1 minute read

1.3.9 Ligikaudne arvutamine

1.3.9 Ligikaudne arvutamine

Peab kindlasti ära märkima ka seda, et kogu käesolev väljade kvantteooria on esitatud tegelikult ligikaudselt, mitte päris täpselt. See tähendab eelkõige seda, et paljud tehtud ja ka tehtavad arvutused on ligikaudsed, mitte aga täpselt ühtivad eksperimentaalselt saadud andmetega. Selle tulenevust selgitame järgmise matemaatilise analüüsi kaudu, milles nähtub ligikaudsuse tekkimine füüsika erinevate võrrandite kasutamise tõttu ühe ja sama nähtuse või seaduspärasuse kirjeldamisel.

Advertisement

Vaatame selle näiteks järgmist arvutuslikku analüüsi. Näiteks kui elektriliselt laetud sfäärilise pinna poolt tekitatud välja energia E

on 6,2 * 1043 J ja kera raadius on üks meeter ( ning ɛ0 on ligikaudu 8,85 * 10-12 C2/Nm2 ja ɛ on ligikaudu üks ), siis saame kera laengu Q suuruseks 1,1 * 1017 C. Vaakumis on ɛ väärtus üks, kuid õhus on see 1,00057 ( seda ainult 200C juures ). Kui antud elektriväljal on energia 6,2 * 1043 J, siis vastavalt massi ja energia seosele E = mc2 on sellise koguse energia mass 6,9 * 1026 kg, mis võib olla mõne taevakeha massiks. Sellest tulenevalt on sellise taevakeha massi Schwarzschildi raadius

üks meeter ja seetõttu peab selline ühe meetrine Schwarzschildi raadius tekkima ka antud elektriliselt laetud kera korral. Eelnevalt tuletatud elektrilaengu horisondi raadiuse

järgi saamegi laengu Q suuruseks 1,1 * 1017 C, kui raadius on üks meeter ja ε on ligikaudu üks. Kui

aga Schwarzschildi raadius R

on kolm meetrit, siis seega massi

saame leida järgmiselt:

= kg.

Kuna kehtib energia ja massi ekvivalentsuse printsiip ehk = , siis seega saame energiaks järgmise suuruse:

= J.

Selline energia hulk võib olla mõne kosmilise elektrivälja energia E

This article is from: