The Pilot Plant at partner TCL
A step towards sustainable biofuels The petro-chemical industry is under intense pressure to reduce its impact on the environment and develop more sustainable methods of fuel production. The work of the BIOGO project in transforming the production process could lead to radical improvements in these terms, as Professor Gunther Kolb and Dr Hannah Newton explain The development of
biofuels is widely recognised as a research priority, in line with the wider goal of reducing our dependence on fossil fuels. The BIOGO project, an initiative bringing together 15 partners from across Europe, will make an important contribution in these terms. “The idea of BIOGO is to utilise non-food waste, like wood residue, which is widely available across Europe. We aim to use this waste to create synthetic gasoline-grade fuels,” says dissemination manager Dr Hannah Newton. A number of steps are involved in creating synthetic fuels out of biomass sources like wood residue. “First we make pyrolysis oil, which is a product of high-temperature
Electron microscope image of one of the nanocatalysts being developed within the project (BIOGO nanocatalyst).
72
treatment of this biomass. We also use biogas in the project,” explains Project Coordinator Professor Gunther Kolb. “From the biogas and the pyrolysis oil, we get a socalled synthesis gas (or syngas), which is mostly a mixture of carbon monoxide and hydrogen. From this, we can then synthesise methanol, from which the synthetic gasoline is then produced.”
Gas-to-gasoline A number of companies already make synthetic fuel out of synthesis gas, but there are some drawbacks to existing methods, mostly related to the formation of large-scale hydrocarbons. These drawbacks can be avoided with the use of methanol, as
demonstrated by a former natural-gas-togasoline project in New Zealand; however, Professor Kolb says the project is taking a different approach. “In New Zealand they used natural gas, but we want to utilise wood residue, which is widely available across Europe. We are aiming for a sustainable process that is independent of fossil fuels,” he outlines. There are two key pillars to the project’s research, the first of which centres around designing, developing and preparing nanoscale catalysts for converting bio resources into liquid fuels, covering each step of the production process. “For each of the individual steps, we want to improve the available catalysts. There have been no commercial catalysts developed for some of the steps, while there are formulations existing for other steps,” says Professor Kolb. Along with others, researchers are using a novel approach to develop nanocatalysts, applying a technique called cluster beam sputtering, where extremely small particles are ejected on to the surface of a carrier material with a high surface area. Sputtering techniques are usually used to cover the whole surface of a material, but in the project researchers are instead making small clusters of atoms on the surface of the material to improve performance. Catalysts are being developed for each of the four key steps of the production process; those that lead to improvements will then be incorporated into what Professor Kolb describes as a mini-plant, which is the second main pillar of the project. “This
EU Research