EU Research Summer 2017

Page 46

Algal lipids open a window into climate records Analysis of algal lipids in both lakes and on the sea surface can help scientists to reconstruct past temperature records, from which new insights can be drawn into the likely future evolution of the climate. We spoke to Dr Jaime L. Toney and Dr Antonio Garcia-Alix about their research into using algal lipids to extend human instrumental records further back in time A type of

lipid produced by algae, alkenones are highly responsive to water temperature, and have long been used as fossils to reconstruct past climate records. Based at the University of Glasgow in the UK, Dr Jaime L. Toney is the Principal Investigator of the ALKENoNE project, an ERC-backed initiative aiming to analyse these lipids and build more detailed climate records. “The main objective in the project is to record temperature and precipitation from a number of lakes in Canada in a quantitative way, so that we can extend human instrumental records further back in time,” she explains. The number of double bonds in alkenones varies according to the water temperature at the time the algae were growing; Dr Toney and her colleagues are analysing alkenones from over 100 lakes in Canada, which she says have some interesting features. “These lakes have salinities which range from being completely fresh to having four times the salinity of ocean water. Because they are spread across a large latitude range, they also have a large temperature gradient of about 9 degrees,” she outlines. This variability allows researchers to calibrate the biomarkers or lipids that are found in the lakes to all these different environmental conditions, which is a key part of the project’s agenda. The main factor that complicates temperature

44

BECS PhD student and Nuffield Placement summer intern splitting lake sediment cores. ©Jaime L. Toney, PI of ERC-funded ALKENoNE project. calibration with respect to lakes is that researchers need to know the time of year at which these compounds were produced. “For instance, if the algae are producing these compounds in the Spring, then you’re going to be recording temperatures from Spring, if they’re producing them in Summer, then you’re going to be recording temperatures from Summer, and so on,” explains Dr Toney. Previously Dr Toney

developed a temperature calibration by collecting water samples from different depths within a single lake, now she aims to investigate whether this calibration is applicable to this larger set of lakes in Canada. “Ultimately we’d like to understand the algae that produced these alkenones in sufficient depth to come up with a single calibration that can be used regardless of location,” she says.

EU Research


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

CosNed

4min
page 77

Perspectival Realism

3min
pages 78-80

MenWomenCare

4min
page 76

Champagne

7min
pages 74-75

Ariadne

7min
pages 72-73

AVA Antimatter

7min
pages 70-71

Drinking Water from Seawater

9min
pages 66-69

RespiceSME

6min
pages 60-62

CASCADE

4min
page 63

Comgransol

6min
pages 64-65

AROMA-CFD

3min
page 59

RelRepDist

9min
pages 56-58

The effect of Migration on Innovation

8min
pages 52-55

VariKin

8min
pages 49-51

ALKENoNE

9min
pages 46-48

E-motion

4min
page 45

LinkTADs

8min
pages 42-44

VALUeHEALTH

8min
pages 32-33

SELFIE

8min
pages 36-37

Ada 2020

7min
pages 38-41

The European Institute for Innovation through Health Data (i-HD)

7min
pages 34-35

HOPE on the Horizon

11min
pages 28-31

Autonomous CLL BCRs

7min
pages 26-27

Beta3_LVH

4min
page 25

CODEMISUSED

7min
pages 12-13

Phosphoprocessors

9min
pages 16-18

RobustNet

4min
page 24

3DinvitroNPC

3min
page 23

Terpenecat

3min
page 22

PEP-PRO-RNA

6min
pages 14-15

CAUSALPATH

9min
pages 19-21

Research News

17min
pages 6-11
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.