significant impact on the results, e.g. rural and city population (Catalonia is an urbanised region dominated by its capital Barcelona) hold different value perceptions for the same ecosystem, as due their different use patterns they enjoy different services. Table 2: A choice modelling example (figures from Brey et al. 2007) Service
Value/welfare gain
Respondent group
[€/yr, continuously] Sequestering 68,000 t of CO2
11.79
Catalonia inhabitants
Delaying the loss of land productivity for
0.12
Catalonia inhabitants
Picnicking in the forest
6.33
Picnic users
Picking mushrooms in the forest
12.82
Rural residents
Four wheel driving in the forests
-9,67
Catalonia inhabitants
10 years
The second kind of stated preference methods, probably the most frequently used one, is contingent valuation and essentially consists of presenting the target groups with one alternative (one variable changing) and either asking them for their willingness to pay WTP for getting or avoiding such a parameter change, or their willingness to accept WTA compensation for a damage or a foregone improvement. In general, WTA and WTP can come in two versions, a dichotomous and an open analysis. In the dichotomous case, the respondents receive the description of an event/a state change and are offered a payment, or are asked to pay. They can only accept or refuse the offer. A series of such decisions is then processed to estimate the final WTP figure. In an open analysis, the respondents are free to state what the maximum figure they would be willing to pay were (e.g. Wätzold et al. 2008). One example of WTP analysis is the study of Tseng & Chen (2008). They measured the value of climate change damage to Taiwan trout (Onocorhynchus masou formosanus) depending on the degree of temperature change (table 3). The example is interesting as is shows the effects of scarcity: the less trout is left, the more is its protection valued. However, such figures also indicate some of the limits to the economic calculus: If certain measures need to be taken to safeguard the survival of the species, it may be a lethal failure to wait until the number of surviving individuals has shrunk enough to generate a WTP which in turn would justify to take preventive action without reducing the total welfare. Table 3: A willingness to pay example (figures from Tseng & Chen 2008) ΔT
Population left
WTP
[°C]
# individuals
[US$/cap*yr]
0.0
1,612
0
0.9
740
16.22
1.8
560
25.72
2.7
146
33.60
As both WTP and WTA address the same issues with the same group, in theory (assuming rational, i.e. utility maximising behaviour) their results should be identical. In reality, however, empirical WTA figures tend to be significantly higher than the much more frequently used WTP figures: humans are loss-averse, to most people 1 € loss counts more than 1 € gain. 96
The context and method dependency of stated preference figures can be illustrated using a case study from the Yaqui river in Mexico (restoring the water flows in a river which has not reached the sea since more than half a century due to water abstraction for irrigation). The ecosystem services explored were •
maintenance of riparian vegetation, wetlands, and estuaries (limited remains after 56 years of no water flow);
• •
protection of habitats for birds and other fauna (dto.); maintenance of local marine fisheries (catch was decreasing due to the lack of nutrient supply);
• • • •
dilution of pollutants (there is no waste water treatment plant in the region); recreation use; immaterial: existence, cultural, and option value; and use value for future generations.
For all these ecosystem services together the average WTP found with the dichotomous questionnaire was US$4.70/month * household, whereas with the open questionnaire it was US$6.60/month * household. The context dependency of such figures is most obvious in the case of the “dilution service”: building a waste water treatment plant would most probably reduce it to zero. When processing the responses, about 20% had been excluded from the value assessment, as either the participants had given “unrealistically high” WTP figures, answered with a “protest zero” (“the polluter or the government should pay, not me”), or were respondents regarding which the interviewer lacked confidence in the sincerity of the respondents answers. It again becomes obvious that a) a highly subjective assessment is needed before calculating the value figures, and b) respondents are reduced to the role of consumers, neglecting their role as citizens, with partly diverging preferences. Thus, the first two groups excluded gave a more political statement than an economic one, and are therefore rightly eliminated from the economic valuation. But this comes at a cost: the two groups eliminated tend to be the most environmentally sensitised ones, and their exclusion most probably results in a downgrading of the calculated value of the ecosystem services under analysis, and thus of the level of protection deemed adequate.. Sometimes the spread of results is too broad to be justifiably described by simple aggregates (average, mean, median values). In this case ranges are documented, which often is still good enough to identify the preferable option in general terms, however without providing guidance for individual cases. For instance, Sandhu et al (2008) have done so for comparing the value of ecosystem services provided by organic and conventional agriculture in New Zealand, in the Canterbury district (table 4). They find that both provide services of non-market value, higher – as might have been expected – for organic agriculture. This contributes to, but does not fully explain the higher Total Economic Value TEV 1 generated by organic agriculture: Table 4: A total economic value calculation example (figures from Sandhu et al. 2008)
1
As economic thinking knows no value of ecosystems as such; the Total Economic Value TEV is
derived based on valuing the individual services flowing from them, treating them as discrete objects.
