Dorte Vestergaard Hansen, Anne-Christine Weber, Marie Proschowsky
Vejledning • Web
0
Matematik • 0. klasse • Vejledning • Web
9788723545930_omslag.indd 1
15.01.2021 12.40
Dorte Vestergaard Hansen Anne-Christine Weber Marie Proschowsky
Vejledning • Web
0
Matematik • 0. klasse • Vejledning • Web
9788723545930_Reflex0_lærervejl.indb 1
15.01.2021 12.45
Reflex 0, Vejledning/Web Vejledning og arbejdsark Matematik, 0. klasse, Vejledning/Web En titel i grundsystemet Reflex © Alinea 2021 Forfattere: Dorte Vestergaard Hansen, Anne-Christine Weber og Marie Proschowsky Reflex 0, Vejledning/Web Redaktion:og Karen Boe Hauggaard, Mette Christine Bilde og Vejledning arbejdsark Malene Schott Christensen Matematik, 0. klasse, Vejledning/Web Faglig Rikke Maagaard En titelkonsulent: i grundsystemet Reflex Gregersen og Kathrine Juul Design/grafik: © Alinea 2021 Frk. Madsen Illustrationer: Mikkel Straarup Møller Webressourcer: Rikke SkovbakkeHansen, Balleby,Anne-Christine Anna HosbjergWeber Nordlund Forfattere: Dorte Vestergaard Karen Proschowsky Boe Hauggaard og Marie Trykt hos: Livonia Redaktion: Karen Print Boe Hauggaard, Mette Christine Bilde og 1. Udgave, 1. oplag 2021 Malene Schott Christensen Faglig978-87-23-54593-0 konsulent: Rikke Maagaard Gregersen og Kathrine Juul ISBN: Design/grafik: Frk. 978-87-23-55241-9 Madsen ISBN overnummer: Reflex.alinea.dkMikkel Straarup Møller Illustrationer: Kopiering fra denne bog må kun finde stedAnna på institutioner, der har Webressourcer: Rikke Skovbakke Balleby, Hosbjerg Nordlund indgået med Copydan Tekst & Node. og Karenaftale Boe Hauggaard Alineahos: støtter børn og unge Trykt Livonia Print Alinea er en af 2021 Egmont, som er Danmarks største mediekoncern. 1. Udgave, 1. del oplag Egmont har fortalt historier i over 100 år og laver film i Oscarklasse og fortæller historier gennem nyheder, bøger og magasiner. Egmont er en dansk fond, som hvert år giver næsten 100 millioner Reflex.alinea.dk til børn ogfra unge, derbog har må detkun svært. Kopiering denne finde sted på institutioner, der har alinea.dk indgået aftale med Copydan Tekst & Node. Alinea støtter børn og unge Alinea er en del af Egmont, som er Danmarks største mediekoncern. Egmont har fortalt historier i over 100 år og laver film i Oscarklasse og fortæller historier gennem nyheder, bøger og magasiner. Egmont er en dansk fond, som hvert år giver næsten 100 millioner til børn og unge, der har det svært. alinea.dk
Reflex0_lærervejl._Kap INTRO_WIP.indd 2
19.01.2021 15.05
Indhold Forord ������������������������������������������������������������������������������ 4
Side til side-vejledning ��������������������������������������� 19
Grundsystemets opbygning ������������������������������ 5
Side 1 ��������������������������������������������������������������������������������19
Tankerne bag Reflex ����������������������������������������������� 6
Kapitel 1 ��������������������������������������������������������������������������20
Videnskonstruktion �������������������������������������������������������6
Kapitel 2 ������������������������������������������������������������������������� 25
Den nysgerrige samtale �����������������������������������������������6
Kapitel 3 �������������������������������������������������������������������������34
Det anerkendende læringsrum ����������������������������������6
Kapitel 4 ������������������������������������������������������������������������� 43
Lærerens rolle �����������������������������������������������������������������7
Kapitel 5 �������������������������������������������������������������������������54
Matematisk opmærksomhed i 0. klasse ����������������8
Kapitel 6 �������������������������������������������������������������������������65 Kapitel 7 ��������������������������������������������������������������������������74
Matematik med Reflex ����������������������������������������� 9
Kapitel 8 �������������������������������������������������������������������������83
Omdrejningspunktet �����������������������������������������������������9
Kapitel 9 ������������������������������������������������������������������������� 92
Faglige begreber ������������������������������������������������������������11
Kapitel 10 �����������������������������������������������������������������������99
Faglig læsning ����������������������������������������������������������������13
Side 80 ������������������������������������������������������������������������� 108
De seks moduler �����������������������������������������������������������13 Meningsrammer �����������������������������������������������������������15 Loop-opgaver ����������������������������������������������������������������15 Min viden �������������������������������������������������������������������������16 Evalueringsstrukturer �������������������������������������������������16 Færdighedsevalueringer �������������������������������������������� 17 Digitale ressourcer ������������������������������������������������������ 17 Samarbejdsformer ������������������������������������������������������18 Fælles aktiviteter i hjemmet ������������������������������������18
3
9788723545930_Reflex0_lærervejl.indb 3
15.01.2021 12.45
Forord Matematik alle vegne Matematikkens verden er uendelig stor! Vi kan blive ved med at finde, fortælle om, opleve og indfange matematik. Vi er tre forfattere, der har udviklet Reflex, og vi elsker matematik og ser den anvendt alle vegne. Vi har mange års erfaring med at undervise i matematik i Folkeskolen. Desuden er vi matematikvejledere og har derigennem fået indsigt i de tendenser og behov, der findes i den daglige matematikundervisning og inden for matematikfagets didaktik. Grundsystemet Reflex er udviklet med baggrund i vores eget engagement i faget, med udgangspunkt i en evig matematisk nysgerrighed på omverdenen og i tæt samarbejde med både elever og matematiklærere, som har afprøvet materialerne i undervisningen og givet os værdifuld feedback. Med Reflex har det været vores idé at udvikle et matematiksystem, hvor eleverne arbejder undersøgende med matematik, deler deres viden, reflekterer sammen, og hvor alle bidrager til en positiv læringskultur. Ambitionen har været at skabe et materiale, hvor læreren støttes bedst muligt i en undersøgende tilgang til matematikundervisningen - en tilgang, der er ønskværdig, men også udfordrende. Det har vores egen praksis vist os. Reflex støtter læreren i arbejdet med at iscenesætte undersøgelser samt at stille gode spørgsmål og stilladsere elevernes videndeling og klassens fælles opsamling på det undersøgende arbejde, således at eleverne kan tilegne sig en sikker begrebsforståelse. Gennem skabende aktiviteter i elevbogens opgaver og evalueringer bruger eleverne deres viden, færdigheder og kompetencer i nye sammenhænge, således at det undersøgende arbejde konsolideres og bliver til ny erkendelse og endnu større mestring af kompetencerne. Eleverne sætter ord på deres viden, udvikler egen begrebsforståelse og forklarer regnestrategier. Gennem faglige film forklares begreberne, og den sproglige udvikling hjælpes på vej. I Reflex har det digitale en vigtig rolle i arbejdet med at udvide elevernes muligheder. Det har været vigtigt for os, at det digitale tilbyder mere end bare træning. Eleverne skal opleve, at det digitale kan inspirere, bruges i undersøgende arbejde, og at det kan gøre det skabende arbejde både sjovere og lettere. Samtidig byder digitale ressourcer på træning, konsolidering af viden, evaluering samt spil og leg. At inddrage bevægelse i matematikundervisningen har også været vigtigt for os i udviklingen af Reflex. Lege og bevægelsesaktiviteter er således en integreret del af undervisningen og indgår i samtlige forløb. Matematik skal være sjovt, og det skal vække nysgerrighed og begejstring. Gennem lege, undersøgelser og bevægelsesaktiviteter vil eleverne få oplevelser med matematik i den verden, der omgiver dem. Det har været vigtigt for os, at eleverne også vil se og opleve matematik alle vegne. Vi ønsker alle elever og lærere rigtig god fornøjelse med Reflex.
4
9788723545930_Reflex0_lærervejl.indb 4
15.01.2021 12.45
Grundsystemets opbygning Elevbog/Web Reflex 0 Elevbog/Web indeholder 10 kapitler, der tager udgangspunkt i udvalgte faglige begreber og arbejdsmetoder. Hvert kapitel indledes med en stilladseret undersøgelse efterfulgt af opgave og aktiviteter, der er organiseret i varierende samarbejdsformer.
Dorte Vestergaard Hansen, Anne-Christine Weber, Marie Proschowsky
Vejledning/Web
0
Vejledning/Web Reflex 0 Vejledning/Web indeholder introduktion til tankerne bag grundsystemet og en beskrivelse af tilrettelæggelsen af undervisningen med Reflex herunder de gennemgående elementer. Derudover indeholder denne vejledning beskrivelse af de enkelte opgaver og aktiviteter i elevbogen herunder anvendelsen af digitale ressourcer, der er tilgængelige på det tilhørende website, arbejdsark og faglige film. Det er også her, man kan læse om målet med opgaverne, supplerende aktiviteter og særlige opmærksomhedspunkter.
