Revue ATIP 691 15

Page 1



Edito

L’ATIP et le SYMOP vous invitent aux ÂŤ Rencontres de l’union papetière Âť

L

’annĂŠe 2015 est dĂŠsormais bien lancĂŠe et les ĂŠvènements organisĂŠs par l’ATIP sont en cours de prĂŠparation. Au cĹ“ur de ceux-ci, le congrès annuel inaugurera cette annĂŠe une formule nouvelle, avec la volontĂŠ d’attirer le plus grand nombre de participants issus des sites de production.

MontĂŠ en partenariat avec le Syndicat des Machines et Technologies de Production (SYMOP), il se tiendra du 24 au 26 novembre 2015 Ă Grenoble (38), avec un programme de confĂŠrences centrĂŠ sur le gĂŠnie papetier, chacune d’entre elle ĂŠtant prĂŠsentĂŠe par un duo ÂŤ producteur-fournisseur Âť. Un amĂŠnagement new-look laissera une large place aux ĂŠchanges, grâce Ă des espaces partenaires et Ă d’autres en accès libres. L’un des moments phares de ce rendez-vous sera, comme d’habitude, la soirĂŠe VMĂ„ JPLSSL X\P H\YH SPL\ n 9P]LZ Z\Y SL ZP[L KL SH ZVJPt[t (SSPTHUK Z\Y WYVWVZP[PVU KL 4 -YHUJR 9L[[TL`LY ZVU 7YtZPKLU[ L[ 7YtZPKLU[ K\ :@467 7V\Y X\L JL[ t]uULTLU[ ZVP[ \U Z\JJuZ WV\Y SLZ WYVK\J[L\YZ JVTTL WV\Y SLZ MV\YUPZZL\YZ SÂť(;07 H besoin de votre concours. En recentrant les thèmes de ces journĂŠes sur les technologies inhĂŠrentes aux progrès en papeteries UV\Z ]V\SVUZ YtWVUKYL H\_ H[[LU[LZ K\ WS\Z NYHUK UVTIYL (PUZP JOHX\L ZVJPt[t JOHX\L ZP[L JOHX\L PUNtUPL\Y JOHX\L [LJOUPJPLU WV\YYH [YV\]LY KLZ TV[PMZ KÂťPU[tYv[ KHUZ SLZ PUUV]H[PVUZ WYtZLU[tLZ ,U TL[[HU[ LU WSHJL SLZ WVZZPIPSP[tZ KÂťtJOHUNLZ LU[YL [V\Z JL[ PU[tYv[ UL WV\YYH X\Âťv[YL T\S[PWSPt Nous souhaitons donc que vous puissiez promouvoir ces ÂŤ Rencontres de l’union papetière Âť au sein de vos entreprises pour susciter la participation du plus grand nombre. 5V\Z ZVTTLZ WLYZ\HKtZ X\L ]VZ YLZWVUZHISLZ [LJOUPX\LZ KtJPKL\YZ LU WHY[PJPWHU[ n JLZ tJOHUNLZ LU retireront des motifs de progrès pour vos produits comme pour vos procĂŠdĂŠs de production. ,U JVU[YPI\HU[ LUZLTISL H\ Z\JJuZ KL JLZ 9LUJVU[YLZ UV\Z WYV\]LYVUZ n UVZ WHY[LUHPYLZ tJVUVTPX\LZ X\L UV[YL PUK\Z[YPL LZ[ LUJVYL JHWHISL KL ZL JVUZ[Y\PYL \U H]LUPY NYoJL n SH TVIPSPZH[PVU KL [V\Z WV\Y le succès de chacun. +ÂťPJP X\LSX\LZ ZLTHPULZ SL WYVNYHTTL KL JL[ t]uULTLU[ ]H ZL WYtJPZLY KH]HU[HNL L[ ]V\Z LU ZLYLa PUMVYTtZ ,U H[[LUKHU[ UV\Z ]V\Z KVUUVUZ YLUKLa ]V\Z Ă„ U UV]LTIYL n .YLUVISL +ÂťPJP Sn UV\Z YLZ[VUZ n ]V[YL tJV\[L WV\Y HZZ\YLY SH Yt\ZZP[L KL UVZ ­ 9LUJVU[YLZ KL SÂť\UPVU WHWL[PuYL ÂŽ

Franck Rettmeyer PrÊsident du SYMOP PrÊsident d’Allimand

Hugues Leydier PrÊsident de l’ATIP Directeur Industriel Emin Leydier

Vol. 69 - n°1 >> FÊvrier - Mars 2015

3


Calendrier 2015 2013 10-12 MARS

28-29 mai

Munich GER

Sestri Levante, ITA

ICE Europa

Aticelca : Congrès annuel

16-19 mars

30 juin-2 juillet

Barcelone, SPA

Francfort, GER

Tissue world

Zellcheming

24-25 mars

14-16 octobre

Cernay, FRA

Lucca, ITA

Journée Valmet

MIAC

8-10 avril

17-19 novembre

Lille, FRA

Lyon, FRA

Plant Based Summit

Europack-Euromanut

21 avril

17-19 novembre

Atlanta, USA

Bruxelles, BEL

TAPPI’S 100 year Celebration

European Paper Week

24-26 mai

24-26 novembre

Stockholm, SWE

Grenoble, FRA

International Pulp and Paper Week

Congrès annuel de l’ATIP

PRENEZ LE REFLEXE INTERNET et retrouvez l’agenda complet et régulièrement remis à jour de toutes les manifestations papetières dans le monde, sur notre site Internet www.groupenp.com, rubrique “Evénements”

# Vol. 69 4 66 - n°1 n°4 >> Février Novembre - Mars 2012 2015


Sommaire

Association régie par la loi du 1er juillet 1901

23, rue d’Aumale F-75009 Paris Tél. 33 (0) 145 62 11 91 Fax 33 (0) 145 63 53 09 E-mail : atip@wanadoo.fr www.atip.asso.fr PRÉSIDENT : Hugues Leydier Vice-Présidents : Jean Ducom François Vessière Raphaël Durand Gilles Lenon André Bauer TRÉSORIER : Carl Hilaire Anciens Présidents : 1947-1948 : P. Germain, Pt Fondateur 1948-1950 : H. Le Menestrel 1950-1953 : P. Champeaux 1958-1963 : P. Avot 1963-1968 : R. Ploix, Pt d’Honneur 1969-1974 : J. Glatron 1974-1982 : G. Lescop, Pt d’Honneur 1982-1988 : P. Turel, Pt d’Honneur 1989 : P. Genin 1990-1998 : B. Mathieu 1998-2006 : François Vessière 2006-2009 : Fréderic de Agostini 2009-2011 : Luc Lanat 2011-2012 : Olivier Salaun

8TH CTP/PTS SYMPOSIUM ON PACKAGING DESIGN AND RECYCLING INNOVATIVE PROCESS FOR VALORIZING PAPER INDUSTRY WASTES AND BYPRODUCTS INTO REINFORCED PLASTIC COMPOSITES . . P.6 S. Laugier, M. Morimoto

PALMES DE L’INNOVATION 2014 PALME D’ARGENT LIGNOBOOST – SYSTÈME D’EXTRACTION DE

LA LIGNINE POUVANT

COMPLÉTER LA LIGNE DE PRODUCTION DE PÂTE

. . . . . . . . P.16

Valmet Corporation

PALMES DE L’INNOVATION 2014 PALME DE BRONZE IN-LINE PCCTM – REVOLUTIONARY FI LLER

AND FILLER-FIBER

COMPOSITE AND PRODUCTION TECHNOLOGY FOR PAPER AND BOARD PRODUCTS

. . . . . . . . . . . . . . . . . . . . . . . . . . . . P.18

J. Matula, O. Imppola, K. Tahkola (Wetend Technologies)

INFOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P.24

DIRECTEUR DE LA PUBLICATION : Jean Ducom RÉDACTION : Virginie Batais Daniel Gomez RÉALISATION : ENP - 36, rue Stanislas Julien 45000 Orléans e-mail : enp@groupenp.com PUBLICITÉ : ENP - François Hénin Tél. : 02 38 42 29 02 Fax : 02 38 42 29 10 e-mail : francois.henin@groupenp.com MAQUETTE : Simon & Partner’s - Quentin Merle e-mail : simon.sp@me.com IMPRESSION : Imprimeries de Champagne ZI Les Franchises - Rue des Étoiles 52200 LANGRES Les articles sont présentés sous la responsabilité de leurs auteurs. La reproduction totale ou partielle des articles ne peut-être faite sans l’autorisation de l’A.T.I.P. Abonnement annuel : 2015-2016 (VOL.69) FRANCE : 300 euros. ETRANGER : 400 euros.

Vol. 69 - n°1 >> Février - Mars 2015

5


8th CTP/PTS

Symposium on Packaging Design and Recycling

Innovative process for valorizing paper industry wastes and byproducts into reinforced plastic composites Sylvain LAUGIER - Launaka Ltd. - Gifu - Japan Masachika MORIMOTO - M&F Technology – Aichi - Japan

Abstract : Presentation of MF process and its results as an efficient way for valorizing biomass byproducts or waste into biomass reinforced plastic composites Several processes try to valorize the most available polymers in the world, the cellulose, either in energy, chemical products, or reinforced composites. Lignin is also very interesting as highly stable biopolymer. Recently an innovative method emerges to process various lignocellulosic materials into biomass plastic compound. In Japan, a car parts maker includes kenaf in a poylpropylene (PP) composite up to 40% and observes a gain of 10% in weight and a reduction of 20% in CO2 emissions in comparison with conventional air cleaners . This company has designed a complete production chain, from the kenaf seeding to the final product in the car, which embodies the M&F Technology’s to secure the blending phase. In this paper we will have a look first at different processes that increase the value of biomass byproducts or wastes: subcritical water processes to separate it into different chemical components, and processes that create or process lignocellulosic reinforced plastics. Then we will present the MF process and display its strong points, to conclude with some results shown in the different produced compounds and data from formed products.

# Vol. 69 6 65 - n°1 66 n°3 >> Février n°4 Août-Septembre Novembre - Mars 2012 2015 2011

Quick review of processes for valorizing biomass products Biomass, in other words lignocellulosic materials, is looked as a potential bioethanol and sundry chemical components source. In these cases we will take a look at Uwe Schröder’s work , as subcritical water can substitute some chemical components usually employed for processing or at least modifying lignocellulosic materials. One of our main focuses, in the light of MF’s process, is on the processes that generate bio reinforced composite or wood plastic composites (WPC). The difficult part is to find processes that actually mix subcritical water action and mechanical shearing, and we could not find any papers about such kind of technology. To process cellulose or lignin, numerous possibilities exist: industries are often using acetic acid anhydride to modify lignocellulosic materials and optimize interface between hydrophobic polymer and hydrophilic biomass. Other processes that imply chemical modification seem to use etherification, reactions with organosilane compounds, furfurylation, reactions with isocyanates, reactions with titanium or borate compounds, and treatment with compounds which contain methylol groups. Schröder points out that humidity rate of the biomass avoids its inclusion into existent chemical processes. In respect of this, subcritical water should be regarded as a potential and sustainable medium reactor (solvent, ca-


8th CTP/PTS

Symposium on Packaging Design and Recycling

talyst…). Nonetheless, most of the processes that imply subcritical water require special equipment and a lot of energy to maintain adequate conditions for subcritical water’s actions. Energy is at least needed to heat the reactor, and, temperature is the main parameter for subcritical water reaction. When it comes about compounding lignocellulosic materials around a polymer, Bledzki and Gassan have found that the fiber–matrix interface is important for the application of natural fibers as reinforcement fibers for plastics.

