PROPIEDAD DISTRIBUTIVA ππππ π, π π¦ π πΓΊπππππ ππππππ : π. (π + π ) = π. π + π. π π. (π β π ) = π. π β π. π Ejemplos: 1) 5. (π₯ + 1) = 5. π₯ + 5.1 = 5π₯ + 5 2) β2. (π + 3) = β2. π β 2.3 = β2π β 6 3) 3. (β2π₯ β 2) = 3. (β2π₯ ) + 3. (β2) = β6π₯ β 6 4) π₯. (5 β 2π₯ ) = π₯. 5 + π₯. (β2π₯ ) = 5π₯ β 2π₯ 2 5)
(π₯ + 1). (β2π₯ β 3) = π₯. (β2π₯) + π₯. (β3) + 1. (β2π₯) + 1. (β3) = β2π₯ 2 β 3π₯ β 2π₯ β 3 = β2π₯ 2 β 5π₯ β 3
6)
(β3π₯ + 3). (1 β π₯) = (β3π₯). 1 + (β3π₯). (βπ₯) + 3.1 + 3. (βπ₯) = β3π₯ + 3π₯ 2 + 3 β 3π₯ = 3π₯ 2 β 6π₯ + 3
BINOMIOS CONJUGADOS ππππ π π¦ π πΓΊπππππ ππππππ : (π + π ) . ( π β π ) = π 2 β π 2 (βπ + π). (π + π) = βπ2 + π2 Ejemplos: 1) (π₯ β 2). (π₯ + 2) = π₯ 2 β 22 = π₯ 2 β 4 2) (β2π₯ β 3). (2π₯ β 3) = β(2π₯)2 + 32 = β4π₯ 2 + 9 3) (π₯ + 4). (βπ₯ + 4) = βπ₯ 2 + 42 = βπ₯ 2 + 16
CUADRADO DE BINOMIO ππππ π π¦ π πΓΊπππππ ππππππ : (π + π)2 = π2 + 2. π. π + π2
Ejemplos: 1) (π₯ + 3)2 = π₯ 2 + 2. π₯. 3 + 32 = π₯ 2 + 6π₯ + 9 2) (β2π₯ + 1)2 = (β2π₯)2 + 2. (β2π₯ ). 1 + 12 = 4π₯ 2 β 4π₯ + 1 3) (β3π₯ β 4)2 = (β3π₯ )2 + 2. (β3π₯ ). (β4) + (β4)2 = 9π₯ 2 + 24π₯ + 16
Sala de MatemΓ‘tica β Bachillerato Virtual