Matematik 0. klasse Vejledning/Web
reflex.alinea.dk Reflex er et Har du bog, har du web system. Når du har købt Reflex 0 Elevbog/Web eller Reflex Vejledning 0/Web, får du samtidig adgang til websitet på reflex.alinea.dk, der indeholder f ølgende: fra elevbogen til visning på en skærm i klassen • Samtalebilleder F aglige film, som • går i hvert kapitelbeskriver de matematiske begreber, der indder viser spilvejledninger og anvendelsen af diverse hjæl• Film, pemidler ressourcer til udvalgte opgaver • DGigitale eoGebra-opgaver • Selvrettende fordybelsesopgaver og færdighedsevalueringer • Mulighed for elevbesvarelser ved hjælp af lydoptagelser • ifferentierede evalueringsopgaver på to niveauer • DFælles Mål og læringsmål for hvert kapitel • Arbejdsark Hjælpeark • Facitliste til ogelevbogen • Tavlebog •
9788723545930_Reflex0_lærervejl.indb 5
5
15.01.2021 12.45
Tankerne bag Reflex Reflex er organiseret med baggrund i tre didaktiske hjørnesten: Videnskonstruktion, Den nysgerrige samtale og Det anerkendende læringsrum. Hjørnestenene repræsenterer de særlige læringsmæssige betoninger i Reflex og udgør de vigtigste didaktiske kendetegn for systemet. De er tænkt som gennemgående læringsprincipper, hvor der fokuseres på tilegnelse af viden, varierende arbejdsformer og kulturen i læringsrummet. Elevernes Videnskonstruktion er stilladseret i en genkendelig struktur af matematiske undersøgelser, konsoliderende opgaver, samt formative og summative evalueringer. I Den nysgerrige samtale er der fokus på den læringsmæssige værdi i at dele ideer, løsningsmuligheder og viden med hinanden. I Den nysgerrige samtale kommer kommunikation og sproglig begrebsdannelse derfor særligt til udtryk. Det anerkendende læringsrum danner rammen om Den nysgerrige samtale og elevernes tilegnelse af matematisk viden. Centralt for Det anerkendende læringsrum er elevens aktive deltagelse i undersøgelser, samtaler om løsninger, vidensdeling og feedback i evalueringerne. Det anerkendende læringsrum indebærer en læringskultur, hvor det at prøve sig frem og lære, både af fejlslagne forsøg og af andre, ses som en værdifuld måde at konstruere viden på.
Videnskonstruktion
Konstruktionen af viden skal forstås som elevernes evne til at tilegne sig matematisk viden ud fra refleksioner over matematiske pointer og sammenhænge. I Reflex foregår elevernes refleksioner både selvstændigt og i samarbejde med andre. Når eleverne diskuterer med hinanden og udveksler løsningsforslag, udfordres den enkeltes viden, hvilket vil styrke elevens matematiske forståelse. Den enkeltes aktive deltagelse gennem spørgsmål, undren og svar vil andre også kunne drage fordel og blive motiveret af samt opleve at kunne bygge videre på. Den enkelte elevs bidrag bliver således en værdifuld kilde både til egen og andres tilegnelse af viden. Det er særlig vigtigt, at eleverne undervejs i processen får mulighed for at deltage aktivt og udtrykke sig undrende og spørgende. Et ufuldstændigt svar er et vigtigt skridt på vejen mod en mere fuldstændig besvarelse. Processen med at opbygge viden og den opnåede forståelse bliver dermed hinandens styringsredskaber, fordi den nye forståelse bliver grundlaget for den videre konstruktion af viden. I Reflex er der i indledningen til hvert kapitel lagt særlig vægt på at understøtte den undersøgende proces og aktivitet. I undersøgelserne arbejder eleverne med at prøve sig frem, dele ideer med hinanden og samle op på de faglige pointer i fællesskab. I de efterfølgende opgaver lægges der op til, at de anvender og afprøver deres viden i forskellige sammenhænge for derigennem at konsolidere de nye faglige pointer som matematisk viden.
Den nysgerrige samtale
For at styrke elevernes Videnskonstruktion er der særligt fokus på samtalen i Reflex. Det kommer til udtryk i Den nysgerrige samtale, hvor elevernes udveksling af ideer og begrundelser for løsninger har afgørende betydning for deres tilegnelse af viden. I samtalerne er der både fokus på nysgerrighed og en undersøgende tilgang. Det, der kan opfattes som forkerte besvarelser, vil i denne sammenhæng blive en værdifuld ressource, idet forkerte eller skæve svar skaber en oplagt mulighed for nytænkning. Nysgerrighed og åbenhed over for, hvad eleverne har tænkt giver desuden indsigt i elevernes faglige ståsted. I elevernes interaktion med andre er det hensigten, at de skal opleve, at den enkeltes bidrag er værdifuldt, og at alle elevers forslag derfor skal inddrages så meget som muligt. I samtalerne lægges der op til at lade eleverne beskrive deres faglige pointer, sådan at potentialerne i deres forslag bliver italesat, og forskellige betragtninger bliver diskuteret. Der gives her i vejledningen forslag til spørgsmål og samtaleemner, der kan støtte eleverne i at italesætte deres bidrag. Hensigten er, at de mundtlige opsamlinger dermed vil styrke italesættelsen af elevernes viden, så de på den måde hjælpes til at forholde sig både til egne og andres refleksioner.
Det anerkendende læringsrum
Det anerkendende læringsrum udgør både rammen for Den nysgerrige samtale og elevernes konstruktion af viden. Det anerkendende læringsrum understøtter elevernes undersøgende tilgang og styrker vekselvirkningen mellem den enkeltes refleksioner og konstruktion af viden. Den nysgerrige samtale får således optimale betingelser, når Det anerkendende læringsrum er etableret. Et væsentligt element i Det anerkendende læringsrum er elevernes bevidsthed om, at matematik ikke alene handler om at finde løsninger og svar, men i høj grad også om den proces, der er forbundet med at afklare og behandle et matematisk problem. I Reflex er det centralt, at eleverne oplever matematik som et fag, hvor man undrer sig, tør tage chancer og dele sine foreløbige tanker med hinanden. Når klassen dyrker det anerkendende fællesskab, dannes der grundlag for udvikling af læring, tillid og respekt for andre. I dette anerkendende fællesskab skabes der tryghed og mulighed for at være nysgerrig, udveksle og afprøve ideer samt lære af egne og andres foreløbige og fejlslagne forsøg. Ved at vise foreløbige løsninger, forklare valg og gøre sig nye erfaringer kan eleverne udvide deres forståelse og opleve værdien af at skabe viden sammen med andre. Det anerkendende læringsrum understøtter samtidig muligheden for differentiering i undervisningen, fordi elevernes bidrag i form af halve og hele løsninger er værdifulde for konstruktionen af viden. Alle behøver således ikke at kunne det samme eller være på samme niveau. Det er hensigten, at eleverne engageres, fordi selve det at deltage skaber muligheder og ressourcer både for den enkelte og for fællesskabet. Anerkendelse af eleverne for at deltage og turde give foreløbige bud bliver dermed et vigtigt værktøj til at motivere elevernes deltagelse i samtalerne om matematik.
6
9788723545930_Reflex0_lærervejl.indb 6
15.01.2021 12.45
Lærerens rolle
De tre hjørnesten afspejler den gennemgående didaktiske organisering i Reflex og dermed også lærerens rolle i undervisningen. Særligt Den nysgerrige samtale og Det anerkendende læringsrum er idealer for den didaktik, der ligger til grund for tilrettelæggelse og gennemførelse af undervisningen med Reflex. I Reflex er der konkrete anvisninger til, hvordan man som lærer aktivt kan realisere denne didaktik. I Reflex lægges der stor vægt på at skabe et anerkendende læringsmiljø. Ved at skabe trygge rammer øges mulighederne for, at eleverne tør kaste sig ud i aktiviteter, som de ikke umiddelbart kender metoder til eller løsninger på. Og i stedet for blot at konstatere, at et opgavesvar er rigtigt eller forkert, lægges der op til at spørge nysgerrigt ind til, hvordan eleven er nået frem til sit bud på en metode eller løsning. Formålet med dette er dels at forstå elevernes tankegang, dels at give eleverne mulighed for at erkende gennem andres iagttagelser, bud og forsøg, og dels bedre at kunne guide eleverne videre i læringsprocessen.
og umiddelbare formåen, hvilket både kan bruges i dialogen og i det fremadrettede arbejde. Samtidig udnyttes diversiteten i klasserummet, fordi der er fokus på understøttende dialog, fremadrettet feedback og det, at eleverne oplever deres bidrag som en værdifuld del af undervisningen. Det er i sig selv både lærerigt og inspirerende at bevæge sig ind i disse processer, da de ofte afspejler en mangfoldighed af svar, som man også kan dele med eleverne. Synliggørelsen af mangfoldigheden af svar kan berige faget, medvirke til at mindske matematikangst og understøtte udviklingen og opbygningen af en anerkendende læringskultur. Eleverne skulle gerne føle, at det både er trygt og spændende at kaste sig ud i forskellige undersøgelser, og at de kan lære en masse både af de gode ideer og tankerne undervejs i processen.