Alvarez method for compounding gives the impression to waste a lot of energy: pretreatments duration is between 3h and 30 min with temperature between 180 and 300°C, then blending lasts for 30min at 150°C. In comparison, the time for processing a batch of wood composites (around 30-40 L) is between 30 seconds and 1 min with the MF machine. The humidity rate of the biomass, said to be a hurdle in the process of lignocellulosic material, is here an important medium. Shearing also helps to manufacture homogenous composites with a wide range of different biomass, polymers and additives.

If we follow Malkapuram, there are a lot of different processes for fiber reinforced PP composites, for example, 43 different for making particulate fiber reinforced PP composites.

An adaptable solution for a large variety of inputs

Despite recent progresses, H.P.S. Abdul Khalil reveals that energy can be an issue when it comes about processing cellulose composites.

Of course, in the M&F Technology’s case, binders (natural or chemical polymers) & additives have also primordial roles to match the required mechanical and other properties.

To summarize, major issues about those processes are energy, specific design for one type of biomass, adhesion between polymer and biomass product, water inside the biomass.

MF machine as an efficient process for adding value to biomass byproducts Energy saving Shearing & Subcritical water process In the case of the MF machine, conditions for subcritical water seem to be met inside the chamber, and more precisely, locally inside the blended materials, according to its inventor Mr Morimoto. It can be linked to the “water clusters” phenomenon. Evidences of such subcritical water reactions may be seen in the expelled acetic acids at the end of the process, obtained by the action of H2O2- and in the polymerization/fusion between the biomass and the binder, as they usually do not have the same polarity to do so. Temperature & pressure are lower than usually for subcritical water processes and it is similar to Fujimura Invent process. Even so, MF machine exploits the mechanical shearing, that leads to collisions, in order to match those requirements in almost 10 seconds without external heating.

In a lignocellulosic materials process, differing pretreatments of the biomass can be considered in order to change its properties like beaming, boiling, bleaching etc.

Additives such maleic acid for better interfacial bonding between binder/biomass or Mg(OH)2 or inorganic materials (shell, aluminum…) dramatically change the final aspect and properties of biomass reinforced composites.

Results: various compounds & data on formed compounds Several tests have already been conducted by companies and technical centers on formed products as kenaf/ PP composites, pulp/PP composite, wood/PP composites. Interesting facts are about the coloring capability in the case of cellulose, about the properties changes between two modeling cycles. Diverse biomass sources have been tried with this process, such pulp, bark, paper sludge … with different forming techniques. Such process is already employed in Asia (Japan, China) but it is not yet implemented in Europe. In Europe, due to the change in the regulation as disclosed by Mr Cochaux during our first meeting, this green process could be useful to the paper and the related wood industries as providing a different way of valorizing their byproducts into high grade materials. Keywords: lignocellulosic materials; wood; natural fibers; composites; paper industry; processing and recycling; mechanical shearing; subcritical water

Vol. Vol. 6569 - n°3 - n°1 >>>> Août-Septembre Février - Mars 2015 2011

7


8th CTP/PTS

Symposium on Packaging Design and Recycling

Introduction : Environment challenges that face our societies also threaten the fragile economic growth in the developed states. Scarcity of the resources is now well acknowledged, recycling waste is increasing, although EU regulations have been accommodating until recent years, as countries like Germany prohibits landfilling of organic materials and in regards of the increasing cost (Likon and Trebše, 2010). Wastes are now fully perceived as potential resources. The paper and packaging industries have already been entering into this challenge for many years, paper has now several lives. However improvements are still needed, for example in the paper sludge or bark valorization. Also reducing the dependency on petroleum plastics or energy is a quest that many companies or R&D centres are chasing. In this perspective biomass and its lignocellulosic materials are seen as huge potential resources, even if a clear difference must be done between cropped resources and wastes/by-products: the former are competing with alimentary crops for arable lands while the latter are not but may be a threat for humans. Burning to transform those wastes into energy is still the most common solution, while some organic sludge may be added to land as fertilizers. Of course, this management has his own limits, such air or water pollution if not managed carefully. New processes have been emerging for valorizing in a more efficient way biomass wastes or by products: fermentation to produce gaz, supercritical processes to produce chemical and mineral elements or fuel. Biomass is now considered as the most promised way for producing fuel, and only 3 % of the annually grown biomass is economically exploited, while EU created 186 millions of tons of biomass in 2010. There is therefore no need for farming arable lands on this sole purpose: to avoid this completion on lands, lignocellulosic resources have been targeting and experimenting sometimes with difficulties. Japan is a country pioneering and leading in supercritical fluids researches but also in recycling as they highly depend on imported materials. As there is no lot of space to dispose wastes as landfills and as there were problems with dioxin due to intensive incineration practices, such other paths have been overlooking for years. Hot pressurized, subcritical and supercritical fluids may be the solution for degrading wastes and producing fuel along with other chemical elements while in the same time lessening the environment impact of wastes treatments.

# Vol. 69 8 65 - n°1 66 n°3 >> Février n°4 Août-Septembre Novembre - Mars 2012 2015 2011

Another possibility, offered by the biomass, is to convert its lignocellulosic materials into new materials to substitute petroleum plastics or to develop new composites. Lignin and cellulose are the most common polymers in the world. Lignin is also very interesting as highly stable biopolymer; cellulose fibers are also very attractive for increasing mechanical properties of plastics. In regards to this statement and the situation of Japan, Mr Morimoto (Morimoto, 2010) in cooperation with Japanese companies such Toyota Boshoku (Hashiba, 2011), has developed the MF process. Currently, biomass products are seen with high interest as a source of chemicals elements and biofuel. Subcritical water or hot pressurized water processes are focused on cracking the biomass into those elements but biomass main component the cellulose is also screened for its potential as new advanced material. Wood plastic composites, fibers reinforced nanofibrillated cellulose and so on are good examples of the current trend about switching non renewal materials by renewal materials with similar characteristics. To match the challenge of compounding hydrophilic and hydrophobic materials, processes are various. However few of them have low energy consumption or are free of chemical additives. M&F Technology’s process offers an original way for producing lignocellulosic thermoplastic composites that can produce a wide range of composites according to the initial inputs and final needs.

Processes for valorizing biomass Biomass as chemical and fuel sources Biomass is considered as a feedstock to substitute fossil energy (Dewil, 2012). This greener solution does not allow only biomass derived fuel. Beside this, the production of chemicals gains increasing attention. Many processes imply to dissolve, separate and refine elements present in the biomass material like cellulose, lignin or hemicellulose. For converting those materials into chemicals components, such platform chemicals glucose and 5-HMF, various acids and other elements depending on the biomass, subcritical water looks like a promising reaction medium for the valorization of biomass. (Schröder et al., 2011, Schröder et al., 2013) For this kind of results, used processes often require a lot of energy as temperature is a key factor in the reaction success.


8th CTP/PTS

Symposium on Packaging Design and Recycling

However, lignocellulosic materials may find various applications into the materials field as for replacing glass fibers or carbon fibers into reinforced composites, producing new materials as nanofibrillated cellulose or as a renewable source of biopolymers.

Biomass and new materials Biomass is seen as a huge mine for new materials. Nanofibrillated pulp fibers, liquid wood of Tecnaro, and some natural plants that possess high quality fibers like hemp, miscanthus or kenaf, are various examples of the current trend for developing greener products with same or higher properties of conventional non renewable plastics or reinforced plastics. Due to some costs advantages and properties, biomass materials sourced composites are being increasingly used in automotive industries as a result of their superior strength/weight and stiffness/weight ratios. (Tecnaro website; Pääkkö, 2007; Ashori, 2008; Akil et al., 2011 Processes for producing reinforced plastic composites are numerous. (Malkapuram et al., 2009) Most of them are facing a common hurdle, besides the amount of energy usually required (especially heat) for processing. The most severe problem influencing the functional properties of composites filled with lignocellulosic materials is their insufficient adhesion to the majority of polymers. Like water and oil, the differences in polarity of the composite components result non-uniform dispersion of fibers within the polymer matrix, which is the main explanation in composites poor mechanical properties. Polymers are non polar (hydrophobic) while lignocellulosic fillers show high polarity related to the chemical structure of cellulose, hemicelluloses and lignin. Chemical and physical modifications are then ofen performed to improve the adherence between the inputs. Acetic acid anhydride is the most used coupling agent at the industrial stage. Other chemical methods are etherification, reactions with organosilane compounds, furfurylation, reactions with isocyanates, reactions with titanium or borate compounds, and treatment with compounds which contain methylol groups, or promoter such maleic acid (Paukszta and Borysiak, 2013). For physical modifications, the main techniques are stretching, calendaring thermal treatment, production of hybrid yarn, methods based on electric discharge, which do not change the chemical structure of the fillers. To change the chemical structure and bonds, oxidisation, cold plasma, thermal modification and mercerization are

also screened. (Paukszta and Borysiak, 2013) However only few papers evoke processes that use subcritical water or hot pressurized water as a way for enhancing the adherence between polymer matrix and the biomass material. Most of the time, subcritical water is a process that aims to extract chemicals materials or convert biomass into energy source. (Schröder et al., 2011; Roque et al. 2012) Cellulose is also the material for the next generation product. Nanofibrillisation and the use of nanofibrillated cellulose at industrial stage are still in progress but show promising possibilities, like transparent sheet (Fujisawa et al., 2012), food additive for ice cream (Nissei and Kyoto City Industrial Technical Centre) or reinforced plastic composites as well (Takahashi et al., 2013). In response to the limits and prerequisites for processing polymer and lignocellulosic materials, Mr Morimoto develops MF process.

MF machine as an efficient process for adding value to biomass byproducts Process basics: shearing and subcritical water Description of the process The process relies on two main features: shearing mixing and subcritical water. The critical one is the multidirectional shearing force. The shearing system turns at 2000 rpm and the special geometry of the screw offers several benefits.

Fig.1 The screw: left part feeder, right part mixer (M&F Technology)

Vol. Vol. 6569 - n°3 - n°1 >>>> Août-Septembre Février - Mars 2015 2011

9


8th CTP/PTS

Symposium on Packaging Design and Recycling

The collisions provoked by the system produce energy that will lead to the temperature raise inside the reactor. There is then no external heating but there is a cooling system to avoid rapid surge that could lead to carbonization. The temperature rises to almost 250°C in 10 seconds, and the reaction takes about 30 seconds. Collision between materials and collisions of water particles that are said to give 42,7°C to the system for each collision according to Mr. Morimoto’s calculations are the only mean for this energy production.

Fig.2 Temperature raise pattern: in about 10 seconds, temperature reaches 240-250 °C in 10 seconds (M&F Technology)

Due to the intern conditions with such temperature and saturated water vapor pressure, subcritical water or hot pressurized water actions may occur at local level. Each collision offers a moment for a “water cluster” or local hot pressurized water action on the lignocellulosic material. Stable pressure cannot be guaranteed inside the vessel as vapor leaks from it during the reaction.

lose and lignin, acetic acid or anything else in the crushed biomass material, less force is needed (fig.3, H5 to H7). Inside the device, the reaction continues. Cellulose, hemicellulose and lignin are then resinificated / repolymerised around the polymer matrix. As their density increases and as their viscosity increases too, the torque increases (fig.3 , H8). The water passes then to the vapor state. The material inside the machine is then dried. Remaining water and acetic acids are said to be expelled at the stop of the screw.

