Sifting the salt from the water It is predicted that by 2025 around 1.8 billion people across the world will be living in regions affected by water scarcity. Researchers at the University of Manchester have developed a new type of graphene-based membrane that could quickly filter salts from water, making seawater suitable for drinking water By Patrick Truss
T
he discovery of a method of producing graphene in 2004 generated a great deal of interest in both the academic and commercial sectors. While the physical properties of the material were identified long ago, in particular its electrical and thermal conductivity, it was not until the early years of this century that researchers at the University of Manchester in the UK managed to isolate graphene. Now that the material itself has been isolated, researchers across the globe are looking to exploit its properties and identify ways in which it can be applied in the real world. A 2-dimensional layer of graphite that is just an atom thick, graphene is the thinnest material on earth, yet at the same time also the most conductive, with remarkable strength. This set off a renewed wave of interest in graphene, with researchers around the globe looking to harness the properties of the material and exploit its properties. Recent research from nanomaterials broker Fullerex shows that there are 142 graphene producers across 27 countries, with China alone holding around two-thirds of global production capacity. A great deal of research is also focused on identifying practical applications for the material. Universities and businesses in the US and China are both thought to have filed large numbers of patents around the use of graphene-based technologies, while the UK lags behind, despite its key role in the initial development of the material.
64
The National Graphene Institute in Manchester is central to UK efforts to now capitalise on the wider potential of the material and translate research advances into commercial development. Home to more than 200 graphene researchers, from graduate students to Nobel laureates, the Institute also works in partnership with industry. There are regular opportunities for researchers at the Institute to meet scientists in other disciplines and collaborate with industry, which is fundamental to sharing knowledge and identifying potential commercial applications. These extend across a diverse range of fields, including in energy, composite materials, and in water filtration. The material itself is hydrophobic, yet researchers at Manchester found that membranes comprised of stacks of graphene oxide were impermeable to all gases and vapours, except water. Since this initial discovery, researchers have been working to improve graphene-based filters, aiming to enable precise and rapid filtering of salts and organic molecules from water.
Water scarcity This holds particularly significant implications given wider concern about water scarcity, an issue which already affects a significant proportion of the global population. The UN estimates that around 1.2 billion people live in areas already affected by physical scarcity, a number which is set to rise
EU Research