Hvis eleven fx fejlagtigt svarer, at 16 + 5 = 31, kan man som lærer spørge ind til, hvordan eleven er nået frem til 31. På det spørgsmål vil eleven evt. svare: ”16 plus 4 er 20. Så mangler jeg at lægge 1 til, fordi det var 5, der skulle lægges til. Nu har jeg 21, og så lægger jeg tieren til.” Ved at spørge ind til, hvordan eleven har tænkt, bliver det tydeligt, hvad der kan bygges videre på, og hvordan eleverne kan guides i at nå frem til en holdbar og korrekt metode. I første omgang bruger eleven en regnestrategi ved at dele 5 op i 4 plus 1, så udtrykket gør tierovergangen lettere. Herefter lægges der så fejlagtigt en tier til. Dette kan hænge sammen med, at eleven fra andre additionsopgaver er blevet opmærksom på, at man skal huske tierne, men ud fra den regnestrategi, som eleven har valgt, går det galt. I eksemplet giver det derfor mening at spørge ind til, hvor tieren kommer fra og at gøre eleven opmærksom på, at hvis man bruger denne metode, er det netop vigtigt at huske at få den nye tier lagt til den tier, der indgår i 16. Det kan også være en god idé at spørge de andre elever, hvad de tror, eleven har tænkt, og lade dem forklare. Eleven kan præsenteres for den samme opgave på flere måder med det formål netop at opdage og arbejde med flere mulige strategier. Det kan fx ske ved at bruge centicuber eller ved at tegne og skrive en matematikhistorie. Man kan også opfordre eleven til at regne opgaven ved at bruge en tallinje, talslange eller taltavle, så det bliver klart, at man når frem til 21 og ikke 31, når man begynder ved 16 og hopper fem gange. Som opfølgning kan man eventuelt stille en tilsvarende opgave, som fx 14 + 9. Der vil naturligvis opstå situationer, hvor eleverne kan få brug for en anden form for vejledning. Hvis en elev fx svarer, at 5 + 7 er 100, så giver det sandsynligvis ikke mening at spørge ind til de bagvedliggende tanker, men vil give mere mening at starte et helt andet sted. Det er vigtigt at vurdere, om et svar er rent gætteri, eller om der er brug for at støtte eleven i at vurdere, om et svar er rimeligt eller ej. Ved at spørge nysgerrigt ind til elevernes arbejdsmetode og tankegang kan man danne sig et billede af deres udfordringer
7
9788723545930_Reflex0_lærervejl.indb 7
15.01.2021 12.45
Matematisk opmærksomhed i 0. klasse
I Reflex udgør de seks kompetenceområder for 0. klasse grundlaget for tilrettelæggelsen af elevernes arbejde med matematik. Matematisk opmærksomhed indgår i samspil med de øvrige kompetenceområder både for at afspejle hverdagen i 0. klasse og give mulighed for variation og tværfaglighed i arbejdet med matematik. Nedenfor er de enkelte kompetencemål beskrevet ud fra deres betydning for indholdet i Reflex. Til indholdet i elevbogen er der på web opstillet læringsmål og tilhørende tegn på læring formuleret ud fra matematisk opmærksomhed i 0. klasse. Kilde til nedenstående afsnit om kompetenceområderne: Faghæftet for matematik i børnehaveklassen på emu.dk. Matematisk opmærksomhed Matematisk opmærksomhed omhandler de fagspecifikke emner tal, antal, figurer og mønstre. Disse emner knyttes tæt til hverdagssammenhænge, så eleverne oplever et naturligt møde med matematikken. De skal fx finde figurer i deres omgivelser og spejlinger i naturen. Sprog og tankegang er også en del af den matematiske opmærksomhed. I Reflex fokuseres der særligt på sprog og tankegang. og elevernes viden om de matematiske begreber, dels i de indledende undersøgelser og dels i de efterfølgende opgaver og aktiviteter. Eleverne skal kunne kommunikere om og med matematik. Det sker fx i øvelsen Gi’ og ta’, hvor eleverne skal lytte til og fortælle om deres løsningsforslag fra undersøgelsen. Opgaver, hvor de fx skal argumentere for, hvordan de har sorteret en mængde, eller beskrive, hvilke figurer deres figurmonster består af, kræver ligeledes kommunikation. Eleverne skal også fortælle matematikhistorier, hvor de både lytter til og selv anvender faglige begreber, som fx flest og færrest, eller hvor de fx skal genkende regningsarterne addition og subtraktion i en sproglig kontekst. Sprog Sproglig udvikling er et tværgående tema i alle fag gennem hele skoleforløbet. I matematik skal eleverne arbejde med at udvikle sproglige færdigheder. Det gælder både mundtligt, ved at lytte og deltage i samtaler, skriftligt, ved at læse og notere, og visuelt, ved at afkode og fremstille billeder. I Reflex arbejder eleverne ofte parvis, hvor de taler om, hvordan opgaver kan gribes an. De fortæller hinanden om deres løsninger af opgaver, lytter til andres strategier og fortæller om deres egne. Eleverne arbejder med fortællinger i forskellige varianter, som fx installationer, matematikhistorier, lydoptagelser eller billeder og fotos, der enten kan vise begreber eller strategier. Eleverne arbejder med skriftlige udtryk, når de noterer og tegner faglige pointer i rygsækken, eller når de tegner og skriver regneudtryk i matematikhistorier. Digitale medier og ressourcer er også en del af kompetenceområdet sprog, og i Reflex arbejder eleverne på web, hvor de indtaler lyd, løser interaktive opgaver og undersøger sammenhænge i GeoGebra. Eleverne udvikler deres sproglige færdigheder, når de løser opgaverne både i elevbogen og på web.
Naturfaglige fænomener Naturfaglige fænomener omhandler årets gang, dyr og planter, bæredygtighed samt naturnysgerrighed. I Reflex arbejder eleverne bl.a. med kendetegn for årets gang, årstiderne og månederne. Eleverne arbejder endvidere med dyr som omdrejningspunkt for matematikken. For at bringe elevernes naturnysgerrighed i spil skal de bl.a. sortere mariehøns og andre dyr ud fra antallet af ben. Desuden bruges naturen som hjælpemiddel i matematikken, når eleverne skal finde et bestemt antal genstande, eller når de undersøger spejlinger og mønstre, der findes i naturen. Kreative og musiske udtryksformer Kreative og musiske udtryksformer omhandler oplevelse, fremstilling og kommunikation. Eleverne skal kunne udtrykke sig i billeder, musik og drama. I Reflex er der fokus på det skabende element som en væsentlig del af kapitlerne. I evalueringerne skal eleverne skabe et produkt, videreudvikle det og forholde sig til det. Eleverne arbejder undersøgende og udviklende med kreative udtryksformer, som fx installationer, design, tegninger, fotos, lyd, skuespil og optræden både i evalueringer, opgaver og aktiviteter. Eleverne arbejder også med kreative og musiske udtryksformer, når de gentager en rytme i forbindelse med arbejdet med mønstre, eller når de lytter til et digt om årets gang. Krop og bevægelse Krop og bevægelse omhandler fysisk aktivitet og leg. Krop og bevægelse kan indeholde temaer, som fx krop og hygiejne, det sunde valg, rundt på min skole samt trafik og færdsel. Temaerne behandles ikke specifikt i Reflex, men vi foreslår at de indgår i tværfaglige emneuger. I Reflex er der i alle kapitler fokus på, at eleverne arbejder med varierede opgavetyper og aktiviteter, hvor de skal bevæge sig. Det kan være aktiviteter, som fx s tafet, leg, spil eller undersøgelser, hvor eleverne skal finde matematik i omgivelserne. Formålet er, at eleverne får en kropslig fornemmelse af den matematik, som de arbejder med. Det kan fx være, at eleverne skal stille sig i en bestemt rækkefølge, følge en bestemt retning eller lege spejlingslege, hvor de skaber spejlinger med deres krop. Engagement og fællesskab Engagement og fællesskab drejer sig om deltagelse, engagement, samvær, samarbejde, følelser og selvopfattelse. I Reflex er der et særligt fokus på elevernes deltagelse i aktiviteter enten alene, parvis, i grupper eller fælles for hele klassen. Samtlige kapitler lægger op til, at eleverne samarbejder om at undersøge matematik og matematiske problemstillinger i deres nærmeste omgivelser. Det er et væsentligt element i Reflex, at eleverne præsenteres for andres løsninger og ideer, lader sig inspirere af hinanden og sammen udvikler en klassekultur, der fremmer deling, fællesskab, oplevelser og erfaringer. Der arbejdes løbende med etablering af gode relationer og regler for samvær og samarbejde om matematik. Det er vigtigt, at eleverne opfatter klassefællesskabet som et sted, hvor de sammen bliver klogere på matematik, og hvor ingen er alene hverken med sine tanker eller manglende viden. Alles ideer bør være velkomne og værdsatte. Det kommer særligt til udtryk i Gi’ og Ta’ i kapitlernes omdrejningspunkt, opsamlingen i Rygsækken, og gennem den feedback eleverne giver hinanden i Min viden 1 og 2.