Fig. 3: In blue, the frequency in Hz of the rotation (max = 50 Hz), in red the torque (moment force) ratio evolution.

Data below (fig.4) indicate that some of the biomass material is dissolved within the water expelled at the end of the

One more important effect of the shearing system is the higher level homogeneity compared to a twin screw extruder (Takahashi et al., 2013). That is important because this compounding technique does not necessary require chemical dispersive agents – even if they can help to increase even more the structure. The second important feature is the use of the water inside the biomass input as a potential mean for enhancing adherence between the two materials with different polarities. According to Mr. Morimoto’s modelization and process design, each isolated collision creates a little moment of subcritical state. In this state, the activity of the water increases: it behaves like an acid. The water refines the biomass by splitting cellulose and hemicellulose, cellu-

10 # Vol. 69 65 - n°1 66 n°3 >> Février n°4 Août-Septembre Novembre - Mars 2012 2015 2011

Fig.4 Results from the Mass spectral deconvolution analysis of expelled water from a 50 % PP and 50 % cryptomeria wood powder batch : mainly sesquiterpenoid alcoholic components. (analysis done by Erini, Grasse)


8th CTP/PTS

Symposium on Packaging Design and Recycling

process. However there is no trace of any acid as it has been expected. If their absence in the remaining expelled water does not mean there was no subcritical water presence, acids and especially fatty acids may have either escaped in the vapor or be destroyed by the heat. Therefore further investigations are needed about the internal reactions. Process comparison Manufacturing composites with cellulose can be challenging if the process does not offer good homogeneity results that can lead to difficulties when the composites is molded. Pulp (fiber length about several ten micrometers) and cellulose nanofibers (CeNF, about 1 to 100 nanometers) have been tested as filler with two processes: twin screw extrusion and MF machine (Takahashi et al., 2013). The results told that the MF machine was more efficient to deliver a final compound with increased homogeneous dispersion that leads to improved mechanical properties (here 10% of filler with PP).

Fig. 6 Twin screw extruder vs MF machine: flexion modulus in black and flexion strength in grey. (Takahashi et al., 2013)

Fig. 7 Twin screw extruder vs MF machine: traction modulus and traction strength in grey. (Takahashi et al., 2013) Fig. 5 X-ray pictures: top from a compound made with twin screw extruder, below with MF machine. There is no agglomerated fiber of 2 mm with pulp as filler such in the top picture with the MF machine. (Takahashi et al., 2013)

Contrary to the statements of Takahashi, a water rate higher than 20% is not a barrier, but the process should be carefully monitored as collisions of water particles may accelerate the temperature raise. Alvarez method for compounding gives the impression to waste a lot of energy: pretreatments duration is between 3h and 30 min with temperature between 180 and 300°C, then blending lasts for 30min at 150°C (Alvarez, 2005). Bembenic experimentation with subcritical water also re-

quires a lot of energy with reactors preheated to 365°C for more 30 min (Bembenic, 2012). In comparison, the time for processing a batch of wood composites (around 30-40 L, but never full capacity) is between 30 seconds and 1 min with the MF machine, while the temperature surges in 10 seconds. In some extends, M&F Technology process seems close to Fujimura Invent process that claims to have the best combination between reaction yield and energy cost (Fujimura Invent website).

Adaptable to many inputs and many applications According to the different data gathered, several tries have

Vol. Vol. 6569 - n°3 - n°1 >>>> Août-Septembre Février - Mars 2015 2011

11


8th CTP/PTS

Symposium on Packaging Design and Recycling

been performed with MF machine for different kind of applications. Of course, size of fibers, morphic structure, chemical compositions, density, thickness, fibre percentage, and amount and type of bonding agent (if any) impact composites properties. Pulping process within same species of biomass, fibers preparation, and fibers types offer wide range of solutions. (Ashori, 2008) Contrary to several compounding processes, MF process requires some water inside the reactor for operating perfectly. Therefore, the optimal water rate or humidity range between 10% to 40%, dried fibers for example should not be used with this device. Although higher water rates can be processed such in the case of paper sludge or farming sludge, the reaction is slower. Lower water rate than 10% is not possible in regard to the process that uses water in a subcritical state or near to this point for improving the adherence. In those cases, water should be added or other process should be used. Polymers and some thermoplastic elastomers (SBS for example) can be used. Additives can be also added in the machine for enhancing the mechanical properties, the homogeneity (maleic acid) or change in its other properties (electrical conductivity...). Additives masterbatch are also possible, such elastomer or plasticizer for changing the material properties or facilitating the molding process. With wood and for extruded products, rate of biomass is generally closer to 80-90 %. The following picture displays boards made from different compounds: - The top one: mix of different woods 85 % + PP 15 % - Down left one: construction wood (from disbanded housing) 85% + 15% PP - Down middle one: Fir tree 80% + 20% PP - Down right one: 85% Cedar + 15% PP

For injection, depending on the biomass, rate of biomass can vary to 20% to 70%. This range can be explained by the lignocellulosic materials and their quality present in the biomass, the final application (e.g. only need to use some fibers for reinforcing a polymer) , the mold characteristics and the polymer used. The figures 8 to 11 show the different objects produced by injection molding or other molding process.

Fig.9 sheet made from a bamboo compound (50%/50% PE)

Fig.10 a cardboard-like product 50% pulp + 50% PP

Fig.11 injected paper sludge compound (50%/50% PP)

Fig.12 injected tobacco filter compound (50%/50% PP)

Formulation requires then an important investigation in order to match the needed requirements. Process can also be adapted, with some pre-treatments or post-treatment: the fig 13 and 15 exhibit products that are processed by the MF machine but biomass or composite can undergo treatment to change the material properties. Toyota Boshoku kenaf has been tested after boiling and beaming,

Fig.13 injected phone shell with cellulose pulp: from normal white pulp (left) and heavy beaten pulp (right) (rate 50%/50% PP) Fig. 8: extruded boards

12 # Vol. 69 65 - n°1 66 n°3 >> Février n°4 Août-Septembre Novembre - Mars 2012 2015 2011

Fig.14 injected part made from a milk package composite (100 %) Polymer inside the package was used as matrix, paper as fibre and aluminum allows electrical conductivity


8th CTP/PTS

Symposium on Packaging Design and Recycling

cellulose pulp has been tested in regards to different beaten processes. It will be highlighted later with figures in the results chapter.

Fig.15 injected bowls made from bamboo charcoal (sumi). Left : sumi (40%) + ABS/PET mix (60%) Right : sumi (50%) + mix of ABS/PET/Mg(OH)2 (50%)

Fig. 16: Comparison data of mechanical properties between materials

Results: data on compounds M&F composite displays usually better mechanical properties than other composites made with the same inputs. We can see these differences with WPC (fig.16) and with cellulose fibers reinforced plastics. Fig.17: Pulp + PP with M&F Technology process, first injection molding cycle (Mitsubishi Paper) (double Cellulose fiber reinforced circle = very good, circle = good, triangle = average, cross = bad) thermoplastics (5 different samples with different blending ratios and additives) have been molded twice without big loss of its mechanical properties if looking at the data from fig.17 to fig.19. Compared to normal wood, WPC processed with this method is denser than wood, and consequently does not float. Increased hardness, Fig.18: Pulp + PP with Other company process, first injection modling cycle (Mitsubishi Paper) (double density, and compressive circle = very good, circle = good, triangle = average, cross = bad) strength, the possibility of remolded the composites, air gap or biomass materials heap that could provide posuggest a strong adherence between the polymer matrix tential weakness points during the molding cycle. and biomass inputs. Homogeneity seems also to be an Of course all of the properties can be modified with acimportant to provide a homogenous compound without

Vol. Vol. 6569 - n°3 - n°1 >>>> Août-Septembre Février - Mars 2015 2011

13


8th CTP/PTS

Symposium on Packaging Design and Recycling

Fig.19: Previous samples were crushed and injected again (Mitsubishi Paper)

curate formulating that also encompasses pre treatments. Toyota Boshoku did several tests that reveal the variations between formulas and processes, with or without pre treatments. In the fig. we can also see that polymers from renewable resources can be used as matrix, in this case PLA. The kenaf here improves significantly the mechanical properties of the PLA and different rates of kenaf inside PP composites also change the final material abilities (fig.20). Higher rates of kenaf are correlated with superior mechanical properties. Treatment of the biomass can also lead to different materials from the same resource (fig. 21 and fig.22). Recyclability of the materials have also be discussed, and the blended material (85% wood + 15% PP) can be burned with an energy production of 6140 kcal/kg (wood pellets average = 4200 kcal/kg) according to tests made by Ehime University and Shinkou Kouki Co.

Fig. 21 Mechanical properties change after electron beaming treatment on the kenaf before processing

Conclusion M&F Technology original process offers a new possibility for valorizing paper and packaging industries by-products and wastes into reinforced plastics. This solution may be envisaged according to the resources and the final applications researched as we saw that formulation, post and pre treatments can lead to changes in the final material characteristics. Fig. 22 Mechanical properties change after boiling the kenaf before processing

Fig.20: Mechanical properties change according to inputs variations (Toyota Boshoku)

14 # Vol. 69 65 - n°1 66 n°3 >> Février n°4 Août-Septembre Novembre - Mars 2012 2015 2011

Due to the need of water inside the biomass, this technique may also be well suited for sludge and wet biomass that are usually dried before elimination. The heterogeneous nature of some rejects or wastes, that contain also plastics or other materials, is not an obstacle if the com-


8th CTP/PTS

Symposium on Packaging Design and Recycling

position of the rejects is known. Each element inside them can be useful in the new material. However, this current capacity of the MF machine is still small (less than 40 L/ batch) compared to industrial requirements and should be reserved to high grade compounds. Then, further research is needed to overcome the lack of data about the internal reactions, especially about the subcritical or hot pressurized water supposed action. For a same formula, MF machine helps to produce an enhanced composite due to its unique shearing system compared to the twin screw extruder. Homogeneity and dispersion inside the reinforced thermoplastic is important for easy molding and stronger mechanical properties. Better adherence between the two materials and better dispersion may be also explained by the subcritical water or hot pressurized water action that modifies the hydrogenous bond during the oxidation. Cellulose, nonocellulose, which is mixed with water usually, bark, paper, label, packaging etc. can have a second life or a new utilization with a low CO2 footprint.

Maria Möller, Falk Harnisch and Uwe Schröder, “Hydrothermal liquefaction of cellulose in subcritical water—the role of crystallinity on the cellulose reactivity”, RSC Advances, 2013, 3,11035 Tecnaro website: http://www.tecnaro.de/english/geschichte.htm?section=we M. Pääkkö, M. Ankerfors, H. Kosonen, A. Nykänen, S. Ahola, M. Österberg, J. Ruokolainen, J. Laine, P. T. Larsson, O. Ikkala, and T. Lindström “Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels”, Biomacromolecules 2007,8,1934-1941 Alireza Ashori, “Wood–plastic composites as promising greencomposites for automotive industries!”, Bioresource Technology 99 (2008) 4661–4667 H.M. Akil, M.F. Omar, A.A.M. Mazuki, S. Safiee, Z.A.M. Ishak, A. Abu Bakar, “Kenaf fiber reinforced composites: A review”, Materials and Design 32 (2011) 4107–4121 Ramakrishna Malkapuram, Vivek Kumar and Yuvraj Singh Negi, “Recent Development in Natural Fiber Reinforced Polypropylene Composites”; Journal of Reinforced Plastics and Composites, 2009; 28; 1169

Acknowledgements

Dominik Paukszta, Slawomir Borysiak, “The Influence of Processing and the Polymorphism of Lignocellulosic Fillers on the Structure and Properties of Composite Materials—A Review”, Materials 2013, 6, 2747-2767

I thank Dr. Rémi Servien (INRA, Toulouse University), Dr.Benoît Rey-Robert et Dr. Nicolas Hengl (LRP, Grenoble University) for the review of my article, Mr. Alain Cochaux (CTP) who invited me to do this paper, and of course Mr. Masachika Morimoto for the provided data.

