א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
@ @ò߇Ծa א
א
א
א
א
א
א
א א
א
، SPSS
א א
א א
،א
א
،"SPSS
א
o o
א
א
אא
א
א
،א
א
א א
. א
MANOVA ANCOVA
א
)א
MANCOVA
–א
(
Correlation Analysis
–א
(
Regression Analysis
Factor Analysis
א
א
א
א
א א
،
א א
א )א א
א
،א
א א
ANOVA
א
o
א
א
:
א
oא א
א "א
א
o
א
א
א
א א
א
o
א
،א
א
א
،
א
א א
o
א
א
אא
א
א
א
،
א א
א א
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
א
א
א
. ،
א
א
א
א א
א
א
،א
אא א
א
.SPSS
א
א אא
)(0020109787442
א א א
،
) .(osama.rabie@yahoo.Comא א
א א
א .
א æbàîÜ@µßc@ÉîiŠ@òßbc א
–
2008
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
@ @pbíìna @@ 1 @@ 7 @@ 41 @@ 63 @@ 71 @@ 79
Þëþa@Ý—ÐÛa .............................. ‹íbÌnÛa@ÝîÜ¥ë@åíbjnÛa@ÝîÜ¥@µi@Ö‹ÐÛa@åÇ@ò߇Ôß ïãbrÛa Ý—ÐÛa ......................................... (ANOVA) ð†byþa åíbjnÛa ÝîÜ¥ sÛbrÛa Ý—ÐÛa ........................................ (MANOVA) †‡Èn¾a åíbjnÛa ÝîÜ¥ Éia‹Ûa Ý—ÐÛa ....................................... (ANCOVA) ð†byþa ‹íbÌnÛa ÝîÜ¥ ßb©a Ý—ÐÛa ...................................... (MANCOVA) †‡Èn¾a ‹íbÌnÛa ÝîÜ¥ ‘†bÛa Ý—ÐÛa ................................ Correlation Analysis ÂbjmŠüa ÝîÜ¥
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
@@ 101 @@
ÉibÛa Ă?—Ă?Ă›a Simple Linear Regression Analysis à ÎjĂ›a óŠa Ĺ a‥Žßa Ă?ĂŽĂœÂĽ
...................................................................................
ĂĽĂ&#x;brĂ›a Ă?—Ă?Ă›a
143 ............ Multiple Linear Regression â€ â€ĄĂˆnža@ïŠa@Ĺ a‥Žßa@Ă?ĂŽĂœÂĽ @@
Éď‰bnĂ›a@Ă?—Ă?Ă›a
175 ............................................. Factor Analysis ĂŻĂœĂ&#x;bĂˆĂ›a@Ă?ĂŽĂœznĂ›a
‍ ×? " ! Ůˆ×?‏# .... ‍ ×? ×? Ůˆ Ůˆ Ůˆâ€Ź
0020109787442 $%&' ‍ * ) ( ×?‏+ ‍ Ůˆ×?‏, $- . ‍ " Ůˆ×?‏/01‍ ×?‏2 * 3$ # & 4‍د‏
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
@ @Þëþa@Ý—ÐÛa @@ @@ @@ @@ @@ @@ @@ µi@Ö‹ÐÛa@åÇ@ò߇Ôß@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ (‹íbÌnÛa@ÝîÜ¥@–@åíbjnÛa@ÝîÜ¥) @ @
1
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
2
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
‹íbÌnÛa@ÝîÜ¥ë@åíbjnÛa@ÝîÜ¥@µi Ö‹ÐÛa åÇ@ò߇Ôß
@@
Þëþa@Ý—ÐÛa @ @@µi@Ö‹ÐÛa@åÇ@ò߇Ôß
@@ @@
@ @‹íbÌnÛa@ÝîÜ¥ë@åíbjnÛa@ÝîÜ¥
@@ @ @ANOVA åíbjnÛa@ÝîÜ¥@Z:@üëc ،
א א
א
א
،
א א .
א
א
.