8
9788723545930_Reflex0_lærervejl.indb 8
15.01.2021 12.45
Matematik med Reflex Med afsæt i de tre didaktiske hjørnesten og den matematiske opmærksomhed i 0. klasse er undervisningen med Reflex tilrettelagt ud fra en genkendelig struktur i hvert kapitel. Strukturen afspejler en progression gennem stilladsering af elevernes undersøgelser, konsolidering af deres viden og færdigheder samt en løbende evaluering, dialog og feedback. Denne struktur er illustreret i nedenstående lærebogsmodel.
deler eleverne i fase 3 Gi’ og ta’ deres løsningsforslag med hinanden, før der samles op på den opnåede viden i fase 4, Min rygsæk. Omdrejningspunktet danner baggrund for det faglige indhold, som eleverne efterfølgende skal arbejde med i kapitlet. De fire faser er uddybet nedenfor. Fase 1 Introtegning I første fase introduceres eleverne til kapitlets faglige indhold gennem en Introtegning, der danner udgangspunkt for en klassesamtale. Formålet med Introtegningen og samtalen er at aktivere elevernes forforståelse og umiddelbare opfattelse af emnet. Samtalen tager udgangspunkt i elevernes hverdagserfaringer med det faglige emne. På Introtegningen vises hver gang den samme lærer, som stiller et spørgsmål til eleverne, der er ment som en inspiration til at opdage tegningens faglige indhold. I side til side-vejledningen er der til hver Introtegning givet forslag til supplerende spørgsmål for at støtte eleverne i deres udforskning af tegningens indhold. Introtegningerne er tilgængelige på web, så de kan vises på en skærm i klassen, mens eleverne går på opdagelse i indholdet. Efter at have aktiveret elevernes forforståelse og umiddelbare opfattelse, skal de efterfølgende udføre deres egen undersøgelse.
Hvert kapitel er tilrettelagt til en varighed på 2 til 3 uger svarende til 10 til 15 lektioner. På modellen kan det ses, at et kapitel tager udgangspunkt i et Omdrejningspunkt, hvor elevernes undersøgelse er en central del. Nedenfor beskrives både omdrejningspunktet, og hvordan de tre didaktiske hjørnesten inddrages.
Fase 1 afspejler især Den nysgerrige samtale, som er en af de tre didaktiske hjørnesten. Elevernes nysgerrighed vækkes i forhold til indholdet på Introtegningen, hvor elevernes opdagelser og begrundelser deles i den fælles samtale i klassen. Samtidig afspejles også Det anerkendende læringsrum og Videnskonstruktion, idet der tages udgangspunkt i elevernes umiddelbare fund på tegningen og i deres umiddelbare opfattelse af indholdet.
Efter at have gennemført omdrejningspunktet arbejder eleverne med aktiviteter og opgaver, hvor deres viden og færdigheder udvikles og konsolideres. Midtvejs i hvert kapitel fordyber eleverne sig i selvrettende Loop 1 opgaver på web, hvorefter evalueringerne gennemføres i Min viden 1 på et af de to niveauer. Loop 1 og Min viden 1 er ligeledes uddybet i det efterfølgende. Anden halvdel af kapitlet følger den samme struktur som første halvdel. Eleverne arbejder med aktiviteter og opgaver, hvorefter kapitlet afsluttes med et nyt sæt opgaver i Loop 2 og en afsluttende evaluering i Min Viden 2. Opgaverne i Loop 2 i anden del af kapitlet er differentieret på de samme to niveauer, sådan at eleverne kan afslutte fordybelsen i kapitlet ud fra deres individuelle forståelse af det faglige indhold. I Min viden 2 arbejder eleverne videre med det produkt, de skabte i Min viden 1 og giver og modtager feedback. Pilen, der peger ud af modellen, viser overgangen til et nyt kapitel, der følger den samme struktur.
Omdrejningspunktet
Introtegning fra kapitel 7
Hvert kapitel indledes med et Omdrejningspunkt, der er inddelt i fire genkendelige faser. I den første fase, Introtegning, aktiveres elevernes forforståelse af kapitlets faglige indhold. I fase 2 Vores undersøgelse gennemfører eleverne en undersøgelse. Herefter
9
9788723545930_Reflex0_lærervejl.indb 9
15.01.2021 12.45
Fase 2 Vores undersøgelse I fase 2 skal eleverne udføre en undersøgelse. Undersøgelsen indledes med et nøglespørgsmål, der præsenterer eleverne for den problemstilling, de skal undersøge. Nøglespørgsmålet findes på web, så det kan vises på en skærm i klassen, når elevernes undersøgelse sættes i gang. Undersøgelserne kan være formuleret som mere eller mindre åbne eller lukkede problemstillinger. Hensigten er at fokusere på den matematiske viden, der både er nødvendig for at kunne besvare dette spørgsmål, og som eleverne også skal bruge i de efterfølgende opgaver i kapitlet. Det væsentlige i undersøgelsen er, at eleverne får mulighed for at arbejde eksperimenterende med ideer og løsningsforslag. For at støtte den undersøgende proces findes der i hvert kapitel forslag til vejledende spørgsmål, som skal støtte elevernes besvarelse af nøglespørgsmålet. Spørgsmålene findes både i vejledningen og på det tilhørende arbejdsark. Spørgsmålene lægger op til, at eleverne kan give differentierede svar, ligesom de både kan fungere som ideer til de elever, der kan have vanskeligt ved at komme i gang, og til andre, der har brug for yderligere udfordringer. På arbejdsarket er der plads til at notere nogle af elevernes eksempler og pointer fra undersøgelsen, som efterfølgende kan indgå i den opsamlende samtale under Min rygsæk. Der kan både noteres forskellige ideer og løsningsforslag samt elevernes undren eller foreløbige forslag. Noter også elevernes navne, så de selv kan fortælle pointerne i den opsamlende samtale. Fase 2 afspejler især Det anerkendende læringsrum, som er en af de tre didaktiske hjørnesten. Eleverne arbejder undersøgende, og der sker en vekselvirkning mellem deres egne og andres refleksioner. Undersøgelserne giver mulighed for differentiering, da de er tilrettelagt, så eleverne kan svare på baggrund af deres aktuelle viden og dermed motiveres til en nysgerrig tilgang. Samtidig vil de erfare, at de kan bidrage til at skabe viden i fællesskab med andre.
Nøglespørgsmålet i kapitel 7 Fase 3 Gi’ og ta’ I Gi’ og ta’ deler eleverne deres ideer og løsninger fra undersøgelsen med hinanden. Gennem samtale kan eleverne enten få nye ideer til løsninger, eller opdage at forskellige tilgange kan løse den samme problemstilling. For at skærpe elevernes opmærksomhed på andres ideer og løsninger skal de efterfølgende i luppen tegne og notere et eksempel, som de har fået beskrevet af en anden. Eksemplerne inddrages i den efterfølgende fælles opsamling. Under Gi’ og ta’ noteres udvalgte elevers ideer og løsningsforslag fortsat på arbejdsarket.
Fase 3 afspejler særligt Den nysgerrige samtale, som er en af de tre didaktiske hjørnesten. Eleverne udveksler deres eksempler fra undersøgelsen og begrunder deres forslag. Alle elever kan deltage, fordi udgangspunktet er deres egne eksempler og forslag fra undersøgelsen. Øvelsen lægger desuden op til, at eleverne er nysgerrige efter at høre om hinandens eksempler, og at elevernes egen viden styrkes ved, at de ser og hører, hvordan andre har grebet undersøgelsen an.
Gi' og ta'-aktiviteten Fase 4 Min rygsæk I Min rygsæk samles der op på den nye viden, som eleverne har opnået i Vores undersøgelse. I den afsluttende fase vil eleverne blive støttet i overgangen fra konkrete erfaringer til matematisk viden. For at styrke denne overgang, vises først filmene om de faglige begreber. I filmene præsenteres eleverne for de centrale begreber fra første del af kapitlet, som dannede udgangspunkt for deres undersøgelse. Efterfølgende tales der om, hvad eleverne ved om de faglige begreber. Begreberne er også vist i elevbogen. Herefter drøftes det i klassen, hvilke faglige pointer der kan bringes med videre i rygsækken. Ideer og pointer noteres først på tavlen ved en fælles brainstorm om, hvad der kom ud af undersøgelsen. Der henvises i den forbindelse til den foregående undersøgelse og elevernes tegninger i luppen. Elevernes eksempler, som blev noteret på arbejdsarket, mens de arbejdede med Vores undersøgelse samt Gi’ og ta’-øvelsen, bringes ind i samtalen. Vær opmærksom på, at den opsamlende samtale dækker de faglige begreber, der er præsenteret i de faglige film, og at den samtidig repræsenterer en bred vifte af elevernes eksempler. Det anbefales at bruge den viden, som notaterne rummer, til at præsentere elevernes pointer i en hensigtsmæssig rækkefølge. Begynd med de mest almindelige eksempler og vent med de dybere ræsonnementer og generaliseringer. Som afslutning tegner og noterer eleverne hver især de faglige pointer, som de vil have med i rygsækken.
10
9788723545930_Reflex0_lærervejl.indb 10
15.01.2021 12.45
Fase 4 afspejler særligt Videnskonstruktion, som er en af de tre didaktiske hjørnesten. Eleverne forbinder deres erfaringer fra undersøgelsen med kapitlets faglige begreber på baggrund af en fælles klassesamtale om egne og andres eksempler og forslag. I Min rygsæk lægges der samtidig fortsat op til nysgerrighed overfor andres bidrag, når eleverne reflekterer over de matematiske pointer og sammenhænge, som er indgået i undersøgelsen.
Udover faglige film findes der på reflex.alinea.dk film med spilinstruktioner, forklaringer af strategier og beskrivelser af, hvordan matematikredskaber og digitale værktøjer anvendes. Dette er angivet med et webikon i elevbogen og i side til side-vejledningen.
Eksempler på faglige begreber Rygsækken i elevbogen.
Faglige begreber
De faglige begreber, der indgår i hvert kapitel, danner udgangspunkt for tilrettelæggelsen af elevernes arbejde, kapitlets organisering og evalueringen af elevernes viden. Begreberne er illustreret i elevbogen og er beskrevet i film, der findes på det tilhørende website. Filmene vises i forbindelse med opsamlingen af elevernes undersøgelser. Filmene vises desuden forud for evalueringerne i Min viden 1 og 2 for at give eleverne mulighed for at genopfriske kapitlets faglige indhold. De faglige film kan også indgå individuelt undervejs i elevernes arbejde, hvis de har brug for at repetere begrebernes indhold.
11
9788723545930_Reflex0_lærervejl.indb 11
15.01.2021 12.45
Kapitel
Faglige område
Faglige begreber
1 Mødet med matematik
Hvad er matematik?
Sprog Tal Antal Figurer Mønstre
2 Tal om tal
Tal
Tallets form Tallets navn Talrække
3 Alt tæller
Antal
Tælle Antal Sortere Flest og færrest
4 Finurlige figurer
Figurer
Cirkel Trekant Firkant Størst og mindst Lige store
5 Fod på tal
Tocifrede tal Plus
Cifre Tocifrede tal 10’ere og 1’ere Plus
6 Placeringer på plads
Placeringer
Placering Over og under Ved siden af Foran og bagved
7 Tiden går på et år
Tid
År Årstid Måned Timetal
8 Mønstermagi
Mønstre Spejling
Mønster Spejling
9 Ruter med retning
Orientering
Rute Retning Venstre og højre
10 Fang forskellen
Minus
Flest og færrest Lige mange Forskel
12
9788723545930_Reflex0_lærervejl.indb 12
15.01.2021 12.45
Faglig læsning
Faglig læsning i matematik betyder, at eleverne kan læse, forstå og bruge fagets tekster. I matematik bruges ord og vendinger, som eleverne også kender fra andre sammenhænge, men som ikke altid har samme betydning. Eleverne skal arbejde med at kunne afkode de ord, der typisk indgår i opgaveformuleringer og tekster. Ord som find, forklar og regn vil ofte tydeligt beskrive forventningerne i kommunikationen med eleverne, mens ord som løs, bestem og vis er mindre tydelige. I indskolingen skal den faglige læsning i matematik også medvirke til, at eleverne får øje på ord i tekster, der enten anviser forskellige regningsarter eller fordrer, at eleverne anvender bestemte strategier. Matematiske tekster indeholder foruden ord også symbolsprog. Symbolsprog indgår både i sammenhæng med anden tekst og som rent symbolsprog, som fx i regneudtryk. I matematik forbindes både hverdagssprog og symbolsprog desuden ofte med visuelle præsentationer, som fx diagrammer eller billeder af figurer eller antal. På kort sigt er formålet med arbejdet med faglig læsning, at eleverne lærer matematikholdige ord og faglige begreber at kende, og derved udvider deres ordforråd i tilknytning til faget matematik. På længere sigt er formålet, at eleverne kan læse og forstå matematikholdige tekster i forbindelse med problemløsning og modellering af omverden. I Reflex skal eleverne arbejde med faglige begreber og læsestrategier for at fremme deres forståelse af matematikholdige tekster. Kapitlerne i Reflex indledes med et omdrejningspunkt, som har til formål at aktivere elevernes forforståelse og umiddelbare opfattelser. Omdrejningspunktet skal hjælpe med at skabe sammenhæng mellem elevernes egen virkelighed og den indsigt, som matematikkens verden indeholder. Eleverne skal lede efter ord og begreber, som de kender og forstår betydningen af, og de skal forholde sig til nye ord og begreber, der defineres og uddybes i omdrejningspunktets undersøgelser. Eleverne skal udtrykke deres viden om de faglige begreber med ord og billeder i den opsamlende samtale i Min Rygsæk, der afrunder hvert omdrejningspunkt. Den faglige læsning har også et anvendelsesperspektiv. Den faglige læsning skal gøre eleverne i stand til at navigere rundt i alle bogens elementer. Eleverne skal i Reflex bl.a. arbejde med multi modale tekster, som fx tekster fortalt med både lyd, billeder, ord og symbolsprog. Det kan være lyd og video, tegneseriestriber, diagrammer, der kræver aflæsning, tal og symboler, der skal bearbejdes, samt instruktionsvideoer til spil eller GeoGebra. Eleverne præsenteres også for faglige begreber, der vises med ord, illustrationer og forklarende faglige film. Matematikhistorier fortalt gennem billeder og lyd er ligeledes et gennemgående element i Reflex. Eleverne producerer desuden selv matematikhistorier, hvori de anvender tilegnede faglige begreber og ord. De fortæller historier, hvori ord som tilsammen, i alt og forskel indgår, når de fx leger Vis og forklar, hvor begrebsbrikker skal afkodes og forklares for andre. Faglig læsning i Reflex kommer til udtryk i: Bogens opbygning og struktur: Den gennemgående struktur i det første opslag i hvert kapitel, ikoner, meningsrammer, opgavenumre og instruerende opgavetitler fortæller, hvordan bogen skal anvendes. Evalueringen i kapitel 1: I forbindelse med første kapitel i bogen fokuseres der på, hvordan bogen skal læses og forstås. Her
• •
skal eleverne undersøge deres matematikbog og gå på jagt efter udvalgt indhold. Introtegningen: Her er formålet at give eleverne mulighed for at italesætte, hvad de ved om emnet i forvejen og afklare klassens fælles begrebsforståelse. Luppen: Ved at aflæse elevernes tegninger i luppen kan de erfare, hvordan andre forstår kapitlets faglige begreber og matematiske pointer. De illustrerede begreber: Begreberne viser de væsentlige matematikholdige pointer fortalt med ord og illustrationer samt i en forklarende video, der har til opgave at afklare begreberne og formidle, hvordan disse skal forstås i en matematik sammenhæng. Min Rygsæk: Eleverne fastholder det centrale i de faglige begreber ved at notere, og de får mulighed for at gøre viden til deres egen. Meningsrammerne: Giver eleverne overblik over opgavernes indhold, inden de går i gang med et opslag. Min viden 1 og 2: Her evaluerer eleverne deres begrebsforståelse.
• • •
• • •
De seks moduler
Opgaver og aktiviteter i Reflex tager udgangspunkt i forskellige måder at arbejde på, for at eleverne kan erfare, at matematikfaglig viden og færdigheder kan opnås gennem forskellige tilgange og arbejdsmetoder. De forskellige måder at arbejde på er repræsenteret i Moduler. De seks typer Moduler, der arbejdes struktureret med, er: Vi udvikler strategier Vi skaber Vi kommunikerer Vi gamer Vi problembehandler Vi øver
• • • • • •
Hensigten med Modulerne er at sætte fokus på processerne i faget og samtidig støtte elevernes mulighed for at opnå de kompetencer, der er afgørende for deres progression. De seks moduler tager afsæt i systemets tre didaktiske hjørnesten og i de matematiske kompetenceområder, der er beskrevet i ministeriets læseplan. Hvert opslag i elevbogens kapitler, efter de indledende omdrejningspunkter, består af et udvalgt modul, der danner udgangspunkt for den måde, som eleverne hovedsageligt vil arbejde med opgaverne på. Modulet fremgår af de meningsrammer, der vises på hvert af opslagene, og som er beskrevet i side til side-vejledningen. Af hensyn til det konkrete faglige indhold, den individuelle fordybelse og variationen i elevernes arbejde, indgår øvrige tilgange til det faglige indhold også. Vi udvikler strategier Hensigten med dette modul er, at eleverne opnår kompetence i at anvende alsidige fremgangsmåder, afprøve nye metoder samt tilpasse og videreudvikle strategier og regnemetoder. Særligt for regnestrategier gælder det, at eleverne ikke nødvendigvis udvikler disse af sig selv, fordi det i begyndelsen kan virke besværligt og langsommeligt at bruge nye metoder. E lever, der er gode til at tælle, og som har udviklet gode tællestrategier, skal ind i mellem opfordres til at skifte tællestrategierne ud med regnestrategier.
13
9788723545930_Reflex0_lærervejl.indb 13
15.01.2021 12.45
Ved bevidst både at arbejde med udvikling af elevernes generelle strategier, fx til problembehandling, og med deres regnestrategier, støttes eleverne i processen med at forlade tællestrategierne og opnå en større sikkerhed med hensyn til tilgange og metoder. I denne proces er det hensigten, at eleverne skal tænke aktivt, og at de udfordres i relation til deres egne strategier samt præsenteres for nye strategier, som de kan afprøve, arbejde videre med og dermed tilegne sig. I arbejdet med at udvikle strategier rettes elevernes opmærksomhed mod tanker og handlinger i selve opgaveløsningen. Nogle problembehandlings- og regnestrategier vil undervejs i disse processer blive så automatiserede, at de for den enkelte elev vil kunne betragtes som metoder. Målet for udviklingen af elevernes regnestrategier er, at de bliver i stand til at foretage beregninger på effektive, velovervejede og fleksible måder, som desuden kan tilpasses nye regnesituationer.
midling, som fx dialog, præsentation, argumentation og visuel kommunikation i form af lyd og billede. Der fokuseres på, at eleverne ved at lytte, tale, læse, notere, tegne og aflæse tegninger opbygger et matematisk fagsprog, som de også bliver i stand til at anvende.
