HHF

Page 1

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


‫‪@ @ò߇Ծa‬‬ ‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א א‬

‫א‬

‫‪، SPSS‬‬

‫א‬ ‫א‬

‫א‬ ‫א‬

‫‪،‬א‬

‫א‬

‫‪،"SPSS‬‬

‫א‬

‫‪o‬‬ ‫‪o‬‬

‫א‬

‫א‬

‫אא‬

‫א‬

‫א‬

‫‪،‬א‬

‫א‬

‫א א‬

‫‪.‬‬ ‫א‬

‫‪MANOVA‬‬ ‫‪ANCOVA‬‬

‫א‬

‫)א‬

‫‪MANCOVA‬‬

‫–א‬

‫(‬

‫‪Correlation Analysis‬‬

‫–א‬

‫(‬

‫‪Regression Analysis‬‬

‫‪Factor Analysis‬‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬ ‫א‬

‫‪،‬‬

‫א א‬

‫א )א‬ ‫א‬

‫א‬

‫‪،‬א‬

‫א א‬

‫‪ANOVA‬‬

‫א‬

‫‪o‬‬

‫א‬

‫א‬

‫‪:‬‬

‫א‬

‫‪ o‬א‬ ‫א‬

‫א "א‬

‫א‬

‫‪o‬‬

‫א‬

‫א‬

‫א‬

‫א א‬

‫א‬

‫‪o‬‬

‫א‬

‫‪ ،‬א‬

‫א‬

‫א‬

‫‪،‬‬

‫א‬

‫א‬ ‫א‬

‫‪o‬‬

‫א‬

‫א‬

‫אא‬

‫א‬

‫א‬

‫א‬

‫‪،‬‬

‫א‬ ‫א‬

‫א‬ ‫א‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


‫א‬

‫א‬

‫א‬

‫‪.‬‬ ‫‪،‬‬

‫א‬

‫א‬

‫א‬

‫א‬ ‫א‬

‫א‬

‫א‬

‫‪ ،‬א‬

‫אא‬ ‫א‬

‫א‬

‫‪.SPSS‬‬

‫א‬

‫א‬ ‫אא‬

‫)‪(0020109787442‬‬

‫א א‬ ‫א‬

‫‪،‬‬

‫)‪ .(osama.rabie@yahoo.Com‬א א‬

‫א‬ ‫א‬

‫א‬ ‫‪.‬‬

‫א‬ ‫‪æbàîÜ@µßc@ÉîiŠ@òßbc‬‬ ‫א‬

‫–‬

‫‪2008‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


@ @pbíìna @@ 1 @@ 7 @@ 41 @@ 63 @@ 71 @@ 79

Þëþa@Ý—ÐÛa .............................. ‹íbÌnÛa@ÝîÜ¥ë@åíbjnÛa@ÝîÜ¥@µi@Ö‹ÐÛa@åÇ@ò߇Ôß ïãbrÛa Ý—ÐÛa ......................................... (ANOVA) ð†byþa åíbjnÛa ÝîÜ¥ sÛbrÛa Ý—ÐÛa ........................................ (MANOVA) †‡Èn¾a åíbjnÛa ÝîÜ¥ Éia‹Ûa Ý—ÐÛa ....................................... (ANCOVA) ð†byþa ‹íbÌnÛa ÝîÜ¥ ßb©a Ý—ÐÛa ...................................... (MANCOVA) †‡Èn¾a ‹íbÌnÛa ÝîÜ¥ ‘†bÛa Ý—ÐÛa ................................ Correlation Analysis ÂbjmŠüa ÝîÜ¥

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


@@ 101 @@

ÉibÛa Ă?—Ă?Ă›a Simple Linear Regression Analysis à ÎjĂ›a óŠa Ĺ a‥Žßa Ă?ĂŽĂœÂĽ

...................................................................................

ĂĽĂ&#x;brĂ›a Ă?—Ă?Ă›a

143 ............ Multiple Linear Regression â€ â€ĄĂˆnža@ïŠa@Ĺ a‥Žßa@Ă?ĂŽĂœÂĽ @@

ÉbnÛa@�—�Ûa

175 ............................................. Factor Analysis ĂŻĂœĂ&#x;bĂˆĂ›a@Ă?ĂŽĂœznĂ›a

‍ ×? " ! Ůˆ×?‏# .... ‍ ×? ×? Ůˆ Ůˆ Ůˆâ€Ź

0020109787442 $%&' ‍ * ) ( ×?‏+ ‍ Ůˆ×?‏, $- . ‍ " Ůˆ×?‏/01‍ ×?‏2 * 3$ # & 4‍د‏


‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


@ @Þëþa@Ý—ÐÛa @@ @@ @@ @@ @@ @@ @@ µi@Ö‹ÐÛa@åÇ@ò߇Ôß@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ (‹íbÌnÛa@ÝîÜ¥@–@åíbjnÛa@ÝîÜ¥) @ @

1

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪2‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


‹íbÌnÛa@ÝîÜ¥ë@åíbjnÛa@ÝîÜ¥@µi Ö‹ÐÛa åÇ@ò߇Ôß

@@

Þëþa@Ý—ÐÛa @ @@µi@Ö‹ÐÛa@åÇ@ò߇Ôß

@@ @@

@ @‹íbÌnÛa@ÝîÜ¥ë@åíbjnÛa@ÝîÜ¥

@@ @ @ANOVA åíbjnÛa@ÝîÜ¥@Z:@üëc ،

‫א א‬

‫א‬

‫א‬

،

‫א א‬ .

‫א‬

‫א‬

.

،

‫א א‬

‫א‬

‫א‬

‫א‬

‫א א‬

‫א‬

:pbÄyýß ‫–א‬

‫–א‬

‫א‬

‫א‬:

‫א‬ . ‫ א‬..... ‫א‬

:

‫א‬

‫ א‬،(

. ‫ א‬............... ( – –

– –

) )

‫א‬

‫א‬

‫א‬

‫ א‬.2

‫א‬

:

)

:

. )

‫א‬

‫ א‬،(

‫א‬

.1

:

. ‫א‬

. ‫ א‬............... (

3

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


Þëþa@Ý—ÐÛa

@ @ZåíbjnÛa@ÝîÜ¥@Êaìãc ‫א א‬

‫א‬

‫א א‬

‫א‬:

‫א‬ :

‫א‬

،

‫א‬

@ @‹íbÌnÛa@ÝîÜ¥@:@bîãbq ‫א‬

‫א‬

‫)א‬

‫א‬ :(

‫א‬

4

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‹íbÌnÛa@ÝîÜ¥ë@åíbjnÛa@ÝîÜ¥@µi Ö‹ÐÛa åÇ@ò߇Ôß

.1

ANCOVA ð†byþa@‹íbÌnÛa@ÝîÜ¥ ‫ ] א‬ANOVA

‫א‬

‫א‬

‫א‬ ‫א‬

‫א א‬

‫א‬

‫א‬ ‫א‬

‫א‬ ‫א‬

(

‫) (א‬

‫א‬

،

‫א‬

‫א‬

‫א א‬ ‫א‬

‫א‬

‫)א‬

‫א‬

.(

‫א‬

‫א‬

‫א‬

‫)א‬

‫א‬

‫א‬

‫א‬ ‫א‬

‫א‬

.

‫א‬

‫א‬

ZÙ @ Ûˆ@Þbrß

،

‫א‬

(

‫א‬ ‫א‬

‫ א‬:é@ ãa@æ@ bîjÛa@åÇ@Ëë

‫א‬ ،

.(1)

‫א‬

‫א‬

‫א‬

‫א‬

ANCOVA

‫א‬ ‫א‬

‫א‬ ،(

‫א‬ ‫א‬

‫א‬

‫א‬

‫א‬

)

‫א‬

‫א‬

‫)א‬

،[

‫א‬ ‫א‬

‫א‬

ANCOVA

‫א‬ ‫א‬

‫א‬

.ANOVA

،Control Variable

‫א‬

‫א‬

. Covariates

‫א‬

1

5

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


Þëþa@Ý—ÐÛa

Zò–ý©a

‫א‬ .

‫א‬ ‫א א‬

‫א‬

ANCOVA

‫א‬

(

)

‫א‬

‫א‬

‫א‬

‫א א‬

‫א‬

.2

MANCOVA †‡Èn¾a@‹íbÌnÛa@ÝîÜ¥ ‫א‬

MANOVA

(

)

‫א‬

MANCOVA

‫א‬

،[ ‫)א‬

.

‫) (א‬

‫א א‬

Covariates

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א א‬

‫א‬

‫א‬

‫] א‬ ‫א‬

‫א א‬

Control Variable

Z‫א‬

‫א‬

MANCOVA

(

)

‫א‬

‫א‬

‫א א‬

‫א‬

‫א‬ ‫א‬

.

‫א א‬

‫א‬

ò–ý©a

‫א‬

‫א‬

‫א‬ ‫א‬N

‫א‬

‫א‬

‫א‬

.

‫א‬ ‫א‬

.

‫א‬ ‫א א‬

‫א‬

6

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


@ @ïãbrÛa@Ý—ÐÛa @@ @@ @@ @@ @@ @@ @@ @ @ð†byþa@åíbjnÛa@ÝîÜ¥ Analysis of Variance

(ANOVA)

7

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪8‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


ANOVA ð†byþa@åíbjnÛa@ÝîÜ¥

@@ @ @ïãbrÛa@Ý—ÐÛa @@

@ @ð†byþa@åíbjnÛa@ÝîÜ¥ @@ Analysis of Variance

@@

(ANOVA)

@@ @@ @ @Zð†byþa@åíbjnÛa@ÝîÜ¥@åß@Êaìãc@òqýq@Þëbänã@Òì@Ý—ÐÛa@a‰ç@À ‫א‬

One – Way ANOVA Two

‫א‬

‫א‬

.1

‫א‬

‫א‬

‫א‬

.2

""

‫א‬

‫א‬

.3

– Way ANOVA N – Way ANOVA

One

‫א‬

– Way ANOVA ‡yaë@êb¤a@À@ð†byþa åíbjnÛa@ÝîÜ¥@Zü ëc :ò߇Ôß

‫א‬

،

‫א‬

: ‫א‬

‫א‬

‫א‬

‫א‬ . :ÙÛˆ@Þbrß

، ‫א‬

‫א‬

‫א א א א‬

‫א א‬

،(

‫א‬ )

– :

‫א א א‬

9

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪ïãbrÛa@Ý—ÐÛa‬‬

‫א‬

‫)‬

‫א א –‬

‫‪−‬‬

‫א‬

‫(‬

‫)א‬ ‫א‬

‫א‬

‫(‬

‫א‬

‫א‬

‫א א‬ ‫א‬

‫)א‬

‫א‬ ‫א‬

‫א‬

‫(‪.‬‬

‫א‬

‫؟‪.‬‬

‫א‬

‫א ‪.‬‬

‫‪:‹‚e@Þbrß‬‬ ‫א‬

‫א‬ ‫‪.‬‬

‫א‬ ‫א‬

‫א‬

‫א א א‬

‫؟‪.‬‬

‫א‬

‫א‬ ‫א‬

‫א‬

‫)א‬

‫א‬ ‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫אא א‬

‫(‬

‫א‬ ‫‪:‬‬

‫א‬

‫א‬ ‫א‬

‫א‬

‫(‪.‬‬

‫א‬

‫‪،‬‬

‫)א‬

‫א‬

‫א ‪.‬‬

‫‪@ @@:ïÜàÇ Þbrß‬‬ ‫א א‬

‫א‬

‫א‬

‫א‬ ‫א‬

‫א‬ ‫–‬

‫א‬ ‫א‬

‫א‬

‫–‬

‫א‬ ‫‪:‬‬

‫‪ZlìÜ¾a‬‬ ‫א‬ ‫א‬

‫א‬ ‫؟‬

‫א‬

‫א‬

‫א‬

‫‪.٪95‬‬

‫‪10‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


ANOVA ð†byþa@åíbjnÛa@ÝîÜ¥

òîÏìä¾a@òÈßbu

ÕíŒbÓÛa@òÈßbu

ñŠì—ä¾a@òÈßbu

15

14

6

17

15

12

15

10

4

10

12

7

14

6

5

6

10

6

13

13

4

14

16

10

18 *

15

*

*

2

*

*

7

) : ‡@ yaë@ê@ b¤a@À@ð @ †byþa@å@ íbjnÛa@ÝîÜ¥@òÛby@ À@òîöb—ya@ë‹ÐÛa@òËbî– :( ‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

) .(ðëbnß

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

)

‫א‬

‫א‬ ‫א‬

‫א‬ ‫א‬

‫א‬

‫א‬

:(H0) ïß@ ‡ÈÛa@‹ÐÛa

‫א‬ ‫א‬

‫א‬

‫א‬

:(H1)@Ýí‡jÛa@‹ÐÛa ‫א‬

.(µíëbnß Ë

H :µ = µ = µ 0

1

2

@ @Z‹‚c@ÝØ“i@òîöb—ya@ë‹ÐÛa 3

11

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪ïãbrÛa@Ý—ÐÛa‬‬

‫א‬

‫‪:pbãbîjÛa@Þb‚†g‬‬

‫‪ZòÃìzÜß‬‬ ‫‪1‬‬

‫א‬

‫א‬

‫)‪ ، ( 1‬א‬

‫א‬

‫‪H1:‬‬ ‫א‬

‫‪:‬‬

‫‪:‬‬

‫ﺭﺍﺟﻊ ﺍﻟﻜﺘﺎﺏ ﺍﻷﻭﻝ " ﺍﻟﺘﺤﻠﻴﻞ ﺍﻹﺣﺼﺎﺋﻲ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺑﺮﻧﺎﻣﺞ ‪ "SPSS‬ﺹ ‪.79 – 76‬‬

‫‪12‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


ANOVA ð†byþa@åíbjnÛa@ÝîÜ¥

‫א‬

‫א‬

‫א א‬ ‫א‬

‫א‬

‫א‬

‫)א‬

‫א‬

:

‫א‬

‫א‬

: .(

.

‫א‬

‫א‬

‫א‬

‫א א‬

‫א‬

@ @ZŠbjn‚üa@‰îÐäm@paì‚ ‫ א‬Compare Means :

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

،Analyze

.Dependent List ‫א‬ .

‫א‬

‫אא‬

‫א‬

(1

،One – way ANOVA

‫א‬

: .Factor ‫א‬

‫א‬

‫א‬

‫א‬

(x) ‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

( y)

‫א‬ ‫א‬

‫א‬

‫א‬

‫א‬ ،Ok

(2 − −

‫א‬

@ @pbu‹ƒ¾a@ñ‰Ïbã@pbãìØß :

‫א‬

‫א‬

‫א‬

13

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ïãbrÛa@Ý—ÐÛa

@ @ZÕîÜÈnÛaë@wöbnäÛa@Íí‹Ðm ‫א‬

‫א‬

‫א‬

‫א‬

ANOVA

P.Value

( )

‫א‬

‫א‬

‫א‬

‫א‬

0.036

3.816

65.113

2

130.226

*

*

17.065

25

426.631

*

*

*

27

556.857

‫א‬

‫א‬ ‫א‬

‫א‬ ‫א‬

@ @ZwöbnäÛa@óÜÇ@ÕîÜÈnÛa (0.036) ،

‫א‬ ،

‫א‬

P.Value

‫א‬

، (٪ 5) ‫א‬

‫א‬

‫א‬ ‫א‬

(٪3.6) ‫א‬

‫א‬

‫א‬

14

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ANOVA ð†byþa@åíbjnÛa@ÝîÜ¥

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

.

@ @ZÒýn‚üa@Š‡—ß@‡í‡¥@ ‫א‬

:

،‫؟‬

.

‫א‬

‫א‬

‫א‬

‫א‬

‫]א‬

،‫؟‬

‫א‬

‫א‬

.‫؟‬

‫א‬

‫א‬

‫א‬ .

‫א‬

‫א‬

SPSS

[(Post Hoc)

‫א‬

‫א‬

(Post Hoc) òí‡ÈjÛa@paŠbjn‚üaë@–@‡yaë@êb¤a@À@åíbjnÛa@ÝîÜ¥ ، ‫א‬

‫א‬

‫א‬

‫אא‬

‫א‬

‫א‬

‫א‬

‫א‬ .ANOVA

‫א‬

@ @@ZŠbjn‚üa@a‰ç@‰îÐäm@paì‚ .

‫א‬

‫א‬،

‫א‬

‫א‬

‫א‬

‫א‬

(1

15

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ïãbrÛa@Ý—ÐÛa

:

LSD

،

‫א‬

‫א א‬

‫א‬

‫א א‬

‫א‬

‫א‬

‫א א‬

‫א‬

(2

‫א‬

(3

.( .

‫א‬ .

‫א‬

‫א‬

‫)א‬

، Continue

‫אא‬

‫א‬

‫א‬

،Ok

(4 ‫א‬

(5

:pbu‹ƒ¾a@ñ‰Ïbã@pbãìØß

: .

‫א‬

ANOVA

:Þëþa@Þ뇧a

16

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ANOVA ð†byþa@åíbjnÛa@ÝîÜ¥

‫א‬

Multiple Comparisons

‫א‬

‫א‬

:

:ïãbrÛa@Þ뇧aë :

‫א‬

‫א‬

‫א‬

:ÕîÜÈnÛaë@wöbnäÛa@Íí‹Ðm

P.Value

@ @Ö‹ÐÛa@Áìnß

0.860

− 0.34091

(2)

(1)

0.024

−4.464

(3)

(1)

0.024

− 4.805

(3)

( 2)

@ @òîöbärÛa@pbãŠbÔ¾a

:óäm@ü (3) ،

‫א‬

‫א‬

‫א‬

(2) ،

‫א‬

.

‫א‬

‫א‬

‫א‬

‫א‬

(1) ‫א‬

ZwöbnäÛa@óÜÇ@ÕîÜÈnÛa 17

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ïãbrÛa@Ý—ÐÛa

‫א‬ (0.024) ‫א‬

(٪86)

‫א‬ ‫א‬

‫א‬

: ،

P.Value

‫א‬

(0.860)

‫א‬

.(٪5)

‫א‬

‫א‬

‫א‬

(٪2.4) ،

P.Value

.(٪5)

@@ Two ،

– Way ANOVA µçb¤a@À@ð†byþa åíbjnÛa@ÝîÜ¥@Zbîãbq

‫א‬

:

‫א‬

‫א‬

‫א‬

:

:ò߇Ôß .

@À@Òýn‚üa@óÜÇ µÜÔn¾a@åíÌn¾a@µi@(Þ†bjn¾a@qdnÛa@ëc)@ÝÇbÐnÛa@Ýçb¤@òÛby@À @Z¶ëþa@òÛb¨a @ @Z(1)ÉibnÛa@Ìn¾a

:ïÜàÇ Þbrß ‫א א‬ :(

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

Fiat

Cetrion

BMW

Mercedes

95

110

155

160

80

105

140

145

140

90

85

145

165

170

96

)

‫א א‬

‫א א‬

‫א‬

.‫ ﺃﻱ ﻧﻜﺘﻔﻲ ﺑﺪﺭﺍﺳﺔ ﺗﺄﺛﲑ ﻛﻞ ﻣﺘﻐﲑ ﻣﺴﺘﻘﻞ ﻋﻠﻰ ﺍﳌﺘﻐﲑ ﺍﻟﺘﺎﺑﻊ ﺑﺼﻮﺭﺓ ﻣﺴﺘﻘﻠﺔ‬1

18

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ANOVA ð†byþa@åíbjnÛa@ÝîÜ¥

@ @ZlìÜ¾a :(

‫א‬

‫)א‬

‫א‬

‫א‬

.(

‫א‬

‫א‬

‫)א‬

‫א‬

.(

‫א‬

‫א‬

‫)א‬

‫א‬

.‫؟‬٪

95

:µçb¤a@À@åíbjnÛa@ÝîÜ¥@òÛby@À@òîöb—ya@ë‹ÐÛa@ÝØ’ :[(

‫@א‬

. .

@ @ )

‫א‬

‫א‬

]@Þëþa@êb¤üa

‫א‬

‫א‬

:(H0)

‫א‬

‫א‬

‫א‬

‫א‬

:(H1)

‫א‬

‫א‬

Z:[@(

‫) @א‬

.

‫א‬

‫א‬

‫א‬ .

‫@א‬

‫@א‬

‫א‬

‫א‬

‫א‬

] ïãbrÛa@êb¤üa

:(H0)

‫א‬

‫א‬

:(H1)

‫א‬

‫א‬

:pbãbîjÛa@Þb‚†g

: ‫א‬ ‫א‬

‫א‬ ‫א‬

‫א‬ ‫א‬

‫א‬ ‫א א‬

‫א‬

3 : ‫א‬

: .(

‫א‬

‫א‬

.

‫א א‬

‫א‬

‫א‬ ‫א‬

)

19

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ïãbrÛa@Ý—ÐÛa

‫א‬

‫א‬

‫א א‬

‫א‬

‫א‬

: .(

‫א‬

‫א‬ )

‫א‬

@ @ZŠbjn‚üa@‰îÐäm@paì‚ GLM

‫א‬

Linear Model

:

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

،Analyze

‫( א‬1

، Univariate..