،
א א
א
א
א
א א
א
:pbÄyýß –א
–
–א
א
א:
א . א..... א
:
א
א،(
–
. א............... ( – –
–
– –
) )
א
–
–
א
א
א.2
א
:
)
:
. )
–
א
א،(
א
.1
:
. א
. א............... (
3
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
Þëþa@Ý—ÐÛa
@ @ZåíbjnÛa@ÝîÜ¥@Êaìãc א א
א
א א
א:
א :
א
،
א
@ @‹íbÌnÛa@ÝîÜ¥@:@bîãbq א
א
)א
א :(
א
4
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
‹íbÌnÛa@ÝîÜ¥ë@åíbjnÛa@ÝîÜ¥@µi Ö‹ÐÛa åÇ@ò߇Ôß
.1
ANCOVA ð†byþa@‹íbÌnÛa@ÝîÜ¥ ] אANOVA
א
א
א א
א א
א
א א
א א
(
) (א
א
،
א
א
א א א
א
)א
א
.(
א
א
א
)א
א
א
א א
א
.
א
א
ZÙ @ Ûˆ@Þbrß
،
א
(
א א
א:é@ ãa@æ@ bîjÛa@åÇ@Ëë
א ،
.(1)
א
א
א
א
ANCOVA
א א
א ،(
א א
א
א
א
)
א
א
)א
،[
א א
א
ANCOVA
א א
א
.ANOVA
،Control Variable
א
א
. Covariates
א
1
5
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
Þëþa@Ý—ÐÛa
Zò–ý©a
א .
א א א
א
ANCOVA
א
(
)
א
א
א
א א
א
.2
MANCOVA †‡Èn¾a@‹íbÌnÛa@ÝîÜ¥ א
MANOVA
(
)
א
MANCOVA
א
،[ )א
.
) (א
א א
Covariates
א
א
א
א
א
א א
א
א
] א א
א א
Control Variable
Zא
א
MANCOVA
(
)
א
א
א א
א
א א
.
א א
א
ò–ý©a
א
א
א אN
א
א
א
.
א א
.
א א א
א
6
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
@ @ïãbrÛa@Ý—ÐÛa @@ @@ @@ @@ @@ @@ @@ @ @ð†byþa@åíbjnÛa@ÝîÜ¥ Analysis of Variance
(ANOVA)
7
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
8
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
ANOVA ð†byþa@åíbjnÛa@ÝîÜ¥
@@ @ @ïãbrÛa@Ý—ÐÛa @@
@ @ð†byþa@åíbjnÛa@ÝîÜ¥ @@ Analysis of Variance
@@
(ANOVA)
@@ @@ @ @Zð†byþa@åíbjnÛa@ÝîÜ¥@åß@Êaìãc@òqýq@Þëbänã@Òì@Ý—ÐÛa@a‰ç@À א
One – Way ANOVA Two
א
א
.1
א
א
א
.2
""
א
א
.3
– Way ANOVA N – Way ANOVA
One
א
– Way ANOVA ‡yaë@êb¤a@À@ð†byþa åíbjnÛa@ÝîÜ¥@Zü ëc :ò߇Ôß
א
،
א
: א
א
א
א . :ÙÛˆ@Þbrß
، א
א
א א א א
א א
،(
–
א )
– :
א א א
9
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ïãbrÛa@Ý—ÐÛa
א
)
א א –
−
א
(
)א א
א
(
א
א
א א א
)א
א א
א
(.
א
؟.
א
א .
:‹‚e@Þbrß א
א .
א א
א
א א א
؟.
א
א א
א
)א
א א
א
א
א
א
אא א
(
א :
א
א א
א
(.
א
،
)א
א
א .
