RESEARCH
A MULTIFUNCTIONAL SALT SUBSTITUTE
Salt reduction in bread using choline chloride As one of the basic food staples around the world, bread also contributes to the daily salt intake. Lowering dietary sodium chloride levels is a priority worldwide, but its vital role in bread’s quality should not be overlooked when lowering and replacing its levels.
+
Bread is one of the oldest foods in the world. It is a part of the foodstuffs that are the basis of many people’s diets due to its nutritional value and the low price, a reflection of both the raw materials used and the technology applied. Nutrition experts define bread as an essential part of the food pyramid’s base due to its rich content in carbohydrates, fiber, proteins, B vitamins and mineral salts, and its very low-fat content (Silow et al., 2016).
Salt (sodium chloride) plays a major role in bread making. It contributes to bread palatability, water holding and also to setting a visco-elastic network. All steps of the bread-making process are impacted by salt. Fermentation, for example, is delayed due to osmotic stress, resulting in reduced yeast activity. Salt also contributes to the shelf life of bread, which is extended with increasing salt content. Finally, salt contributes to the organoleptic qualities of bread.
Nowadays, the dietary sodium chloride intake is higher than the daily-recommended levels, especially due to its prominent presence in food products. This may cause an increase in high blood pressure leading to cardiovascular diseases. In most European countries, bread is the most important source of salt, its contribution to salt intake ranging between 19.1% in Spain to 28% in France (Gebski et al., 2019). Considering a standard bread recipe (60g water, 2g salt and 100g flour), the aqueous phase contained in the bread has the same salt content as seawater (ca. 33g/l); in other words, eating 100g of bread is the equivalent of an intake of 38ml of seawater (in terms of saltiness intake); quite shocking, isn’t it? Salt reduction is, therefore, a great stake for all health authorities over the world. However, salt is a critical ingredient in bread making, and its reduction can have a negative impact on bread quality (Codina et al., 2021).
This paper presents an investigation carried out during the Ph.D. project of Doina Crucean under the supervision of Dr.Patricia Le-Bail (INRAE-BIA-Nantes-France), Prof. Alain Le-Bail (ONIRIS-GEPEA Nantes-France) and Dr. Gervaise Debucquet (AUDENCIA-Nantes-France), with the objective of developing bread reduced in salt using choline chloride (CC) and to assess the consumer’s acceptance of such bread. The challenge of this strategy is to solve the technological and sensory problems caused by sodium chloride removal from bakery products recipes. CC is able to act as a substitute for salt (NaCl). Choline (E1001) is presented as an emulsifier in the additive list of the EU commission. It also includes B4 vitamin. Nutritionally, choline chloride is an essential nutrient of vital biological importance. Choline holds 3 European Health Claims (UE 432/2012); it “Contributes to the metabolism of homocysteine”, “Contributes to lipid metabolism” and “Contributes to hepatic function”. It is thus an ingredient beneficial to health. Choline is marketed under different salts, such as choline-chloride (CC) (E1001iii), which has been used for this project. CC is temperatureresistant (melting temperature 247°C) and is therefore adapted to baking. It is acknowledged as ‘Generally Recognized as Safe’ (‘GRAS’) by the FDA. The impact of Choline Chloride on the main characteristics of bread Locke and Fielding (1994) first pointed out the interest of CC to reduce salt in food. Le-Bail et al (2013) showed that 50% salt reduction was possible in pizza dough by adding 25% of nominal salt. Based on this study, a similar recipe has been used in this project (Figure 1).
www.bakingbiscuit.com 06/2021
© Veronika Haberzettl – stock.adobe.com
32