I Reflex indgår modulet Vi udvikler strategier fx, når eleverne præsenteres for nye strategier og arbejder med at afprøve dem, samt når de forholder sig til andres anvendelse af strategier ved såkaldte strategimøder. Eleverne afprøver fx tællestrategier, hvor de tæller videre fra det største tal. Eleverne gøres i den forbindelse opmærksom på, at de kan automatisere talbillederne, og at disse talbilleder kan hjælpe dem til at tælle smartere. Arbejdet hen imod regnestrategier kan være langsommeligt og kræve af eleverne, at de forholder sig til deres egne metoder. Foruden strategimøderne og arbejdet med at afprøve specifikke strategier, arbejder eleverne også med strategier, når de forklarer egne løsninger, og når de sætter sig ind i andres måder at tænke på.
Vi gamer Hensigten med dette modul er, at eleverne opnår kompetencer inden for sproglig udvikling, problemløsning og strategisk tænkning gennem deltagelse i spil og leg. Der fokuseres på, at eleverne tilegner sig viden gennem aktiviteter, hvor leg og bevægelse er et gennemgående element. Dette sker, når eleverne ved deres deltagelse gør sig overvejelser om hensigtsmæssige metoder til at skabe, vinde eller videreudvikle forskellige lege og spil. De fleste elever er glade for kortspil og brætspil, fangelege, rollelege og andre aktiviteter, hvor spil og leg indgår. Med udgangspunkt i elevernes motivation arbejdes der i modulet med gamer-relaterede aktiviteter, som fx spiludvikling, kodning og spildesign.
Vi skaber Hensigten med dette modul er, at eleverne opnår kompetencer inden for innovative, kreative og skabende processer samt generering af ideer. At skabe handler i matematik om sammenhængen mellem matematik og omverdenen. Eleverne skal være produktivt og visuelt skabende. Der lægges op til, at eleverne arbejder på mange forskellige måder og ved brug af flere forskellige sanser. Eleverne arbejder både digitalt og analogt med at få idéer samt at skabe visuelle, kreative løsninger og produkter. Opgaverne vil være præget af en høj grad af åbenhed med mange forskellige muligheder for løsninger. Eleverne arbejder med at skabe ideer samt at designe og forme et produkt ud fra givne krav og mål og med en stor grad af frihed til at vælge. Der fokuseres på, at eleverne innovativt og kreativt anvender deres matematikfaglige viden og færdigheder i nye sammenhænge.
I Reflex indgår modulet Vi gamer, når eleverne gennemfører spil, leger sammen, øver matematiske færdigheder gennem spil og lege, vurderer eller justerer spil ud fra givne krav, samt når de selv skaber spil, som andre afprøver. Eleverne udtrykker deres matematikfaglige viden ved at deltage i og forklare forskellige typer spil og lege. Eleverne arbejder med forskellige tilgange, som fx at opfinde spilleregler, designe spilleplader, kode spil og vurdere vinderchancer. Der inddrages både digitale og analoge spil, herunder også kodning og programmering. Udgangspunktet er elevernes motivation for lege og spilrelaterede aktiviteter, og således skal eleverne fx videreudvikle allerede eksisterende spil og lege samt arbejde med at påvirke et spil. Desuden kan eleverne skabe ideer, designe og forme nye spil ud fra givne krav og med en stor grad af frihed.
I Reflex indgår modulet Vi skaber, når eleverne enten selv eller i samarbejde med andre får ideer og skaber konkrete produkter med udgangspunkt i matematik. Eleverne designer, skaber og reflekterer over produkter eller løsninger. Produktet kan have mange forskellige udtryk. Fx kan eleverne skabe digitale tegninger, mønstre eller figurer, vise regneudtryk som illustrationer i matematikhistorier, skabe installationer, hvor de viser deres begrebsforståelse, eller tage på fotojagt efter matematik i hverdagen. Vi kommunikerer Hensigten med dette modul er, at eleverne opnår kompetence inden for kompetent formidling. Eleverne skal udvikle denne kompetence ved at udtrykke sig overfor hinanden og ræsonnere inden for matematik. De deltager i samtaler og forskellige former for for-
I Reflex indgår modulet Vi kommunikerer, når eleverne arbejder med at styrke deres kommunikationskompetence. Det sker fx ved at deltage i klassesamtaler, optage lyd, lytte til matematikhistorier og indgå i dialog med hinanden. Ved at kommunikere får eleverne mulighed for at præsentere deres egne tanker, sætte sig ind i andres beskrivelser og dermed konsolidere deres viden om matematiske symboler, sammenhænge og begreber. Eleverne arbejder både visuelt, mundtligt og skriftligt med at udtrykke sig fx gennem billeder, installationer, mundtlige forklaringer og skriftlige noter.
Vi problembehandler Hensigten med dette modul er, at eleverne opnår kompetencer i problembehandling, modellering, innovation samt hensigtsmæssig brug af både konkrete og digitale hjælpemidler i relation til problembehandling. Udgangspunktet for elevernes problembehandling kan både være virkelighedsnære sammenhænge og rent matematiske kontekster. En væsentlig del af denne proces er, at eleverne selv afgør, hvilke færdigheder og metoder som skal i brug. I Reflex indgår modulet Vi problembehandler, når eleverne selv undersøger problemstillinger og ikke får anvist konkrete metoder til besvarelse. Eleverne arbejder med at forstå og afgrænse undersøgelsen og problemstillingen, ligesom de eksperimenterer og afprøver forslag og vurderer forskellige bud på strategier til problembehandling og svarmuligheder. I dette modul arbejder
14
9788723545930_Reflex0_lærervejl.indb 14
15.01.2021 12.45
eleverne således også med at udvikle generelle strategier til problembehandling, som fx at gætte og prøve efter, eller at opliste alle muligheder. Vi øver Hensigten med dette modul er, at eleverne konsoliderer deres grundlæggende matematiske kompetencer, viden og færdigheder. For at kunne anvende matematik i nye situationer samt arbejde skabende, kreativt og problembehandlende er der brug for, at eleverne fordyber sig i det faglige indhold, udvikler sikkerhed i strategier og metoder samt kvalificerer deres viden om matematiske begreber. Der fokuseres på, at eleverne effektiviserer disse metoder, automatiserer talbilleder og små plus- og minusstykker, samt at de opnår større fortrolighed med faglige begreber. I Reflex indgår modulet Vi øver, når der er særligt fokus på, at eleverne udvikler og konsoliderer deres færdigheder og træner den viden, som de har tilegnet sig, ved at anvende den i allerede kendte eller nye sammenhænge. Konsolideringen handler også om fx at automatisere små mængder i form af talbilleder samt mindre plus- og minusstykker. Den automatiserede viden kan eleverne bl.a. bruge, når de skal udvikle strategier og metoder, og netop derfor er det væsentligt at bruge tid på dette. I dette modul arbejder eleverne med fagligt indhold, som de tidligere har været præsenteret for. Det sker gennem repetition af tidligere faglige områder og fordybelse i udviklingen af strategier og begreber. Eleverne får dermed mulighed for at konsolidere de faglige områder og at anvende matematikken i nye kontekster. Eleverne vil i dette modul i højere grad end andre moduler skulle arbejde individuelt, hvilket giver dem mulighed for at arbejde på eget niveau og med inddragelse af konkrete materialer i det omfang, der passer dem individuelt.
Meningsrammer
For at bevidstgøre eleverne om indholdet i opgaver og aktiviteter, præsenteres modulerne sammen med faglige mål i Meningsrammer. Der findes en Meningsramme på hvert af de opslag, der følger efter omdrejningspunktet. I Meningsrammen er det faglige mål og det udvalgte modul beskrevet i en kort tekst og vist i en forklarende illustration. Dette eksempel på en meningsramme er fra kapitel 7:
Teksten Vi øver månederne formidler meningen med læringsmålet: “Jeg kan vise og fortælle månedernes navne og rækkefølge.” Det fremhævede ord øver henviser til modulet Vi øver, og det skal vise eleverne, at arbejdsmetoden i de efterfølgende opgaver primært er at træne månedernes navne og rækkefølge. Det anbefales at tale med eleverne om indholdet i Meningsrammerne forud for arbejdet med opgaverne på hvert opslag i elevbogen. Meningsrammerne findes også på det tilhørende website, så det kan vises på en skærm i klassen, mens der i fællesskab tales om indholdet. Hensigten er at synliggøre meningen med undervisningen og gradvist opøve elevernes fortrolighed med de forskellige tilgange til læring, der lægges op til i Reflex.