@ @@:ïÜàÇ Þbrß א א
א
א
א א
א –
א א
א
–
א :
Zlìܾa א א
א ؟
א
א
א
.٪95
10
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
ANOVA ð†byþa@åíbjnÛa@ÝîÜ¥
òîÏìä¾a@òÈßbu
ÕíŒbÓÛa@òÈßbu
ñŠì—ä¾a@òÈßbu
15
14
6
17
15
12
15
10
4
10
12
7
14
6
5
6
10
6
13
13
4
14
16
10
18 *
15
*
*
2
*
*
7
) : ‡@ yaë@ê@ b¤a@À@ð @ †byþa@å@ íbjnÛa@ÝîÜ¥@òÛby@ À@òîöb—ya@ë‹ÐÛa@òËbî– :( א
א
א
א
א
א
) .(ðëbnß
א
א
א
א
א
א
)
א
א א
א א
א
א
:(H0) ïß@ ‡ÈÛa@‹ÐÛa
א א
א
א
:(H1)@Ýí‡jÛa@‹ÐÛa א
.(µíëbnß Ë
H :µ = µ = µ 0
1
2
@ @Z‹‚c@ÝØ“i@òîöb—ya@ë‹ÐÛa 3
11
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ïãbrÛa@Ý—ÐÛa
א
:pbãbîjÛa@Þb‚†g
ZòÃìzÜß 1
א
א
) ، ( 1א
א
H1: א
:
:
ﺭﺍﺟﻊ ﺍﻟﻜﺘﺎﺏ ﺍﻷﻭﻝ " ﺍﻟﺘﺤﻠﻴﻞ ﺍﻹﺣﺼﺎﺋﻲ ﺑﺎﺳﺘﺨﺪﺍﻡ ﺑﺮﻧﺎﻣﺞ "SPSSﺹ .79 – 76
12
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
ANOVA ð†byþa@åíbjnÛa@ÝîÜ¥
א
א
א א א
א
א
)א
א
:
א
א
: .(
.
א
א
א
א א
א
@ @ZŠbjn‚üa@‰îÐäm@paì‚ אCompare Means :
א
א
א
א
א
א
،Analyze
.Dependent List א .
א
אא
א
(1
،One – way ANOVA
א
: .Factor א
א
א
א
(x) א
א
א
א
א
( y)
א א
א
א
א ،Ok
(2 − −
א
−
@ @pbu‹ƒ¾a@ñ‰Ïbã@pbãìØß :
א
א
א
13
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ïãbrÛa@Ý—ÐÛa
@ @ZÕîÜÈnÛaë@wöbnäÛa@Íí‹Ðm א
א
א
א
ANOVA
P.Value
( )
א
א
א
א
0.036
3.816
65.113
2
130.226
*
*
17.065
25
426.631
*
*
*
27
556.857
א
א א
א א
@ @ZwöbnäÛa@óÜÇ@ÕîÜÈnÛa (0.036) ،
א ،
א
P.Value
א
، (٪ 5) א
א
א א
(٪3.6) א
א
א
14
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ANOVA ð†byþa@åíbjnÛa@ÝîÜ¥
א
א
א
א
א
.
@ @ZÒýn‚üa@Š‡—ß@‡í‡¥@ א
:
،؟
.
א
א
א
א
]א
،؟
א
א
.؟
א
א
א .
א
א
SPSS
[(Post Hoc)
א
א
(Post Hoc) òí‡ÈjÛa@paŠbjn‚üaë@–@‡yaë@êb¤a@À@åíbjnÛa@ÝîÜ¥ ، א
א
א
אא
א
א
א
א .ANOVA
א
@ @@ZŠbjn‚üa@a‰ç@‰îÐäm@paì‚ .
א
א،
א
א
א
א
(1
15
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ïãbrÛa@Ý—ÐÛa
:
LSD
،
א
א א
א
א א
–
א
−
א
א א
א
(2
א
(3
.( .
א .
א
א
)א
، Continue
אא
א
א
،Ok
(4 א
(5
:pbu‹ƒ¾a@ñ‰Ïbã@pbãìØß
: .