97
TEV
thereof: non-market value
[US$/ha*yr]
[US$/ha*yr]
Conventional
1,270 – 14,570
50 – 1,240
Organic
1,610 – 19,420
460 – 5,240
Two more methodological caveats need to be mentioned: (i)
First, as it is the service, not the stock as such which is valued, all those elements of stocks which are not essential for producing the respective service can be given up without a change in utility provision and thus in value. In other words: economic valuation addresses the economically relevant part of biodiversity, and declares the rest to be superfluous. What has been valued is compared to other utilities and may be protected or shed, depending on what creates more cash income. As a result, the economic optimum (maximum utility generated by protecting as much biodiversity as people would be willing to pay for, realised for instance by including the “price of ecosystem services” in the market transactions: internalisation of external costs) may well represent the economically optimal destruction of biodiversity. It may even call for such devastation, by demanding to substitute non utility providing elements of ecosystems for “more productive” ones.
(ii) Secondly, as a certain service is valued in isolation, the method is of limited usefulness in more complex approaches such as ecosystem management. Taking for instance the case of water management, with water supply, water purification and flood regulation representing perhaps the most precious ecosystem services to mankind, the deficit becomes obvious. In the ecosystem approach, water management is not only about the physical environment (which could be treated as a number of separate commodities), but is “concerned with ensuring people achieve their needs through socially fair, wise economic, and ecosystem friendly processes”. The means to do so is the “integrated management of land, water and living resources that promotes conservation and sustainable use in an equitable way” (Guerrero 2008), as practiced in ancient water dependant societies like the “Ifugao”, the architects of the magnificent irrigated rice terraces of Northern Luzon, Philippines (Conklin 1980, Settele & Martin 1998). Although economists claim their methods to be wise and promoting conservation and sustainable use, economic instruments do not address needs (unless they are expressed as demand in the market, backed by purchasing power), social fairness and equity in resource use. Social benefits can be side effects of the management process, but whereas they do count in integrated assessments (IA) and ecosystem management, they do not so in economic valuation: they do not influence the market prices (at least not directly) unless they can be marketed as a separate good, and thus they escape economic observation (they have no value). Basing the management of resources such as water or food on a free market approach tended in the past to increase economic benefits while diminishing the social benefits. This was one key reason for the “water riots” in many countries after privatising the water supply and the global “bread and rice riots” after price hikes in 2007/2008. Thus valuing services can only play a minor role in integrated ecosystem management, and no way replace a management system incorporating social concerns and challenges.
98
Discussion: Limits to policy relevance of economic measurement Unfortunately, there is no such thing as an ‘objective measurement’ of the value of an ecosystem and its services, i.e. a measurement which (as natural scientists tend to expect) is reproducible, independent of the respective measurement methodology and of subjective assumptions during the measurement process: •
On the bioscience side, ecosystem boundaries and functions are far from well-defined, but depend on choices influenced by the respective research question, disciplinary background and alike.
•
In the science/economics interface, the definition of what is a service is a subjective one, influenced by external (societal debates, political interests) and intrinsic factors (preferences, axiomatic convictions, research interests). It is due to change with locality, circumstances, inhabitants, their level of affluence, other agents and the broader societal discourses.
•
In the sphere of economics, the results of valuation are not robust, unambiguously calculated, clear-cut value figures (although they are often presented as such), but methodology-dependent outcomes (i.e. different methods applied to the same object of measurement, result in widely diverging values), influenced by a range of subjective assumptions. As no method is applicable to all ecosystem services, there is no way of defining a methodological standard, and with the divergence of results, aggregation of valuation outcomes into a total value calculation is scientifically dubious.