Loop-opgaver
For at give eleverne mulighed for individuelt at øve sig, repetere og fordybe sig i de faglige begreber og det faglige indhold er der i hvert kapitel indlagt to forløb med Loop-opgaver. Det første forløb er placeret midtvejs i kapitlet umiddelbart før den første evaluering. Opgaverne er udarbejdet på ét niveau. Det andet forløb med Loop-opgaver er placeret som afslutning af kapitlet umiddelbart før den anden evaluering, og består af opgaver på to niveauer. De to niveauer gør det muligt for eleverne at arbejde differentieret ud fra deres viden og kunnen, når de skal repetere og fordybe sig i kapitlets faglige indhold. I Loop 2-opgaverne har eleverne har mulighed for at vælge forskellige niveauer ud fra deres forståelse af det faglige indhold i de enkelte kapitler. Det niveau, som den enkelte elev skal arbejde på, afgøres i samråd med læreren. Loop-opgaverne er selvrettende opgaver på web, som eleverne løser individuelt. Eleverne har tre forsøg, hvorefter facit vises. De to niveauer er tilrettelagt ud fra følgende struktur: Niveau 1: Eleven har vanskeligt ved flere af de faglige begreber og metoder, der indgår i kapitlet, og har brug for at øve det grundlæggende faglige indhold. Niveau 2: Eleven kan arbejde med de fleste af de faglige begreber og metoder, der indgår i kapitlet, og kan med fordel udfordres i sine færdigheder.
• •
Loop
1
Loop
2
15
9788723545930_Reflex0_lærervejl.indb 15
15.01.2021 12.45
Min viden
Evaluering af elevernes viden og færdigheder er væsentlig for tilrettelæggelsen af undervisningen. I Reflex er både formativ og summativ evaluering en integreret del af hvert kapitel. Den summative evaluering indgår som opgaver, hvor der er fokus på at gøre status over, hvad eleverne kan og ved på det pågældende tidspunkt. Den formative evaluering indgår med det formål, at eleverne løbende kan justere og kvalificere deres viden og kunnen. Den formative evaluering foregår ved, at eleverne midtvejs i hvert kapitel udarbejder et produkt i evalueringen Min viden 1. Ved afslutningen af hvert kapitel vender eleverne i Min viden 2 tilbage til deres produkt og kvalificerer og videreudvikler det med afsæt i deres nye viden. I evalueringerne er der desuden lagt vægt på, at eleverne skal give og modtage feedback. I den afsluttende evaluering i Min Viden 2 indgår feedback ved, at eleverne ser hinandens produkter. Formålet med denne feedback er, at eleverne, fx ved at afprøve, svare på eller på anden måde forholde sig til andres produkter, oplever, at produkterne også har værdi for andre. Produkterne i evalueringerne kan fx være en leg eller et spil, en matematikhistorie, et foto eller et design. Evalueringsopgaverne Min viden 1 og 2 findes på web, og de tager udgangspunkt i de faglige begreber, der indgår i kapitlet. Evalueringerne foregår i forlængelse af de to forløb med Loop-opgaver. Den didaktiske hjørnesten Det anerkendende læringsrum kommer særligt til udtryk i elevernes feedback, fordi der med gensidig feedback skabes en klassekultur, hvor eleverne lærer at forholde sig til andres arbejde og produkter samt at lytte til andres meninger om og syn på deres eget arbejde. Efterhånden som eleverne bliver ældre, vil der i evalueringerne lægges op til, at elevernes feedback, bliver mere konstruktiv og i højere grad skal kunne anvendes til at vurdere det matematikfaglige indhold i produkterne. Feedbackens formål vil fortsat være at skabe glæde ved at forholde sig til det at skabe produkter og at opleve, at produkterne har værdi for andre. Før elevernes arbejde med evalueringerne vises de faglige film, og indholdet drøftes i fællesskab i klassen. I elevbogen er de faglige begreber fra filmene desuden gengivet med illustrationer. På den måde får eleverne mulighed for at genopfriske deres forståelse af begreberne, før deres arbejde med opgaverne i evalueringerne. Hver enkelt elev vælger selv, hvilket niveau de vil arbejde på. Eleverne kan vælge at arbejde på forskellige niveauer fra kapitel til kapitel alt efter deres faglige indsigt inden for de enkelte områder. Hvis der er behov for det, kan en elev tilbydes hjælp til at vurdere sit niveau. Dette gøres ved at tage afsæt i elevens forståelse af kapitlets faglige indhold. Brug evt. billederne af de faglige begreber i bogen til at vurdere niveauet ud fra denne anvisning: De to niveauer i Min viden 1 og 2 er differentieret ud fra følgende kriterier, der svarer til de niveauer, der også anvendes for Loop 2-opgaverne: Niveau 1: Det vurderes, at eleven har brug for at arbejde grundlæggende med alle kapitlets faglige begreber. Niveau 2: Det vurderes, at eleven kender de fleste af begreberne og med fordel kan udfordres på sin viden.
• •
I Min viden 1 på web præsenteres eleverne for stilladserede opgaver, der trinvis guider dem gennem udarbejdelsen af deres produkt. Opgaverne er differentierede som angivet herover, så
eleverne har mulighed for at arbejde med en evaluering, der svarer til deres aktuelle faglige udgangspunkt. Når eleverne har udarbejdet deres produkter i Min viden 1, skal produkterne gemmes til Min viden 2, hvor eleverne arbejder videre med dem. Det aftales på forhånd med eleverne, hvordan dette kan foregå, fx om elevernes tegninger skal påføres navn, indsamles og gemmes fælles, om eleverne skal have hver deres portfoliomappe, om elevernes billeder skal uploades i skyen eller på en læringsplatform, eller om installationer fx kan få en plads i klasselokalet, indtil de skal bruges igen. Metoden behøver ikke at være ens for hvert kapitel, men det skal være tydeligt for e leverne, hvad de skal gøre. I Min viden 2 skal eleverne arbejde på samme niveau, som de valgte under evalueringen i Min viden 1. På den måde sikres det, at eleverne videreudvikler deres produkt på baggrund af den individuelle faglige progression. I Min viden 2 på web præsenteres eleverne for stilladserede opgaver, der guider dem i at videreudvikle deres produkt, og anviser, hvordan de skal give og modtage feedback.
Min viden Min viden
1 2
Evalueringsstrukturer
I hvert kapitel arbejdes der i evalueringerne med en af følgende fire Evalueringsstrukturer: atematikhistorier • MFotoformidling • Design • Spil og leg • I hver af de fire Evalueringsstrukturer skal eleverne udforme forskellige typer af produkter, der viser kapitlets matematiske indhold. Gennem produktet formidles den faglige viden på det niveau, der afhænger af en enkelte elevs faglige ståsted. Der er lagt vægt på, at eleverne opfordres til at tænke kreativt og innovativt i skabelsen af produkterne. Evalueringerne i et kapitel tager afsæt i en udvalgt struktur, som eleverne er blevet introduceret for og har arbejdet med undervejs i kapitlet. Hvis eleverne fx skal arbejde med fotoformidling eller matematikhistorier som Evalueringsstrukturer, vil de i de forudgående opgaver være blevet præsenteret for opgaver med fokus på matematikhistorier. Evalueringsstrukturen er valgt med udgangspunkt i, hvilke faglige kompetencer der er centrale i det pågældende kapitel, samt overvejelser omkring, hvilket produkt der passer bedst til at bearbejde kapitlets faglige begreber. Matematikhistorier Eleverne anvender og forbinder matematiske begreber og processer gennem mundtlig, skriftlig eller visuel formidling. Dette sker enten i fagsprog eller hverdagssprog ved brug af tal og symboler eller gennem grafer og tegninger. Matematikhistorier
16
9788723545930_Reflex0_lærervejl.indb 16
15.01.2021 12.45
indgår, når eleverne fx fortæller historier, der passer til tabeller og diagrammer, eller når de fx tegner og fortæller om en situation, der viser minus. Matematikhistorier indgår også som fortællinger om figurer og geometrisk design eller i en gengivelse af hverdagssituationer, som fx indkøb, antalsbestemmelse og vægtbestemmelser. Der er mulighed for, at eleverne kan optage deres matematikhistorier som lydfiler på web, så de efterfølgende kan afspilles og evt. løses af andre. Fotoformidling Eleverne viser med fotos, collager, tegninger eller billeder fra nettet, hvordan matematik anvendes i omverdenen. Fotoformidling indgår, når eleverne viser matematiske begreber, udregninger, mønstre og kategorier. Det kan være billeder, hvor tal, symboler eller geometriske former bruges på forskellige måder. Eleverne kan også tage billeder af egne produkter, som det kan være vanskelige at fastholde i traditionel skriftlig form fx en opstilling, der viser placeringerne over, under og ved siden af. Der kan evt. være tale om billeder af, hvordan de har sorteret brikker med geometriske former efter forskellige kriterier eller om fotos af hverdagssituationer, som fx et indkøb eller en samling data - eksempelvis bilerne på en parkeringsplads. Design Eleverne skaber produkter med konkrete materialer eller med digitale hjælpemidler. De arbejder med matematik på skabende, innovative og kreative måder. Eleverne anvender fx matematik til at bygge og designe genstande, der beskriver matematiske begreber, modeller og situationer. Matematik kan både indgå som en del af designprocessen og i selve udformningen af produktet. Produkterne, der designes, kan fx være: En papkasseinstallation, der formidler forskellige regneudtryk i hverdagsscenarier, et design af en plakat med figurmønstre eller figurmonstre eller et maleri med symmetri. Centralt for arbejdet med design er, at eleverne kan afgrænse og begrunde, hvordan matematik indgår som en del af det skabte. Spil og leg Eleverne skaber selv spil eller udvikler lege. Når eleverne skal udvikle et spil eller en leg, kan matematikken fra den skabende proces indgå i reglerne. Matematikken kan også vise sig i udformningen af det endelige produkt, fx i form af en spilleplade, brikker eller kort. Eleverne kan fx vælge at ændre på et spil eller skabe et helt nyt spil med baggrund i allerede kendte spil, som fx et vendespil, et puslespil eller brætspillet Ludo. Der kan også være tale om, at eleverne skaber lege, der efterfølgende leges i mindre grupper eller fælles i klassen, som fx figurstafet, talsalat, eller gemmeleg.