א
ANOVA
:Þëþa@Þ뇧a
16
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ANOVA ð†byþa@åíbjnÛa@ÝîÜ¥
א
Multiple Comparisons
א
א
:
:ïãbrÛa@Þ뇧aë :
א
א
א
:ÕîÜÈnÛaë@wöbnäÛa@Íí‹Ðm
P.Value
@ @Ö‹ÐÛa@Áìnß
0.860
− 0.34091
(2)
(1)
0.024
−4.464
(3)
(1)
0.024
− 4.805
(3)
( 2)
@ @òîöbärÛa@pbãŠbÔ¾a
:óäm@ü (3) ،
א
א
א
(2) ،
א
.
א
א
א
א
(1) א
ZwöbnäÛa@óÜÇ@ÕîÜÈnÛa 17
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ïãbrÛa@Ý—ÐÛa
א (0.024) א
(٪86)
א א
א
: ،
P.Value
א
(0.860)
א
.(٪5)
א
א
א
(٪2.4) ،
P.Value
.(٪5)
@@ Two ،
– Way ANOVA µçb¤a@À@ð†byþa åíbjnÛa@ÝîÜ¥@Zbîãbq
א
:
א
א
א
:
:ò߇Ôß .
@À@Òýn‚üa@óÜÇ µÜÔn¾a@åíÌn¾a@µi@(Þ†bjn¾a@qdnÛa@ëc)@ÝÇbÐnÛa@Ýçb¤@òÛby@À @Z¶ëþa@òÛb¨a @ @Z(1)ÉibnÛa@Ìn¾a
:ïÜàÇ Þbrß א א :(
א
א
א
א
א
א
א
Fiat
Cetrion
BMW
Mercedes
95
110
155
160
80
105
140
145
140
90
85
145
165
170
96
)
א א
א א
א
. ﺃﻱ ﻧﻜﺘﻔﻲ ﺑﺪﺭﺍﺳﺔ ﺗﺄﺛﲑ ﻛﻞ ﻣﺘﻐﲑ ﻣﺴﺘﻘﻞ ﻋﻠﻰ ﺍﳌﺘﻐﲑ ﺍﻟﺘﺎﺑﻊ ﺑﺼﻮﺭﺓ ﻣﺴﺘﻘﻠﺔ1
18
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ANOVA ð†byþa@åíbjnÛa@ÝîÜ¥
@ @Zlìܾa :(
א
)א
א
א
.(
א
א
)א
א
◘
.(
א
א
)א
א
◘
.؟٪
95
:µçb¤a@À@åíbjnÛa@ÝîÜ¥@òÛby@À@òîöb—ya@ë‹ÐÛa@ÝØ’ :[(
@א
. .
@ @ )
א
א
]@Þëþa@êb¤üa
א
א
:(H0)
א
א
א
א
:(H1)
א
א
Z:[@(
) @א
.
א
א
א .
@א
@א
א
א
א
] ïãbrÛa@êb¤üa
:(H0)
א
א
:(H1)
א
א
♦
♦
:pbãbîjÛa@Þb‚†g
: א א
א א
א א
א א א
א
3 : א
: .(
א
א
.
א א
א
א א
)
19
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ïãbrÛa@Ý—ÐÛa
א
א
א א
א
א
: .(
א
א )
א
@ @ZŠbjn‚üa@‰îÐäm@paì‚ GLM
א
Linear Model
:
א
א
א
א
א
،Analyze
( א1
، Univariate..
א
20
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ANOVA ð†byþa@åíbjnÛa@ÝîÜ¥
א
: א
Dependent
א
א
א
[ אx2]
[x1]
א
[y] . א א
א
א
א
א
א
◘
Variable:
א
◘
.Fixed Factor(s): :
א
א
א
א
،Model
א
◘
21
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ïãbrÛa@Ý—ÐÛa
: א
: .Full factorial א
Factors &
א
א
.Model א
א
. Interaction . :
א א
א
א א
א
א
אא א.
Custom
אx1
x2
א
א
.
Covariates
Main effects
א
.
،Continue
א
.
، ok
א
(1
22
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ANOVA ð†byþa@åíbjnÛa@ÝîÜ¥
،
א א
א
א
א
א،
א
אא
:b@äç Åyýí
א
א
א .