Nonetheless economists such as Schägner (2008, p.25) argue “Regardless of the weaknesses which must be attributed to the concept of Total Economic Value TEV, it must be acknowledged that the monetisation of the environment provides opportunities to take marginal changes of the environment better and more objectively into account in cost-benefit analyses and thus in policy decisions” (translated, emphasis added). The claim to deliver objective data as the optimal basis for decision making is upheld despite the fact that ecosystem service valuation •
isolates single services from a systems context in order to value them; is not capable of supporting multi-objective approaches (unlike ecosystem management),
•
counts only what is currently demanded and takes the prices estimated for ecosystem services to be the value of the ecosystem,
•
reflects the current knowledge and the current preferences and use structures, is bound to change with consumption and production patterns and thus dependent on settlement and leisure patterns, the location of industries and on development processes in general,
•
commands a variety of methods which are all based on the same set of economic assumptions, but approach the ecosystem services from different angles, with results varying widely, dependent on the methodology choice rather than on the object under analysis. Thus ecosystem service valuation •
does not deliver a general measurement of the value of ecosystems and their services, but context and method dependent price estimates, possibly several for the same service, based on a wide range of subjective, hypothetical and not empirically based assumptions.
Figures derived on this shaky ground are hardly a ground solid enough to base crucial decisions 99
vis-à-vis biodiversity management and ecosystem service maintenance upon. Therefore some ecological economists call for careful use of economic methods, and even for giving up on monetisation of environmental goods and services (Spash & Vatn 2006; Vatn & Bromley 1994, Common 2007a). Doubting the reliability of biodiversity and ecosystem valuation is no reason not to use economic instruments as incentives for biodiversity conservation: successful ecosystem management, including the use of PES schemes, has in the past not been achieved by calculating the economic value of ecosystem services, but by introducing effective incentives for their maintenance. Such incentives can be money transfers, to be paid by individual beneficiaries (Pagiola 2008) or, if they are reluctant to pay, by communities (Wunder & Alban 2008; Frost & Bond 2008) or public authorities on their behalf (Bennett 2008; Muños-Piña et al 2008; Wätzold et al. 2008). They can also include the transfer of merit goods, or barter trade, i.e. in-kind payments (Asquith et al. 2008). In any case, the level of transfers is set according to effectiveness criteria: they must make a difference, triggering change in institutional routines and individual habits and behaviour, not on economic efficiency calculations. For selecting effective action for the conservation of biodiversity and maintenance of ecosystem services, it is essential to take a broader view, addressing the causes of biodiversity loss, i.e. the drivers behind it (Spangenberg 2007; CBD 2006; MA 2005). Thus instead of calculating absolute values for ecosystem services, with all the problems of economic thinking and of the methods applied (for a detailed discussion see e.g. Rees 2006 or Norton & Noonan 2007), economic instruments should be used in a framework of politically defined priorities. Multi-criteria assessments, taking into account several dimensions of sustainable development, have the benefit to explicitly address the institutional setting and in particular the social needs, two key conditions for all successful sustainable development and ecosystem management projects (Kemp & Martens 2007; IUCN CEM 2006). Instead of expert valuations, they are based on stakeholder participation - an exercise in what has been called post-normal science (Funtowicz & Ravetz 1993). Each resulting decision comes with a price, but the price of an object should not be confused with the object itself. Only if such a broader context is used in developing and applying economic instruments, like in the South African “Working for Water” programme, a PES mainly funded as a poverty relief scheme, ecosystems can be protected in the long run, by turning the local populations into their custodians (Turpie et al. 2008). On the institutional aspect, transitions are necessary at all policy levels: maintenance of ecosystem services can be achieved without economic valuation, but not without sustainability policies.
References Asquith, N. M., Vargas, M. T., Wunder, S. 2008. Selling two environmental services: In-king payments for bird habitat and watershed protection in Los Negros, Bolivia. Ecological Economics 65: 675-684. Barkman, J., Glenk, K., Keil, A., Leemhuis, C., Dietrich, N., Gerold, G., Marggraf, R. 2008. Confronting unfamiliarity with ecosystem functions: The case for an ecosystem service approach to environmental valuation with stated preference methods. Ecological Economics 65: 48-62. Bennett, M. T. 2008. China’s sloping land conservation program: Institutional innovation or business as usual?