‫א‬

20

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ANOVA ð†byþa@åíbjnÛa@ÝîÜ¥

‫א‬

: ‫א‬

Dependent

‫א‬

‫א‬

‫א‬

‫[ א‬x2]

[x1]

‫א‬

[y] . ‫א א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

Variable:

‫א‬

.Fixed Factor(s): :

‫א‬

‫א‬

‫א‬

‫א‬

،Model

‫א‬

21

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ïãbrÛa@Ý—ÐÛa

: ‫א‬

: .Full factorial ‫א‬

Factors &

‫א‬

‫א‬

.Model ‫א‬

‫א‬

. Interaction . :

‫א‬ ‫א‬

‫א‬

‫א‬ ‫א‬

‫א‬

‫א‬

‫אא‬ ‫ א‬.

Custom

‫ א‬x1

x2

‫א‬

‫א‬

.

Covariates

Main effects

‫א‬

.

،Continue

‫א‬

.

، ok

‫א‬

(1

22

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ANOVA ð†byþa@åíbjnÛa@ÝîÜ¥

،

‫א א‬

‫א‬

‫א‬

‫א‬

‫ א‬،

‫א‬

‫אא‬

:b@äç Åyýí

‫א‬

‫א‬

‫א‬ .

‫א‬ :ÕîÜÈnÛa

:

،

(0.007) .

‫א‬

‫א‬

(0.559) .

‫א‬ ‫א‬

‫א‬ ‫ א א א‬، (0.05) ‫א‬

P.Value

‫א‬

‫א‬

P.Value

‫א‬ ‫א‬

‫א‬

‫ א א א‬، (0.05)

‫א‬

. ‫א‬ .

23

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ïãbrÛa@Ý—ÐÛa

‫א‬

ANOVA

P.Value

( )

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬ ‫א‬

0.007

11.409

2479.861

3

‫א‬

7439.583

(

‫א‬

)

‫א‬ ‫א‬ ‫א‬

0.559

0.642

139.583

2

‫א‬

279.167

) ( *

*

217.361

6

1304.167

*

*

*

11

9022.917

‫א‬ ‫א‬ ‫א‬

@ @ZµÜÔn¾a@åíÌn¾a@µi@Þ†bjn¾a@qdnÛa@ëc@ÝÇbÐnÛa@ŠbjnÇüa@À@‰‚þa@òÛby@À :ZòîãbrÛa@òÛb¨a @ @Z:ïÜàÇ@Þbrß

‫א‬

‫א‬ :

‫א‬ ‫א‬

‫א‬ ‫א‬

‫א‬ ،

‫א‬ ‫א‬

‫א‬

‫א‬

24

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ANOVA ð†byþa@åíbjnÛa@ÝîÜ¥

@ @ïÈßbu @ @Áìnß @ @ðìãbq @ @ïöa‡nia 130

130

125

@ @ïßc

110

@ @æbîi @ @lÇc

100

@ @ÝuŠ 140

120

115

115

120

@ @xënß

135

125

104

95

111

@ @lÇc

@ @órãc 122

100

88

107

@ @xënß

110

@ @ZlìÜ¾a

: ‫)א‬ ‫א‬

‫א‬

‫א‬

‫א‬ ‫א‬

Educational Level

‫)א‬

‫א‬

‫א‬:

‫א‬

.

.(

‫א‬

Marital status

‫א‬

‫א‬ ‫א‬

‫א‬

‫א‬

‫א‬

.(

‫א‬

.

‫א‬

.

.(Educational Level * Marital status)

‫א‬

.‫؟‬٪

95

@ @@Zµçb¤a@À@åíbjnÛa@ÝîÜ¥@òÛby@À@òîöb—ya@ë‹ÐÛa@ÝØ’ :( ‫א‬

‫א‬

‫א‬ ‫א‬

.

‫א‬

‫א‬ :(H0)

)@Þëþa@êb¤üa ‫א‬

‫א‬

‫א‬

25

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ïãbrÛa@Ý—ÐÛa

‫א‬

‫א‬

‫א‬

‫א‬

:(H1)

.

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

. ‫א‬

‫א‬

‫א‬

:( ‫א‬

‫א‬

)@ïãbrÛa@êb¤üa

:(H0)

‫א‬

‫א‬

:(H1)

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬ .

‫א‬ ♦

@ @ZHòîÇbànuüa@òÛb¨a@ë@ïàîÜÈnÛa@ôìn¾aI@µÜÔn¾a åíÌn¾a@µi@ÝÇbÐnÛa ‫א‬

‫א‬

‫א‬

.

‫א‬

‫א‬ ‫א‬

‫א‬ ‫א‬

‫ א‬:(H0)

‫א‬ ‫א‬

.

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫ א‬:(H1)

‫א‬ ‫א‬

‫א‬

:bäç Åyü ‫א‬

‫א‬

‫א‬ .

− ‫א‬

‫א‬

‫א‬

:pbãbîjÛa Þb‚†g

26

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ANOVA ð†byþa@åíbjnÛa@ÝîÜ¥

(Variable

View)

‫א‬ :

‫א‬ (Label) ‫א‬

‫א‬

27

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ïãbrÛa@�—�Ûa

@ @ZĹ bjn‚ßa@‰ÎĂ?äm@paÏ‚ ‍×?‏

GLM Linear Model

:

‍×?‏

‍×?‏

‍×?‏

‍×?‏

‍×?‏

ŘŒAnalyze

ŘŒ Univariate ..

: ‍×?‏

‍×?‏

Dependent Variable [y]

. ‍×?‏

‍×?‏

‍×?‏

‍×? ×?‏

‍×?‏

(1

‍×?‏

‍×?‏

‍×?‏

‍×?‏ ‍×?‏

Dependent Variable:

Educational Level [x1] Fixed

‍×?‏

‍×?‏

.

‍×?‏

‍×?‏

.

Marital status [x2]

‍×?‏

.Factor(s): :

‍×?‏

‍×?‏

‍×?‏

‍×?‏

ŘŒModel

‍×?‏

.

28

‍ ×? " ! Ůˆ×?‏# .... ‍ ×? ×? Ůˆ Ůˆ Ůˆâ€Ź

0020109787442 $%&' ‍ * ) ( ×?‏+ ‍ Ůˆ×?‏, $- . ‍ " Ůˆ×?‏/01‍ ×?‏2 * 3$ # & 4‍د‏


ANOVA ð†byþa@åíbjnÛa@ÝîÜ¥

:

‫א‬

‫א‬

‫א‬ .

Full factorial

.

‫א‬

‫א‬

‫א‬

،Continue :

:

‫א‬

‫א‬

‫א‬

‫א א‬

،

‫א‬

‫א‬

.

، ok

‫א‬

‫א‬

(2

‫א‬

29

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪ïãbrÛa@Ý—ÐÛa‬‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫) (‬

‫‪P.Value‬‬

‫א‬

‫א‬

‫א‬

‫)א‬

‫א‬

‫‪4‬‬

‫‪1736.8‬‬

‫‪434.2‬‬

‫‪3.539‬‬

‫‪0.048‬‬

‫(‬

‫א‬

‫א‬

‫א‬

‫א‬

‫)א‬

‫‪1‬‬

‫‪39.2‬‬

‫‪39.2‬‬

‫‪0.319‬‬

‫‪0.584‬‬

‫(‬

‫א‬ ‫א‬

‫א‬

‫א‬

‫‪4‬‬

‫‪600.8‬‬

‫‪150.2‬‬

‫‪1.224‬‬

‫‪0.360‬‬

‫א‬

‫א‬ ‫א‬ ‫א‬

‫‪1227‬‬

‫‪10‬‬

‫‪122.7‬‬

‫*‬

‫*‬

‫‪3603.8‬‬

‫‪19‬‬

‫*‬

‫*‬

‫*‬

‫‪@ @ZÕîÜÈnÛa‬‬ ‫א‬

‫‪:‬‬

‫‪30‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


ANOVA ð†byþa@åíbjnÛa@ÝîÜ¥

0.048

‫א‬

P.Value

‫א‬

‫א‬

‫א‬

‫א‬

‫ א א א‬،0.05

.

‫א‬ .

0.584

‫א‬

P.Value

.

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

. ‫א‬

‫ א א א‬،0.05

‫א‬

‫א‬

‫א‬

‫א‬

0.360

.

‫א‬

.

– ‫א‬

P.Value

‫א‬

‫א‬

‫ א א א‬،0.05 @ @Zòßbç òÃìzÜß

‫א‬

‫א א‬

(F ) ‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

.(

(Error)

:

‫א‬ ،

‫א‬ ‫א‬

‫א‬

(Main effects)

. ‫א‬

‫א‬

‫א‬

‫א‬

:å@ íäjÛa@Êìãë@ñŠbîÛa@Êìã@qdni@™b©a@Þbr¾a@À@ZýràÏ .

‫א‬

‫א‬

‫א‬ @ @Zpaì©a

:

‫א‬

‫א‬

‫א‬

‫א‬

(2) ، (1)

‫א א‬

(1

31

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ïãbrÛa@Ý—ÐÛa

: .

‫א‬

‫א‬ :

. ‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

.Full factorial

‫א‬

Continue

‫א‬

‫א‬

‫א‬

‫א‬

،Ok

‫א‬

‫ א‬.

(2

. ‫א‬

(3

،(F) ،

‫א‬

.

(Error)

‫א‬

32

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ANOVA ð†byþa@åíbjnÛa@ÝîÜ¥

Full

[Univariate:Model] (1)

Custom

.Main effects

،factorial

@@

êb¤a (æ)@À@ð†byþa@åíbjnÛa@ÝîÜ¥@ZbrÛbq

@ @N – Way ANOVA@ "" ،

‫א‬

‫א‬

:

‫" "א‬

‫א‬

:

‫א‬

: ò߇Ôß

.

‫א א‬

‫א‬

ZòÜÔn¾a@paÌn¾a@µi@HÞ†bjn¾a@qdnÛa@ëcI@ÝÇbÐnÛa@Ýçb¤@òÛby@À@Z¶ëþa@òÛb¨a @ @ZïÜàÇ@Þbrß

‫ א‬،(

‫א‬

)

،(

‫א‬

‫א‬

)

‫א‬

:

‫א‬

‫א‬

@ @ò–b‚@òÈßbu @ @pbjÛb @ @lý

‫א‬

‫א‬ ،

،(

)

‫א‬

‫א‬

@ @òîßìØy@òÈßbu @ @pbjÛb @ @lý

14

4

9

12

17

12

6

6

10

11

5

13

10

14

4

5

13

16

6

6

9

8

5

7

ZlìÜ¾a

33

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ïãbrÛa@Ý—ÐÛa

‫)א‬

‫א‬

‫א‬ .( .(

‫א‬

‫)א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫)א‬

‫א‬

‫א‬

‫( )א‬

‫א‬

‫א‬

:(

.

‫)א‬

‫א‬

‫א‬

.

‫א‬

. ،(

. ‫ ؟‬٪ 95

‫א‬

‫א‬

æ @ @@ Zêb¤a@H I@À@åíbjnÛa@ÝîÜ¥@òÛby@À@òîöb—ya@ë‹ÐÛa@ÝØ’ :(™b‚ − âbÇ) òîØܾa Êìã Ìnß :Þëþa êb¤üa ‫א‬

‫א‬ .

‫א‬

:(H0)

‫א‬

‫א‬

:(H1)

‫א‬

‫א‬

‫א‬ ‫א‬ .

‫א‬

:(ÊìäÛa) ä§a ÝßbÇ :ïãbrÛa êb¤üa

‫א‬

(

‫)א‬

‫א‬

. ‫א‬

(

:(H0)

‫א‬

‫א‬

:(H1)

‫א‬

‫א‬

‫)א‬

‫א‬ ‫א‬

:Šì›¨a óÜÇ òjÃaì¾a ÝßbÇ :sÛbrÛa êb¤üa ‫א‬

‫א‬

.

‫א‬

‫א א‬

.

:(H0)

‫א‬

‫א‬

‫א‬

34

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ANOVA ð†byþa@åíbjnÛa@ÝîÜ¥

‫א‬

‫א‬

‫א א‬

:(H1)

.

‫א‬

GLM Linear Model

:

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

@ @ZpbãbîjÛa@Þb‚†g

،Analyze ، Univariate ..

‫א‬

(1

‫א‬

35

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ïãbrÛa@Ý—ÐÛa

: ‫א‬

Dependent

‫א‬

‫א‬

y

‫א‬ ‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

. Variable: ‫א‬

‫א‬

[ :

x3

‫א‬

، ‫א‬

x2 ، x1]

‫א‬

‫א‬

‫א א‬

‫א‬

.Fixed Factor(s): ‫א‬ ،Model

‫א‬

36

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ANOVA ð†byþa@åíbjnÛa@ÝîÜ¥

: ‫א‬

: .Full factorial ‫א‬

‫א‬

‫א‬

[ x3 ،

.Model ‫א‬

‫א‬

‫א‬

x2

‫א‬

‫א‬

.

Main effects

‫א‬

.

،Continue

‫א‬

.

‫א‬ :

:

‫א‬

Factors & Covariates

. Interaction .

‫א‬

‫אא‬

‫ א‬.

Custom

، x1]

‫א‬

‫א‬

‫א‬

‫א‬

‫א א‬

، ok

،

(2

‫א‬

‫א‬

‫א‬

37

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪ïãbrÛa@Ý—ÐÛa‬‬

‫א‬ ‫א‬

‫א‬

‫א‬

‫א‬ ‫)‬

‫א‬

‫א‬

‫‪1‬‬

‫‪10.667‬‬

‫א‬

‫‪10.667‬‬

‫) (‬

‫‪P.Value‬‬

‫‪0.340‬‬

‫‪0.957‬‬

‫(‬

‫א‬ ‫א‬

‫א‬

‫)א‬

‫‪1‬‬

‫‪121.500‬‬

‫‪121.500‬‬

‫‪0.004‬‬

‫‪10.905‬‬

‫(‬

‫א‬ ‫א‬

‫)א א‬ ‫א‬

‫‪1‬‬

‫‪1.500‬‬

‫‪1.500‬‬

‫‪0.718‬‬

‫‪0.135‬‬

‫(‬ ‫א‬

‫א‬

‫‪222.833‬‬

‫‪20‬‬

‫‪11.142‬‬

‫*‬

‫*‬

‫‪356.500‬‬

‫‪23‬‬

‫*‬

‫*‬

‫*‬

‫‪:ÕîÜÈnÛa‬‬

‫א‬

‫‪:‬‬

‫א‬

‫א‬

‫‪.‬‬ ‫א‬

‫‪0.340‬‬

‫א‬

‫א‬

‫‪P.Value‬‬

‫‪ ،0.05‬א א‬

‫א‬

‫‪.‬‬

‫‪38‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


ANOVA ð†byþa@åíbjnÛa@ÝîÜ¥

P.Value

‫א‬

‫ א א‬،0.05

(

‫)א‬

‫א‬

‫א‬

.

0.004

‫א‬

‫א‬

‫א‬ ‫ א‬،0.05

. ‫א‬

‫א‬

‫א א‬

‫א‬

.

0.718

.

‫א‬

P.Value

‫א‬

‫א א‬

@ @ZòÜÔn¾a@paÌn¾a@µi@(Þ†bjn¾a@qdnÛa@ëc)@ÝÇbÐnÛa@ŠbjnÇüa@À@‰‚þa@òÛby@À ZòîãbrÛa@òÛb¨a @ @ZïÜàÇ@Þbrß

‫א א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬:

‫א‬ :

‫א‬

:paì©a Full factorial

‫א‬

‫א‬ :

‫א‬ ‫א‬

‫א‬

،

‫א א‬ ،Custom

‫א‬ ‫א‬

39

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪ïãbrÛa@Ý—ÐÛa‬‬

‫א‬

‫‪:‬‬

‫א א‬

‫א‬

‫א‬

‫‪P.Value‬‬

‫א א‬

‫א‬

‫‪،‬‬

‫)‪.(0.05‬‬

‫‪ZÒýn‚üa@Š‡—ß‬‬ ‫א‬

‫א‬

‫א‬ ‫א‬

‫א‬

‫א‬

‫א‬ ‫א‬

‫א‬

‫א‬ ‫א א‬

‫)‪،( 1‬‬

‫א א‬ ‫א‬

‫)‬

‫א (‪.‬‬

‫‪ 1‬ﻳﺸﺘﺮﻁ ﺃﻥ ﻳﻜﻮﻥ ﻋﺪﺩ ﺍﳌﺴﺘﻮﻳﺎﺕ ﺃﻭ ﺍﳊﺎﻻﺕ ﺍﳌﻤﺜﻠﺔ ﻟﻠﻤﺘﻐﲑ ﺍﳌﺴﺘﻘﻞ ﺃﻛﱪ ﻣﻦ ﺃﻭ ﺗﺴﺎﻭﻱ ‪ 3‬ﺣﺎﻻﺕ‪ ،‬ﲟﻌﲎ ﺍﻧﻪ‬ ‫ﻟﻮ ﺃﻥ ﺍﳌﺘﻐﲑ ﺍﳌﺴﺘﻘﻞ ﺍﻟﺬﻱ ﺛﺒﺖ ﺗﺄﺛﲑﻩ ﺍﳌﻌﻨﻮﻱ ﻭﻟﻜﻨﻪ ﺛﻨﺎﺋﻲ ﺍﳊﺎﻻﺕ ﺃﻭ ﺍﻷﺑﻌﺎﺩ‪ ،‬ﰲ ﻫﺬﻩ ﺍﳊﺎﻟـﺔ ﻻ ﻧﻜـﻮﻥ ﰲ‬

‫ﺣﺎﺟﺔ ﺇﱃ ﺍﳌﻘﺎﺭﻧﺎﺕ ﺍﻟﺜﻨﺎﺋﻴﺔ‪.‬‬

‫‪40‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


@ @sĂ›brĂ›a@Ă?—Ă?Ă›a @@ @@ @@ @@ @@ @@ @@ @@ @ @â€ â€ĄĂˆnža@ĂĽĂ­bjnĂ›a@Ă?ĂŽĂœÂĽ Multivariate Analysis of Variance

(MANOVA)

41

‍ ×? " ! Ůˆ×?‏# .... ‍ ×? ×? Ůˆ Ůˆ Ůˆâ€Ź

0020109787442 $%&' ‍ * ) ( ×?‏+ ‍ Ůˆ×?‏, $- . ‍ " Ůˆ×?‏/01‍ ×?‏2 * 3$ # & 4‍د‏


‫‪42‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


MANOVA †‡Èn¾a@åíbjnÛa@ÝîÜ¥

@@

@ @sÛbrÛa@Ý—ÐÛa @@

@ @†‡Èn¾a@åíbjnÛa@ÝîÜ¥ @@

@ @Multivariate Analysis of Variance (MANOVA)

@@ @ @Zò߇Ôß ‫א‬

MANOVA

.

‫א‬

‫א‬

‫א א‬

‫א‬

‫ א‬،

.

‫א‬

‫" "א‬ ‫א‬

‫א‬

‫א‬

.

‫א‬

‫א‬

‫א‬

‫א‬

‫אא‬

‫א‬

‫א‬

‫א‬

‫א‬ ‫א א‬

‫א א‬

‫א‬ ‫א‬

One-Way MANOVA

o

N-Way MANOVA

‫א‬ ‫א‬

،Two-Way MANOVA :

o

‫א‬

‫א‬

43

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪sÛbrÛa@Ý—ÐÛa‬‬

‫א‬

‫‪:ZÞbrß‬‬ ‫א‬

‫א‬

‫‪،‬‬

‫)‬

‫‪:‬‬

‫א א‬

‫א‬ ‫‪3‬‬ ‫א א א‬

‫א‬

‫א א‬

‫א‬

‫א א‬

‫(‪.‬‬

‫א‬

‫‪:‬‬

‫‪X1‬‬

‫‪:‬‬

‫‪X2‬‬

‫‪:‬א‬

‫)א‬

‫‪:‬‬

‫א‬

‫א‬

‫‪:‬‬

‫א‬

‫א‬

‫‪:‬‬

‫א‬

‫א‬

‫‪Y1‬‬ ‫‪Y2‬‬ ‫‪Y3‬‬

‫א‬

‫א‬

‫א‬ ‫א‬

‫)א‬

‫(‬

‫א‬ ‫(‬

‫‪@ @ZlìÜ¾a‬‬

‫‪44‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


MANOVA †‡Èn¾a@åíbjnÛa@ÝîÜ¥

‫א‬

‫א‬

‫א‬

:

، ٪5

‫א א‬

. @ @.