א :ÕîÜÈnÛa
:
،
(0.007) .
א
א
(0.559) .
א א
א א א א، (0.05) א
P.Value
א
א
P.Value
א א
א
א א א، (0.05)
א
. א .
23
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ïãbrÛa@Ý—ÐÛa
א
ANOVA
P.Value
( )
א
א
א
א
א א
0.007
11.409
2479.861
3
א
7439.583
(
א
)
א א א
0.559
0.642
139.583
2
א
279.167
) ( *
*
217.361
6
1304.167
*
*
*
11
9022.917
א א א
@ @ZµÜÔn¾a@åíÌn¾a@µi@Þ†bjn¾a@qdnÛa@ëc@ÝÇbÐnÛa@ŠbjnÇüa@À@‰‚þa@òÛby@À :ZòîãbrÛa@òÛb¨a @ @Z:ïÜàÇ@Þbrß
א
א :
א א
א א
א ،
א א
א
א
24
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ANOVA ð†byþa@åíbjnÛa@ÝîÜ¥
@ @ïÈßbu @ @Áìnß @ @ðìãbq @ @ïöa‡nia 130
130
125
@ @ïßc
110
@ @æbîi @ @lÇc
100
@ @ÝuŠ 140
120
115
115
120
@ @xënß
135
125
104
95
111
@ @lÇc
@ @órãc 122
100
88
107
@ @xënß
110
@ @Zlìܾa
: )א א
א
א
א א
Educational Level
)א
א
א:
א
.
.(
א
Marital status
א
א א
א
א
א
.(
א
.
א
.
.(Educational Level * Marital status)
א
.؟٪
95
@ @@Zµçb¤a@À@åíbjnÛa@ÝîÜ¥@òÛby@À@òîöb—ya@ë‹ÐÛa@ÝØ’ :( א
א
א א
.
א
א :(H0)
)@Þëþa@êb¤üa א
♦
א
א
25
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ïãbrÛa@Ý—ÐÛa
א
א
א
א
:(H1)
.
א
א
א
א
א
. א
א
א
:( א
א
)@ïãbrÛa@êb¤üa
:(H0)
א
א
:(H1)
א
א
♦
א
א
א
א .
א ♦
@ @ZHòîÇbànuüa@òÛb¨a@ë@ïàîÜÈnÛa@ôìn¾aI@µÜÔn¾a åíÌn¾a@µi@ÝÇbÐnÛa א
א
א
.
א
א א
א א
א:(H0)
א א
.
א
א
א
א
א
א
א
א:(H1)
א א
א
:bäç Åyü א
א
−
א .
− א
א
א
:pbãbîjÛa Þb‚†g
26
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ANOVA ð†byþa@åíbjnÛa@ÝîÜ¥
(Variable
View)
א :
א (Label) א
א
27
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ïãbrÛa@�—�Ûa
@ @ZĹ bjn‚ßa@‰ÎĂ?äm@paÏ‚ ‍×?‏
GLM Linear Model
:
‍×?‏
‍×?‏
‍×?‏
‍×?‏
‍×?‏
ŘŒAnalyze
ŘŒ Univariate ..
: ‍×?‏
‍×?‏
Dependent Variable [y]
. ‍×?‏
‍×?‏
‍×?‏
‍×? ×?‏
‍×?‏
(1
‍×?‏
‍×?‏
‍×?‏
‍×?‏ ‍×?‏
Dependent Variable:
Educational Level [x1] Fixed
‍×?‏
‍×?‏
.
‍×?‏
‍×?‏
.
Marital status [x2]
‍×?‏
.Factor(s): :
‍×?‏
‍×?‏
‍×?‏
‍×?‏
ŘŒModel
‍×?‏
.
28
‍ ×? " ! Ůˆ×?‏# .... ‍ ×? ×? Ůˆ Ůˆ Ůˆâ€Ź
0020109787442 $%&' ‍ * ) ( ×?‏+ ‍ Ůˆ×?‏, $- . ‍ " Ůˆ×?‏/01‍ ×?‏2 * 3$ # & 4‍د‏
ANOVA ð†byþa@åíbjnÛa@ÝîÜ¥
:
א
א
א .