Roque RMN, Baig MN, Leeke GA, Bowra S, Santos RCD. Study on sub-critical watermediated hydrolysis of Miscanthus X lignocellulosic biomass. Resour Conserv Recy, 2012; 59:43–6.

References Toyota Boshoku website: http://www.toyota-boshoku.com/global/news/120214.html http://www.toyota-boshoku.com/global/news/120209.html Masanori Hashiba, “Themoplastic resin composition, method for producing same, and moldings”, Toyota Boshoku, European Patent EP 2 292 698 A1, 2011 Masachika Morimoto, “Mixing and pulverizing device and method for cellulose material impregnated with binder”, M&F Technology, European Patent EP1 604 732 B1, 2010 Lise Appels, Raf Dewil, “Biomass valorization to energy and value added chemicals: The future of chemical industry”, Resources, Conservation and Recycling 59 (2012) 1– 3 Maria Möller, Peter Nilges, Falk Harnisch, and Uwe Schröder, “Subcritical Water as Reaction Environment : Fundamentals of Hydrothermal Biomass Transformation”, ChemSusChem, 2011, 4, 566 – 579.

Shuji Fujisawa, Tomoyasu Ikeuchi , Miyuki Takeuchi , Tsuguyuki Saito , and Akira Isogai “Superior Reinforcement Effect of TEMPO-Oxidized Cellulose Nanofibrils in Polystyrene Matrix: Optical, Thermal, and Mechanical Studies”, Biomacromolecules 2012, 13, 2188 Soichi Takahashi, Hiroyuki Tanaka, Hiromi Hashiba, Kisaku Shimizu, Wataru Mizuno, “Application of Cellulose: Manufacturing Stronger and Lighter Bioplastic Combined Cellulose with Plastics”, Japan Tappi Journal, 2013, Vol 67, N°4 P. Alvarez, C. Blanco, R. Santamarıa, M. Granda, “Lignocellulose/pitch based composites”, Composites: Part A 36 (2005) 649–657 Meredith A. Hill Bembenic, and Caroline E. Burgess Clifford, “Subcritical Water Reactions of a Hardwood Derived Organosolv Lignin with Nitrogen, Hydrogen, Carbon Monoxide, and Carbon Dioxide Gases”, Energy Fuels 2012, 26, 4540−4549 Fujimura Invent website: http://www.f-invent.com/arinkai.html

Vol. Vol. 6569 - n°3 - n°1 >>>> Août-Septembre Février - Mars 2015 2011

15


Palmes de l’innovation 2014 - Palme d’argent

LignoBoost – Système d’extraction de la lignine pouvant compléter la ligne de production de pâte.

V

almet Corporation est une société de premier plan au niveau mondial qui développe et fournit des services et des technologies pour les secteurs de la pâte, du papier et de l’énergie. La gamme de services s’étend de l’externalisation de la maintenance aux améliorations des sites et ateliers en passant par les pièces de rechange. Le savoir-faire technologique permet de fournir des lignes entières pour les usines de pâte, les usines de fabrication de Tissue, de carton et de papier ainsi que pour les centrales de production en bioénergie. La société possède une histoire industrielle longue de plus de 200 ans et son nom a revu le jour suite à la scission des activités pâte, papier et énergie du Groupe Metso en décembre 2013. Une des missions affichées de Valmet est de tirer le meilleur avantage des matières premières au cœur du process papetier. C’est avec cette idée directrice que Valmet a développé son nouveau concept LignoBoost. Il permet d’extraire, lors de la phase d’évaporation, la lignine de la liqueur noire pour créer une valeur ajoutée additionnelle pour les usines de pâte chimique. LignoBoost est une ligne complète qui sépare, purifie, lave et presse la lignine.

La lignine est un des trois principaux composants du bois représentant entre 15 à 25% de sa composition parmi la cellulose (38 à 50%) et l’hémicellulose (23 à 32%). Ce polymère de phényl propane avec un fort taux de carbone possède d’excellentes propriétés énergétiques lui permettant ainsi d’être utilisé en tant que carburant dans divers secteurs. De plus, ses propriétés chimiques permettent à la lignine d’être utilisée pour remplacer les matières premières d’origine fossile dans une large gamme de produits comme les plastiques, les produits chimiques ou les fibres de carbone. D’un résidu à éliminer dans la chaudière, la lignine redevient une matière première utilisable ... via le LignoBoost. Les propriétés naturelles antioxydantes de la lignine permettent également son utilisation dans les formules topiques et cosmétiques. Une autre utilisation de la lignine est d’accroître les performances des batteries. La lignine formant une fine couche sur la surface de graphite, empêche la diminution de la surtension d’hydrogène sans altérer l’état du graphite. Cette diversité d’applications offre aux usines une ressource économique supplémentaire, la principale source d’extraction de la lignine venant de la cuisson lors des process de fabrication de pâte. Autre avantage dans le domaine papetier, l’extraction de la lignine permet d’accroitre les capacités de production de l’usine. Les chaudières de récupération sont généralement utilisées à proximité de la limite maximale de leur charge thermique. Or la lignine possède un fort pouvoir calorifique et représente par la même occasion 35% de

16 # Vol. 69 65 - n°1 66 n°3 >> Février n°4 Août-Septembre Novembre - Mars 2012 2015 2011


Palmes de l’innovation 2014 - Palme d’argent

la teneur en solide dans la chaudière. Ainsi lorsqu’elle est retirée avant la combustion, elle diminue la teneur en matière sèche et le pouvoir calorifique de la liqueur noire. La chaudière de récupération par conséquent déchargée thermiquement peut alors prendre un plus grand tonnage de liqueur noire et ainsi augmenter les capacités de production de l’usine. La première unité LignoBoost a démarré en 2013 à la bioraffinerie de Domtar à Plymouth en Caroline du Nord. L’unité a été conçue pour produire jusqu’à 75 tonnes par jour de lignine de haute qualité en tant que sous-produit du procédé de fabrication de pâte kraft. La lignine est vendue sous le nom de Biochoice, une alternative 100% bio aux produits d’origine fossile.

La première unité LignoBoost au monde, à Domtar Plymouth aux Etats-Unis, a une capacité de 25 000 tonnes de lignine par an. L’unité LignoBoost a été lancée en 2013 et a permis à Domtar de réduire la charge de la chaudière de récupération et d’augmenter la production de pâte. Aujourd’hui Domtar vend la lignine sous le nom BioChoice™ lignine.

En juillet 2014, un accord a été signé entre Domtar Corporation et UPM, qui nomme UPM en tant que distributeur exclusif de la lignine BioChoice pour l’Europe.

LignoBoost apporte ainsi une valeur ajoutée supplémentaire aux usines de pâte par l’extraction sous forme de lignine de l’excédent potentiel d’énergie disponible.

Vol. Vol. 6569 - n°3 - n°1 >>>> Août-Septembre Février - Mars 2015 2011

17


Palmes de l’innovation 2014 - Palme de bronze

In-Line PCCTM ¯ VIZSPYXMSREV] ½ PPIV ERH ½ PPIV ½ FIV GSQTSWMXI ERH TVSHYGXMSR XIGLRSPSK] JSV TETIV ERH FSEVH TVSHYGXW Jouni Matula, Olavi Imppola, Karri Tahkola Wetend Technologies Ltd, Savonlinna, Finland

Introduction In-Line PCC™ is a novel straight forward precipitated calcium carbonate (PCC) filler production process consisting of TrumpJet® Flash Mixing Reactor integrated into paper/ board machine head box approach flow system, specialized lime slaking and grit removal sub-process and milk of lime and carbon dioxide storage and dosing system. The process is integrated directly to paper/board production line. The key benefits of the process are: extremely fast crystallization reaction, high quality filler crystals, powerful fiber loading effect, very high retention of filler and fines, excellent strength and optical properties with first-class formation of the sheet and less need of fresh water per paper/board ton produced. The process also cleans paper/ board machine approach flow system providing excellent runnability and high production efficiency. Investment cost is significantly lower compared to conventional onsite PCC plant. The process generates filler -fiber composites. In composite structure fibers, fibrils and firmly anchored InLine PCC™ crystals slide less between each other which increases the wet strength of paper web. The composite structure provides the opportunity to increase filler content of paper/board sheet. In-Line PCC™ process binds and eliminates interfering colloidal substances resulting to cleaner paper/board machine approach flow system with reduced solids content and chemical oxygen demand (COD) of white water. The cleaner process improves runnability. It also increases efficiency of general wet end additives. Cleaner process

18 # Vol. 69 65 - n°1 66 n°3 >> Février n°4 Août-Septembre Novembre - Mars 2012 2015 2011

decreases load to mill waste water plant and reduces the waste disposal to landfill. Majority of In-Line PCC™ crystals attach to fibers and fibrils during the carbonation process without any retention aid and the strength of filler-fiber composite is very high. With this technology retention aid consumption reduces up to 80 % depending on furnish and grade. In addition to cost savings of retention chemicals the web formation is significantly improved. Instead of fresh water the lime slaking process can utilize clean white water filtrates which cuts down fresh water consumption compared to conventional use of fillers. In-Line PCC™ filler-fiber composite is a new type of filler raw material. It is competitive in quality, price and in technology. The technology is protected with several patents and patent applications.

1) In-Line PCC™ process and production methods Because the process is integrated directly to paper/board production process the investment cost is significantly lower compared to conventional on-site PCC (satellite) plant. Approximately 20…25% of total investment cost of a satellite unit. With this special technology paper/board producer can produce calcium carbonate filler independently, in-line, under own control as part of the main production process. The production crew that takes care of the paper/board wet end process will also operate the In-Line PCC production.


Palmes de l’innovation 2014 - Palme de bronze

Carbon dioxide gas (CO2) and Milk of lime, Ca(OH)2 In-Line PCC™ technology exploits today commercial liquid carbon dioxide. CO2 recovered from fumes of boiler plant or lime kiln can also be easily used provided that the carbon dioxide gas recovery system is available. In-Line PCC™ process requires fine milk of lime produced on-site from quicklime (CaO). This is done in a lime slaking and grit removal sub-process. The quality of milk of lime is controlled by slaking and grit removal process parameters. The lime quality has an essential role both in operation of the process and in the nature of filler-fiber composite produced. The CO2 gas and milk of lime slurry is inserted and mixed into In-Line PCC Flash Mixing Reactor with TrumpJet flash mixing injection technology. Carbonation process, In-Line PCC Flash Mixing Reactor In-Line PCC™ carbonation process is extremely fast. The average reaction time in PCC crystallization is less than one second. In conventional on-site PCC production the carbonation process takes tens of minutes, even hours.

Figure 1. In-Line PCC™ Flash Mixing Reactor.

Figure 3. In-Line PCC™ Flash Mixing Reactor installation in paper machine approach flow system.

counter rotating vortex pairs generated by TrumpJet® chemical mixers, gives fast, chaos kind of immediate and efficient mixing for CO2 gas and milk of lime slurry. The gas is precipitated into tiny, quickly dissolving micro bubbles together with precipitated calcium hydroxide. The very high water volume of paper/board machine approach system stock flow enables rapid dissolution of the reacting chemicals to water phase where PCC crystallization occurs. The reacting chemicals are fed into the process in appropriate stoichiometric relationship.