(

‫א‬ ‫א א‬

( ‫א‬

‫)א‬

‫א‬

‫א‬

‫) א‬

(

‫א‬

‫א‬ ‫א‬

‫) א‬

‫א‬

‫א‬

‫א‬ ‫א‬

‫א‬

‫א‬

‫א‬

.1

‫א‬

‫ א‬.2

@µi@HÞ†bjn¾a@qdnÛa@ëcI@ÝÇbÐnÛa@ŠbjnÇüa@À@‰‚þa@â‡Ç@ëc@Ýçb¤@òÛby@À :¶ëþa@òÛb¨a @ @ZòÜÔn¾a@paÌn¾a

:

‫א‬

‫א‬

@µi ë@ @[(x2) (x1)] ò@ ÜÔn¾a@paÌn¾a@µi@òÓýÈÛbi@ò–b©a@ë‹ÐÛa @á›m@Z¶ @ ëþa@òÇìàa @ @Z Hy1I Þëþa@ÉibnÛa@Ìn¾a

:Hy1I ÉibnÛa Ìn¾a óÜÇ (x1) Þëþa ÝÔn¾a Ìn¾a qdm .1 ‫א‬

‫א א‬

‫א‬ .

‫א‬

‫א א‬

‫א‬

:(H0) ‫א‬

:(H1)

‫א‬

‫א‬ ‫א‬

.

:Hy1I ÉibnÛa Ìn¾a óÜÇ (x2) ïãbrÛa ÝÔn¾a Ìn¾a qdm .2 ‫א‬

‫א א‬

(

‫)א‬

‫א‬

:(H0)

. ‫א‬

‫א א‬

(

‫)א‬

‫א‬

:(H1)

‫א‬

‫א‬

‫א‬

‫א‬

.

µ @ i ë@[(x2) (x1)] ò@ ÜÔn¾a@paÌn¾a@µi@òÓýÈÛbi@ò–b©a@ë‹ÐÛa@á›m @Zò@ îãbrÛa@òÇìàa @ @:(y2) ïãbrÛa ÉibnÛa Ìn¾a

45

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


sÛbrÛa@Ý—ÐÛa

:(y2) ÉibnÛa Ìn¾a óÜÇ (x1) Þëþa ÝÔn¾a Ìn¾a qdm .1 ‫א‬

‫א א‬

‫א‬

:(H0)

. ‫א‬

‫א א‬

‫א‬

:(H1)

‫א‬

‫א‬

‫א‬

‫א‬

.

:(y2) ÉibnÛa Ìn¾a óÜÇ (x2) ïãbrÛa ÝÔn¾a Ìn¾a qdm .2 ‫א א‬

(

‫)א‬

‫א‬

:(H0)

. ‫א‬

‫א א‬

(

‫א‬ ‫)א‬

‫א‬

:(H1)

‫א‬

‫א‬

‫א‬

‫א‬

.

µ @ i ë@[(x2) (x1)]@ò@ ÜÔn¾a@paÌn¾a@µi@òÓýÈÛbi@ò–b©a@ë‹ÐÛa@á›m :òrÛbrÛa òÇìàa @ @:(y3) sÛbrÛa ÉibnÛa Ìn¾a

:(y3) sÛbrÛa Ìn¾a óÜÇ (x1) Þëþa ÝÔn¾a Ìn¾a qdm ‫א‬

‫א א‬

‫א‬

‫א‬

:(H0) .

‫א‬

‫א א‬

‫א‬

‫א‬ ‫א‬

:(H1)

‫א‬

.

:(y3) ÉibnÛa Ìn¾a óÜÇ (x2) ïãbrÛa ÝÔn¾a Ìn¾a qdm ‫א א‬

(

‫)א‬

‫א‬

:(H0)

. ‫א א‬

(

‫א‬ ‫)א‬

‫א‬ .

:(H1)

‫א‬

.1

.2

‫א‬ ‫א‬

‫א‬

‫א‬

46

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


MANOVA †‡Èn¾a@åíbjnÛa@ÝîÜ¥

Zpaì©a :pbãbîjÛa Þb‚†g

Linear Model GLM

:

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

،Analyze

، Multivariate ..

‫א‬ ‫א‬

(1

(2

‫א‬

47

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


sÛbrÛa@Ý—ÐÛa

: ‫א‬

‫א‬

‫א‬

(y1 , y2, y3)

‫א‬

‫א א‬

‫א‬

‫א‬

‫א‬

‫א‬

.

. Dependent Variables: ‫א‬

‫ [ א‬x2 ، x1]

‫א‬ :

‫א‬

‫א‬

‫א‬

‫א‬

‫א א‬

‫א‬

.

.Fixed Factor(s):

،Model

‫א‬

.

48

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


MANOVA †‡Èn¾a@åíbjnÛa@ÝîÜ¥

: ‫א‬

: .Full factorial ‫א‬

Factors

‫א‬

.Model ‫א‬

‫א‬

‫א‬

. Interaction .

‫א‬

‫א‬

‫א‬ :

‫א‬

‫א‬

‫אא‬

‫ א‬.

Custom

[ x2 ، x1]

‫א‬

‫א‬

.

& Covariates

Main effects

‫א‬

.

،Continue

‫א‬

.

‫א‬

‫א‬

، ok

‫א‬

(3

@ @ZÞëa‡§a@åß@µÇìã@pbu‹ƒ¾a@òzЖ@åà›nm :

‫א‬

:Multivariate Tests ‫א‬

:Þëþa Þ뇧a

49

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


sÛbrÛa@Ý—ÐÛa

‫א‬

‫א‬ ‫א‬

‫א‬ ‫א‬

‫( א‬4) .

‫א‬ .

‫א‬

Wilks'

، ‫א‬

‫א‬

‫א א‬

‫אא‬ ‫א א‬

:

‫א א‬

‫א‬

‫א‬

‫אא‬

‫א‬ ‫ א‬.1

Wilks' Lambda

‫ א‬.2

Hotelling' s Trace

‫ א‬.3

Roy's Largest Root

‫ א‬.4

‫א א‬

‫א‬ ‫א‬

Pillai's Trace

‫אא‬ ‫א‬ ‫א‬

‫א א‬

‫א‬

‫א‬

‫אא‬

‫א‬

‫א‬

) Lambda

50

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


MANOVA †‡Èn¾a@åíbjnÛa@ÝîÜ¥

‫א‬

‫א‬

‫א א‬

‫א‬

‫א‬

.(

‫א א‬

‫א‬

‫א‬

‫א‬

‫א‬

P.Value

‫א א‬

‫א‬

‫א‬ ‫א‬

Wilks' Lambda

0.002

7.925

0.387

X1

0.028

4.028

0.554

X2

@ @ZÕîÜÈnÛa :

‫אא‬

.Hx2, x1I

‫א א‬

P.Value

‫א‬ ،

‫א א‬ (

‫א‬

‫א‬ .

‫)א‬

‫א‬

‫א‬ ‫א‬

‫א‬ (0.05)

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

: Tests of Between-Subjects Effects

‫א‬

‫א‬

،

.

‫א‬

‫א‬

‫א‬

‫א‬

‫א א‬

‫א‬ ‫א‬

‫א‬ ‫א‬

‫א‬ ‫א‬

:ïãbrÛa Þ뇧a ‫א‬

‫א‬

‫אא‬

‫א א‬

51

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


sÛbrÛa@Ý—ÐÛa

:

‫א א‬

‫א‬

‫אא‬

‫א א‬

‫א‬

NHy1I@Þëþa@ÉibnÛa@Ìn¾a@óÜÇ@Hx2, x1I@qdnÛ@åíbjnÛa@ÝîÜ¥@Þë‡u N1 @HÒI@òàîÓ

P.Value @ @òiìa 0.001

16.769

@Áìnß pbÈi‹¾a

ò틨a@pbuŠ†

1.740

1

@ÊìઠpbÈi‹¾a 1.740

0.015

7.327

0.760

1

0.760

**

**

0.104

17

1.765

**

**

**

19

4.265

åíbjnÛa@Š‡—ß ‫א‬

‫א‬

(x1)

‫א‬

‫א‬

‫א‬

(x2)

‫א‬ ‫א‬ ‫א‬

52

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


MANOVA †‡Èn¾a@åíbjnÛa@ÝîÜ¥

:ÕîÜÈnÛa

‫א‬

: ( y 1)

(y1)

‫א‬

.٪5

.

‫א‬ ‫א‬

‫א‬

‫א‬ (

‫א‬

(x1)

‫א‬

‫א‬

. P.Value

0.001

‫א‬

)

‫א‬

.٪5

‫א‬

Z

‫א א‬ (x2)

‫א‬

‫א‬ ‫א‬

0.015

‫א‬

‫א‬

.

P.Value

:Hy2I@ïãbrÛa@ÉibnÛa@Ìn¾a@óÜÇ@Hx2, x1I@qdnÛ@åíbjnÛa@ÝîÜ¥@Þë‡u N2 @HÒI@òàîÓ

P.Value @ @òiìa 0.017

6.969

@Áìnß pbÈi‹¾a

@ÊìઠpbÈi‹¾a

ò틨a@pbuŠ†

1.301

1

1.301

0.088

3.282

0.612

1

0.612

**

**

0.187

17

3.172

**

**

**

19

5.085

åíbjnÛa@Š‡—ß ‫א‬

‫א‬

(x1)

‫א‬

‫א‬

‫א‬

(x2)

‫א‬ ‫א‬ ‫א‬

:ÕîÜÈnÛa

:

‫א‬

53

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


sÛbrÛa@Ý—ÐÛa

(y2)

‫א‬

‫א‬

.٪5 ( y 2)

(x1)

‫א‬

‫א‬

‫א‬

‫א‬ .٪5

.

0.017

(x2)

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

P.Value

‫א‬

.

0.088

P.Value

:Hy3I@sÛbrÛa@ÉibnÛa@Ìn¾a@óÜÇ@Hx2, x1I@qdnÛ@åíbjnÛa@ÝîÜ¥@Þë‡u N3

@HÒI@òàîÓ

P.Value @ @òiìa 0.751

0.104

@Áìnß pbÈi‹¾a

@pbuŠ† ò틨a

0.421

@ÊìઠpbÈi‹¾a

1

0.421

0.287

1.209

4.900

1

4.900

**

**

4.052

17

68.885

**

**

**

19

74.206

åíbjnÛa@Š‡—ß

‫א‬

‫א‬

(x1)

‫א‬

‫א‬ ‫א‬

‫א‬

(x2)

‫א‬ ‫א‬

:ÕîÜÈnÛa

(y3)

‫א‬ .٪5

‫א‬

(x1)

‫א‬

‫א‬

:

‫א‬

‫א‬

‫א‬

0.751

. P.Value

54

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


MANOVA †‡Èn¾a@åíbjnÛa@ÝîÜ¥

(y3)

.٪5

‫א‬

‫א‬

‫א‬

(x2)

‫א‬

‫א‬

‫א‬

.

0.287

P.Value

@paÌn¾a@µi@HÞ@ †bjn¾a@qdnÛa@ëcI@ÝÇbÐnÛa@ŠbjnÇüa@À@‰‚þa@òÛby@À@Zò@ îãbrÛa@òÛb¨a @ @ZòÜÔn¾a @ @Z:òîöb—ya ë‹ÐÛa ‫א‬

‫א‬

‫א‬

‫א‬

،

:

،

‫א‬

‫א‬

‫א א‬

‫א‬

‫א‬

:Hy1I ÉibnÛa@Ìn¾a@óÜÇ@Þ†bjn¾a@qdnÛa@ëc@ÝÇbÐnÛa@qdm (X1 , X2)

‫א א‬

.

‫א‬

‫א‬

‫א‬

‫א‬

(X1 , X2)

‫א א‬ .

‫א‬

:(H0)

‫א‬

‫א א‬

‫א‬

‫א‬

‫א‬

‫א‬

:(H1)

‫א‬

‫א‬

‫א א‬

:Hy2I ÉibnÛa@Ìn¾a@óÜÇ@Þ†bjn¾a@qdnÛa@ëc@ÝÇbÐnÛa@qdm (X1 , X2)

‫א א‬

.

‫א‬

‫א‬

‫א‬

‫א‬

(X1 , X2)

‫א א‬ .

‫א‬ ‫א‬

.1

:(H0)

‫א‬

‫א‬

‫א‬

‫א‬

.2

‫א א‬ ‫א‬

‫א‬

:(H1)

‫א א‬

55

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


sÛbrÛa@Ý—ÐÛa

:Hy3I ÉibnÛa@Ìn¾a@óÜÇ@Þ†bjn¾a@qdnÛa@ëc@ÝÇbÐnÛa@qdm (X1 , X2)

‫א א‬

‫א‬

.

‫א‬

‫א‬

‫א‬

(X1 , X2)

‫א א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א א‬

‫א‬

.

:(H0)

.3

‫א‬

‫א‬

‫א‬

:(H1)

‫א א‬

@ @Zòßbç@òÃìzÜß

‫א‬

،

‫א א‬

‫א‬ ‫א‬

:

@ @ X3

‫א‬

‫א‬

X2

X1

X3

X1

‫א‬

‫א‬

X2

X3

‫א‬

‫א‬

X2

X1

‫א‬

‫א‬

‫א‬

‫ א‬.‫ﺃ‬

‫ א‬.‫ﺏ‬

‫ א‬.‫ﺝ‬

‫ א‬.‫ﺩ‬

@ @Zpaì©a Multivariate:

،Custom

‫א‬

‫א‬ ‫א‬

‫א‬

‫א א‬

‫אא‬ Full factorial

‫א‬

‫א‬

Model

:

‫א‬

56

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


MANOVA †‡Èn¾a@åíbjnÛa@ÝîÜ¥

،ok

‫ א‬.

‫א‬

‫א‬

‫א‬

،Continue :

‫א‬ ‫א‬

‫א‬

@ @ZwöbnäÛa@Íí‹Ðm 57

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


sÛbrÛa@Ý—ÐÛa

‫א‬ Wilks' Lambda

‫א‬

P.Value

‫א א‬

‫א‬

‫א‬

Wilks' Lambda

0.003

7.554

0.382

X1

0.025

4.256

0.523

X2

0.302

1.339

‫א‬

0.777

‫א‬

X1*X2

@ @ZÕîÜÈnÛa ‫א‬ ‫א‬

:

P.Value

‫א‬ .(0.05)

‫א‬

.

‫א א‬

‫א‬

‫א‬

‫אא‬

‫א‬

. Hx2, x1I ‫א‬

‫א א‬

‫א‬ (0.05) ‫א‬

P.Value

58

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


MANOVA †‡Èn¾a@åíbjnÛa@ÝîÜ¥

‫א‬

‫א‬

‫אא‬

‫א א‬

‫א‬

‫א‬

‫א א‬

‫א‬

‫א‬ ،

‫א‬

‫א‬

: NHy1I@Þëþa@ÉibnÛa@Ìn¾a@óÜÇ@Hx2, x1I@qdnÛ@åíbjnÛa@ÝîÜ¥@Þë‡u N4

‫א‬ .

‫א‬

‫א‬

‫א‬ ‫א‬

‫א‬

‫ א‬،

‫א‬

‫א‬ ‫א‬

.

:

‫א‬ ‫א‬

‫א‬

‫א‬ ‫א‬

‫א‬ ‫א‬

59

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


sÛbrÛa@Ý—ÐÛa @HÒI@òàîÓ @ @òiìa

P.Value 0.001

@Áìnß pbÈi‹¾a

15.787

0.018

1.7405

6.898

@ÊìઠpbÈi‹¾a

ò틨a@pbuŠ† 1

0.7605

åíbjnÛa@Š‡—ß ‫א‬

1.7405

1

‫א‬

(x1)

‫א‬

‫א‬

0.7605

‫א‬

(x2)

‫א‬ ‫א‬

0.947

0.005

0.0005

‫א‬

0.0005

1

(

(x2)

**

**

0.11025

16

1.764

**

**

**

17

4.2655

‫א‬

‫א‬

‫א‬

‫א א‬

‫א‬

‫( א‬x1) ‫א‬

(

:

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

0.947

‫א‬

‫א‬

P.Value

‫א‬

(

‫א‬

.٪5

‫א‬

‫א‬ ‫א‬

‫א‬

(y1)

.

(y1)

‫א‬

‫א‬

‫א‬

‫א‬ .

‫א‬

Z:ÕîÜÈnÛa

P.Value

‫)א‬

x2, x1)

.٪5 )

‫א‬ ‫א‬

. (

x2, x1)

‫א‬

:Hy2I@ïãbrÛa@ÉibnÛa@Ìn¾a@óÜÇ@Hx2, x1I@qdnÛ@åíbjnÛa@ÝîÜ¥@Þë‡u N5

60

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


MANOVA †‡Èn¾a@åíbjnÛa@ÝîÜ¥

@HÒI@òàîÓ

@Áìnß pbÈi‹¾a

P.Value @ @òiìa 0.012

7.918

0.071

@pbuŠ† ò틨a

1.3005

3.729

@ÊìઠpbÈi‹¾a

1.3005

1

0.6125

1

0.6125

åíbjnÛa@Š‡—ß ‫א‬

‫א‬

(x1)

‫א‬

‫א‬

‫א‬

(x2)

‫א‬ ‫א‬

0.087

3.315

0.5445

‫א‬

0.5445

1

(

**

**

0.16425

16

2.628

**

**

**

19

5.0855

x2, x1) ‫א‬ ‫א‬

:ÕîÜÈnÛa

: ( y 1)

‫א‬

‫א‬ ‫א‬

. ‫א‬ ( y 1)

‫א‬ ‫א‬

(x1)

.٪5 ‫א‬

(

‫א‬

‫א‬

‫א‬

‫א‬ .٪5

(

‫א‬

‫א‬ −

‫א‬

‫א‬ ‫א‬ ‫א‬

)

‫א‬

:Hy3I@sÛbrÛa@ÉibnÛa@Ìn¾a@óÜÇ@Hx2,

‫א‬

P.Value

‫א א‬ ‫א‬

x2, x1)

.

‫א‬ ‫א‬

‫א‬

. ‫( א‬x2) P.Value

x1I@qdnÛ@åíbjnÛa@ÝîÜ¥@Þë‡u N6

61

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


sÛbrÛa@Ý—ÐÛa

@HÒI@òàîÓ P.Value @ @òiìa

@Áìnß pbÈi‹¾a

@pbuŠ† ò틨a

@ÊìઠpbÈi‹¾a

åíbjnÛa@Š‡—ß ‫א‬

0.752

0.1036

0.4205

1

‫א‬

0.4205

‫א‬

(x1) ‫א‬

0.288

1.2077

4.9005

1

‫א‬

4.9005

‫א‬

(x2) ‫א‬

0.338

0.9760

3.9605

1

‫א‬

3.9605 (

**

**

4.05775

16

64.924

**

**

**

19

74.2055

x2, x1) ‫א‬ ‫א‬

:ÕîÜÈnÛa : ‫א‬ ‫א‬

‫א‬ ‫א‬

(x1) (

‫א‬

‫א‬

‫א א‬

‫א א‬

x2, x1) ‫א‬

‫א‬

‫א‬

P.Value

‫א‬

‫א‬ ‫א‬

‫א‬ ‫א‬

‫( א‬x2)

‫א‬

، (y 3)

‫א‬

.٪5

‫א‬

:é@ ãc@æbîjÛa@åÇ@Ë .

‫א‬

62

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


@ @Éia‹Ûa@Ý—ÐÛa @@ @@ @@ @@ @@ @@ @@ @@ @ @@ð†byþa@‹íbÌnÛa@ÝîÜ¥ Analysis of Covariance

(ANCOVA)

63

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪64‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


ANCOVA ð†byþa ‹íbÌnÛa@ÝîÜ¥

@@

@ @Éia‹Ûa@Ý—ÐÛa @@ @@ @@ @@ @@

ð†byþa ‹íbÌnÛa@ÝîÜ¥ Analysis of Covariance (ANCOVA)

:ò߇Ôß ‫א‬

‫א‬

ANCOVA

‫א‬

.(

‫א‬ ‫א א‬

‫א‬

‫א‬ ‫א‬

‫א א‬ ‫א‬

(

‫א‬

‫א‬

،

‫א‬

‫א‬

‫א‬

)

‫א‬

‫ ) א‬ANOVA ‫א‬

،

‫א‬

ANCOVA

.(1)

‫א‬

‫א‬

@ @ZïÜàÇ@Þbrß ،

‫א‬

‫א‬:l @ ìÜ¾a ،

‫א‬

‫א‬

،

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א א‬

‫א‬

‫א א‬

‫א א‬

. ٪5

،Control

Variable

‫א‬

‫א‬

1

Covariates

65

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


Éia‹Ûa@Ý—ÐÛa

ò퉆äØ⁄a@òÈßbu

‫א‬ (Y)

ð…aìÛa@lìäu@òÈßbu

‫א‬ (x)

@ @ñŠçbÔÛa@òÈßbu

‫א‬ (x)

‫א‬ (Y)

‫א‬ (x)

‫א‬ (Y)

3

0.66

12

0.75

15

0.70

6

0.25

18

0.82

11

0.65

18

0.79

5

0.40

8

0.50

20

0.94

14

0.65

16

0.60

14

0.74

*

*

15

0.55

*

*

*

*

18

0.90

@ @Zòîöb—ya@ë‹ÐÛa ‫א א‬ .