Full factorial
.
א
א
א
،Continue :
:
א
א
א
א א
،
א
א
.
، ok
א
א
(2
א
29
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ïãbrÛa@Ý—ÐÛa
א
א
א
א
א
) (
P.Value
א
א
א
)א
א
4
1736.8
434.2
3.539
0.048
(
א
א
א
א
)א
1
39.2
39.2
0.319
0.584
(
א א
א
א
4
600.8
150.2
1.224
0.360
א
א א א
1227
10
122.7
*
*
3603.8
19
*
*
*
@ @ZÕîÜÈnÛa א
:
30
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
ANOVA ð†byþa@åíbjnÛa@ÝîÜ¥
0.048
א
P.Value
א
א
א
א
א א א،0.05
.
א .
0.584
א
P.Value
.
א
א
א
א
א
. א
א א א،0.05
א
א
א
א
0.360
.
א
−
.
– א
P.Value
א
א
א א א،0.05 @ @Zòßbç òÃìzÜß
א
א א
(F ) א
א
א
א
א
.(
(Error)
:
א ،
א א
א
(Main effects)
. א
א
א
א
:å@ íäjÛa@Êìãë@ñŠbîÛa@Êìã@qdni@™b©a@Þbr¾a@À@ZýràÏ .
א
א
א @ @Zpaì©a
:
א
א
א
א
(2) ، (1)
א א
(1
31
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ïãbrÛa@Ý—ÐÛa
: .
א
א :
. א
א
א
א
א
א
.Full factorial
א
Continue
א
א
א
א
،Ok
א
א.
(2
. א
(3
،(F) ،
א
.
(Error)
א
32
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ANOVA ð†byþa@åíbjnÛa@ÝîÜ¥
Full
[Univariate:Model] (1)
Custom
.Main effects
،factorial
@@
êb¤a (æ)@À@ð†byþa@åíbjnÛa@ÝîÜ¥@ZbrÛbq
@ @N – Way ANOVA@ "" ،
א
א
:
" "א
א
:
−
א
: ò߇Ôß
.
–
א א
א
ZòÜÔn¾a@paÌn¾a@µi@HÞ†bjn¾a@qdnÛa@ëcI@ÝÇbÐnÛa@Ýçb¤@òÛby@À@Z¶ëþa@òÛb¨a @ @ZïÜàÇ@Þbrß
א،(
−
א
)
،(
א
א
–
)
א
:
א
א
@ @ò–b‚@òÈßbu @ @pbjÛb @ @lý
א
א ،
،(
)
–
א
א
@ @òîßìØy@òÈßbu @ @pbjÛb @ @lý
14
4
9
12
17
12
6
6
10
11
5
13
10
14
4
5
13
16
6
6
9
8
5
7
Zlìܾa
33
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ïãbrÛa@Ý—ÐÛa
)א
א
א .( .(
א
)א
א
א
א
א
)א
א
א
( )א
א
א
:(
.
)א
א
א
.
א
. ،(
. ؟٪ 95
א
א
æ @ @@ Zêb¤a@H I@À@åíbjnÛa@ÝîÜ¥@òÛby@À@òîöb—ya@ë‹ÐÛa@ÝØ’ :(™b‚ − âbÇ) òîØܾa Êìã Ìnß :Þëþa êb¤üa א
א .
א
:(H0)
א
א
:(H1)
א
א
א א .
א
:(ÊìäÛa) ä§a ÝßbÇ :ïãbrÛa êb¤üa
א
(
)א
א
. א
(
:(H0)
א
א
:(H1)
א
א
)א
א א
:Šì›¨a óÜÇ òjÃaì¾a ÝßbÇ :sÛbrÛa êb¤üa א
♦
א
.
א
♦
א א
.