Færdighedsevalueringer
I elevbogen er der indlagt færdighedsevalueringer på web to gange i løbet af arbejdet med elevbogen. Første gang er som afslutning på kapitel 5 og anden gang i kapitel 10 efter afslutning af hele bogen. Færdighedsevalueringernes udformning svarer som udgangspunkt til Loop-opgaverne og fungerer som repetition af det faglige indhold i de foregående kapitler. Opgaverne er tilrettelagt, så de tager 20-30 min. at gennemføre. Eleverne har mulighed for at svare tre gange på opgaverne, hvorefter facit vises. En oversigt over elevernes besvarelser findes på det tilhørende lærersite.
Færdighedsevalueringerne på reflex.alinea.dk
Digitale ressourcer
De digitale ressourcer til Reflex er samlet på systemets website reflex.alinea.dk. Ressourcerne omfatter opgaver i GeoGebra, selvrettende fordybelses- og færdighedsopgaver, differentierede evalueringer, mulighed for elevbesvarelser som lydoptagelser samt øvrige aktiviteter til de enkelte opgaver. På web kan eleverne få læst opgaveteksterne op. Derudover er der på websitet adgang til samtalebilleder, faglige film, spilinstruktioner på film, lydoptagelser, arbejdsark, Fælles Mål, facit og tavlebog. Beskrivelsen af, hvordan disse er tænkt at skulle anvendes, findes i side til side-vejledningen i tilknytning til de enkelte opgaver. I elevbogen vises et web-ikon, når der hører digitale ressourcer til opgaverne. I Reflex er de digitale ressourcer en integreret del af hvert kapitel. Arbejdet med digitale værktøjer udgør en væsentlig del af elevernes hjælpemiddelkompetence. Ligesom forskellige analoge hjælpemidler kan vælges ud fra den aktuelle situation, er digitale værktøjer tilsvarende en ressource, der skal vurderes i forhold til løsningen af den konkrete opgave. Digitale ressourcer kan inddrages i matematik på baggrund af forskellige formål, som fx at lære et program at kende eller at forstå matematik. Begge dele er væsentlige. Eleverne vil ikke kunne løse matematiske problemstillinger digitalt, hvis de ikke kender de tilgængelige programmer, værktøjer og deres muligheder. Digitale ressourcer og opgaver er ikke kun en erstatning for papir og blyant, men et hjælpemiddel der betyder, at eleverne kan nå længere i deres forståelse, end de ville kunne, hvis opgaverne havde været analoge. Ved undersøgelser af fx egenskaber ved figurer eller eksperimenter med længden af kanterne i en firkant kan det lette opgaven betydeligt at arbejde i et dynamisk geometriprogram i stedet for at arbejde med papir og blyant. Det vil tage eleverne lang tid at udføre sådanne opgaver i hånden og i forhold til det faglige formål, vil denne tid måske ikke modsvare elevens udbytte og læring. Ydermere vil tegningen i hånden ikke være lige så præcist udført, som det er tilfældet ved brug af en digital ressource. Det er væsentligt, at eleverne forholder sig til valget af hjælpemiddel og bliver bevidste om, hvordan arbejdet kan lettes ved brug af det rette hjælpemiddel. At arbejde digitalt med geometri er ikke en erstatning for at opøve kompetence i at tegne figurer med lineal. Det væsentlige er, at der kan være et forskellige formål med at arbejde med figurerne, og at disse formål hver især lægger op til anvendelse af forskellige hjælpemidler.
17
9788723545930_Reflex0_lærervejl.indb 17
15.01.2021 12.45
I Reflex skal eleverne arbejde med GeoGebra-værktøjer. Hensigten er, at eleverne bliver fortrolige med programmet, og at de gennem hele skoleforløbet videreudvikler deres kompetencer i brugen af disse, så de bliver en integreret del af arbejdet med faget. I Reflex introduceres brugen af udvalgte værktøjer løbende, når eleverne skal bruge dem. Værktøjerne præsenteres i film, som eleverne kan gense, hvis de på et senere tidspunkt bliver usikre på, hvordan programmets værktøjer virker. Som lærer er det ikke en forudsætning at kende samtlige funktioner i et program, for at eleverne kan arbejde med et digitalt værktøj. Mange af programmerne er komplekse og indeholder funktioner, der ikke nødvendigvis skal benyttes. Det handler derimod om at turde springe ud i arbejdet med digitale værktøjer. Eleverne vil ofte hurtigt kunne sætte sig ind i et program, ligesom de vil kunne inspirere hinanden til at lære og beherske programmets funktioner. Når eleverne arbejder med programmerede GeoGebra-filer i Reflex, er værktøjslinjen blevet tilpasset, så der kun vises de aktuelle værktøjer, som eleverne skal bruge i opgaven. På den måde bliver funktionerne mere overskuelige og intuitive at bruge. Det anbefales dog også at lade eleverne være nysgerrige og lege med hele programmet, så de i fællesskab kan finde ud af, hvad programmet kan.
veksles mellem elevernes deltagelse i form af lege, øvelser og spil, deres deltagelse i arbejdet med digitale værktøjer og ressourcer på web, kommunikation eleverne imellem, samtaler om strategier, træning og konsolidering af viden samt skabende, kreative og innovative aktiviteter. De varierende samarbejdsformer afspejler desuden de didaktiske hjørnesten, der ligger til grund for Reflex. Det anerkendende læringsrum og Den nysgerrige samtale indgår dels, når eleverne deler deres viden med få, flere eller alle i klassen, og dels når de i fællesskab reflekterer over eget og andres arbejde. Samtidig giver de varierende arbejdsformer mulighed for at differentiere undervisningen ud fra hver enkelt elevs individuelle evner inden for de forskellige arbejdsformer. Disse arbejdsformer indebærer, at der i klassen er et åbent læringsrum, hvor eleverne i fællesskab lærer, undersøger, gætter og prøver sig frem. For at fremme en sådan læringskultur, er det vigtigt at støtte eleverne med en anerkendende tilgang og på den måde skabe tryghed, så eleverne tør kaste sig ud i undersøgelser, foreløbige ideer og løsninger. Det er hensigten, at eleverne derigennem vil opleve, at de hver især bidrager med værdifulde betragtninger og er aktive medspillere i matematikundervisningen. I elevbogen vises det optimale antal deltagere i opgaver, der skal løses i samarbejde, med et ikon. Gruppernes størrelser kan dog varieres og tilpasses med baggrund i klassens faktiske elevtal.
Paraktivitet Gruppeaktivitet på tre personer Gruppeaktivitet på fire personer Gruppeaktivitet på fem personer Klasseaktivitet
Webopgave på reflex.alinea.dk
Samarbejdsformer
I Reflex er der fokus på, at eleverne arbejder alsidigt og afvekslende med varierende arbejdsformer, både med hensyn til aktiviteter og organisering af undervisningen. Afhængigt af indholdet og målet med de enkelte opgaver, veksler eleverne mellem at arbejde alene, i par, i mindre grupper og hele klassen i fællesskab. Når eleverne arbejder alene, er formålet at fordybe sig og opøve færdigheder. Når eleverne arbejder parvist, er det for at inddrage feedback eller idéudveksling og dermed dele viden med hinanden. Parvist arbejde handler om i fællesskab at nå frem til en løsning, en forklaring, et forslag eller et produkt. Eleverne arbejder i grupper, når der spilles og leges, eller når der lægges op til at udveksle ideer og dele viden med andre for at styrke forståelsen af faglige begreber, pointer og strategier.
Fælles aktiviteter i hjemmet
Bagerst i elevbogen findes et oplæg til aktiviteter, som forældre og børn kan afprøve sammen derhjemme. Aktiviteterne er udvalgt med fokus på at opnå gode oplevelser med matematikken og samtidig understøtte det faglige arbejde, der foregår i skolen. Til hvert kapitel er der to aktiviteter med udgangspunkt i de faglige områder, som eleverne arbejder med i det specifikke kapitel. Aktiviteterne indeholder de samme faglige pointer og elementer som opgaverne i bogen. Der er også lagt vægt på, at aktiviteterne er nemme at gå til, og at de materialer, der skal anvendes, findes i hjemmet. På denne måde kan forældrene få et indblik i, hvad der arbejdes med i undervisningen på skolen, og hvordan de bedst kan støtte elevernes faglige udvikling og trivsel.
De seks moduler, der indgår i Reflex, afspejler varierende aktiviteter og opgaver. Der lægges op til en undervisning, hvor der
18
9788723545930_Reflex0_lærervejl.indb 18
15.01.2021 12.45