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א א‬ .

‫א‬

‫א‬

‫א‬

‫א‬

:

‫א‬

‫א‬

‫א‬

‫א‬ ‫א‬

:

‫א‬

‫א‬

@ @ZpbãbîjÛa@Þb‚†g

66

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ANCOVA ð†byþa ‹íbÌnÛa@ÝîÜ¥

@ @Šbjn‚üa@‰îÐäm@paì‚ ‫א‬

GLM Linear Model

:

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

،Analyze ، Univariate ..

‫א‬

(1

‫א‬

67

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


Éia‹Ûa@Ý—ÐÛa

: ‫א‬

Dependent

‫א‬

‫א‬

‫א‬

[y] .

‫א‬

‫א‬

‫א‬

‫א‬

Treatment

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

Variable:

‫א‬

.Fixed Factor(s): .Covariate(s) ‫א‬

‫א‬ :

‫א‬ ‫א‬

[X] ‫א‬

‫א‬

◘ ،Ok

‫א‬

(2

68

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ANCOVA ð†byþa ‹íbÌnÛa@ÝîÜ¥

:

P.Value

( )

‫א‬

‫א א‬

‫א‬

‫א‬

‫א‬

،

‫א‬

‫א‬

0.616

0.506

7.521

2

14.503

*

*

14.325

11

157.578

*

*

*

13

172.081

‫א‬

‫א‬

‫א‬

‫א‬ ‫א‬

@ @ZÕîÜÈnÛa

69

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


Éia‹Ûa@Ý—ÐÛa

‫א‬

‫א‬

‫א א‬

‫א‬ ‫א‬

P.Value

.

‫א‬

‫א‬

:

‫א‬

‫ א א א‬،0.05

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬ 0.616

:òÃìzÜß ‫א‬

One-Way

‫א‬

‫א‬ ‫א‬

‫א‬

‫א‬

‫א‬ ‫א‬

‫א‬

. ‫א‬

‫א‬ ‫א‬

‫א‬

‫א‬

‫א‬

ANCOVA

‫א‬ :

o

Two-Way ANCOVA

o

N-Way ANCOVA

70

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


Ă&#x;bŠa@Ă?—Ă?Ă›a @@ @@ @@ @@ @@ @@ @@ @@ â€ â€ĄĂˆnža@‚íbĂŒnĂ›a@Ă?ĂŽĂœÂĽ Multivariate Analysis of Covariance

(MANCOVA)

71

‍ ×? " ! Ůˆ×?‏# .... ‍ ×? ×? Ůˆ Ůˆ Ůˆâ€Ź

0020109787442 $%&' ‍ * ) ( ×?‏+ ‍ Ůˆ×?‏, $- . ‍ " Ůˆ×?‏/01‍ ×?‏2 * 3$ # & 4‍د‏


‫‪72‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


MANCOVA †‡Èn¾a ‹íbÌnÛa@ÝîÜ¥

@@

@ @ßb©a@@Ý—ÐÛa @ †‡Èn¾a ‹íbÌnÛa@ÝîÜ¥ Multivariate Analysis of Covariance

@@

(MANCOVA)

@@ @ @Zò߇Ôß

‫א‬

MANOVA

‫א‬

‫א‬ ‫א א‬

‫א‬ ‫א‬

‫א‬

‫א‬

MANCOVA

،( (

‫א‬

‫א‬

)

‫א‬

‫א‬

‫א‬ ‫א‬

‫) א‬

MANCOVA

.(1)

‫א א‬

‫א‬

:Þbrß ‫א‬

‫א‬

. ٪5

‫ א‬:

‫א‬

‫א‬،

‫א‬

‫א‬

، ‫א א‬

،Control

Variable

‫א‬

‫א א‬

‫א א‬ ‫א‬

‫א‬

‫א‬ ‫א‬

‫א‬

‫א‬

1

Covariates

73

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ßb©a@Ý—ÐÛa

@ @ò–b©a@pbÈßb§a

‫א‬

‫א‬

òîßìبa pbÈßb§a

‫א‬

‫א א‬

‫א‬

‫א א‬

16

11

3

13

15

5

12

13

4

7

18

6

5

17

2

16

10

4

7

6

1

14

11

7

3

2

4

18

7

6

11

7

3

6

14

4

14

4

2

15

6

2

8

17

2

14

4

4

@ @Zòîöb—ya@ë‹ÐÛa :(y1) ÉibnÛa Ìn¾a óÜÇ (x1) ÝÔn¾a Ìn¾a qdm .1 ‫א א‬

‫א‬

:(H0)

.

‫א‬

‫א‬

‫א‬

74

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


MANCOVA †‡Èn¾a ‹íbÌnÛa@ÝîÜ¥

‫א‬

‫א א‬

‫א‬

:(H1)

‫א‬

‫א‬

.

:(y2) ÉibnÛa Ìn¾a óÜÇ (x1) ÝÔn¾a Ìn¾a qdm .2 ‫א‬

‫א א‬

‫א‬

:(H0)

‫א‬

‫א‬

:(H1)

‫א‬

‫א‬

. ‫א‬

‫א א‬

‫א‬ .

@ @ZpbãbîjÛa@Þb‚†g

75

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ßb©a@Ý—ÐÛa

@ @ZŠbjn‚üa@‰îÐäm@paì‚ ‫א‬

Linear Model GLM

:

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

،Analyze

‫א‬

‫א‬

‫א‬

، Multivariate ..

: ‫א‬

‫א‬

(y1 , y2)

‫א‬

‫א‬

‫א‬

(1

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

. Dependent Variables: Fixed

‫א‬

‫א‬

‫א‬

[x1]

‫א‬

‫א‬

.Factor(s): Covariate(s):

‫א‬

‫א‬ :

‫א‬ ‫א‬

cov1

‫א‬

‫א‬ ، ok

◘ ‫א‬

(2

76

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


MANCOVA †‡Èn¾a ‹íbÌnÛa@ÝîÜ¥

‫א א‬ ‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫אא‬ P.Value

(y1, y2) .٪5

77

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪ßb©a@Ý—ÐÛa‬‬

‫‪78‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


‘†bÛa@Ý—ÐÛa @@ @@ @@ @@ @@ @@ @@ @@ ÂbjmŠüa ÝîÜ¥ Correlation Analysis

79

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪80‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


Correlation Analysis ÂbjmŠüa@ÝîÜ¥

@ @‘†bÛa@Ý—ÐÛa

@@ @@

@ @ÂbjmŠüa@ÝîÜ¥

@@

@Correlation Analysis

@@ @ @Zò߇Ôß

(

)

،(1−) , (1+) ‫א‬

‫א‬

‫א‬

‫א‬ (−)

‫א‬

‫א‬

‫א‬

‫א‬ .

،

‫א‬ ‫א‬

‫ א‬، (+) .

‫א‬

‫א‬

‫א‬

@ @:ÂbjmŠüa@ÝßbȾ@îíbÔß@òqýq@SPSS@wßbã‹i@â‡Ôí@LòßbÇ@òЗi ‫א‬

‫א‬

‫א‬

:Pearson æ@ ìi@ÂbjmŠa@ÝßbÈß .

‫א‬

‫א‬

‫א‬

: Spearman's rho@k @ m‹ÜÛ@æbßj@ÂbjmŠa@ÝßbÈß .2 .

‫א‬

‫א א‬

.1

‫א‬

‫א‬

:Kendall's

‫א‬

‫א‬

tau km‹ÜÛ@Þ @ a‡ä×@ÝßbÈß

.3

.

@ @ZÂbjmŠüa@ÝßbÈß@òíìäÈß@Šbjn‚a 81

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‘†bÛa@Ý—ÐÛa

@ @ZµÏ‹ @åß@Šbjn‚üa@òÛby@À .1

H0 : ρ = 0 H1 : ρ ≠ 0

:

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

:( H 0 )

‫א‬

‫א‬

:( H 1 )

‫א‬

‫א‬

.

‫א‬

‫א‬

‫א‬

‫א‬ .

Z‡yaë@Ò‹ @åß@Šbjn‚üa@òÛby@À .2

‫א‬

:

‫א‬

‫א‬ :

.

‫א‬

‫א‬

H0 : ρ ≤ 0 H1 : ρ f 0

‫א‬

:

‫א‬

‫א‬ :

.

‫א‬

‫א‬

H0 : ρ ≥ 0 H1 : ρ p 0

:

‫א‬

‫א‬

‫א א‬

‫א‬

:[

1] Þbrß :lìÜ¾a

.

‫א‬

‫א‬

‫א‬

82

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


Correlation Analysis ÂbjmŠüa@ÝîÜ¥

.

:

. ‫א‬

‫א‬

‫ א‬−

‫א‬

o

‫א‬

o .٪5

Šb‚†üa

Ý‚‡Ûa

15

100

10

120

30

150

40

180

45

200

20

210

80

190

50

400

100

250

60

350

90

600

@@ @ @ZpbãbîjÛa@Þb‚†g :

‫א‬

83

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‘†bÛa@Ý—ÐÛa

@ @Z:paì©a ZµÏ‹ @åß@Šbjn‚üa@òÛby@À@Züëc Bivariate

‫ א‬Correlate

‫א‬ :

‫א‬ ‫א‬

‫א‬

،Analyze ‫א‬

‫א‬

‫א‬ ،..

(1

84

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


Correlation Analysis ÂbjmŠüa@ÝîÜ¥

:

‫א‬

‫א‬

‫א‬

‫א‬

:

‫א‬

‫א‬

‫א‬

‫ א‬−

(income, savings)

. Variables: ‫א‬

‫א‬

‫א‬

‫א‬

.( ‫א‬

Two-

.

‫אא‬

‫א‬

.( ‫א‬

‫א‬

) Pearson ‫א‬

‫א‬

‫א‬

‫א‬

) tailed

،Ok

‫א‬

(2

@@ @ @ZbèîÜÇ ÕîÜÈnÛaë@wöbnäÛa@Íí‹Ðm p-value

ÂbjmŠüa@ÝßbÈß

0.043

0.617

85

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‘†bÛa@Ý—ÐÛa

.(0.617+)

‫א‬

‫א‬

،٪4.3

‫א‬

0.043

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

(

‫א‬

‫א‬ −

P.Value

‫א‬

‫א‬

:

‫)א‬

– ،٪ 5

‫א‬

‫א‬

‫א‬ .

@ @Z‡yaë@Ò‹ @åß@Šbjn‚üa@òÛby@À@Zbîãbq ‫א‬

‫ אא‬،

‫אא‬ :

H0 : ρ ≤ 0

‫א‬

‫א‬ ‫א‬

‫א‬

‫א‬

H1 : ρ f 0 One

@ @Zpaì©a

‫א‬

– tailed :

‫א‬

‫א‬

‫א‬ ‫א‬

‫א‬

‫א א‬ Two

‫א‬

(1

– tailed

86

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


Correlation Analysis ÂbjmŠüa@ÝîÜ¥

.

‫אא‬

‫א‬

‫א‬

،Ok

(2

:ÕîÜÈnÛaë@wöbnäÛa@Íí‹Ðm @ @ÂbjmŠüa@ÝßbÈß

@ @p-value 0.021

،٪2.1 ‫א‬

‫א‬

:

P.Value

0.021

‫א‬ .

0.617

‫א‬ ‫א‬

‫א‬ (

‫א‬

‫א‬

،٪ 5 ‫א‬

‫)א‬

‫א‬

‫א‬

‫א‬

[2] ‫א‬

‫א‬

‫א‬

Þbrß

‫א א‬ :

‫א‬

‫א‬

،

87

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‘†bÛa@Ý—ÐÛa

@ @õb—ya@ñ†bß@pa‹í‡Ôm @ @òjba@ñ†bß@pa‹í‡Ôm

‫א‬

‫א‬ ‫א‬

‫א‬

‫א‬

:lìÜ¾a . .(

‫א‬ )

‫א‬

‫ א‬−

. ٪5

88

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


Correlation Analysis ÂbjmŠüa@ÝîÜ¥

:

‫א א‬

‫א‬

‫א‬

‫א א‬

‫א‬ 1

2

3

4

@ @‹í‡ÔnÛa 5

6

@ @†ìØÛa

@ @ZpbãbîjÛa@Þb‚†g

:paì©a ‫א‬

‫א‬

Correlate

:

‫א‬

‫א‬

‫א‬ ‫א‬

‫א‬

،Analyze

‫א‬

،Bivariate ..

(1

89

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‘†bÛa@Ý—ÐÛa

:

‫א‬

‫א‬

‫א‬

‫א‬

:

‫א‬

‫א‬

‫א‬

(account, stat)

‫א‬

. Variables: ‫א‬

). Pearson

‫א‬

− (

Spearman

‫א‬

Two-

‫א‬

‫א‬ .

.

‫אא‬

‫א‬

‫א‬

‫א‬

‫א‬

tailed

‫א‬

،Ok

‫א‬

(2

90

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


Correlation Analysis ÂbjmŠüa@ÝîÜ¥

@ @ZÕîÜÈnÛaë@wöbnäÛa@Íí‹Ðm

p-value

ÂbjmŠüa@ÝßbÈß

0.027

0.692 −

: .(0.692−)

‫א‬

‫א‬ ‫א‬

‫א‬

،٪2.7 −

‫א‬

‫א‬

‫א‬ −

P.Value

0.027

‫א‬

‫א‬

‫א‬

‫א‬

،٪5 .

91

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‘†bÛa@Ý—ÐÛa

Correlation Matrix .

ÂbjmŠüa@òÏìЗß

‫א‬

:[3] Þbrß :

‫א א‬

‫א‬

X4

X3

X2

X1

24

10

35

12

18

8

20

20

10

5

45

15

6

14

60

4

16

12

33

11

17

11

50

14

11

15

36

25

10

18

25

16

15

20

44

14

45

15

12

18

25

4

15

24

33

11

15

14

‫א‬

lìÜ¾a

92

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


Correlation Analysis ÂbjmŠüa@ÝîÜ¥

ZpbãbîjÛa@Þb‚†g

:paì©a ‫א‬

‫א‬

Correlate

:

‫א‬

‫א‬

‫א‬ ‫א‬

‫א‬

،Analyze

‫א‬

،Bivariate ..

(1

93

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‘†bÛa@Ý—ÐÛa

‫א‬

: ‫א‬

‫א‬

‫א‬

(X1 ,

X2

,

X3

,

X 4)

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

.Variables ‫א‬ –

‫א‬ .

‫א‬

،

‫א‬

Person

‫א‬

،

‫א‬

‫א‬

Two-tailed

‫א‬

‫א‬

‫( א‬Sig. ) P.Value .

Output

‫א‬

‫א‬

‫א‬

‫א‬ . OK :

‫א‬

(2

‫א‬

94

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


Correlation Analysis ÂbjmŠüa@ÝîÜ¥

: wöbnäÛa@Íí‹Ðm ‫א א‬

P.Value

‫א‬

‫א‬

‫א‬

0.042

0.594 −

(X2) (X1)

0.483

0.225 −

(X3) (X1)

0.450

0.241

(X4) (X1)

0.573

0.181

(X3) (X2)

0.007

0.728 −

(X4) (X2)

0.750

0.103 −

(X4) (X3)

95

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‘†bÛa@Ý—ÐÛa

:ÕîÜÈnÛa (X4) (X2)

‫א‬

(X2) (X1)

‫א‬

P.Value

‫א‬

، ٪5

‫א‬

‫א‬

،٪5

‫א‬

P.Value

‫א‬

‫א‬ .

‫א‬

‫א‬

Partial Correlation ïö§a@ÂbjmŠüa )

‫א‬

(

)

‫א‬

‫א‬ ‫א‬

‫א‬

‫א‬ ‫א‬

‫א א‬

‫א‬

،

،

‫א‬

:

‫א‬

.(

‫א‬

‫א‬

‫א‬

‫א‬

.

‫א‬ :(

‫א‬

‫א‬

.(

‫א‬

‫ א‬: (1) ‫)א‬

‫א‬

‫א‬

4) Þbrß

‫א‬ ‫א‬

‫א‬

‫א‬

96

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


Correlation Analysis ÂbjmŠüa@ÝîÜ¥

@ @ñ‹þa@À@õbäiþa@†‡Ç

@ @Šb‚†üa

@ @Ý‚‡Ûa

2 1

15 10

100 120

2

30

150

2 3 5 4 2 1 3 1

40 45 20 80 50 100 60 90

180 200 210 190 400 250 350 600

@ @ZpbãbîjÛa@Þb‚†g

97

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‘†bÛa@Ý—ÐÛa

@ @Zpaì©a ‫א‬

Correlate

:

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

،Analyze

‫א‬

‫א‬

(1

‫א‬

‫א‬

،Partial ..

: ‫א‬

‫א‬

:

‫א‬

‫א‬ ‫ א‬−

(income, savings) Variables:

‫א‬

‫א‬

‫א‬

‫א‬

children

Controlling for

.

‫אא‬

‫א‬

‫א‬

،Ok

‫א‬

(2

98

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


Correlation Analysis ÂbjmŠüa@ÝîÜ¥

@ @ZÕîÜÈnÛaë@wöbnäÛa@Íí‹Ðm

‫א‬

p-value

ÂbjmŠüa@ÝßbÈß

0.065

0.6022

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬ .

‫א‬

: –

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬ ،

‫א‬

‫א‬

@ @Zñ‚c@òÃìzÜß ‫א‬

‫א‬ ‫א‬

‫ א‬. . ‫א א‬

، ‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

99

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪‘†bÛa@Ý—ÐÛa‬‬

‫‪100‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


ÉibÛa@Ý—ÐÛa

@@ @@ @@ @@ @@ @@ @@ @@ @ @ÁîjÛa@óݨa@‰a†−üa@Ýîܤ

@ @Simple Linear Regression Analysis

101

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪102‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥

@ @ÁîjÛa@ó©a@Ša‡®üa@ÝîÜ¥@ @Simple Linear Regression Analysis ‫א א‬

‫א‬

‫א א‬

‫א‬

: −

‫( א‬

Simple Regression Models Multiple

‫א‬

– Regression Models

( Y) :

‫א‬

‫א‬

‫א‬

‫א‬

:ÁîjÛa@ó©a@Ša‡®üa@xˆb¹ :Þëþa@ÊìäÛa

‫א‬ ‫א‬

‫)א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א א‬

‫א‬

‫א‬

،(X)

Y = B0 + B1 X

@ @Z†‡Èn¾a@ó©a@Ša‡®üa@xˆb¹@Z@óãbrÛa@ÊìäÛa

،(X’s)

(Y) :

‫א‬ ‫א‬

‫א‬

‫א א‬

‫א‬

Y = B0 + B1 X 1 + B2 X 2 + B3 X 3 + ............ + Bk X k

‫א א‬

‫א‬ : (k )

:Ša‡®a@xˆì¹@ÕîÏìm@paì‚

103

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ÉibÛa@Ý—ÐÛa

‫א‬

‫א‬ ،

‫א א‬ ‫א‬

‫אא‬

‫א‬

‫א‬

،

‫א א‬

‫א‬

:

:òí‹ÄäÛa@Âë‹“Ûa@Zü ëc (1

@áر@ ð‰Ûa@ô‹ÄäÛa@‘bþa@Éß@ Ša‡®üa@pýßbÈß@áîÓë@paŠb’g@ HòîÔäß@ ëcI@ ÖbÐma

:òaŠ‡Ûa@Ý«@ñ‹çbÄÛa

،

‫א‬ ‫א‬

‫א‬

‫א‬

‫א‬

، −

‫א‬

‫א‬

‫א‬ :

‫א א‬ .

‫א‬

‫א‬ ‫א‬

‫א‬

‫א א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

، )

‫א‬

‫א‬

.

‫א‬

‫א‬

‫א‬

− ‫א‬

‫א‬

.( ‫א א‬

‫א‬

‫א‬

‫א‬ ‫א‬

‫א‬ .

: ‫א‬

‫א‬

:xˆìàäÜÛ@òíÐnÛa@ñŠ‡ÔÛa@HòíbÐ×@ëcI@ÞìjÓ (2 104

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥‬‬

‫א‬

‫‪:Ša‡®üa@xˆìàäÛ@òíÐnÛa@ñŠ‡ÔÛbi‬‬ ‫א‬

‫א א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א א‬

‫‪،‬‬

‫א א‬

‫א‬

‫‪.‬‬

‫‪،‬‬

‫א‬ ‫א‬

‫א‬

‫א‬ ‫א‬

‫א‬

‫א‬

‫א‬ ‫א‬

‫‪،‬‬

‫‪.‬‬

‫א‬

‫א א‬

‫א א‬

‫‪.‬‬

‫א‬

‫‪،‬‬ ‫א‬

‫‪،‬‬ ‫‪٪40 ٪30‬‬

‫א‬ ‫‪٪60‬‬

‫א‬ ‫א‬

‫א א‬

‫‪.‬‬

‫‪@ @Zòîšbí‹Ûa@Âë‹“Ûa@Zbîãbq‬‬ ‫‪:‬‬

‫‪:Ša‡®üa@xˆìàäÛ@òîÜØÛa@òíìäȾa (1‬‬ ‫א‬

‫א‬

‫א א‬

‫א‪.‬‬

‫א‬ ‫א‬

‫א‬

‫‪:‬‬

‫א‬ ‫א א‬

‫א‬ ‫א‬

‫‪،‬‬

‫א א‬

‫א‬

‫א‬ ‫א‬

‫א‬

‫א‬

‫א‬

‫) ( ]‪.[F- test‬‬

‫א א‬

‫‪،‬‬

‫א‬

‫א א‬

‫א א‬ ‫א‬

‫)א‬

‫א‬ ‫א‬

‫א א‬

‫א‬

‫‪:‬‬

‫(‬ ‫؟‪.‬‬

‫א‬ ‫א‬

‫א‬ ‫א א‬ ‫א‬

‫‪105‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


ÉibÛa@Ý—ÐÛa

‫א‬ .

‫א‬

،

‫א‬

: .(

‫א א‬ T -

)

‫א א‬ ‫א א א‬

‫א‬

‫א‬

‫א‬

‫א‬

)]

‫א‬

‫א‬

‫א‬

‫א‬

:xˆìàäÜÛ òîö§a òíìäȾa (2

.‫א‬

‫א‬

، .[(test

.Ša‡®üa@xˆì¹@bÈß@‹í‡Ôm@À@ò߇ƒn¾a@òÔí‹Ûa@Âë‹’@‹Ïaìm@ô‡ß (3 .OLS

‫א‬

‫א‬

‫א‬

:

:

‫א‬

‫א‬

:Normality Test ïÓaìjÜÛ@ïÛbànyüa@ÉíŒìnÛa@òîÛa‡nÇa − ‫א‬

‫א‬

‫א‬

‫א‬

،( ) ‫א‬

،‫א‬

( ) ‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

. ‫א‬ ، ‫א‬

‫א‬ ‫א‬

‫אא‬ ‫א‬

،

‫א‬ ‫א‬

‫א‬ ‫א‬

‫א‬

106

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


à ÎjĂ›a@ïŠa@Ĺ a‥Žßa@Ă?ĂŽĂœÂĽ

‍×?‏

.(1)

‍×?‏

‍×?‏

‍×?‏

.

‍×?‏

30

‍×?‏

‍×?‏

‍×?‏

:ĂŻĂ“aĂŹjĂœĂ› ĂŻma‰Ûa ÞýÔnßa − ‍×?‏

ŘŒâ€Ť×?‏

.

‍×?‏

‍×?‏

(F) ŘŒ (T)

‍×?×?‏

‍×? ×? ×?‏

‍×?‏

‍×? ×?‏

‍×?‏

‍×?‏ ‍×?‏

ŘŒ

‍×?‏

‍×?‏ ‍×?‏

‍×? ×?‏

‍×?‏

(R2) ŘŒ

.

‍×?‏

‍×?‏

:Homoscedasticity (ĂĽĂ­bjnĂ›a pbjq Ĺ bjn‚a) ĂŻĂ“aĂŹjĂ›a ãb¤ Ĺ bjn‚g ‍×?‏

‍×?‏

‍×?‏ ‍×?‏

.(2)

ŘŒ ‍×? ×?‏ ‍×?‏

‍×?‏

‍×?‏

‍×?‏

. ‍×?‏

‍×?‏

‍×?‏

‍×?‏

− ‍×?‏

‍×?‏ ‍×?‏

‍ ×?â€ŹŘŒ biased

:òĂ”ibÛa@Ă‚ĂŤâ€šâ€œĂ›a@Ă•ĂŽjď‹ąm@òÎĂ?ĂŽĂ—@òÎĂœĂ ĂˆĂ›a@òĂœrĂ&#x;Ăžbi@|ťÏäÍ

:ĂžbrĂ&#x; 1

Palta, Mari, (2003)," Quantitative Methods in population health: Extensions of ordinary regression", Wiley – IEEE, p 6.

2

Berk, Richard A., (2003)," Regression analysis: a constructive critique", Sage publications Inc., p 144.

107

‍ ×? " ! Ůˆ×?‏# .... ‍ ×? ×? Ůˆ Ůˆ Ůˆâ€Ź

0020109787442 $%&' ‍ * ) ( ×?‏+ ‍ Ůˆ×?‏, $- . ‍ " Ůˆ×?‏/01‍ ×?‏2 * 3$ # & 4‍د‏


ÉibÛa@Ý—ÐÛa

: Úýènüa

Ý‚‡Ûa

127

158

130

160

129

175

125

157

115

130

119

150

121

152

124

162

97

125

92

115

85

125

114

145

118

140

110

142

119

140

104

138

102

126

‫א‬

‫א‬

‫א א‬

:lìÜ¾a .‫ ؟‬٪5

‫א‬

‫א‬

‫א‬

:paì©a 108

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥

:

‫א‬

‫א‬

Regression

:

‫א‬

‫א‬

‫א‬ ‫א‬

‫א‬

،Analyze ‫א‬

،Linear

(1

‫א‬

(2

‫א‬

109

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ÉibÛa@Ý—ÐÛa

‫א‬

: ‫א‬

‫א‬

‫א‬

‫א‬

Consumption [y]

‫א‬

‫א‬

‫א‬

‫א‬ .

. Respondent ‫א‬

‫א‬

‫א‬

Income

‫א‬

(x)

‫א‬

.

. Independent(s) :

‫א‬

‫א‬

‫א‬

‫א‬

،Statistics

‫א‬

(3

110

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥

:

‫א‬

‫א‬

‫אא‬

] ،Durbin – Watson ‫א‬

‫א‬

‫א‬

‫א‬

.

‫א‬

. [Residuals ‫א‬ Model Fit

‫א‬

‫א‬

‫א א‬

‫א‬

‫א‬

Estimates

‫א‬

‫א‬. .

.

‫א‬ Save

‫א‬

‫א‬

‫א‬ ‫א‬

‫א‬

Continue

:

‫א‬ :

‫א‬

.

‫א‬ ‫א‬

‫א‬ ‫א‬

‫א‬

(4 ‫א‬

111

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ÉibÛa@Ý—ÐÛa

‫א‬

: ‫א א‬

‫א‬

‫א‬

‫אא‬ .

Unstandardized Predicted Values

‫א‬

‫א‬

‫א‬

.

standardized Residuals

. ‫א‬

‫א‬

‫א‬

Plots

‫א‬

‫א‬

‫א‬

Continue

‫א‬

:

‫א‬

‫א‬ :

‫א‬

. ‫א‬

‫א‬

‫א‬

(5 ‫א‬

112

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥

: ‫א‬ ‫א א‬

‫א‬

‫א‬

‫אא‬ .

Normal probability plot

. Standardized Residual Plots .

‫א‬

‫א‬

‫א‬ ،ok

‫א‬

‫א‬

Continue

‫א‬

‫ א‬:

‫א‬

:

‫א‬

.

‫א‬

،‫א‬

(6

‫א‬

Durbin-Watson Šbjn‚a@ïöb—ygë@‡í‡znÛa@ÝßbÈß@Þë‡u .1

:

‫א‬

‫א‬

‫אא‬

113

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ÉibÛa@Ý—ÐÛa

‫א‬

‫א‬

‫א‬

.(

‫א‬ ‫א‬

. ‫א‬

) ‫א‬

‫ א‬:Std.

‫)א‬

Error

. ‫א‬

‫א‬

‫א א‬

:R ( .(

‫א‬

:R Square (

:Adjusted R Square ( of

‫א‬ ‫– א‬

‫א‬

‫א‬

‫א‬

‫א‬ (

)

the

‫א‬

Estimate

،

(

‫א‬

.(1)(MSE) :Durbin-Watson (

‫א‬

‫א‬

‫א‬

:ANOVA åíbjnÛa@ÝîÜ¥@Þë‡u .2

: .‫א‬ .

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

:Model

:Sum of Squares

.

‫א‬

‫אא‬ (

(

MSE 1

114

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥

. .

‫א‬

‫א‬

‫א‬،

‫א‬

:df

(

:Mean Square (

.

‫) (א‬

:F

:Sig

‫א‬

P.Value

.

‫א‬

(

(

‫א‬

:Ša‡®üa@pýßbÈß@Þë‡u .3

: ‫ א‬:Unstandardized ) ‫א‬ ‫א‬

‫א‬

،

‫א‬

‫א‬

‫אא‬

Coefficients

‫א‬

.(Std. Error)

‫א‬

‫א‬ ‫א‬

Standardized Coefficients

.( .

‫א‬

(

‫א‬

Constant

،(

‫)א‬

‫א‬

‫) (א‬

(

‫א‬ :t (

115

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ÉibÛa@Ý—ÐÛa

‫א‬ .[(

‫ ]א‬P.Value

‫א‬

) ‫א‬

:Sig

‫א‬

‫א‬

‫א‬

(

‫א‬

@ïÈîàvnÛa@Þbànyüaë@‡çb“¾a@ïÈîàvnÛa@Þbànyüa@µi@òÓýÈÜÛ@ïãbîi@ÝØ’ .4 @ @NÉÓìn¾a

@@ ‫א‬

‫א א‬

‫א‬ .‫א‬

‫א‬

‫א‬ ‫א‬

‫אא‬ ‫א‬

‫א‬

‫א‬

:òÃìzÜß 116

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥

، Data View Standardized

‫א‬

)

،

،

‫א‬ ‫א‬

‫א‬

res_1

(Residuals ( yˆ )

‫א‬

pre_1

‫א‬

‫א‬ :

‫א‬ .

‫א‬ ‫א‬

‫א‬ ‫א‬

‫א‬ ‫א‬

‫א א‬

‫א‬

‫ א‬− ‫א‬

117

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪ÉibÛa@Ý—ÐÛa‬‬

‫א‬

‫א‬ ‫א א א‬

‫א‬

‫א‬

‫א‬

‫א‪.‬‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫‪،‬‬ ‫א‬

‫א א‬

‫)א‬

‫א‬

‫(‪.‬‬

‫א‬

‫א‬

‫‪@ @Zpaì©a‬‬ ‫‪(1‬‬

‫א‬ ‫א‬

‫‪(2‬‬

‫א‬

‫‪Graphs‬‬

‫א‬

‫‪Scatter‬‬

‫א‬

‫א‬

‫א‬

‫‪:‬‬

‫א‬

‫א‬

‫א‬

‫א‬

‫‪:‬‬

‫‪،Simple‬‬

‫‪Define‬‬

‫‪118‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥

: ‫א‬ ‫א‬

Standard

‫א‬

.Y Axis ‫א‬ (

‫א‬ ‫)א‬

‫א‬

‫א‬ ‫א‬

‫א‬

‫א‬

‫אא‬

‫א‬

(

Residual [zre_1]

‫א‬

‫א‬

(

Unstandardized Predicted Value [pre_1]

.X Axis ‫א‬ :

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬ ok

‫א‬ ‫א‬

(3

119

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ÉibÛa@Ý—ÐÛa

@@ ،‫א‬

‫א‬

‫א‬ :

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬ ‫א א‬

‫א‬

‫א‬

@ð‰Ûa@ Ša‡®üa@xˆì¹@òîyý–@óÜÇ@áبaë@wöbnäÛa@óÜÇ@ÕîÜÈnÛa @ @ZéÔîÏìm@ @ @ZŠ‡Ô¾a@Ša‡®üa@xˆì¹ :@üëc Y = 8.149 + 0.735 X

120

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥

:

،

‫א‬

:( β 0 )

. (8.149)

.(0.735)

:( β1 ) ‫א‬

‫א א‬

‫א‬

‫א‬

‫◘ א‬

‫א‬

◘ @@

Nòí‹ÄäÛa@Âë‹“Ûa@Z@bîãbq

(1

:Ša‡®üa pýßbÈß òàîÓë paŠb’g (òîÔäß ) ÖbÐmg ،

‫א‬

‫א א‬

‫א‬ :

‫א‬

‫א‬ .(

( .

‫א‬

‫א א‬

‫א‬

‫א א‬

‫א‬

‫ א‬.

‫א‬

)

‫א‬

‫א )א‬

‫א‬

‫א‬

‫א‬

،

.

: Consumption

‫א‬

‫א א‬

‫א‬

= 8.149 + 0.735 Income

‫א א‬

‫א‬ .

‫א‬ ‫א‬

‫א‬

:òßbç@òÃìzÜß

121

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ÉibÛa@Ý—ÐÛa

‫א‬

‫א‬ ‫א‬

‫א‬ ‫א‬

‫א‬ ،

،

‫א‬

‫א א‬

‫א‬

‫א‬ ‫א‬

. ‫א א‬ ‫א‬

‫א‬

‫א א‬

‫א‬ .

‫א‬

‫א‬ ‫א‬

‫א‬

‫א‬

: xˆìàäÜÛ òíÐnÛa ñŠ‡ÔÛa

(2

‫א‬

‫א‬

،[ R-Sq (adj) ]

‫א‬

‫א‬

‫א‬

(R-Sq)

‫א‬ .

‫א‬

:ÕîÜÈnÛa@òÔí‹ ، (

‫א‬

،( ‫ א‬،

)

‫א‬ ‫)א‬

‫א‬

‫א‬ ‫א‬

‫א‬

‫א‬ ‫א‬

‫א‬

‫א‬

‫א‬ . ‫א‬

‫א‬

‫א‬

، ٪ 77.1 ‫א א‬

‫א‬ ‫א‬

‫א‬

‫א‬ ‫א‬

٪

‫א‬

‫א‬

‫א‬

‫א‬

77.1

٪77.1 (٪22.9)

:òîšbí‹Ûa@Âë‹“Ûa@Z:brÛbq : xˆìàäÜÛ òîÜØÛa òíìäȾa

(1

122

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥

:òîöb—ya ë‹ÐÛa .

‫א‬ .

‫א‬ ‫א‬

‫א‬

:( H 0 )

‫א‬

‫א‬

:( H 1 )

‫א‬

‫א‬

:‹‚e ÝØ“i ë‹ÐÛa ‫א‬ ‫א‬

‫א‬ .(

‫א‬

:( H 0 ) ‫א‬ .(

)

‫א‬ ‫א‬

‫א‬

‫ א‬:( H 1 )

‫א‬ ‫א‬

‫א‬

)

:bèîÜÇ ÕîÜÈnÛaë wöbnäÛa Íí‹Ðm ‫א‬

ANOVA

‫א‬ P. Value

‫א‬ F

cal

MS

‫א‬

‫א‬

SS

‫א‬

DF

‫א‬

‫א‬

Source

‫א‬

‫א‬

0.0000

54.814

2244.036

2244.036

1

*

*

40.939

614.082

15

‫א‬

*

*

*

2858.118

16

‫א‬ :ÕîÜÈnÛa

123

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ÉibÛa@Ý—ÐÛa

،

‫א‬

P.Value

‫א‬

‫א‬

‫א‬

‫א‬

:

‫א‬ ‫א‬

،٪5

‫א‬

‫א‬

، .

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

.

‫א‬

.

0

0

=0

1

0

≠0

H :B H :B

0

1

=0

1

1

≠0

H :B H :B

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

:xˆìàäÜÛ òîö§a òíìäȾa

(2

:âìèоa

‫א‬

‫א‬

‫א‬

، [T - test ] ( )

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

،

:ña†þa

:òîöb—ya ë‹ÐÛa ÝØ’

‫א‬ :( B 0 )

:( B1 )

:bèîÜÇ ÕîÜÈnÛaë wöbnäÛa Íí‹Ðm

‫א‬

124

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥

P. Value

( )

‫א‬

‫א‬

‫א‬

‫א‬

0.578

0.569

8.149

0.000

7.404

0.735

B B

0

1

:ÕîÜÈnÛa ‫א א‬

‫א‬

P.Value

0.578

‫א‬

‫א‬

، ( B0 )

‫א‬

،٪ .

0.000

‫א‬

‫א‬

،٪ ‫א‬

‫א‬

‫א‬

،( B1 )

‫א‬ .

‫א‬

5

‫א‬

‫א‬

P.value

‫א‬

‫א‬

5

( B1 ) ‫א‬

‫א‬

.òí†bÈÛa ô‹Ì—Ûa pbÈi‹¾a Âë‹’

(3

Normality Test ïÓaìjÜÛ@ïÛbànyüa@ÉíŒìnÛa@òîÛa‡nÇa :Þëþa@‹“Ûa

:òîöb—ya ë‹ÐÛa .

.

‫א‬

‫א‬

‫א‬

‫א‬

‫ א א‬:(H0)

‫ א א‬:(H1)

‫א‬

‫א‬

‫א‬

‫א‬

125

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪ÉibÛa@Ý—ÐÛa‬‬

‫א א‬

‫א‬

‫א‬

‫א‬

‫‪:‬‬

‫א‬

‫‪@ @bîãbîi@Z¶ëþa@òÔí‹Ûa‬‬ ‫א‬ ‫א‬

‫א‬

‫א‬

‫א‬

‫א‬ ‫א‬

‫א‬

‫א א‬

‫א‬

‫‪.‬‬

‫א‬

‫א א‬ ‫א‬

‫א‬

‫‪،‬‬

‫א‬

‫א‬

‫א‬ ‫א‬

‫א‬

‫א‬

‫א‬

‫א‬ ‫א‬

‫‪،‬‬

‫א‬

‫א‬ ‫א‬

‫א‬

‫‪.‬‬ ‫א‬

‫א‬

‫א‬

‫א‬

‫אא‬

‫א‬

‫א‬ ‫א‬

‫א‬

‫‪،‬‬

‫‪،‬‬

‫א א‬

‫א א‬

‫)‬

‫(‪.‬‬

‫‪126‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥

@@

@LHÒë‹ä@–@Òë‹uìßìÜ×I@Šbjn‚a@åß@Ý×@Šbjn‚a@âa‡ƒnbi@bîiby @ZòîãbrÛa@òÔí‹Ûa @ @ZHÙîÜíë@–@ëib’I@Šbjn‚aë

@ @paì©a ‫א‬

Descriptive

:

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

، Analyze

، Explore

‫א‬

‫א‬

(1

Statistics

127

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪ÉibÛa@Ý—ÐÛa‬‬

‫‪ (2‬ﰲ ﺍﳌﺮﺑﻊ ﺍﳊﻮﺍﺭﻱ ﺍﻟﺬﻱ‬ ‫ﺃ ( ﻗﻢ ﺑﻨﻘﻞ ﺍﳌﺘﻐﲑ‬

‫ﺃﻣﺎﻣﻚ‪:‬‬

‫‪Standardized Residual‬‬

‫ﺇﱃ ﺍﳌﺮﺑﻊ ﺍﻟﺬﻱ‬

‫ﺑﻌﻨﻮﺍﻥ ‪.Dependent List‬‬ ‫ﺏ ( ﻭﻣﻦ ﺍﻻﺧﺘﻴﺎﺭﺍﺕ ‪ Display‬ﺍﺧﺘﺮ ‪.Plots‬‬ ‫ﺝ ( ﰒ ﺃﻧﻘﺮ ﻓﻮﻕ ﺍﻻﺧﺘﻴﺎﺭ‬

‫‪Plots..‬‬

‫ﰲ ﻧﻔﺲ ﺍﳌﺮﺑﻊ ﺍﳊﻮﺍﺭﻱ ﺍﻟﺬﻱ‬

‫ﺃﻣﺎﻣﻚ‪ ،‬ﺳﻴﻈﻬﺮ ﻟﻨﺎ ﻣﺮﺑﻊ ﺣﻮﺍﺭﻱ ﺟﺪﻳﺪ‪ ،‬ﻛﻤﺎ ﻳﻠﻲ‪:‬‬

‫‪(3‬‬

‫ﰲ ﻫﺬﺍ ﺍﳌﺮﺑﻊ ﺍﳊﻮﺍﺭﻱ‪ :‬ﻗﻢ ﲟﺎ ﻳﻠﻲ‪:‬‬ ‫‪128‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


‫‪ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥‬‬

‫ﺃ ( ﻧﺸﻂ ﺍﻻﺧﺘﻴﺎﺭ‬

‫‪Normality Plots with tests‬‬

‫ﻣﻦ ﺧﻼﻝ‬

‫ﺍﻟﻀﻐﻂ ﻣﺮﺓ ﻭﺍﺣﺪﺓ ﺑﺎﳌﺎﻭﺱ ﰲ ﺍﳌﺮﺑﻊ ﺍﻷﺑﻴﺾ ﺍﻟﺬﻱ ﺃﻣﺎﻡ ﻫﺬﺍ‬ ‫ﺍﻻﺧﺘﻴﺎﺭ‪.‬‬ ‫ﺏ ( ﰒ ﻣﻦ ﺍﻻﺧﺘﻴﺎﺭﺍﺕ‬ ‫ﺍﻻﺧﺘﻴﺎﺭ‬

‫‪Leaf‬‬

‫–‬

‫‪Boxplots‬‬ ‫‪and‬‬

‫ﺍﺧﺘﺮ ‪ .None‬ﰒ ﻗﻢ ﺑﺘﻌﻄﻴﻞ‬

‫– ‪ ،Stem‬ﺍﳍﺪﻑ ﻣﻦ ﻫﺬﻩ ﺍﳋﻄﻮﺓ ﻫﻮ‬

‫ﺗﻘﻠﻴﻞ ﺍﳌﺨﺮﺟﺎﺕ ﺍﻟﱵ ﻟﺴﻨﺎ ﰲ ﺣﺎﺟﺔ ﺇﻟﻴﻬﺎ‪.‬‬ ‫ﺝ ( ﰒ ﺍﺿﻐﻂ ‪ Continue‬ﻟﻠﻌﻮﺩﺓ ﻟﻠﻤﺮﺑﻊ ﺍﳊﻮﺍﺭﻱ ﺍﻟﺴﺎﺑﻖ‪.‬‬ ‫ﰒ ﺍﺿﻐﻂ ‪ ،OK‬ﺳﻨﺤﺼﻞ ﻋﻠﻰ ﺍﻟﻨﺘـﺎﺋﺞ ﺍﻟﺘﺎﻟﻴـﺔ ﰲ ﻧﺎﻓـﺬﺓ ﺍﳌﺨﺮﺟـﺎﺕ‬

‫‪(4‬‬

‫‪:Output‬‬

‫‪:ÕîÜÈnÛaë@wöbnäÛa@Íí‹Ðm‬‬

‫◘‬

‫א‬

‫א א‬

‫א‬ ‫א‬

‫א‬

‫–‬

‫א‬

‫–‬

‫א‬

‫א‬

‫‪P. value‬‬

‫א‬

‫‪0.129‬‬

‫‪17‬‬

‫‪0.20‬‬

‫‪0.970‬‬

‫‪17‬‬

‫‪0.780‬‬

‫‪129‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


ÉibÛa@Ý—ÐÛa

:ÕîÜÈnÛa@òÔí‹ ‫א‬

‫א‬

P.Value

‫א א‬

‫א‬

‫א‬

‫א‬

‫א‬

،

‫א‬

[ ‫א‬

‫א‬

‫א‬

‫א‬

‫א א‬

. ‫א‬

‫א‬

‫א‬

] ‫א‬

‫א‬

،

‫א‬

‫א‬

0.05

‫א‬

‫א‬ .