:(H0)
א
♦
א
א
34
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ANOVA ð†byþa@åíbjnÛa@ÝîÜ¥
א
א
א א
:(H1)
.
א
GLM Linear Model
:
א
א
א
א
א
א
א
א
@ @ZpbãbîjÛa@Þb‚†g
،Analyze ، Univariate ..
א
(1
א
35
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ïãbrÛa@Ý—ÐÛa
: א
Dependent
א
א
y
א א
א
א
א
א
◘
. Variable: א
א
[ :
x3
א
، א
x2 ، x1]
א
א
א א
א
◘
.Fixed Factor(s): א ،Model
א
◘
36
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ANOVA ð†byþa@åíbjnÛa@ÝîÜ¥
: א
: .Full factorial א
א
א
[ x3 ،
.Model א
א
א
x2
א
א
.
Main effects
א
.
،Continue
א
.
א :
:
א
Factors & Covariates
. Interaction .
א
אא
א.
Custom
، x1]
א
א
א
א
א א
، ok
،
(2
א
א
א
37
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ïãbrÛa@Ý—ÐÛa
א א
א
א
א )
א
א
1
10.667
א
10.667
) (
P.Value
0.340
0.957
(
א א
א
)א
1
121.500
121.500
0.004
10.905
(
א א
)א א א
1
1.500
1.500
0.718
0.135
( א
א
222.833
20
11.142
*
*
356.500
23
*
*
*
:ÕîÜÈnÛa
א
:
א
א
. א
0.340
א
א
P.Value
،0.05א א
א
.
38
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
ANOVA ð†byþa@åíbjnÛa@ÝîÜ¥
P.Value
א
א א،0.05
(
)א
א
א
.
0.004
א
א
א א،0.05
. א
א
א א
א
.
0.718
.
א
P.Value
א
א א
@ @ZòÜÔn¾a@paÌn¾a@µi@(Þ†bjn¾a@qdnÛa@ëc)@ÝÇbÐnÛa@ŠbjnÇüa@À@‰‚þa@òÛby@À ZòîãbrÛa@òÛb¨a @ @ZïÜàÇ@Þbrß
א א
א
א
א
א
א:
א :
א
:paì©a Full factorial
א
א :
א א
א
،
א א ،Custom
א א
39
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ïãbrÛa@Ý—ÐÛa
א
:
א א
א
א
P.Value
א א
א
،
).(0.05
ZÒýn‚üa@Š‡—ß א
א
א א
א
א
א א
א
א א א
)،( 1
א א א
)
א (.
1ﻳﺸﺘﺮﻁ ﺃﻥ ﻳﻜﻮﻥ ﻋﺪﺩ ﺍﳌﺴﺘﻮﻳﺎﺕ ﺃﻭ ﺍﳊﺎﻻﺕ ﺍﳌﻤﺜﻠﺔ ﻟﻠﻤﺘﻐﲑ ﺍﳌﺴﺘﻘﻞ ﺃﻛﱪ ﻣﻦ ﺃﻭ ﺗﺴﺎﻭﻱ 3ﺣﺎﻻﺕ ،ﲟﻌﲎ ﺍﻧﻪ ﻟﻮ ﺃﻥ ﺍﳌﺘﻐﲑ ﺍﳌﺴﺘﻘﻞ ﺍﻟﺬﻱ ﺛﺒﺖ ﺗﺄﺛﲑﻩ ﺍﳌﻌﻨﻮﻱ ﻭﻟﻜﻨﻪ ﺛﻨﺎﺋﻲ ﺍﳊﺎﻻﺕ ﺃﻭ ﺍﻷﺑﻌﺎﺩ ،ﰲ ﻫﺬﻩ ﺍﳊﺎﻟـﺔ ﻻ ﻧﻜـﻮﻥ ﰲ
ﺣﺎﺟﺔ ﺇﱃ ﺍﳌﻘﺎﺭﻧﺎﺕ ﺍﻟﺜﻨﺎﺋﻴﺔ.