100
Ecological Economics 65: 699-711. Bethge, P., von Bredow, R., Schägerl, C. 2008. Marktplatz der Natur. SPIEGEL 21/2008: 132-147. Bonnedahl, K. J., Eriksson, J 2007. Sustainable economic organisation: simply a matter of reconceptualisation or a need for a new ethics? Int. J. Innovation and Sustainable Development 2(1): 97-115. Brey, R., Riera, P., Mogas, J. 2007. Estimation of forest values using choice modeling: An application to Spanish forests. Ecological Economics 64: 305-312. CBD Convention on Biological Diversity, Secretariat 2006. Summary of the Second Global Biodiversity Outlook, CBD, Montreal. Common, M. 2007. Measuring national economic performance without using prices. Ecological Economics 64: 92-102. Conklin, H.C. (1980): Ethnographic atlas of Ifugao: a study of environment, culture and society in Northern Luzon. New Haven. de Groot, R. S., Wilson, M. A., Boumans, R. M.J. 2002. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics 41: 393-408. Engel, S., Pagiola, S., Wunder, S. 2008. Designing payments for environmental services in theory and practice: An overview of the issues. Ecological Economics 65: 663-674. Frost, P. G. H., Bond, I. 2008. The CAMPFIRE programme in Zimbabwe: Payment for wildlife services. Ecological Economics 65: 776-787. Funtowicz, S., Ravetz, J. 1993. Science for the Post-Normal Age. Futures 25: 735-755. Gallai N, Salles J-M, Settele J, Vaissière BE (2008). Economic valuation of the vulnerability of world agriculture confronted to pollinator decline. Ecological Economics. (DOI 10.1016/j.ecolecon.2008.06.014). Guerrero, Eduardo 2008. Ecosystem approach to water management. Some thoughts from Latin America. IUCN-CEM newsletter April 2008, EcoBytes 1: 1-2. IUCN CEM World Conservation Union Commission on Ecosystem Management 2006. Biodiversity & Livelihoods. Gland, Switzerland, IUCN. Kemp, R., Martens, P. 2007. Sustainable Development: how to manage something that is subjective and can never be achieved? Sustainability: Science, Practice, Policy 3(2): 5-14. Klein, A.-M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., Tscharntke, T. 2007. Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B 274: 303-313. Knoche, S., Lupi, F. 2007. Valuing deer hunting ecosystem services from farm landscape. Ecological Economics 64: 313-320. Köck,
W.
2008.
Standpunkt.
In
UFZ
Newsletter
Spezial
2008(4):
18
(http://www.ufz.de/data/ufz_spezial_april08_20080325_WEB8411.pdf ). Kroeger, T., Casey, F. 2007. An assessment of market-based approaches to providing ecosystem services on agricultural lands. Ecological Economics 64: 321-332. Kumar, M., Kumar, P. 2008. Valuation of ecosystem services: A psycho-cultural perspective. Ecological Economics 64: 808-819. MA Millennium Ecosystem Assessment 2005. Synthesis Report. MA Secretariat, Washington DC. Miththapala, S. 2008. Natural Capital. World Conservation 2008(1): 21-22.
101
Muños-Piña, C., Guevara, A., Torres, J. M., Braña, J. 2008. Paying for the hydrological services of Mexico’s forests: Analysis, negotiations and results. Ecological Economics 65: 725-736. Norton, B. G., Noonan, D. 2007. Ecology and valuation: Big changes needed. Ecological Economics 63: 664-675. Nunes, P. A.L.D., van den Berg, J. C.J.M. 2001. Economic valuation of biodiversity: sense or nonsense? Ecological Economics 39: 203-222. Ojeda, M. I., Mayer, A. S., Solomon, B. D 2008. Economic valuation of environmental services sustained by water flows in the Yaqui River Delta. Ecological Economics 65: 155-166. Pagiola, S. 2008. Payments for environmental services in Costa Rica. Ecological Economics 65: 712-724. Pearce, D., Moran, D. (1994). The Economic Value of Biodiversity. IUCN-the World Conservation Union, EARTHSCAN, EARTHSCAN Publications Ltd, London.. Perrings, C. (2000). The economics of biological invasions. Proceedings of the US-South Africa conference “Best management practices for preventing and controlling invasive alien species”. Perrings, C. (2005). Mitigation and adaptation strategies for the control of biological invasions. Ecological Economics
52(3): 315-325.
Pimentel, D., Lach, L., Zuniga, R., Morrison, D. 2000. Environmental and economic cost associated with non-indigenous species in the United States. Bioscience 50: 53-64. Rees, W. E. 2006. Why conventional economic logic won't protect biodiversity. In D.M. Lavigne, Gaining Ground: In Pursuit of Ecological Sustainability. International Fund for Animal Welfare, Guelph, Canada; University of Limerick, Limerick, Ireland. Rehdanz, K., Maddison, D. 2008. Local environmental quality and life-satisfaction in Germany. Ecological Economics 64: 787-797. Reid, W., Watson, R., Mooney, H. 2005. 'Ecosystem services': a vital term in policy debates. Retrieved from SciDevNet, July 6th, 2005, http://www.scidev.net/Editorials/index.cfm? Sandhu, H. S., Wratten, S. D., Cullen, R., Case, B. 2008. The future of farming: the value of ecosystem services in conventional and organic arable land. An experimental approach. Ecological Economics 64: 835-848. Schägner, J. P. 2008. Die monetäre Bewertung unserer Wälder - Der Wert des Waldes in einer ökonomisierten Welt. Ökologisches Wirtschaften 2008(1): 24-26. Settele J, Martin K (1998) Rice Terraces of Ifugao (N-Luzon, Philippines) - Ecological History and Developments. In: Settele J, Plachter H, Sauerborn J, Vetterlein D (eds) Rice Terraces of Ifugao (Northern-Luzon, Philippines). Conflicts of Landuse and Environmental Conservation. UFZ-Bericht 5/1998, pp. 13-28. Settele, J., Hammen, V., Hulme, P., Karlson, U., Klotz, S., Kotarac, M., Kunin, W., Marion, G., O'Connor, M., Petanidou, T., Peterson, K., Potts, S., Pritchard, H., Pysek, P., Rounsevell, M., Spangenberg, J. H., Steffan-Dewenter, I., Sykes, M., Vighi, M., Zobel, M. and Kühn, I. (2005). "ALARM: Assessing LArge-scale environmental Risks for biodiversity with tested Methods " GAIA 14(1): 69-72. Spangenberg, J.H. 2007. Biodiversity pressures and the driving forces behind. Ecological Economics 61: 146-158. Spangenberg, J.H., Settele, J. (i.pr.). Precisely incorrect? The limits to economic valuation of biodiversity. Ecological Complexity. Spash, C. L., Vatn, A. 2006. Transferring environmental value estimates: Issues and alternatives. Ecological Economics 60: 379-388. Swinton, S. M., Lupi, F., Robertson, G. P., Hamilton, S. K. 2007. Ecosystem services and agriculture: Cultivating agricultural ecosystems for diverse benefits. Ecological Economics 64: 245-252.
102
Tseng, W.-Ch., Chen, C.-C. 2008. Valuing the potential economic impact of climate change on the Taiwan trout. Ecological Economics 65: 282-291. Turpie, J.K., Marais, C., Blignaut, J.N. 2008. The working for water programme: Evolution of payments for ecosystem services mechanisms that address both poverty and ecosystem service delivery in South Africa. Ecological Economics 65: 788-798. Vatn, A., Bromley, D. W. 1994. Choices without Prices without Apologies. Journal of Environmental Economics and Management 26: 129-148. Wätzold F, Lienhoop N, Drechsler M, Settele J (2008) Estimating Optimal Conservation in the context of Agri-environmental Schemes. Ecological Economics 68: 295–305. Way, M.J. and K.L. Heong 1994. The role of biodiversity in the dynamics and management of insect pests of tropical irrigated rice – A review. Bulletin of Entomological Research 84: 567-587. Winkler, R. 2006. Valuation of ecosystem goods and services. Part 1: An integrated dynamic approach. Ecological Economics 59: 82-93 Wunder, S., Albán, M. 2008. Decentralsied payments for environmental services: The cases of Pimampiro and PROFAFOR in Ecuador. Ecological Economics 65: 685-698.