Process analyzing and optimizing tools At the process development phase it was soon discovered that due to the extremely fast reactions normal laboratory or test devices could not be used. Wetend Technologies had to design and build several new equipment with cooperation partners to study, develop and analyze the truly fast In-Line PCC carbonation process and TrumpJet® Flash Mixing technology for the application. In-Line PCC™ Flash Mixing Laboratory Carbonator In-Line PCC™ Flash Mixing Laboratory Carbonator is specially designed for fast carbonation trials and tests. It is a flexible and very practical tool to make several carbonations in a day with numerous variables.

Figure 2. Location of In-Line PCC™ Flash Mixing Reactor in paper machine approach flow system.

The key for high precipitation reaction speed is fast mass transfer of reacting chemicals. This is achieved by TrumpJet® Flash Mixing technology. Injection technology with

Figure 4. In-Line PCC™ Flash Mixing Laboratory Carbonator.

Vol. Vol. 6569 - n°3 - n°1 >>>> Août-Septembre Février - Mars 2015 2011

19


Palmes de l’innovation 2014 - Palme de bronze

In-Line PCC™ Flash Mixing pilot unit In-Line PCC™ Flash Mixing pilot unit is a specially designed moveable Flash Fixing Reactor to run continuous, fast carbonation trials at the mill site next to paper/board machine. It enables continuous application tests in relevant process conditions for operation of several weeks if necessary. The PCC filler-fiber loaded stock can further be processed to hand sheets for paper quality measurements

colloidal substances resulting to cleaner paper/board machine approach flow system e.g. reduced solids content and chemical oxygen demand (COD) of white water. The cleaner process improves paper/board machine runnability. Cleaner circulation water also increases efficiency of general wet end additives. This also improves and eases operation of mill waste water plant and reduces waste disposal and landfill. The cost saving potential can be especially high at paper machines where de-inked pulp is used. Typical practical result can be seen as reduction of sheet brakes and lower load to waste water treatment.

Figure 6. In-Line PCC™ process binds colloidal substances decreasing conductivity in circulation waters. Reference point was measured just before In-Line PCC™ process was started. Figure 5. In-Line PCC™ Flash Mixing pilot unit.

In-Line PCC™ Reactor at a pilot Paper/Board machine Wetend Technologies has an access to a pilot paper machine equipped with In-Line PCC™ Flash Mixing Reactor. The pilot paper machine gives relevant information of paper quality prior operation in full scale production. Figure 7. Turbidity of White Water

2) Results and discussion In-Line PCC process has been installed on a SC-magazine paper production line and a fine paper production line in Finland for commercial production. Both are large full scale paper machines. Results are presented based on the results of the production lines and on full scale production trials with other paper making lines. Cleaner paper/board machine approach flow system In-Line PCC™ process binds and eliminates interfering

20 # Vol. 69 65 - n°1 66 n°3 >> Février n°4 Août-Septembre Novembre - Mars 2012 2015 2011

Filler-fiber composite; High retention of filler and fines 50−70% of In-Line PCC™ crystals are attached to the fibers and fibrils during the carbonation process without any retention aid after shear of process equipment. Thus the robustness of filler-fiber composite is very high. With this technology retention aid consumption reduces up to 80 %. In addition to cost savings of retention chemicals the web formation is significantly improved. Optical and strength properties of paper web Uniform filler distribution in paper/board and small PCC crystal size result excellent optical properties (brightness,


Palmes de l’innovation 2014 - Palme de bronze

paper/board producer can take the advantage of high light scattering with several ways, e.g. lower the grammage or use less optical brightening agent (OBA).

Figure 8. High retention of filler and fines reduces the need of retention aid.

light scattering and opacity), first-class formation and strength of paper web. PCC crystallization begins from a solid nucleus present in the short circulation white water, on a particulate or on a surface of a particle. Stock includes a lot of fines, fibrils and fibers where PCC crystals attach instantly and begin to grow. The mean particle size (PSD50) of In-Line PCC is 0.8 µm. Usually PSD50 of on-site scalenohedral PCC is about 3.0 µm and for chalk it can be up to 90 µm. Because the optimal light scattering is reached with 250-500 nm particles and when In-Line PCC™ crystals are evenly distributed in paper web, excellent light scattering is achieved. A single PCC crystal is thus more effective than a flocculated stack of crystals generated with retention chemicals. A

Figure 9. In-Line PCC™ filler-fiber composites. Strong mechanical bonding of PCC crystals with fibers and fibrils, ensures excellent strength properties. PCC crystals attached to fibrils open the web structure and help to maintain bulk even though the average crystal size of In-Line PCC™ is much smaller compared to on-site scalenohedral PCC.

The process generates filler-fiber composites. In composite structure fibers, fibrils and firmly anchored In-Line PCC™ crystals slide less between each other which increases the wet strength of paper web. There is less need of draw to web at paper machine. This factor gives the opportunity to increase filler content of paper/board sheet. The cost saving potential especially in printing paper grades but also in board products is significant.

Vol. Vol. 6569 - n°3 - n°1 >>>> Août-Septembre Février - Mars 2015 2011

21


Palmes de l’innovation 2014 - Palme de bronze

Literature Roskill Information Services Limited (2012) Ground and Precipitated Calcium Carbonate: Global industry markets & outlook. Imppola O., Tahkola K., Matula J. Paperin tai kartongin valmistuslinjaan integroitu In-Line PCC™ -prosessi. Paperitehdaspäivät 2010 -seminaari, Savonlinna, Finland. Wetend Technologies Ltd. internal material. Imppola O., Tahkola K., Matula J. (2010) Uusi papertehtaan prosessiin integroitu täyteaineen valmistuskonsepti. Paperitehdaspäivät 2012 Bulk cm3/g Reference In-Line PCCTM -seminaari, Savonlinna, Trial 1 1,29 1,27 1,31 1,29 1,37 1,35 1,31 1,36 Finland. Wetend Techno2 1,37 1,38 1,32 1,34 1,34 1,33 logies Ltd. internal mate3 1,29 1,34 1,34 1,34 1,35 1,32 1,35 1,31 rial. 4 1,36 1,33 1,33 1,32 1,30 1,36 1,35 Matula J., Imppola O., 5 1,34 1,32 1,31 1,30 1,25 1,31 1,31 Tahkola K., (2013) New In-Line PCC filler-fiber Table 1. Bulk is adjustable with In-Line PCC™ technology. Results composite opens opportunities for paper and board milobtained from pilot paper machine. ls. TAPPI Paper Conference 2013, Atlanta, GA.. Wetend Technologies Ltd. internal material. The different pore size distribution and structure of In-Line Matula J., Imppola O., Tahkola K., (2014) New In–Line PCC™ paper results in less print through and missing dots PCC™ filler-fiber composite opens challenging opportuat printing (off-set, gravure). nities for paper and board mills. PTS International Symposium on Applied Interface Chemistry. Munich. Wetend Technologies Ltd. internal material. Structure of paper web In-Line PCC™ crystals favour fibrils and fines of the stock. The filler-fiber composites open the structure of paper web and ease dewatering. This cuts down production costs in machine press and drying sections and creates potential to increase machine speed if this process part is the bottleneck of paper/board machine. The more open sheet structure gives also opportunities to adjust and control bulk, that is a very important property especially for copy papers.

Figure 11. SC-magazine paper: paper porosity is more uniform. There are less big pores resulting in less print through.

Summary In-Line PCC concept of Wetend Technologies Ltd is a process to produce calcium carbonate filler directly inside and in-line the production process of paper or board mill. PCC crystals are strongly fixed on the surfaces of fibers and fibrils. This forms a filler-fiber composite structure with above described benefits. As results costs are cut and paper properties are improved. Typically cost of produced filler is very competitive and payback time of the investment is short. Production is managed without additional personnel. The first In-Line PCC processes are already commercialized.

22 # Vol. 69 66 - n°1 n°4 >> Février Novembre - Mars 2012 2015

Figure 12. Less print through and missing dots. Results obtained from SC paper.


Vol. 65 - n掳3 >> Ao没t-Septembre 2011


Infos

Alpes-Congrès – Grenoble 24-26 Novembre 2015

Les Rencontres de l’Union Papetière 2015

L

es informations ci-dessous, concernant le prochain congrès 2015, complètent celles communiquées dans l’édito co-signé du Président Hugues LEYDIER et de Franck RETTMEYER, Président du SYMOP.

HABFAST, Vice-président de la GRENOBLE ALPES METROPOLE, Conseiller Municipal de la Ville de Grenoble, qui a présidé le dîner ATIP au Stade des Alpes.

Lieu Après l’analyse d’une part, des différentes possibilités de lieux, de nos objectifs de dates et des autres évènements papetiers et, d’autre part, des souhaits exprimés par nos Comités Directeur et d’Organisation, nous avons choisi GRENOBLE pour la deuxième année consécutive. Cette décision est aussi en relation avec le résultat des partenariats établis pour congrès de l’année dernière, avec les collectivités locales et territoriales de la Région Rhône-Alpes. Notre choix s’est porté sur Alpes-Congrès Grenoble Alpexpo (établissement rénové) présidé par Claus

24 Vol. 69 - n°1 >> Février - Mars 2015

Dates • Mardi 24 novembre 2015 (après-midi) ¶ 3H WSHUPÄ JH[PVU des évènements n’est encore pas arrêtée. • Mercredi 25 novembre 2015 : journée de conférences techniques (sujets basiques du génie papetier). Volonté de revenir aux fondamentaux de la fabrication du papier carton. • Jeudi 26 novembre 2015 : journée de conférences techniques (sujets basiques du génie papetier).


Infos

Autres évènements au cours de cette semaine papetière : • Jeudi 26 novembre 2015 : Assemblée Générale de SH *,33<36:, LU Ä U K»HWYuZ TPKP H]LJ SL KzULY KLZ anciens élèves de PAGORA. • Vendredi 27 novembre 2015 : conseil d’administration de PAGORA et de l’AGEFPI (Association de Gestion de L’Ecole) le matin et cérémonie de remise des diplômes l’après-midi suivie d’un dîner.