‫א‬

‫א‬

‫א‬

@ZïÓaìjÜÛ@ïma‰Ûa@ÞýÔnüa@ZïãbrÛa@‹“Ûa

:òîöb—ya@ë‹ÐÛa ‫א‬

‫א‬

‫א‬

‫א‬

)

‫א א‬

:(H0)

‫א‬ .( ‫א א‬

) ‫א א‬

‫א‬

:(H1)

‫א‬

‫א‬

‫א‬

‫א‬

.( ‫א א‬

:áبa@ña†c ‫א‬

‫א א‬

‫א‬

‫א‬

‫א‬

Durbin

– Watson Test :Šbjn‚üa@‰îÐäm@paì‚

:(DW)

‫א‬

:¶ëþa@ñì©a

130

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥

‫א‬

‫א‬

Durbin-Watson

‫א א‬

، ‫א‬

Durbin

‫א‬

‫א‬

‫א‬

‫א‬

)

‫א‬

‫א‬

‫א‬

.(2.224)

‫א‬

:òîãbrÛa@ñì©a :(– Watson

Durbin

‫א‬ .(n)

‫א‬

– Watson

‫א‬

،

‫ א‬،(dL)

‫א‬

،(K) :

‫א‬

‫א א‬

‫א‬: .(du)

‫א‬

، 15 = n ، 1 = k

‫א‬

d L = 1.08 d u = 1.36

:‫א א‬ ، ‫א‬

‫א א‬

‫א‬

‫א‬

‫ א‬:òrÛbrÛa@ñì©a

‫א‬

‫א א‬ :

: .( 4-dL<DW<4 ) .( 0<DW<dL )

‫א‬ ‫ א‬:

: .( 2<DW<4-du)

(1

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬ ‫ א‬:

‫א א‬ ‫א‬

‫ א‬:

‫א‬ ‫א‬

‫א‬

(2 ‫א‬

131

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ÉibÛa@Ý—ÐÛa

.( du<DW<2) ،

‫א‬

‫א‬

‫א א‬ :

Durbin

‫א‬ ‫א‬

‫א‬

.(4-du<DW<4-dL) :

‫א‬

‫א‬

.(dL<DW<du)

‫א‬

‫א‬

. 2.224

‫א‬

‫א א‬ ،(

‫ א‬:

)

‫א‬

)

1.36

‫א‬

) 15

:æc@b·ë

‫א‬

DW

‫א‬

‫א‬

:

(3

du

] (Watson

K

‫א‬

(

‫א‬

(4-1.36= 2.64) ‫ א‬.[ ٪ 5 .2<DW(2.22417)<2.64

، (2<DW<4-du)

:Ša‹ÔÛa@æìØí@áq@åßë ‫א‬ [ ‫א‬

) ‫א א‬ ‫א א‬

‫א‬

‫א‬

‫א‬

]

. ‫א‬ :( :

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

.( ‫א א‬ ‫א‬

‫א‬

‫א‬

‫א‬

‫ )א‬ïÓaìjÛa@ãb¤@Šbjn‚a@Z@sÛbrÛa@‹“Ûa@ ‫א‬

‫א‬

132

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥

:ïãbîjÛa@á‹Ûa@Þý‚@åß@Z¶ëþa@òÔí‹Ûa ‫א‬ :( ‫א‬

‫א‬

‫א א א‬

‫א‬

‫א‬

)

‫א‬

،

‫א‬

@@ ‫א‬

‫א‬ ،(

‫א‬ ‫א א א‬

، ‫א א‬

‫א‬

] . ‫א‬

‫א‬

‫א‬

‫א א‬

: æc@bäç@Åyýí

‫א א א‬

‫א‬

‫א‬

. ‫א‬

‫א‬

‫א‬

)

‫א‬

‫א‬ ‫א‬

[ ‫א‬

133

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ÉibÛa@Ý—ÐÛa

، .

‫א‬

‫א‬

‫א‬

Goldfield

‫א‬

– Quandt

(Goldfield – Quandt òÔí‹ I@òîib¨a@òÔí‹Ûa@ZòîãbrÛa@òÔí‹Ûa @ @Zpaì©a ‫א‬

‫א‬

‫א‬

‫א‬

.1

: ‫א‬

‫א‬

‫א‬

‫א‬

Sort Cases

. ‫ א‬.

Data

:

Sort

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬ ) Ascending

‫א‬

Income (x)

‫א‬ ‫א‬

‫א‬

‫א‬

‫א‬

.

‫א‬

.by

‫א‬

Sort Order

.(

134

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥‬‬

‫‪،ok‬‬

‫‪.‬א‬

‫א‬

‫א‬

‫(‬

‫‪.2‬‬ ‫א‬

‫‪1‬‬

‫‪،‬‬

‫א‬

‫א‬

‫‪٪20‬‬

‫א‬

‫)א‬

‫א‬

‫א‬ ‫(‪،‬‬

‫א‬ ‫‪3‬‬

‫א‬

‫)א‬

‫)‪.(10) ،(9) ،(8‬‬

‫א‬

‫)‪،(1‬‬

‫א‬

‫א ‪ .‬א‬

‫‪:‬‬

‫‪3.4‬‬

‫א א‬ ‫א‬

‫)‪ 3.4 = 0.20 × 17‬ﻤﺸﺎﻫﺩﺓ(‬

‫‪135‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


‫‪ÉibÛa@Ý—ÐÛa‬‬

‫‪،‬‬

‫א ‪:‬א‬

‫‪7‬‬

‫)‪...........(2) ،(1‬‬

‫א‬

‫)‪........(12) ،(11‬‬

‫)‪ ،(7‬א‬

‫)‪.(17‬‬

‫א‬

‫א‬

‫‪.3‬‬ ‫א‬

‫‪،‬‬ ‫א‬

‫)(‬ ‫א‬

‫א‬

‫א‬

‫א‬

‫א‬ ‫א‬

‫א‬ ‫א‬

‫א‬

‫)‪(SSE‬‬ ‫א‬

‫‪.‬‬

‫א‬

‫‪:‬‬

‫א‬

‫א‬ ‫א ‪،‬‬

‫א‬

‫א א‬

‫א‬

‫‪:‬‬ ‫א‬ ‫א‬

‫‪Data‬‬

‫א‬

‫א‬

‫א‬

‫‪Select Cases‬‬

‫א‬

‫‪:‬‬

‫‪136‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥

:

‫א‬

‫א‬

‫א‬

‫א‬ ‫א‬

Based on time or case range

:

‫א‬

:

Continue

، ‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

.

،ok

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

،

:

‫א‬

‫א א‬ ‫א‬

‫א‬

Range

‫א‬

‫א‬ ‫א‬

‫א א‬

‫א‬

‫א‬

‫א‬ ‫א‬

‫א‬

137

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪ÉibÛa@Ý—ÐÛa‬‬

‫א‬ ‫א‬ ‫א‬

‫‪.‬‬ ‫א‬

‫א‬ ‫אא‬

‫א )‪(y‬‬

‫)‪(x‬‬

‫‪،‬‬

‫‪:‬‬

‫‪138‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥

(SSE)(1)

‫א‬

:

‫אא‬

.(411.690) @HSSEIH2I@

‫א‬

‫א‬

( )

‫א‬ @ @Z

‫א‬

139

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ÉibÛa@Ý—ÐÛa

.(44.824)

:

‫א‬

(SSE)(2)

،

‫ ( א‬Fˆ )

‫א‬

‫א‬

( )

(SSE )2 44.824 Fˆ = = = 0.1088 (SSE )1 411.690

140

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥‬‬

‫)(‬

‫) ˆ‪ ( F‬א‬

‫א‬

‫א‬

‫א‬

‫א‬ ‫‪ ،‬א‬

‫א‬

‫) ‪،( α‬‬ ‫א‬

‫א‬

‫‪0.1088‬‬

‫‪ ، 5.05‬א‬ ‫א‬

‫א‬

‫) ˆ‪ ( F‬א‬

‫א‬

‫) ˆ‪ ( F‬א‬

‫)‪ F(5, 5, 0.05‬א‬ ‫א‬

‫) ‪(F‬‬

‫‪.‬‬

‫‪æc@‡−@bäçë‬‬ ‫א‬

‫א‬ ‫א‬

‫א‬

‫‪.‬‬

‫א‬

‫א‬ ‫א‬

‫א‬ ‫א‬

‫‪.‬‬

‫‪141‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


‫‪ÉibÛa@Ý—ÐÛa‬‬

‫@@‬ ‫@@‬ ‫@@‬ ‫@@‬

‫‪142‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


åßbrÛa@Ý—ÐÛa @@ @@ @@ @@ @@ @@ @@ @@ @ @†‡Èn¾a@Ša‡®üa@ÝîÜ¥ Multiple Regression

143

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪144‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


†‡Èn¾a@ï©a@Ša‡®üa@ÝîÜ¥

@ @åßbrÛa@Ý—ÐÛa

@ @†‡Èn¾a@ï©a@Ša‡®üa@ÝîÜ¥ @Multiple Linear Regression ‫א‬

،

‫א‬

‫א‬

، OLS

@†@ ìuë@â@ ‡Ç

‫א א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

.Multicollinearity òíÐnÛa@paÌn¾a@µi@ó‚@xa놌a @ @Zó©a@xa놌übi@‡—Ôí .

‫א א‬ ‫א‬

‫א‬

‫א‬

‫א‬

‫א א‬

‫א‬

‫א‬

،‫א‬

‫א‬

‫א א‬

‫א‬

‫א‬

‫א‬

:

،

‫א‬

.(1)

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫אא‬

‫א‬

‫א א‬

‫א‬

‫א‬

:

‫א‬

‫א‬

‫א‬

‫א‬

@ Z¶ëþa@ òÔí‹Ûa

‫א א‬

‫א‬

. 0.7− ، 0.7+

‫א‬

1

Makridakis, Spyros, (1998), " Forecasting: methods & applications", 3 rd Edition, John Wiley & sons Inc., p 288.

145

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


@ @åßbrÛa@Ý—ÐÛa

‫א‬

Variance

‫א‬

.

‫א‬

‫א א‬

‫א א‬

.

‫א‬

ZòîãbrÛa@ òÔí‹Ûa

inflation factor (VIF)

‫א‬ @ @:

(5)

‫א‬

(VIF) ‫א א‬

:Þbrß

@@ .٪5

،

‫א‬

‫א‬

‫א‬

:lìÜ¾a

146

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


†‡Èn¾a@ï©a@Ša‡®üa@ÝîÜ¥

:paì©a :

‫א‬

Regression

:

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

،Analyze

،Linear

(1

‫א‬

‫א‬

(2

147

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


@ @åßbrÛa@Ý—ÐÛa

‫א‬

:

. Respondent ‫א‬ ‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

[y]

‫א‬

‫א א‬

(x1, X2, X3)

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

.

.

. Independent(s) :

‫א‬

‫א‬

‫א‬

‫א‬

،Statistics

‫א‬

.

148

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


†‡Èn¾a@ï©a@Ša‡®üa@ÝîÜ¥

‫א‬

:

‫א‬

‫אא‬

] ،Durbin – Watson ‫א‬

‫א‬

‫א‬

‫א‬

.

‫א‬

. [Residuals ‫א‬ ] ‫א א‬

‫א א‬

‫א‬ .

‫א‬

‫א א‬

‫א‬

‫א‬ .[ ‫א‬

.

‫א‬

Collinearity diagnostics

‫א א‬

Model Fit

‫א‬

‫א‬

Estimates

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬ ..

‫א‬

‫א‬

Continue

. ‫א‬

.

149

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


@ @åßbrÛa@Ý—ÐÛa

‫א‬

Save

‫א‬

:

‫א‬ :

‫א‬

: ‫א א‬

‫א‬

‫א‬

‫א‬ ‫א‬

‫א‬

(3

‫א‬

‫א‬

‫א‬

‫אא‬ .

Unstandardized Predicted Values

‫א‬

‫א‬ .

‫א‬ ‫א‬

standardized Residuals

‫א‬

‫א‬

‫א‬

Continue

‫א‬

. .

150

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


†‡Èn¾a@ï©a@Ša‡®üa@ÝîÜ¥

‫א‬

Plots

‫א‬

:

‫א‬ :

‫א‬ ‫א‬

‫א‬ ‫א‬

: ‫א‬ ‫א א‬ .

‫א‬

‫א‬

‫א‬

‫א‬

‫אא‬ .

Normal probability plot

. Standardized Residual Plots ‫א‬

(4

‫א‬

‫א‬

‫א‬

،ok

Continue

‫א‬:

‫א‬

‫א‬

‫א‬

‫א‬

. (5

‫א‬ .‫א‬

‫א‬

@ð‰Ûa@Ša‡®üa@xˆì¹@òîyý–@óÜÇ@áبaë@wöbnäÛa@óÜÇ@ÕîÜÈnÛa ZéÔîÏìm@ @ @ZŠ‡Ô¾a@Ša‡®üa@xˆì¹@Zü ëc Y = 4.421 + 0.345 X1 – 1.367 X2 + 0.209 X3

151

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


@ @åßbrÛa@Ý—ÐÛa

:

‫א‬

،

. (4.421)

‫א א‬

‫א‬

:( β 0 )

‫א‬

‫◘ א‬

‫אא‬

‫א‬

.(0.345)

( β1 ) o

.(-1.367)

( β2 ) o

.(0.209)

( β3 ) o

@ @Nòí‹ÄäÛa@Âë‹“Ûa@Z@bîãbq :Ša‡®üa@pýßbÈß@òàîÓë@paŠb’g@HòîÔäß@ëcI@ÖbÐma ‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬ ‫א‬ ‫א‬

،٪ ‫א א‬

‫א א‬ ‫א‬

،‫א‬

.

‫א‬

‫א‬

‫א‬

٪ 65.2

‫א א‬

‫א‬

‫א‬

: xˆìàäÜÛ òíÐnÛa ñŠ‡ÔÛa (2 ‫א‬

‫א‬

65.2

‫א‬

‫א‬

(1

‫א‬ (X1,

34.8)

X2, X3)

‫ א‬،(Y)

‫א‬

،

‫א‬

‫א א‬

‫א‬

‫א‬

‫א‬

. ‫א‬

‫א‬

@ @Nòîšbí‹Ûa@Âë‹“Ûa@ZZbrÛbq 152

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪†‡Èn¾a@ï©a@Ša‡®üa@ÝîÜ¥‬‬

‫‪Z@xˆìàäÜÛ@òîÜØÛa@òíìäȾa H1‬‬ ‫◘ א‬

‫‪:‬‬

‫א‬

‫א‬

‫א‬

‫) ‪:( H 0‬‬

‫א‬

‫א‬

‫) ‪:( H 1‬‬

‫א‬

‫א‬

‫א‬

‫◘ א‬

‫‪.‬‬ ‫‪.‬‬

‫א‬

‫‪:‬‬

‫א‬

‫) ‪:( H 0‬‬

‫א‬

‫א‬ ‫)‬

‫א‬

‫א‬

‫) ‪ :( H 1‬א‬

‫א‬

‫◘‬

‫א‬

‫(‪.‬‬

‫א‬

‫)‬

‫א‬

‫א‬ ‫א‬

‫א‬

‫א‬

‫א‬

‫(‪.‬‬

‫‪:‬‬

‫‪:‬‬ ‫‪،‬‬

‫‪P.Value‬‬

‫א‬

‫א‬ ‫א‬

‫א‬

‫א‬ ‫א‬

‫א‬ ‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫‪:‬‬

‫‪،٪ 5‬‬

‫א‬

‫‪،‬‬ ‫א‬

‫א‬

‫‪.‬‬

‫‪153‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


@ @åßbrÛa@Ý—ÐÛa

‫א‬

ANOVA

‫א א‬ P. Value

‫א‬

‫א‬ F

‫א‬

MS

SS

cal

‫א‬

DF

‫א‬

‫א‬

Source

‫א‬

‫א‬

0.000

12.874

2.292

6.877

3

*

*

0.178

2.849

16

‫א‬

*

*

*

9.726

19

‫א‬

:xˆìàäÜÛ@òîö§a@òíìäȾa (2 : 0

0

=0

1

0

≠0

H :B H :B

0

1

=0

1

1

≠0

H :B H :B

0

2

=0

1

2

≠0

H :B H :B

‫א‬

‫א‬

:( B0 )

:( B1 )

:( B 2 )

154

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪†‡Èn¾a@ï©a@Ša‡®üa@ÝîÜ¥‬‬

‫) ‪:( B3‬‬

‫‪−‬‬

‫א‬

‫◘‬

‫א‬

‫‪=0‬‬

‫‪3‬‬

‫‪0‬‬

‫‪≠0‬‬

‫‪3‬‬

‫‪1‬‬

‫‪H :B‬‬ ‫‪H :B‬‬

‫‪:‬‬ ‫א‬

‫א א‬

‫א‬

‫א‬

‫א‬

‫‪B‬‬ ‫‪B‬‬

‫‪4.421‬‬

‫‪11.895‬‬

‫‪0.345‬‬

‫‪0.931‬‬

‫‪0.365‬‬

‫‪2‬‬

‫‪B‬‬

‫‪-1.367‬‬

‫‪-5.545‬‬

‫‪0.000‬‬

‫‪3‬‬

‫‪B‬‬

‫‪0.209‬‬

‫‪3.854‬‬

‫‪0.001‬‬

‫‪1‬‬

‫‪:‬‬ ‫) ‪:( B0‬‬ ‫א‬

‫א‬

‫א‬

‫) (‬

‫‪0.000‬‬

‫‪0‬‬

‫א‬

‫א‬

‫‪P. Value‬‬

‫א‬

‫‪P.Value‬‬

‫‪،٪ 5‬‬ ‫א‬

‫א‬

‫‪،‬‬

‫א‬

‫א‬

‫א‬

‫א א‬

‫‪.‬‬

‫‪155‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


@ @åßbrÛa@Ý—ÐÛa 0.365

‫א‬

‫א‬

:( B1 )

‫א‬

P.Value

‫א‬

،٪ 5 .

،

‫א‬

‫א א‬

‫א‬

،٪5 .

،0.001 ‫א‬

‫א א‬

‫א‬

،٪

.

‫א‬ ( B2 )

‫א‬ ، ( B3 )

‫א‬

P.Value

‫א‬

( B1 )

‫א‬ :( B2 )

‫א‬

P.Value

‫א‬

‫א‬

‫א א‬

‫א‬

5

‫א‬

( B3 )

.òí†bÈÛa ô‹Ì—Ûa pbÈi‹¾a Âë‹’ (3 Normality Test

ïÓaìjÜÛ ïÛbànyüa ÉíŒìnÛa òîÛa‡nÇa :Þëþa ‹“Ûa

: .

‫א‬

.