103
附件 6 欧盟生物多样性行动计划 The Action Plan identifies four main policy areas and sets out 10 key objectives for halting the loss of biodiversity by 2010. These are, in turn, translated into over 150 individual priority actions and supporting measures which are to be implemented against specific time-bound targets at both EU Member State and EC level. The 10 objectives and the key supporting measures are documented in box 1. The Action Plan represents an important new approach for EU biodiversity policy as it addresses all the relevant economic sectors and policy areas in a single strategy document and apportions a share of the responsibility in its implementation. It recognizes that change will only happen if there is a concerted effort from all sectors of society and Member States to help deliver the overall target of halting biodiversity loss by 2010. Whereas targets 9.1 and 9.2 refer only to climate change, targets 9.3. and 9.4 build the ´bridge to biodiversity – conceptually, not in practice, as the “Measures” report section for target 9.4 demonstrates: “Climate change adaptation measures were not addressed in the questionnaire that was distributed to Member States. Furthermore, although some information is provided on climate change adaptation in the regular national reports to the CBD and UN Framework Convention on Climate Change, these mostly date back to 2005 and are thus rather out of date. Nevertheless, from the information that is available and the response from Member States to the draft country summaries, there appears to be little evidence that significant adaptation biodiversity measures are being planned or implemented in most countries. [...] No Member State has clearly stated that it has developed a biodiversity adaptation action plan with defined actions, time tables and responsibilities (although some have stated they include actions within their national BAP). [...] Furthermore most of the measures that are promoted as being to increase biodiversity resilience appear to be actions that are already being taken, or are planned, to meet existing conservation needs (e.g. the protection and management of sites). [...] there was no indication that any country has yet produced a comprehensive climate change risk assessment for habitats and species of community interest, as required under the EU BAP.” Nonetheless the policy process continues, and the targets set remain valid. In particular to materialise target 9.3 “Climate change adaptation or mitigation measure from 2006 onwards delivering biodiversity benefits, and any negative impacts on biodiversity prevented or minimised, from 2006 onwards”, a new initiative has been undertaken, by setting up a task force to compile a White Paper on measures to reduce climate change mitigation impacts on biodiversity. The Commission describes the expected content as :follows: “Following its 2007 Green Paper the Commission is producing a White Paper on climate change adaptation to be adopted in spring 2009. This shall emphasise the importance of preserving ecosystem integrity and boosting its resilience to rapidly changing and degrading conditions as healthy ecosystems are an essential part of any climate change adaptation strategy. Biodiversity and ecosystems are recognised as cross-cutting issue. There will be a need to care to ensure that adaptation and mitigation measures are not detrimental to biodiversity. Rendering ecosystems, social and economic systems more resistant will only be possible by working with nature, technology and individuals. This means relying on a combination of three assets: Human capital green infrastructure and grey infrastructure. In this sense the White Paper may propose to build a "green infrastructure", an 104
interconnected network of natural areas, including some agricultural land, wetlands, forests, marine areas. This would help ensure vital ecosystem services such as the regulation of stormwater, temperatures, flooding risk, water, air and ecosystem quality.” Box 1: the objectives of the EU Biodiversity Action Plan A. POLICYAREA 1: BIODIVERSITY IN THE EU 1. To safeguard the EU's most important habitats and species. 2. To conserve and restore biodiversity and ecosystem services in the wider EU countryside. 3. To conserve and restore biodiversity and ecosystem services in the wider EU marine environment. 4. To reinforce the compatibility of regional and territorial development with biodiversity in the EU. 5. To substantially reduce the impact on EU biodiversity of invasive alien species and alien genotypes. B. POLICYAREA 2: THE EU AND GLOBAL BIODIVERSITY 6. To substantially strengthen effectiveness of international governance for biodiversity and ecosystem services. 7. To substantially strengthen support for biodiversity and ecosystem services in EU external assistance. 8. To substantially reduce the impact of international trade on global biodiversity and ecosystem services. C. POLICYAREA 3: BIODIVERSITY AND CLIMATE CHANGE 9. To support biodiversity adaptation to climate change. • •
Target 9.1 % reduction in greenhouse gas emissions achieved by 2010 Target 9.2 Global annual mean surface temperature increase limited to not more than 2°C above pre-industrial levels
•
Target 9.3 Climate change adaptation or mitigation measure from 2006 onwards delivering biodiversity benefits, and any negative impacts on biodiversity prevented or minimised, from 2006 onwards.
•
Target 9.4 Resilience of EU biodiversity to climate change substantially strengthened by 2010
D. POLICYAREA 4: THE KNOWLEDGE BASE 10. To substantially strengthen the knowledge base for conservation and sustainable use of biodiversity, in the EU and globally. E. THEFOUR KEY SUPPORTING MEASURES 1. Ensuring adequate financing. 2. Strengthening EU decision–making and Implementation. 3. Building partnerships. 4. Building public education, awareness and participation. F. MONITORING 105