Schéma de principe (non contractuel)

Alpes-Congrès Grenoble La surface réservée se décompose en 3 zones selon le schéma ci-dessous : Zone 1 : Agora de contacts Espaces confortables, aménagés de fauteuils rondo et tables basses. Possibilité de réserver un espace pour une Yt\UPVU JVUÄ KLU[PLSSL V\ JVTTLYJPHSL Zone 2 : Espaces ouverts libres pour réunions de travail ou commerciales, pour un focus technique ou une opération « tutoriel » avec les élèves de PAGORA. Zone 3 : 7VPU[Z YLUJVU[YLZ PKLU[PÄ tZ ­ ZVJPt[tZ ® L[ LZWHJLZ partenaires équipés selon notre offre commerciale habituelle mais avec des conditions plus attractives. Autres zones : Tribune centrale pour les conférences techniques (pas de salle séparée) pour maintenir en permanence une bonne liaison et visibilité entre les participants aux conférences et ceux présents sur les différentes zones de contacts. L’aménagement de cette tribune sera adaptée pour une bonne acoustique et en s’inspirant de celle proposée par le SYMOP au Salon de l’Emballage (cf. photo ci-dessous). Elle pourra accueillir une soixantaine de personnes :

2 salles sont à la disposition de notre organisation (salle Bayard et salle Stendhal) pour un évènement particulier avec un fournisseur, pour un atelier opérateur, pour une exposition posters, pour la poursuite d’une discussion concernant une conférence technique etc…

Les fondamentaux du nouveau concept : « Les Rencontres de l’Union Papetières » 1. Notre premier objectif est de viser une plus forte participation des opérateurs d’usine, en proposant des thèmes au cœur des problématiques papetières actuelles et permettre la recherche d’opportunités d’innovations et de solutions de progrès pour la meilleure performance industrielle. Nous citerons par exemple les quelques sujets basiques suivants, au cœur des préoccupations permanentes des producteurs proposés par une direction d’usine : bon dimensionnement des circuits en partie humide - Bonne utilisation des produits chimiques - Bien choisir ses habillages - La gestion du ]PKL LU WHY[PL O\TPKL )PLU PKLU[PÄ LY S»LMÄ JHJP[t K\ pressage - Équilibres thermodynamiques en sècherie Nouvelles technologies d’ennoblissent sur machine, de la surface du papier et du carton - Comment améliorer le temps de démarrage d’une machine à papier et H\NTLU[LY S»LMÄ JHJP[t PUK\Z[YPLSSL *LZ PKtLZ ZLYVU[ des sous-ensembles de notre appel de conférences général selon l’encadré qui suit. 2. Nous devons insister sur l’importance de « l’union fait la force », d’une profession solidaire pour mobiliser, rassembler et progresser. Pour cela il nous faut davantage convaincre nos dirigeants, mieux communiquer sur les enjeux techniques en rappelant que le congrès annuel de l’ATIP est un rendez-vous incontournable de notre industrie. Rappelons que l’ATIP fêtera en novembre prochain, son 68ème anniversaire.

Vol. Vol. 6569 - n°3 - n°1 >>>> Août-Septembre Février - Mars 2015 2011

25


Infos

3. Notre volontĂŠ d’union s’exprime ĂŠgalement par le WHY[LUHYPH[ VMĂ„ JPLS ]VPY tKP[V LU[YL SÂť(;07 L[ SL :@467 4. Ces prochaines Rencontres de l’Union Papetière doivent ĂŞtre une vitrine pour l’alliance ATIP- CTP PAGORA. Nous devons nous rapprocher des ĂŠlèves ingĂŠnieurs et des anciens ĂŠlèves en activitĂŠ non seulement dans le secteur production mais chez les fournisseurs, les transformateurs et les imprimeurs. Le rendez-vous de l’ATIP est certainement un excellent tremplin pour : ‹ =HSVYPZLY UV[YL ,JVSL KL .YLUVISL HĂ„ U KÂťH\NTLU[LY les versements de taxe d’apprentissage, • Mettre en valeur les travaux des ĂŠlèves et des chercheurs en relation avec le Laboratoire de GĂŠnie des ProcĂŠdĂŠs de l’INP et le CTP, • Des opĂŠrations ÂŤ Tutoriels Âť ou des ÂŤ Focus techniques Âť selon un modèle de TAGA (Discussion entre experts techniques sur un sujet) qui a beaucoup de succès, • Des rencontres ĂŠtudiants organisations professionnelles - industriels pour des stages KÂťHWWYLU[PZZHNLZ KLZ WYVQL[Z KL Ă„ U KÂťt[\KLZ SH formation – Contacts et ĂŠchanges avec les anciens ĂŠlèves en activitĂŠ. • Une possibilitĂŠ de rencontre avec les thĂŠsards europĂŠens. La dernière rĂŠunion s’est dĂŠroulĂŠe en Suède. Pouvons-nous proposer ce projet en France ? L’idĂŠe serait d’Êchanger sur les perspectives et enjeux R&D pour l’avenir de notre industrie. 5. Une nouveautĂŠ en 2015 avec un mur d’images pour la promotion commerciale et pour une meilleure valorisation des innovations prĂŠsentĂŠes au concours des palmes de l’Innovation. 6. De nouvelles conditions de participation sont en cours d’Êtude. Elles se dĂŠmarqueront pleinement de celles des annĂŠes passĂŠes. L’objectif est de rĂŠpondre aux souhaits exprimĂŠs au ComitĂŠ Directeur et dans le cadre de divers contacts et enquĂŞte. Des informations prochaines vous seront adressĂŠes avec nos offres commerciales et de partenariats. 7. La sociĂŠtĂŠ ALLIMAND nous accueillera pour la soirĂŠe VMĂ„ JPLSSL JVTTL LU 3L JVTP[t KÂťVYNHUPZH[PVU remercie chaleureusement Franck RETTMEYER, PrĂŠsident d’ALLIMAND et du SYMOP. 8. La tradition sera respectĂŠe avec les palmes de l’innovation (une prĂŠsentation des diffĂŠrents dossiers est en discussion) et les trophĂŠes du progrès.

26 Vol. 69 - n°1 >> FÊvrier - Mars 2015

9. Autres ĂŠvènements • Souhait d’organiser une tribune concernant les faits marquants de la profession. • D’autres idĂŠes sont dans les tuyaux‌.

Programme Il comprendra : • 16 confĂŠrences ÂŤ binĂ´me Âť papetier-fournisseur sur 2 jours avec 1 heure de pause le matin et l’après-midi et un break de 2h 30 pour le dĂŠjeuner. • L’appel Ă confĂŠrence diffusĂŠ courant mars propose les thèmes gĂŠnĂŠraux suivants : Formation et sĂŠchage Automation et systèmes experts Energie, eau et environnement Calandrage, couchage, bobinage Ressources ďŹ breuses, matières premières Pâte, recyclage, rĂŠcupĂŠration

ComitĂŠ d’organisation 2015 • FrĂŠdĂŠric BALANDREAU - CRISTINI • AndrĂŠ BAUER – PAPETERIES DE CLAIREFONTAINE • Naceur BELGACEM et/ou Bernard PINEAUX – PAGORA • Yves CHAVANT - FANEL • Daniel GOMEZ - ATIP • Thierry LE GUILLOU – KADANT LAMORT • Gilles LENON - CTP • Hugues LEYDIER - EMIN LEYDIER • Philippe LURIN - KEMIRA • Arnaud MARQUIS et Jean-Philippe SIMONI AHLSTROM BRIGNOUD • RĂŠmi POIRSON - SMURFIT KAPPA Limousin reprĂŠsentant SMURFIT KAPPA CELLULOSE DU PIN • Franck RETTMEYER ou Paul CARPENTIER - ALLIMAND • François VESSIERE – TOPSCONSULT


Infos

Informations complémentaires Contactez-nous

Virginie BATAIS Tél. 33 1 45 62 11 91 atip@wanadoo.fr

Ils ont déjà adhéré à notre offre de partenariat (état au 15 février)

J O U R N É E T E C H N I Q U E PA R T E N A I R E S U R I N V I TAT I O N

Elle se déroulera les 24 & 25 mars 2015 à Cernay (68) Le programme sera diffusé prochainement Virginie BATAIS :

+33 (0)1 45 62 11 91 atip@wanadoo.fr

Amandine WEISS :

+33 (0)3 89 75 33 46 +33 (0)7 88 02 18 05 amandine.weiss@valmet.com

Vol. Vol. 6569 - n°3 - n°1 >>>> Août-Septembre Février - Mars 2015 2011

#


Infos

Appel à conférences Congres ATIP 2015 Alpes-Congrès – Grenoble - 24-26 Novembre 2015

Les Rencontres de l’Union Papetière 2015

L

’année 2015, marquera notre volonté de changement de l’organisation de notre congrès annuel qui fêtera cette année, son 68ème anniversaire.

industriel, sont souvent porteurs d’ooportunités et de valeur ajoutée pour mieux faire.

L’édito de ce numéro co-signé par notre Président Hugues LEYDIER et Franck RETTMEYER, Président du SYMOP, résume les objectifs fondamentaux du nouveau concept d’évènement que nous vous proposons.

Les thèmes généraux que nous vous proposons cette année :

Dans le contexte actuel, nous avons mis tout particulièrement l’accent sur l’union de notre profession, sur la nécessité de rassembler les diverses compétences L[ KL YLUMVYJLY SLZ HSSPHUJLZ L[ JVVWtYH[PVUZ HÄ U KL montrer notre dynamisme pour la recherche de solutionss MH]VYHISLZ n \UL TLPSL\YL LMÄ JHJP[t PUK\Z[YPLSSL Pour pouvoir mobiliser les acteurs de nos sites industriels, notre cœur de cible, le programme de conférences de cette année, sera au cœur des problématiques quotidiennes de production. En associant cette année le papetier et son fournisseur pour la présentation de résultats industriels concrets, nous ne pouvons que rendre plus attractif ce rendez-vous technique unique de l’année papetière. Nous n’insisterons jamais assez sur l’importance d’échanger des expériences, sur les techniques de fabrication, de rencontrer des confrères, des fournisseurs et des clients actuels ou potentiels, pour progresser. Investir une fois par an pour le Congrès de l’ATIP, c’est accepter de considérer que le progrès technique est rarement obtenu par les seules ressources internes de l‘entreprise et que le brassage d’idées, les transferts technologiques entre les différents acteurs de notre milieu

28 Vol. 69 - n°1 >> Février - Mars 2015

Formation et séchage Automation et systèmes experts Energie, eau et environnement Calandrage, couchage, bobinage Ressources fibreuses, matières premières Pâte, recyclage, récupération Vous pouvez dès maintenant nous adresser vos propositions de conférences binôme en attendant de plus amples informations sur le déroulement de ce congrès ATIP 2015. Nous nous tenons à votre disposition pour vous apporter toutes précisions utiles. Contact : Virginie BATAIS – Tél. 33 (0)1 45 62 11 91 – atip@wanadoo.fr Nous vous remercions par avance pour vos contributions et pour la promotion de ce 68ème rendez-vous annuel de l’ATIP.

Daniel GOMEZ Directeur


Vol. 65 - n掳3 >> Ao没t-Septembre 2011


Infos

30 Vol. 69 - n°1 >> Février - Mars 2015


Infos INFOS CTP

‹ ,5= ,U]PYVUULTLU[ ‹ 047 0TWYLZZPVU ‹ 4(7 4HJOPUL n 7HWPLY ‹ 5>6 5VU >V]LU $ 5VU [PZZt ‹ 7(7 4H[tYPH\ 7HWPLY ‹ 7(; 7o[LZ )PVTH[tYPH\_ ‹ 796 +tZLUJYHNL 9LJ`JSHNL ‹ 8/: 8\HSP[t /`NPuUL :tJ\YP[t ‹ ;90 ;YP

es fiches techniques du CTP ont fait peau neuve

L

C’est ofďŹ ciel, elles sont dans les bacs ! Nos ďŹ ches techniques ont fait peau neuve, après plus d’un an de travail et de collaboration entre les diffĂŠrents ingĂŠnieurs et chefs de projets et le Service Communication

<UL X\HYHU[HPUL KL Ä JOLZ WYH[PX\LZ ZVU[ n WYtZLU[ HJJLZ ZPISLZ KtJSPUtLZ LU KL\_ SHUN\LZ MYHUsHPZ L[ HUNSHPZ L[ Z\Y KP_ [OtTH[PX\LZ LU JVOtYLUJL H]LJ SL JH[HSVN\L -VY TH[PVU K\ *;7 ! ‹ *6< *V\JOHNL ‹ ,4) ,TIHSSHNL

3LZ Ă„ JOLZ ZVU[ KPZWVUPISLZ Z\Y UV[YL ZP[L ^LI*;7 JVT n WHY[PY KL SH WHNL KÂťHJJ\LPS 6UNSL[ PUMVYTH[PVU W\ISPJH[PVU +VJ\TLU[H[PVU *;7 -PJOLZ ;LJOUPX\LZ V\ Z\Y ZPTWSL KLTHUKL H\ ZLY]PJL *VTT\UPJH[PVU ! JVTT\UPJH[PVU'^LI*;7 JVT

Exemple de ďŹ che

Tirer le meilleur parti des papiers et cartons par un tri efficace Produire des grades conformes Ă la norme EN643

le maximum de fraction fibreuse • Optimiser le rendement en papier/ carton en extrayant du flux et cartons rÊcupÊrÊs en conformitÊ • VÊrifier la performance du tri pour produire des sortes de papiers avec le cahier des charges de vos clients et la norme EN643 valorisation de la fraction fibreuse meilleure une pour adaptÊ tri un avec • Produire des sortes nouvelles

GÊnÊrer de la Valeur... Mise en place il y a 20 ans, la collecte sÊlective a un connu un large dÊveloppement sur le territoire national nÊcessitant des centres de tri de plus en plus modernes et plus en plus importants qui s’inscrit dans une dÊmarche globale d’optimisation. Les exigences de qualitÊ des fractions papiers-cartons sont une nÊcessitÊ pour les SDSHWLHUV UHF\FOHXUV D¿Q GH SpUHQQLVHU OD ¿OLqUH de recyclage et permettre de maintenir le taux de GH UHF\FODJH TXH VœHVW ¿[pH OœLQGXVWULH SDSHWLqUH HXURSpHQQH

\ Le futur par l’innov ation ‌ Innovate for the future

Contexte et rĂŠalis ation

L’Êquipe formÊ e LQWHUYLHQW VXU VLWH S et experte du CTP RXU UpDOLVHU OHV SUp nÊcessaires à OqYHPHQWV la caractÊrisati on des machines GH WUL SUpOqYHPHQW fractions (en sortie) GHV ÀX[ HQ HQWUpH HW GHV .

L’optimisation des performances de votre centre GH WUL QpFHVVLWH GH YpUL¿HU OœHI¿FDFLWp UHQGHPHQW puretÊ des machines de tri, d’adapter si besoin les nouvelles consignes de tri (nouvelles sortes dans la norme EN643 rÊvisÊe et publiÊe le 29 janvier 2014) HW GH YpUL¿HU OD FRQIRUPLWp GHV IUDFWLRQV SURGXLWHV Des sortes conformes aux exigences de la SURIHVVLRQ SDSHWLqUH FœHVW PRLQV GH UpFODPDWLRQV clients, c’est une garantie de percevoir la totalitÊ de la subvention accordÊe par les Êco-organismes (en cas de contrat), ce sont des performances qualitÊ !

Des relevÊs de donnÊes peuvent être nÊcessaires : Ɣ 7\SH GH FROOHFWH PpQD JqUH WHUWLDLUH PRQR ÀX[ DÊbit massique et vitesse machi ne. Temps de fonctio nneme nt par jour organisation du et Ɣ SchÊma compl travail. et de l’installation et schÊma dÊtaillÊ autour des machines à caractÊriser. Ɣ Ɣ

Des caractĂŠrisation

s en diffĂŠrents

points du procĂŠd

ĂŠ de tri

Contenu de la prest

ation L’Êquipe CTP intervient sur place avec ses propres Êquipe ments pour une meilleure autonomie : Ɣ DÊtermination de la compo sition diffÊrentes sortes de papiers et carton en ÀX[ HQWUDQWV s des Ɣ DÊtermination de la compo sition des fractions triÊes. /HV PpWKRGRORJL HV GH SUpOqY HPHQWV HW GH caractÊrisations sont prÊsentÊes avec les exploi et validÊes tants du centre de tri.

Pour toute demande particulière, n’hĂŠsitez pas Ă nous contacter : Email : infoCTP@webCTP.com Christophe Callejon : +33 (0)4 76 15 40 93 Laurent Lyannaz : +33 (0)4 76 15 40 74

76 15 40 15 Cedex 9 - FRANCE - www.webCTP.com - Tel : +33 (0)4 Centre Technique du Papier - CS 90251 - 38044 Grenoble

Une sorte pour

un usage (en

conformitĂŠ avec

EN643)

Livrables

Une rĂŠelle compĂŠ tence du Centre pour la caractĂŠ risation des fraction Technique du Papier s

Le CTP fournit un rapport d’Êtud e dÊcrivant les FRPSRVLWLRQV GHV ÀX[ HQWUDQWV HW sortantes avec GHV IUDFWLRQV : Ɣ DÊtermination des taux d’extra comparaison aux ction et taux thÊoriques. Ɣ DÊtermination des taux de puretÊ des IUDFWLRQV GHVWLQpHV j OœLQGXVWULH SDSHWL recyclage ou du qUH GX Ɣ 'pWHUPLQDWLRQ dÊsencrage). GHV WD dans le but d’optim X[ GH SHUWHV HQ PDWLqUH iser le rendement du tri. 'HV UHFRPPDQGD WLRQV VHURQW IRUPX GœRSWLPLVHU OH WUL HW OpHV D¿Q UHQGUH OHV IUDFWLRQV conformes aux ¿EUHXVHV cahiers des charge Il pourra Êgalem s. ent de restitution avec être envisagÊ une rÊunion les exploitants mieux exposer du site pour les conclusions de l’Êtude.

CTP / 2014-09 / TRI

01FR

Vol. 69 - n°1 >> FÊvrier - Mars 2015

31


Infos

INFOS PAGORA e LGP2 prĂŠsente sa plaquette

L

Suite logique de sa rÊcente restructuration, le Laboratoire GÊnie des ProcÊdÊs Papetiers (LGP2) Êdite une plaquette HÄ U KL WYtZLU[LY ZLZ HJ[P]P[tZ tX\PWLZ L[ tX\PWLTLU[Z 3H YLJOLYJOL TLUtL H\ 3.7 WVY[L Z\Y SLZ VWtYH[PVUZ KL [YHUZMVYTH[PVU L[ KL ]HSVYPZH[PVU KL SH IPVTHZZL ]tNt[HSL JVTTL SH IPVYHMÄ ULYPL L[ StSHIVYH[PVU KL TH[tYPH\_ IPV ZV\YJtZ WHWPLYZ JHY[VUZ JVTWVZP[LZ Ä STZ UVU [PZZtZ HPUZP X\L Z\Y SLZ WYVJtKtZ KPTWYLZZPVU WV\Y SH MVUJ[PVU UHSPZH[PVU KLZ Z\YMHJLZ ,SSL ZPU[tYLZZL n St[\KL KL WYV JtKtZ tJVUVTLZ LU tULYNPL L[ LU TH[PuYLZ WYLTPuYLZ L[ TL[[HU[ LU ¾\]YL \UL JOPTPL ]LY[L WV\Y SLZ TH[tYPH\_ MVUJ[PVUULSZ 3LZ [YH]H\_ ZHWW\PLU[ Z\Y SL Kt]LSVWWLTLU[ V\ SHKHW[H[PVU KV\[PSZ KL JHYHJ[tYPZH[PVU T\S[P tJOLSSLZ 3HNLUJL KL JVTT\UPJH[PVU 2LYVZPUL H JVUs\ \UL WSH X\L[[L ZV\Z MVYTL KL JOLTPZL H]LJ YHIH[Z L[ X\H[YL Ä JOLZ :VU NYHWOPZTL ZVIYL L[ tStNHU[ tNH`t WHY KLZ WPJ[V NYHTTLZ L[ U\HNLZ KL [HNZ T\S[PJVSVYLZ TL[ LU ]HSL\Y SLZ HJ[P]P[tZ ZJPLU[PÄ X\LZ KL WVPU[L Kt]LSVWWtLZ WHY [YVPZ Êquipes ‹ )PV*OPW )PVYHMÄ ULYPL ! JOPTPL L[ tJV WYVJtKtZ ‹ 4H[)PV 4H[tYPH\_ IPVZV\YJtZ T\S[P tJOLSSLZ ‹ -\U7YPU[ -VUJ[PVUUHSPZH[PVU KL Z\YMHJL WHY WYVJtKtZ KPTWYLZZPVU L[ ZHWW\`HU[ Z\Y [YVPZ WSH[LH\_ [LJOUPX\LZ • Plateau ProcÊdÊs ‹ 7SH[LH\ ;LJOUPX\LZ HUHS`[PX\LZ JOPTPL TPJYVIPVSV gie • Plateau CaractÊrisation 7SHX\L[[L [tStJOHYNLHISL Z\Y ! http://pagora.grenoble-inp. fr/lgp2

U

tilisation des nanocelluloses dans les papiers spĂŠciaux

3L UV]LTIYL 9HWOHwS )HYKL[ H ZV\[LU\ \UL [OuZL KL KVJ[VYH[ KL SÂť<UP]LYZP[t KL .YLUVISL ZWtJPHSP[t 4H[tYPH\_ 4tJHUPX\L .tUPL *P]PS iSLJ[YVJOPTPL n .YL UVISL 057 7HNVYH *L[[L [OuZL H t[t WYtWHYtL H\ 3HIVYH

32 Vol. 69 - n°1 >> FÊvrier - Mars 2015

[VPYL .tUPL KLZ 7YVJtKtZ 7HWL[PLYZ 3.7 ZV\Z SH KPYLJ tion de Julien Bras, MaĂŽtre de ConfĂŠrences, et de Naceur )LSNHJLT 7YVMLZZL\Y KL .YLUVISL 057 7HNVYH 9HWOHwS )HYKL[ H WYtZLU[t SLZ YtZ\S[H[Z KL ZH YLJOLYJOL intitulĂŠe Utilisation des nanocelluloses dans les papiers spĂŠciaux 3ÂťVYPNPUHSP[t KL JL [YH]HPS LZ[ KÂťt[\KPLY SH JVU[YPI\[PVU KLZ UHUVJLSS\SVZLZ WV\Y SH MVUJ[PVUUHSPZH[PVU KLZ WHWPLYZ ZWt JPH\_ 0S ` H KL\_ [`WLZ KL UHUVJLSS\SVZL ! SLZ UHUVJYPZ [H\_ KL JLSS\SVZL 5** L[ SLZ TPJYVĂ„ IYPSSLZ KL JLSS\SVZL 4-* 0S LU YtZ\S[L KLZ WYVWYPt[tZ KPMMtYLU[LZ n SÂťt[H[ KL Z\ZWLUZPVU L[ n SÂťt[H[ ZLJ 3H WYVWYPt[t KLZ 4-* KL MVYTLY \U YtZLH\ KÂťLUJOL]v[YLTLU[ LZ[ \[PSPZtL WV\Y SH KPZWLY ZPVU KLZ WHY[PJ\SLZ 3ÂťH\[V HZZLTISHNL KLZ 5** H WLYTPZ KÂťtSHIVYLY KLZ Ă„ STZ PYPKLZJLU[Z *LZ Ă„ STZ VU[ t[t JVUZPKt YtZ JVTTL JV\JOLZ TVKuSLZ W\PZ TPZ LU Âľ\]YL KHUZ SL WYVJtKt KL MHIYPJH[PVU KLZ WHWPLYZ 0S H t[t WYVWVZt H]LJ Z\JJuZ KÂť\[PSPZLY SLZ 4-* KHUZ SL JV\JOHNL WV\Y YtK\PYL SH X\HU[P[t KL WPNTLU[Z VWHJPĂ„ HU[Z WV\Y SLZ WHWPLYZ TPUJLZ L[ KL MHIYPX\LY KLZ WPNTLU[Z PYPKLZJLU[Z WV\Y VI[LUPY KLZ WYVWYPt[tZ KÂťHU[P JVU[YLMHsVU *LZ HWWYVJOLZ VU[ t[t ]HSPKtLZ n SÂťtJOLSSL SHIVYH[VPYL THPZ H\ZZP WHY KLZ LZZHPZ WPSV[LZ L[ SL KtW [ KL KL\_ IYL]L[Z *VU[HJ[Z ! Julien.Bras@pagora.grenoble-inp.fr - Naceur. Belgacem@pagora.grenoble-inp.fr