‫א‬ :

‫א‬ ‫א‬ ‫א‬

‫א‬

‫◘ א‬

‫ א א‬:(H0)

‫א‬

‫א‬

‫ א א‬:(H1)

‫א‬

‫א‬

‫א א‬

‫א‬

‫א‬

‫א‬

@ @bîãbîi :¶ëþa@òÔí‹Ûa

156

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


†‡Èn¾a@ï©a@Ša‡®üa@ÝîÜ¥

‫א‬

‫א‬

‫א‬

‫א‬ .

‫א‬ .(

‫א‬

‫א א‬

‫א א‬ ‫א‬

‫א‬

)

‫א‬

:

‫א‬

‫א‬

‫א‬ ‫א א‬

،

‫א‬

– Ò닪ìÜ×) Šbjn‚a åß Ý× Šbjn‚a âa‡ƒnbi bîiby :òîãbrÛa òÔí‹Ûa @ @:(ÙîÜíë – ëib’) Šbjn‚aë ،(Òìã‹àî

@ @paì©a

157

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪@ @åßbrÛa@Ý—ÐÛa‬‬

‫‪(1‬‬

‫א‬

‫‪(2‬‬

‫ﰲ ﺍﳌﺮﺑﻊ ﺍﳊﻮﺍﺭﻱ ﺍﻟﺬﻱ‬

‫א‬

‫‪، Analyze‬‬ ‫‪Statistics‬‬

‫א‬

‫א‬

‫‪، Explore‬‬

‫ﺃ‪ -‬ﻗﻢ ﺑﻨﻘﻞ ﺍﳌﺘﻐﲑ‬

‫‪Descriptive‬‬

‫א‬

‫א‬

‫א‬

‫א‬

‫‪:‬‬

‫ﺃﻣﺎﻣﻚ‪:‬‬ ‫‪Standardized Residual‬‬

‫ﺇﱃ ﺍﳌﺮﺑﻊ‬

‫ﺍﻟﺬﻱ ﺑﻌﻨﻮﺍﻥ ‪.Dependent List‬‬ ‫ﺏ‪ -‬ﻭﻣﻦ ﺍﻻﺧﺘﻴﺎﺭﺍﺕ ‪ Display‬ﺍﺧﺘﺮ ‪.Plots‬‬ ‫ﺝ‪ -‬ﰒ ﺃﻧﻘﺮ ﻓﻮﻕ ﺍﻻﺧﺘﻴﺎﺭ‬

‫‪Plots..‬‬

‫ﰲ ﻧﻔﺲ ﺍﳌﺮﺑﻊ ﺍﳊﻮﺍﺭﻱ ﺍﻟﺬﻱ‬

‫ﺃﻣﺎﻣﻚ‪ ،‬ﺳﻴﻈﻬﺮ ﻟﻨﺎ ﻣﺮﺑﻊ ﺣﻮﺍﺭﻱ ﺟﺪﻳﺪ‪ ،‬ﻛﻤﺎ ﻳﻠﻲ‪:‬‬

‫‪158‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


‫‪†‡Èn¾a@ï©a@Ša‡®üa@ÝîÜ¥‬‬

‫‪(3‬‬

‫ﰲ ﻫﺬﺍ ﺍﳌﺮﺑﻊ ﺍﳊﻮﺍﺭﻱ‪ :‬ﻗﻢ ﲟﺎ ﻳﻠﻲ‪:‬‬

‫ﺃ‪ -‬ﻧﺸﻂ ﺍﻻﺧﺘﻴﺎﺭ‬

‫‪Normality Plots with tests‬‬

‫ﻣﻦ‬

‫ﺧﻼﻝ ﺍﻟﻀﻐﻂ ﻣﺮﺓ ﻭﺍﺣﺪﺓ ﺑﺎﳌﺎﻭﺱ ﰲ ﺍﳌﺮﺑﻊ ﺍﻟﺬﻱ ﺃﻣﺎﻡ ﻫﺬﺍ‬ ‫ﺍﻻﺧﺘﻴﺎﺭ‪.‬‬ ‫ﺏ‪ -‬ﰒ ﻣﻦ ﺍﻻﺧﺘﻴﺎﺭﺍﺕ‬ ‫ﺍﻻﺧﺘﻴﺎﺭ‬

‫‪Leaf‬‬

‫–‬

‫‪Boxplots‬‬ ‫‪and‬‬

‫ﺍﺧﺘﺮ ‪ .None‬ﰒ ﻗﻢ ﺑﺘﻌﻄﻴﻞ‬

‫– ‪ ،Stem‬ﺍﳍﺪﻑ ﻣﻦ ﻫﺬﻩ ﺍﳋﻄﻮﺓ‬

‫ﻫﻮ ﺗﻘﻠﻴﻞ ﺍﳌﺨﺮﺟﺎﺕ ﺍﻟﱵ ﻟﺴﻨﺎ ﰲ ﺣﺎﺟﺔ ﺇﻟﻴﻬﺎ‪.‬‬ ‫ﺝ‪ -‬ﰒ ﺍﺿﻐﻂ ‪ Continue‬ﻟﻠﻌﻮﺩﺓ ﻟﻠﻤﺮﺑﻊ ﺍﳊﻮﺍﺭﻱ ﺍﻟﺴﺎﺑﻖ‪.‬‬ ‫‪(4‬‬

‫ﰒ ﺍﺿﻐﻂ ‪ ،OK‬ﺳﻨﺤﺼﻞ ﻋﻠﻰ ﺍﻟﻨﺘـﺎﺋﺞ ﺍﻟﺘﺎﻟﻴـﺔ ﰲ ﻧﺎﻓـﺬﺓ ﺍﳌﺨﺮﺟـﺎﺕ‬ ‫‪:Output‬‬

‫‪159‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


‫‪@ @åßbrÛa@Ý—ÐÛa‬‬

‫א‬

‫◘‬

‫‪:‬‬

‫א‬ ‫א‬

‫א‬

‫א א‬

‫א‬

‫א‬

‫א‬ ‫א‬

‫–‬

‫א‬

‫–‬

‫א‬

‫◘‬ ‫‪0.05‬‬

‫א‬

‫א‬

‫א‬

‫‪0.166‬‬

‫‪20‬‬

‫‪0.149‬‬

‫‪0.929‬‬

‫‪20‬‬

‫‪0.189‬‬

‫א‬ ‫‪،‬‬

‫א‬

‫א‬

‫א‬

‫‪P.Value‬‬

‫‪،‬‬

‫‪.‬‬ ‫א‬

‫א‬

‫‪:‬‬ ‫א‬

‫א‬

‫‪P. value‬‬

‫א‬ ‫א‬

‫א‬

‫א‬

‫א‬

‫א‬ ‫א א‬

‫]‬ ‫א‬

‫א‬

‫א א‬

‫א‬

‫א‬ ‫א‬

‫א [‬

‫א‬ ‫א ‪.‬‬

‫‪@ @@ZïÓaìjÜÛ@ïma‰Ûa@ÞýÔnüa@ZïãbrÛa@‹“Ûa‬‬

‫◘‬

‫א‬

‫א‬

‫‪:‬‬

‫א‬

‫א‬

‫)‪:(H0‬‬

‫א‬

‫א‬

‫)‪:(H1‬‬

‫א א‬

‫א‬ ‫א א (‪.‬‬

‫א‬

‫)‬

‫א א‬

‫א‬

‫)‬

‫א‬

‫א‬

‫א‬

‫א א (‪.‬‬

‫‪160‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


‫‪†‡Èn¾a@ï©a@Ša‡®üa@ÝîÜ¥‬‬

‫א א‬

‫◘‬

‫‪:‬‬

‫א‬

‫א‬

‫‪Watson Test‬‬

‫א‬

‫◘‬ ‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א א‬

‫– ‪. Durbin‬‬

‫א‬

‫‪:‬‬

‫‪:‬‬

‫א‬

‫א‬

‫א‬

‫א‬

‫)‪:(DW‬‬ ‫א‬

‫)‪(DW‬‬

‫א‬

‫א‬

‫‪ −‬א‬

‫‪،‬‬

‫)‪.(1.488‬‬

‫‪:‬‬

‫א‬

‫א‬

‫א‬

‫)‬

‫א‬

‫‪:(Durbin – Watson‬‬ ‫א‬

‫א‬

‫‪:‬‬

‫‪16 = n ، 3 = k‬‬

‫‪d L = 0.86‬‬ ‫‪d u = 1.73‬‬

‫א‬

‫א‬

‫א‬

‫א א‬

‫א א‪:‬‬

‫‪:‬א‬

‫א‬

‫א א‬

‫א‬

‫א‬

‫א א‬

‫א ‪،‬‬

‫‪:‬‬ ‫א‬

‫‪(1‬‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫‪:‬‬ ‫‪ :‬א‬ ‫‪ :‬א‬

‫) ‪.( 4-dL<DW<4‬‬ ‫) ‪.( 0<DW<dL‬‬

‫‪161‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


@ @åßbrÛa@Ý—ÐÛa

:

‫א‬

.( 2<DW<4-du)

‫ א‬:

.( du<DW<2) ،

‫ א‬:

‫א‬

(2

‫א‬

‫א‬

‫א‬

‫א‬

‫א א‬ :

‫א‬ ‫א‬

‫א‬

.(4-du<DW<4-dL) :

‫א‬

‫א‬

.(dL<DW<du)

‫א‬

‫א‬

. (0.86<DW<1.73) ‫א א‬

‫א‬ .

:

، dL<DW<du :

‫א‬

−(

‫אא‬

(3

‫– א‬

‫א‬

‫)א‬ ‫א‬

‫ א‬. ‫א‬

@ @ZHåíbjnÛa@pbjq@Šbjn‚aI@ïÓaìjÛa@ãb¤@Šbjn‚a@Z@sÛbrÛa@‹“Ûa@ :

‫א‬

‫א‬ :ïãbîjÛa@á‹Ûa@Þý‚@åß :¶ëþa òÔí‹Ûa

‫א‬

‫א‬

‫א א א‬

‫א‬ .

‫א‬

@ @Zpaì©a ‫א‬

‫א‬

‫א‬

Scatter

‫א‬

‫א‬

Graphs

:

(1

‫א‬

162

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


†‡Èn¾a@ï©a@Ša‡®üa@ÝîÜ¥

،Simple

: ‫א‬

‫א‬ :

‫א‬

‫א‬

‫א‬

‫א‬ ‫א‬

: ‫א‬ Standard

.Y Axis ‫א‬

‫א‬

‫א‬ ‫א‬

‫א‬ ‫א‬

‫אא‬

‫א‬

Define

‫א‬

‫אא‬

residual [zre_1]

163

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪@ @åßbrÛa@Ý—ÐÛa‬‬

‫א‬

‫‪−‬‬ ‫א‬

‫א‬

‫‪(2‬‬

‫)א‬

‫‪Unstandardized Predicted Value‬‬

‫א‬

‫]‪[pre_1‬‬

‫א‬

‫א‬

‫(‬

‫א ‪.X Axis‬‬

‫א‬ ‫א‬

‫‪ok‬‬

‫א‬

‫א‬

‫‪:‬‬

‫א‬

‫‪:‬‬ ‫א‬ ‫)‬

‫א א‬ ‫א‬

‫א‬ ‫א‬

‫א‬ ‫א א א‬

‫‪.‬‬

‫א‬

‫א‬ ‫א א א‬

‫א‬

‫א‬

‫(‪،‬‬

‫א א ‪،‬‬

‫א‬

‫]‬

‫א‬

‫א [‬

‫‪164‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


†‡Èn¾a@ï©a@Ša‡®üa@ÝîÜ¥

‫א‬

. ‫א‬

.

‫א‬

‫א‬

‫א‬

‫א‬

Goldfield

‫א‬

‫א‬

– Quandt

(Goldfield – Quandt òÔí‹ I@òîib¨a@òÔí‹Ûa@ZòîãbrÛa@òÔí‹Ûa @ @Zpaì©a ‫א‬

‫א‬ ‫א‬

‫א‬

‫א‬

‫א‬

Sort Cases

‫א‬

‫א‬

.

‫א‬

‫א‬ Ascending

‫א‬

(x3) ‫א‬ ‫א‬

‫א‬

: ‫א‬

‫א‬

‫א‬

.Sort ‫א‬

Sort Order

.(

‫א‬

‫ א‬.

Data

:

‫א‬

.1

‫א‬

‫אא‬ by

‫א‬

. ‫א‬ ‫א‬ )

165

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪@ @åßbrÛa@Ý—ÐÛa‬‬

‫‪،ok‬‬

‫‪.‬א‬

‫א‬

‫א‬

‫(‬

‫‪.2‬‬

‫א‬ ‫א‬

‫א‬

‫‪٪20‬‬ ‫א‬

‫א‬

‫)‪ .(1‬א‬

‫‪1‬‬

‫א‬

‫א‬

‫‪:‬‬

‫א‬

‫‪،‬‬

‫א א‬

‫‪4‬‬

‫א‬

‫)‪.(12) ،(11) ،(10) ،(9‬‬ ‫א ‪:‬א‬

‫א‬

‫)‪4 = 0.20 × 20‬‬

‫א‬

‫)‪،(x3‬‬

‫א‬

‫‪8‬‬

‫)א‬

‫א‬ ‫‪،‬‬ ‫א‬

‫א‬

‫)‪،(1‬‬

‫(‬

‫‪.‬‬

‫‪166‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


†‡Èn¾a@ï©a@Ša‡®üa@ÝîÜ¥

‫א‬

‫א‬

‫א‬

‫ א‬،(8)

‫א‬

.(20) (SSE) .

‫א‬

...........(2)

........(14) ،(13)

‫א‬

‫א‬

‫א‬

، :

، ‫א‬ ‫א‬

‫א‬ ‫א‬

‫א‬ ‫א‬

.3

‫א‬

‫א‬

‫א‬

‫א א‬

‫א‬ ‫א‬

Select Cases

‫א‬

‫א‬

:

‫ א‬o

Data

:

:

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬ ‫א‬

Based on time or case range

:

‫א‬

‫א‬

.

‫א‬

‫א‬

‫א‬

o ‫א‬

Range

167

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪@ @åßbrÛa@Ý—ÐÛa‬‬

‫א‬

‫‪o‬‬

‫א‬

‫א‬

‫א‬ ‫א‬ ‫א‬

‫‪،ok‬‬

‫א‬

‫א‬

‫‪:‬‬

‫‪ .‬א‬

‫‪Continue‬‬

‫א‬ ‫א‬

‫א‬ ‫א‬ ‫א‬

‫א ‪،‬‬

‫א א‬ ‫א‬

‫א א‬ ‫א‬

‫א‬

‫‪،‬‬

‫א‬

‫‪:‬‬

‫‪168‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


‫‪†‡Èn¾a@ï©a@Ša‡®üa@ÝîÜ¥‬‬

‫‪.‬‬

‫א‬ ‫א‬

‫א‬

‫א‬

‫‪.‬‬

‫‪،‬‬

‫אא‬

‫א‬

‫א )‪(y‬‬

‫)‪(x's‬‬

‫‪:‬‬

‫אא‬

‫א‬

‫‪:‬‬

‫א‬

‫)‪(SSE)(1‬‬

‫)‪.(0.721‬‬

‫‪.‬‬

‫א‬

‫א‬

‫‪@HSSEIH2I‬‬

‫א‬

‫‪@ @:‬‬

‫‪169‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


‫‪@ @åßbrÛa@Ý—ÐÛa‬‬

‫א‬

‫א‬

‫א‬

‫)‪(SSE)(2‬‬

‫)‪.(0.334‬‬

‫‪170‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


†‡Èn¾a@ï©a@Ša‡®üa@ÝîÜ¥

:

،

‫ ( א‬Fˆ )

.

‫ ( א‬Fˆ )

.

(SSE )2 0.334 = = 0.4632 Fˆ = (SSE )1 0.721 ‫א‬

0.4632

‫א‬

‫א‬ ‫א‬

‫א‬ ‫א‬

‫ א‬، 3.44 .

‫א‬

‫ א‬F(8, 8, 0.05) ‫א‬

.

‫א‬

‫א‬

@ @ZH@òÜÔn¾a@I òíÐnÛa@paÌn¾a@µi@ó©a@xa놌üa@â‡Ç@‹’@Z@Éia‹Ûa@‹“Ûa

:(VIF) åíbjnÛa@მm@ÝßbÈß@âa‡ƒnbiZü ëc Coefficients

‫א‬

‫אא‬ :

‫א‬

،

‫א‬

171

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


@ @åßbrÛa@Ý—ÐÛa

:ÕîÜÈnÛaë@wöbnäÛa@Íí‹Ðm ‫א‬

Tolerance

VIF

0.976

1.025

X1

0.955

1.047

X2

0.946

1.057

X3

‫א‬

: ‫א א‬

‫א‬

‫א‬

، (5 )

‫אא‬ .

(VIF)

‫א א‬

‫א‬

:‫א‬

Tolerance

. VIF =

1 Tolerance

Correlation Matrix ÂbjmŠüa@òÏìЗß

Zbîãbq

:paì©a ،Bivariate

‫א‬

‫א‬

Correlate

:

Analyze

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

(1

172

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪†‡Èn¾a@ï©a@Ša‡®üa@ÝîÜ¥‬‬

‫אא‬

‫‪(2‬‬ ‫א‬ ‫א‬

‫א‬

‫א‬

‫א ‪:‬‬

‫א‬

‫א ‪،Variables‬‬

‫א‬

‫א א‬ ‫א‬

‫)‪(X1, X2, X3‬‬

‫‪،ok‬‬

‫‪:‬‬

‫‪173‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


‫‪@ @åßbrÛa@Ý—ÐÛa‬‬

‫‪:Õj@b¿@|›ní‬‬ ‫א‬ ‫א‬

‫א‬ ‫א א‬

‫)‪،(0.70‬‬ ‫‪،‬‬

‫א‬ ‫א‬

‫א‬ ‫א‬

‫א א‬

‫‪.‬‬

‫‪174‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


ÉbnÛa@Ý—ÐÛa @@ @@ @@ @@ @@ @@ @@ @@ @ @ïÜßbÈÛa@ÝîÜznÛa Factor Analysis 175

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪176‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


ïÜßbÈÛa@ÝîÜznÛa

@@ @@ @ @ïÜßbÈÛa@ÝîÜznÛa @@

Factor Analysis @ @ZïÜßbÈÛa@ÝîÜznÛa@‰îÐäm@Ýya‹ß :ÂbjmŠüa@òÏìЗß@˜zÏ :¶ëþa òÜy‹¾a ‫א‬

‫א‬

‫א‬

‫א‬ : ‫א‬

.( ‫א‬ .( .(‫א‬

‫ )א‬،1 .(‫א‬ ‫א‬

‫ )א‬،(1±) ‫א‬

‫א‬

‫ )א‬،

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬ .

‫א‬

.

0.25

. .

0.90

‫א‬

‫א‬

.

‫א א‬

:ï©a@xa놌üa@òÜØ“ß@†ìuë@â‡Ç@åß@‡×dnÛa :òîãbrÛa òÜy‹¾a Multi-Collinearity

‫א‬ .

‫א‬ ‫א‬

‫א א‬

‫א‬ ‫א‬

‫א א‬

‫א‬ ،

‫א א‬

‫א‬ ‫א‬

.‫ﺎ ﺍﻟﻘﻴﻤﺔ ﺍﳌﻄﻠﻘﺔ‬ ‫ ﺑﺼﺮﻑ ﺍﻟﻨﻈﺮ ﻋﻦ ﺍﻹﺷﺎﺭﺓ ﻧﻌﲏ‬1

177

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


@ÉbnÛa@Ý—ÐÛa

‫א א‬

‫א‬

‫א‬ ‫אא‬

0.00001

‫א א‬ ‫א‬ ‫ ) א‬.(

‫א‬

.

،(

‫א‬

‫) א‬

، 0.00001

‫א‬

‫א‬

،

‫א‬ ‫א‬

) 0.80

. ‫א‬

‫א‬

‫א א‬

‫א‬

.(Andy Field :òäîÈÛa@ávy@òíbÐ×@ô‡ß@:òrÛbrÛa òÜy‹¾a ‫א‬ ‫א‬

،

‫א‬ ‫א‬

‫א‬ .

KMO

‫א‬

‫א א‬

‫א‬

‫א‬

‫א‬ –

‫א‬

‫א‬

، ‫א‬ ‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

، .test

:wöbnäÛa@Ðmë@ÝßaìÈÛa@™ýƒna :òÈia‹Ûa òÜy‹¾a

@ @ZïÜàÇ@Þbrß Factor Analysis

‫א‬ :

‫א א‬ ‫א‬

‫א א‬

‫א‬

178

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ïÜßbÈÛa@ÝîÜznÛa

@ @Zpaì©a ‫א‬

Data Reduction

:

‫א‬

‫א‬

‫א‬

‫א‬ ‫א‬

،Analyze ،Factor

‫א‬ ‫א‬

‫א‬

.1

179

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


@ÉbnÛa@Ý—ÐÛa

: ‫א‬

‫א‬

(x1,

x2

……..