C

ontribution Ă l’Êtude des phĂŠnomènes de friction. Application au matĂŠriau papier

3L KtJLTIYL 5PJVSHZ -\SSLYPUNLY H ZV\[LU\ \UL [OuZL KL KVJ[VYH[ KL SÂť<UP]LYZP[t KL .YLUVISL ZWt JPHSP[t 4tJHUPX\L KLZ -S\PKLZ iULYNt[PX\L 7YVJtKtZ n .YLUVISL 057 7HNVYH *L[[L [OuZL H t[t WYtWHYtL H\ Laboratoire GĂŠnie des ProcĂŠdĂŠs Papetiers (LGP2) sous la KPYLJ[PVU KL 1LHU -YHUJPZ )SVJO 4Hz[YL KL *VUMtYLUJLZ KL .YLUVISL 057 7HNVYH Nicolas Fulleringer a prĂŠsentĂŠ les rĂŠsultats de sa recherche intitulĂŠe Contribution Ă l’Êtude des phĂŠnomènes de friction. Application au matĂŠriau papier 3ÂťVW[PTPZH[PVU KL UVTIYL\_ WYVJtKtZ [LJOUVSVNPX\LZ YLX\PLY[ \UL JVTWYt OLUZPVU HWWYVMVUKPL KLZ WOtUVTuULZ KL MYV[[LTLU[ KLZ WHWPLYZ *L[[L [OuZL ]PZL n TPL\_ JVTWYLUKYL JLZ WOtUV


Infos

Vol. 69 - n°1 >> Février - Mars 2015

#


Infos

TuULZ HÄ U K»HTtSPVYLY SH ZtWHYH[PVU KLZ LU]LSVWWLZ KHUZ SLZ THJOPULZ n HMMYHUJOPY +HUZ \U WYLTPLY [LTWZ SLZ Tt[OVKLZ UVYTHSPZtLZ KL TL Z\YL K\ MYV[[LTLU[ WHWPLY WHWPLY Z»t[HU[ H]tYtLZ SPTP[tLZ LU [LYTLZ KL YtWt[HIPSP[t L[ KL JVUKP[PVUZ L_WtYPTLU[HSLZ KL\_ Tt[OVKLZ KL TLZ\YL n MHPISL L[ n OH\[L ]P[LZZL VU[ t[t Kt]LSVWWtLZ +L TvTL SH TLZ\YL K\ MYV[[LTLU[ H t[t HKHW[tL H\_ KPMMtYLU[Z JVU[HJ[Z YLUJVU[YtZ WHY SL WHWPLY KHUZ SLZ THJOPULZ n HMMYHUJOPY +HUZ \U KL\_PuTL [LTWZ JLZ Tt[OVKLZ VU[ t[t \[PSPZtLZ WV\Y t[\KPLY SLZ TtJHUPZTLZ YLZWVUZHISLZ K\ MYV[[LTLU[ H]LJ SL TH[tYPH\ WHWPLY UV[HTTLU[ SH KtWLUKHUJL KLZ KPMMtYLU[LZ JVUKP[PVUZ L_WtYPTLU[HSLZ [LSSLZ X\L SH SVU N\L\Y K\ KtWSHJLTLU[ S»PUÅ \LUJL KL SH [LTWtYH[\YL L[ KL S»O\TPKP[t Z\Y SL MYV[[LTLU[ WHWPLY WHWPLY L[ SLZ WYPU JPWHSLZ JHYHJ[tYPZ[PX\LZ MYPJ[PVUULSSLZ KLZ JVU[HJ[Z LU]L SVWWL LU]LSVWWL WHWPLY YV\SLH\ L[ WHWPLY WH[PU +HUZ \U [YVPZPuTL [LTWZ \U TVKuSL JVTWSL[ KL SH ZtWH YH[PVU KLZ LU]LSVWWLZ KHUZ \UL THJOPUL n HMMYHUJOPY H t[t JYtt *L[[L ZtWHYH[PVU ]PZL n KtWSHJLY ZHUZ S»HIzTLY \UPX\LTLU[ S»LU]LSVWWL PUMtYPL\YL K»\UL WPSL *L TVKuSL WLYTL[ K»PKLU[PÄ LY KL JHYHJ[tYPZLY L[ KL WYVWVZLY \UL VW [PTPZH[PVU KLZ WYPUJPWH\_ WHYHTu[YLZ KL JL WYVJtKt *VU[HJ[ ! Jean-Francis.Bloch@pagora.grenoble-inp.fr

P

rocédés de séparation membranaire pour la production en continu de nanocristaux de polysaccharides : approche expérimentale et modélisation 3L KtJLTIYL (OSLT 9VTKOHUL H ZV\[LU\ \UL [OuZL KL KVJ[VYH[ KL S»<UP]LYZP[t KL .YLUVISL ZWtJPHSP[t 4tJHUPX\L KLZ -S\PKLZ iULYNt[PX\L 7YVJtKtZ n .YL UVISL 057 7HNVYH *L[[L [OuZL H t[t WYtWHYtL H\ 3HIVYH [VPYL .tUPL KLZ 7YVJtKtZ 7HWL[PLYZ 3.7 ZV\Z SH KPYLJ [PVU KL 4HYJ (\YV\ZZLH\ 7YVMLZZL\Y L[ K»(NUuZ .\PSSL[ 4Hz[YL KL *VUMtYLUJLZ KL .YLUVISL 057 7HNVYH (OSLT 9VTKOHUL H WYtZLU[t SLZ YtZ\S[H[Z KL ZH YLJOLYJOL intitulée Procédés de séparation membranaire pour la production en continu de nanocristaux de polysaccharides : approche expérimentale et modélisation

34 Vol. 69 - n°1 >> Février - Mars 2015

3H TPJYVÄ S[YH[PVU [HUNLU[PLSSL Z\Y TLTIYHUL LU JtYH TPX\L LZ[ t[\KPtL JVTTL \UL Tt[OVKL KL MYHJ[PVUUL TLU[ KL Z\ZWLUZPVUZ Ot[tYVNuULZ VI[LU\LZ HWYuZ O`KYV S`ZL HJPKL K»HTPKVU KL TH{Z JPYL\_ WV\Y SH YtJ\WtYH[PVU LU JVU[PU\ KL UHUVJYPZ[H\_ K»HTPKVU 3L I\[ LZ[ K»t]H S\LY SH WVZZPIPSP[t KL JV\WSLY SH TPJYVÄ S[YH[PVU H\ WYVJtKt K»O`KYVS`ZL WV\Y H\NTLU[LY SL YLUKLTLU[ KL WYVK\J[PVU KLZ UHUVJYPZ[H\_ K»HTPKVU <UL JHYHJ[tYPZH[PVU KLZ Z\Z WLUZPVUZ [HPSSL L[ JOHYNL H t[t YtHSPZtL n KPMMtYLU[Z Z[HKLZ KL SH WYVK\J[PVU HÄ U KL JVTWYLUKYL S»t]VS\[PVU KL SH [HPSSL KLZ WHY[PJ\SLZ H\ JV\YZ KL S»O`KYVS`ZL L[ K\ WVZ[ [YHP[LTLU[ L[ KL JOVPZPY SH IVUUL TLTIYHUL WV\Y \U MYHJ [PVUULTLU[ LMÄ JHJL +L\_ WPSV[LZ KL Ä S[YH[PVU VU[ t[t JVUs\Z WV\Y S»t[\KL K\ MYHJ[PVUULTLU[ KLZ Z\ZWLUZPVUZ KL UHUVJYPZ[H\_ K»\UL WHY[ n S»tJOLSSL SHIVYH[VPYL TLTIYHULZ WSHULZ L[ K»H\[YL WHY[ n S»tJOLSSL ZLTP PUK\Z[YPLSSL TLTIYHUL [\I\SHPYL 3»HUHS`ZL KL SH Z\ZWLUZPVU WYVK\P[L WHY SL WYVJtKt K»O` KYVS`ZL JSHZZPX\L H TVU[Yt X\»LSSL LZ[ JVUZ[P[\tL THQVYP [HPYLTLU[ K»HNYtNH[Z KL UHUVWHY[PJ\SLZ L[ KL YtZPK\ K»HTP KVU WHY[PLSSLTLU[ O`KYVS`Zt SH X\HU[P[t KL UHUVJYPZ[H\_ PUKP]PK\HSPZtZ UL YLWYtZLU[HU[ X\L KL S»HTPKVU PUP[PHS 3»VWtYH[PVU KL TPJYVÄ S[YH[PVU [HUNLU[PLSSL H t[t VW[PTPZtL [YHUZTPZZPVU TH_PTHSL KLZ :5* L[ JVSTH[HNL TPUPT\T KLZ TLTIYHULZ LU MVUJ[PVU KLZ JVUKP[PVUZ VWtYH[VPYLZ NYoJL n SH YtHSPZH[PVU K»\U WSHU K»L_WtYPLUJLZ +HUZ SLZ JVUKP[PVUZ VW[PTPZtLZ PS LZ[ WVZZPISL KL YtJ\ WtYLY KHUZ SL WLYTtH[ KLZ WHY[PJ\SLZ PUP[PHSLTLU[ PU[YVK\P[LZ LU NHYKHU[ KLZ Å \_ KL WLYTtH[ PTWVY[HU[Z *LZ WHY[PJ\SLZ VU[ \UL [HPSSL PUMtYPL\YL n UT +HUZ JLZ TvTLZ JVUKP[PVUZ PS LZ[ WVZZPISL KL ZtWHYLY KLZ UHUV JYPZ[H\_ K»HTPKVU KPYLJ[LTLU[ n WHY[PY KL SH Z\ZWLUZPVU HJPKL HWYuZ O`KYVS`ZL 3H TVKtSPZH[PVU K\ JVSTH[HNL n WHY[PY KLZ LZZHPZ KL Ä S[YH[PVU MYVU[HSL TVU[YL X\L SL JVS TH[HNL ZL MHP[ LZZLU[PLSSLTLU[ WHY MVYTH[PVU K»\U No[LH\ n SH Z\YMHJL *L [YH]HPS KL [OuZL HIVYKL tNHSLTLU[ SH WPZ[L KL SH W\YPÄ JH[PVU LU JVU[PU\ KLZ Z\ZWLUZPVUZ HJPKLZ n [YH]LYZ \U WYV JtKt KL KPHÄ S[YH[PVU Z\Y TLTIYHULZ K»\S[YHÄ S[YH[PVU WLY TL[[HU[ \UL PUK\Z[YPHSPZH[PVU KL SH WYVK\J[PVU KLZ :5*

*VU[HJ[Z ! Marc.Aurousseau@pagora.grenoble-inp.fr Agnes.Guillet@pagora.grenoble-inp.fr




Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.