‫א‬

x11)

‫א‬

‫א‬

‫א‬

‫א‬

.2

‫א‬ .Variables ‫א‬

‫א‬

‫א‬

‫א‬

،Descriptives

: ‫א‬

Correlation Matrix

.3

‫א‬

‫א‬

:

‫א‬

‫א‬

‫אא‬

‫א א‬

‫א‬ :

180

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ĂŻĂœĂ&#x;bĂˆĂ›a@Ă?ĂŽĂœznĂ›a

‍×?‏

‍×?‏

‍×?‏

.

(P.Value)

:KMO

‍×?‏

‍×?‏

:Significance .

.

:Coefficients

‍×?‏

‍×?‏.

Levels

‍×?‏

‍×?‏

. ‍ ×?‏.

:Determinant

‍×?‏

and Bartlett's test of sphericity

: .

‍×?‏

‍×?‏

: KMO test o

‍×?‏

: Bartlett's .

. ŘŒExtraction

.

‍×?‏

‍×? ×?‏ ‍×?‏

test o

‍×?‏

‍×?‏

‍×?‏

Continue

‍×?‏

: :

‍×?‏

‍×?‏ ‍×?‏

‍×?‏ ‍×?‏

‍×?‏

. .4

‍×?‏

181

‍ ×? " ! Ůˆ×?‏# .... ‍ ×? ×? Ůˆ Ůˆ Ůˆâ€Ź

0020109787442 $%&' ‍ * ) ( ×?‏+ ‍ Ůˆ×?‏, $- . ‍ " Ůˆ×?‏/01‍ ×?‏2 * 3$ # & 4‍د‏


@ÉbnÛa@�—�Ûa

: ‍×?‏

: ‍×?‏

‍×?‏

Method:

‍×?‏

Unrotated factor

.

‍×?‏

. Principal components ‍×?‏

Display

solution

‍×?×?‏

.

: ‍×?‏ Rotated

‍×?‏

‍×?‏

)

(Display)

‍×?‏

ŘŒ

‍×?‏

Extraction

‍×? ×?‏

‍×?‏ ‍×?‏

‍×?‏

‍×?‏

™

‍×?‏

ŘŒRotation

(solution

‍×?‏

‍×?‏

Principle

Method

‍×?‏

Component

.Varimax ‍×?‏

‍×?‏

Scree plot

. Eigenvalues over

.(1)

‍×?‏ .

‍×?×?‏

Extract

‍×?×?‏

‍×?‏

‍×?‏

‍×?‏

‍×?‏

‍×?‏

™

‍×?‏

.

‍×?‏

:

182

‍ ×? " ! Ůˆ×?‏# .... ‍ ×? ×? Ůˆ Ůˆ Ůˆâ€Ź

0020109787442 $%&' ‍ * ) ( ×?‏+ ‍ Ůˆ×?‏, $- . ‍ " Ůˆ×?‏/01‍ ×?‏2 * 3$ # & 4‍د‏


ïÜßbÈÛa@ÝîÜznÛa

، ‫א א‬

Number of factors

.Eigenvalues over .

‫א‬

‫א א‬

‫א‬

،Rotation

‫א‬

:

‫א‬ :

‫א‬

‫א‬ ‫א‬

‫א‬

‫ א‬Extraction

‫א‬

.Varimax

:

،SPSS

‫א‬

‫א‬

‫אא‬

.

‫א‬ Rotation

.5

‫א‬

‫א‬

: ‫א‬

:

:Orthogonal

.

‫א‬

Continue

‫א‬ ‫א‬

‫א‬ :

‫א‬

183

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


@ÉbnÛa@Ý—ÐÛa

:

o

.Quartimax

o

Equamax

o

‫א‬

:Oblique Rotation

‫א‬ .

.Varimax

‫א‬

.Direct Oblimin

o

Promax

o

‫א א‬

( ‫א‬ (

‫א‬ ‫א‬

‫א‬ ) ‫א א‬

‫א א‬

)

‫א‬

‫א א‬

‫א‬

‫א‬

.

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬ ‫א א‬

‫א‬

‫א‬

، ‫א א‬

‫א‬ .

.

‫א‬

‫א א‬

،Options

‫א‬ ‫א‬

:

:

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

.

‫א‬

Continue

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

.6

184

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ïÜßbÈÛa@ÝîÜznÛa

: ‫א‬ ‫א‬

Sorted by size ‫א‬

Suppress absolute value less

‫א‬

‫אא‬

.

‫א‬ ‫א‬

: ‫א‬

‫א א‬

‫א‬

‫א‬

‫א‬

.(0.10) ‫א‬

، than:

(0.35) ‫א‬

Continue

،ok

‫א‬:

‫א‬

،

‫א‬

‫א‬

‫א‬

‫א‬

.

‫אא‬

.

. ‫א‬

‫א‬

.7

@ @ZwöbnäÛa@Ðm :Correlation Matrix ÂbjmŠüa òÏìÐ—ß Þë‡u:ü ëc :

‫אא‬

185

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


@ÉbnÛa@Ý—ÐÛa

õ§aë ،Correlation )

‫א‬

‫א‬

:(ðìÜÈÛa) Þëþa õ§a ‫א‬

(ïÜÐÛa) ïãbrÛa

.Sig (1 – tailed) ( ‫א‬

186

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ïÜßbÈÛa@ÝîÜznÛa

:wöbnäÛa@óÜÇ@ÕîÜÈnÛa ‫א‬

‫א‬

‫א‬

: ‫א‬

‫א‬

.(1±)

.1

. .1

‫א‬

.

.

‫א‬

‫א‬

‫א א‬

‫א‬

‫א‬

.2

0.25

.3 .4

0.90

‫א‬

‫א‬

KMO and Bartlett's Test åß@Ý×@Šbjn‚a@wöbnã@Þë‡u

: bîãbq

:KMO Test Šbjn‚a :Þëþa Šbjn‚üa ‫א א‬

‫א‬

‫א‬

‫א‬

KMO

‫א‬

‫אא‬ ‫א א‬

‫א‬

،

‫א‬

،

‫א‬

. .

‫א‬ ‫א‬

.‫ﺎ ﺍﻟﻘﻴﻤﺔ ﺍﳌﻄﻠﻘﺔ‬ ‫ ﺑﺼﺮﻑ ﺍﻟﻨﻈﺮ ﻋﻦ ﺍﻹﺷﺎﺭﺓ ﻧﻌﲏ‬1

187

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪@ÉbnÛa@Ý—ÐÛa‬‬

‫א‬

‫א‬

‫‪Reliability‬‬

‫‪.‬‬

‫א‬

‫א‬

‫אא‬

‫אא‬

‫א‬ ‫)‪1974‬‬

‫א‬

‫‪0.50‬‬

‫‪ ،‬א‬

‫‪(Kaiser‬‬ ‫א‬

‫‪،‬‬

‫א‬

‫א‬

‫א‬

‫‪.‬‬

‫‪.‬‬

‫‪@ @ZwöbnäÛa@óÜÇ@ÕîÜÈnÛa‬‬ ‫א‬

‫א‬

‫א‬

‫א‬ ‫א‬

‫‪0.549‬‬

‫א‬

‫א‬

‫‪oîÜmŠbi Šbjn‚a :ïãbrÛa Šbjn‚üa‬‬ ‫אא‬

‫א‬ ‫‪Matrix‬‬

‫א‬

‫א‬

‫‪1‬‬

‫א‬

‫א‬

‫א‬ ‫א‬

‫‪ .Kaiser‬א‬

‫א‬ ‫‪@ @.‬‬

‫‪Bartlett's Test‬‬

‫‪1‬‬

‫א‬

‫‪،‬‬ ‫א‬

‫א‬

‫‪KMO‬‬

‫א‬

‫א‬

‫‪identity Matrix‬‬

‫‪Correlation‬‬

‫‪.‬‬

‫‪:‬‬ ‫‪:‬‬

‫א‬

‫א‬

‫‪.‬‬

‫ﻣﺼﻔﻮﻓﺔ ﺍﻟﻮﺣﺪﺓ ﻫﻲ ﺍﳌﺼﻔﻮﻓﺔ ﺍﻟﱵ ﺗﺘﻜﻮﻥ ﲨﻴﻊ ﻋﻨﺎﺻﺮﻫﺎ ﻣﻦ ﺍﻟﺼﻔﺮ‪ ،‬ﻓﻴﻤﺎ ﻋﺪﺍ ﺍﻟﻌﻨﺎﺻﺮ ﺍﳌﻮﺟـﻮﺩﺓ‬

‫ﻋﻠﻰ ﺍﻟﻘﻄﺮ ﺍﻟﺮﺋﻴﺴﻲ ﺗﺴﺎﻭﻱ ﺍﻟﻮﺍﺣﺪ ﺍﻟﺼﺤﻴﺢ‪ ،‬ﻭﻓﻴﻤﺎ ﻳﻠﻲ ﺷﻜﻞ ﻣﺼﻔﻮﻓﺔ ﺍﻟﻮﺣﺪﺓ ﻣﻦ ﺍﻟﺪﺭﺟﺔ ﺍﻟﺜﺎﻟﺜـﺔ‬ ‫)ﺃﻱ ‪ 3‬ﺻﻔﻮﻑ ﻭ ‪ 3‬ﺃﻋﻤﺪﺓ(‬ ‫⎤ ‪⎡1 0 0‬‬ ‫⎥⎥‪A = ⎢⎢0 1 0‬‬ ‫⎦⎥‪⎢⎣0 0 1‬‬

‫‪188‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


ïÜßbÈÛa@ÝîÜznÛa

.

‫א‬

‫א‬

‫א‬

:

‫א‬

:wöbnäÛa Íí‹Ðm ‫א‬

‫א‬

‫א‬

P.Value

df

(2 )

0.000

55

108.896

P.Value

‫א‬ .

‫א‬

،

‫א‬

‫ א‬، ٪5

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

:ÕîÜÈnÛa ‫א‬

‫א‬

‫א‬

،

‫א‬

‫א‬

:Multi-Collinearity ï©a xa놌üa òÜØ“ß ‫א‬

‫א‬

‫א‬

‫אא‬

. ( . ‫א‬

‫א‬

‫א‬

‫א‬

‫ ) א‬0.00001 ‫א‬

‫א א‬

0.000031

. ‫א‬

‫א‬

:òßbç òÃìzÜß

189

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


@ÉbnÛa@Ý—ÐÛa

‫א‬

‫א‬ ‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬ ‫א‬ .

،

‫א‬

.1 .

‫א‬

‫א‬

‫אא‬

‫א‬

.2 ‫א‬

‫א‬

@@ Total Variance Explained ‹оa@ïÜØÛa@åíbjnÛa@Þë‡u@Z@brÛbq

:‫א‬ ،Initial

‫אא‬

3

Eigenvalues ò@ îö‡j¾a@òäßbØÛa@Šë‰§a@ZÞëþa@õ§a

:

‫א‬

190

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪ïÜßbÈÛa@ÝîÜznÛa‬‬

‫אא‬ ‫א‬

‫א‬

‫א‬

‫א א‬

‫א‬

‫א‬

‫‪.‬‬

‫אא‬

‫א‬

‫א א ‪:‬‬

‫א‬

‫‪: Total †ìàÇ‬‬

‫‪.1‬‬

‫א א‬

‫א‬

‫אא‬

‫‪،‬‬

‫א‬ ‫א‬

‫אא‬

‫א ‪،‬‬

‫‪:‬‬ ‫‪4.436 + 2.019 + 1.651 + …… + 0.01958 = 11‬‬

‫‪.2‬‬

‫א‬

‫‪: % of Variance †ìàÇ‬‬

‫‪،‬‬

‫א‬

‫‪:‬‬ ‫א‬

‫א‬

‫א‬ ‫‪،‬‬

‫( × ‪100‬‬

‫‪.‬‬

‫א‬

‫א‬

‫=)‬

‫א‬ ‫א‬

‫א‬ ‫א‬

‫אא‬

‫÷‬

‫= )‪× ( 11 ÷ 4.43559‬‬

‫‪. 40.323 = 100‬‬

‫‪191‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


@ÉbnÛa@Ý—ÐÛa

:òÃìzÜß .

‫א‬

‫א‬

. ،

‫א‬

3

‫א‬ ‫א‬

‫א א‬

‫א‬

‫א‬

‫א‬

‫א‬

: ٪ Cumulative †@ ìàÇ

‫א‬

% of

‫א‬

‫א‬

.3

‫א‬ .Variance

Extraction

:

‫א‬

،Sums of Squared Loadings

‫א א‬ Total

[‹íë‡nÛa@ÝjÓ]@ò—܃n¾a@pýîàznÛa@pbÈi‹ß@Êìàª@ZïãbrÛa@õ§a

، ‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬ ‫א א‬

‫אא‬ .

‫א‬

192

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


ïÜßbÈÛa@ÝîÜznÛa

‫א‬

‫א א‬

‫ א‬.

‫א‬

‫א א‬

Eigenvalues

. ‫א א‬

‫א‬

‫א‬

‫|؟‬îz—Ûa ‡yaìÛa aˆb¾ :æa@bäç@ÞaûÛa ‫א א‬

‫( א‬Extraction) ،(

‫א א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א א )א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א א‬

.

Rotation Sums of

‫א‬

@‹@ íë‡nÛa@‡Èi@pýîàznÛa@pbÈi‹ß@Êìàª@Zs @ ÛbrÛa@õ§a

:

‫א‬

‫ א‬، Squared Loadings

193

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪@ÉbnÛa@Ý—ÐÛa‬‬

‫אא‬ ‫א‬

‫א‬

‫א‬

‫א‬

‫‪،‬‬ ‫א‬

‫א‬ ‫א‬

‫א‬ ‫א‬

‫א‬

‫א‬

‫א‬

‫‪Rotation‬‬

‫‪.Varimax‬‬

‫א‬

‫‪:åí‹ßc@¶g@ñŠb’a@†ìã@bäçë‬‬ ‫‪ .1‬א‬

‫א‬

‫א א ‪.‬‬

‫א‬ ‫א‬

‫‪،‬‬

‫א‬

‫א‬

‫‪٪40.323‬‬ ‫א א‬

‫א‬

‫א‬

‫א‬

‫‪.‬‬

‫א‬

‫‪ ٪30.876‬א‬

‫א‬ ‫א‬

‫א‬

‫א א‬

‫א‬

‫א‪.‬‬ ‫‪.2‬‬ ‫]‬

‫א‬

‫א‬ ‫א א‬

‫‪، Rotation‬‬ ‫א‬

‫א‬

‫‪، None‬‬

‫א א‬

‫[‪،‬‬

‫‪194‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


ïÜßbÈÛa@ÝîÜznÛa

.

‫א‬

‫א‬

‫א‬

‫א‬

.

‫א‬ :a‡u@âbç

‫א‬ ( ‫א א‬

‫א‬

‫א‬ ‫א‬

‫א‬ )

‫א‬

‫א‬ ‫א‬

‫אא‬

‫א‬

‫ א‬،

‫א‬

‫א‬

. ‫א א‬

، ‫א‬

Extraction Method

‫א‬

‫א‬ ‫א‬

‫א‬ ‫א א‬

‫א‬

Principle Component

‫א‬

– Varimax

) Component Matrix pbãìؾa@òÏìЗß@Þë‡u@ZbÈiaŠ :

‫א‬

‫ א‬:(

‫א‬

195

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


@ÉbnÛa@Ý—ÐÛa

‫א א‬

‫א‬ ‫א‬

‫א‬ .

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

‫א‬

. ‫א א‬

‫א‬ ‫א‬

‫ ) א‬0.35

Rotated Component

‫אא‬ ‫ א‬ÝjÓ

(

:

‫א‬

‫א‬

‫א‬ ‫א‬

Options

‫א‬

@@ @‹íë‡nÛa@‡Èi@pbãìؾa@òÏìЗß@Þë‡u@Zb@ßb‚ ‫ א‬:(

‫א‬

‫א א‬

) Matrix

196

‫ א " ! وא‬# .... ‫ א א و و و‬

0020109787442 $%&' ‫ * ) ( א‬+ ‫ وא‬, $- . ‫ " وא‬/01‫ א‬2 * 3$ # & 4‫د‬


‫‪ïÜßbÈÛa@ÝîÜznÛa‬‬

‫א‬

‫אא‬

‫א‬

‫אא‬

‫א‬

‫‪ ‡Èi‬א‬

‫א‬

‫‪.‬‬

‫אא‬

‫‪1‬‬

‫א‬ ‫א‬

‫א‬

‫א‬

‫א‬

‫‪:‬‬

‫‪1‬‬

‫א‬ ‫א א‬ ‫א‬

‫א א‬

‫א )‪(X9 , X10, X11‬‬

‫א‬

‫א א‬

‫א‬

‫א‬

‫א‬

‫‪،‬‬

‫א‬

‫א‬ ‫א‬

‫א‬

‫‪،‬‬

‫א ‪.‬‬ ‫א‬

‫א‬

‫‪ ،‬א‬

‫א‬ ‫א‬

‫ﺍﻟﺘﺮﺗﻴﺐ ﺍﻟﺘﻨﺎﺯﱄ ﻳﺮﺟﻊ ﺇﱃ ﺃﻧﻨﺎ ﻃﻠﺒﻨﺎ ﻣﻦ ﺍﻟﱪﻧﺎﻣﺞ ﰱ ﺍﳌﺮﺑﻊ ﺍﳊﻮﺍﺭﻱ ‪ Options‬ﺃﻥ ﻳﻘﻮﻡ ﺑﺘﺮﺗﻴـﺐ‬

‫ﺍﳌﺘﻐﲑﺍﺕ ﺣﺴﺐ ﺍﺭﺗﺒﺎﻃﻬﺎ ﺑﻜﻞ ﻋﺎﻣﻞ ‪ ، Sorted by size‬ﻛﻤﺎ ﻫﻮ ﻣﻮﺿﺢ ﺑﺎﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ‪:‬‬

‫‪197‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


‫‪@ÉbnÛa@Ý—ÐÛa‬‬

‫א‬

‫ ‬

‫א‬

‫ ‬

‫א‬

‫ ‬

‫א‬

‫א‬ ‫‪:‬‬

‫‪:‬‬

‫אא‬

‫ ‬

‫‪:‬‬

‫א )‬ ‫א‬

‫א‬

‫א א ‪ :‬א‬

‫‪x9‬‬

‫‪x10‬‬

‫א‬

‫א‬

‫)‪x6‬‬

‫א‬

‫‪.( x11‬‬

‫)‪x4‬‬ ‫‪x7‬‬

‫א‬

‫‪.( x3‬‬

‫‪x1‬‬

‫‪.( x2‬‬

‫)‪x8‬‬

‫(‪.‬‬

‫‪x5‬‬

‫‪@ @ZÝßaìÈÜÛ@óàß@Éšë‬‬ ‫א‬ ‫א‬

‫א‬

‫א‬

‫א‬ ‫א‬ ‫א‬

‫א‬

‫א‬

‫‪.‬‬

‫א א‬

‫)‪(11‬‬

‫א‬

‫א‬

‫א‬

‫א‬ ‫א‬

‫א‬

‫א‬

‫א‬

‫‪.‬‬

‫א א‬ ‫א‬

‫)‪(9‬‬ ‫א‬

‫א‬

‫א א‬

‫א‬

‫א‬

‫א‬

‫‪.‬‬ ‫א‬

‫א‬

‫א‬ ‫א‬

‫א‬

‫‪:‬א‬

‫א‬

‫)‪(10‬‬

‫א‬

‫א‬

‫‪،‬‬ ‫‪،‬‬

‫א‬

‫א‬

‫א‬

‫א א ‪.‬‬ ‫א‬

‫א‬

‫א‬ ‫א‬

‫א‬

‫‪ ،‬א‬

‫א‬

‫א‬ ‫א‬

‫א‬ ‫א‬

‫‪.‬‬

‫‪198‬‬

‫ א א و و و ‪ # ....‬א " ! وא ‬

‫د‪ 2 * 3$ # & 4‬א‪ " /01‬وא ‪ , $- .‬وא ‪ ( ) * +‬א '&‪0020109787442 $%‬‬


ĂŻĂœĂ&#x;bĂˆĂ›a@Ă?ĂŽĂœznĂ›a

:òíbèäĂ›a@ÀÍ ‍"×?‏

‍×?×?‏

‍×?‏

:

‍×? ×?‏

‍×?‏

‍×?‏

‍×?‏

‍×?‏

"

‍×?‏

‍×?‏

Field, Andy P., (2005). Discovering statistics using spss nd (2 edition), London, Sage. (Chapter 15).

199

‍ ×? " ! Ůˆ×?‏# .... ‍ ×? ×? Ůˆ Ůˆ Ůˆâ€Ź

0020109787442 $%&' ‍ * ) ( ×?‏+ ‍ Ůˆ×?‏, $- . ‍ " Ůˆ×?‏/01‍ ×?‏2 * 3$ # & 4‍د‏


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.