40
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
@ @sĂ›brĂ›a@Ă?—Ă?Ă›a @@ @@ @@ @@ @@ @@ @@ @@ @ @â€ â€ĄĂˆnža@ĂĽĂbjnĂ›a@Ă?ĂŽĂœÂĽ Multivariate Analysis of Variance
(MANOVA)
41
‍ ×? " ! Ůˆ×?‏# .... ‍ ×? ×? Ůˆ Ůˆ Ůˆâ€Ź
0020109787442 $%&' ‍ * ) ( ×?‏+ ‍ Ůˆ×?‏, $- . ‍ " Ůˆ×?‏/01‍ ×?‏2 * 3$ # & 4‍د‏
42
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
MANOVA †‡Èn¾a@åíbjnÛa@ÝîÜ¥
@@
@ @sÛbrÛa@Ý—ÐÛa @@
@ @†‡Èn¾a@åíbjnÛa@ÝîÜ¥ @@
@ @Multivariate Analysis of Variance (MANOVA)
@@ @ @Zò߇Ôß א
MANOVA
.
א
א
א א
א
א،
.
א
" "א א
א
א
.
א
א
א
א
אא
א
א
א
א א א
א א
א א
One-Way MANOVA
o
N-Way MANOVA
א א
،Two-Way MANOVA :
o
א
א
43
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
sÛbrÛa@Ý—ÐÛa
א
:ZÞbrß א
א
،
)
:
א א
א 3 א א א
א
א א
א
א א
(.
א
:
X1
:
X2
:א
)א
:
א
א
:
א
א
:
א
א
Y1 Y2 Y3
א
א
א א
)א
(
א (
@ @Zlìܾa
44
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
MANOVA †‡Èn¾a@åíbjnÛa@ÝîÜ¥
א
א
א
:
، ٪5
א א
. @ @.
(
א א א
( א
)א
א
א
) א
(
א
א א
) א
א
א
א א
א
א
א
.1
א
א.2
@µi@HÞ†bjn¾a@qdnÛa@ëcI@ÝÇbÐnÛa@ŠbjnÇüa@À@‰‚þa@â‡Ç@ëc@Ýçb¤@òÛby@À :¶ëþa@òÛb¨a @ @ZòÜÔn¾a@paÌn¾a
:
א
א
@µi ë@ @[(x2) (x1)] ò@ ÜÔn¾a@paÌn¾a@µi@òÓýÈÛbi@ò–b©a@ë‹ÐÛa @á›m@Z¶ @ ëþa@òÇìàa @ @Z Hy1I Þëþa@ÉibnÛa@Ìn¾a
:Hy1I ÉibnÛa Ìn¾a óÜÇ (x1) Þëþa ÝÔn¾a Ìn¾a qdm .1 א
א א
א .
א
א א
א
:(H0) א
:(H1)
א
א א
.
:Hy1I ÉibnÛa Ìn¾a óÜÇ (x2) ïãbrÛa ÝÔn¾a Ìn¾a qdm .2 א
א א
(
)א
א
:(H0)
. א
א א
(
)א
א
:(H1)
א
א
א
א
.
µ @ i ë@[(x2) (x1)] ò@ ÜÔn¾a@paÌn¾a@µi@òÓýÈÛbi@ò–b©a@ë‹ÐÛa@á›m @Zò@ îãbrÛa@òÇìàa @ @:(y2) ïãbrÛa ÉibnÛa Ìn¾a
45
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
sÛbrÛa@Ý—ÐÛa
:(y2) ÉibnÛa Ìn¾a óÜÇ (x1) Þëþa ÝÔn¾a Ìn¾a qdm .1 א
א א
א
:(H0)
. א
א א
א
:(H1)
א
א
א
א
.
:(y2) ÉibnÛa Ìn¾a óÜÇ (x2) ïãbrÛa ÝÔn¾a Ìn¾a qdm .2 א א
(
)א
א
:(H0)
. א
א א
(
א )א
א
:(H1)
א
א
א
א
.
µ @ i ë@[(x2) (x1)]@ò@ ÜÔn¾a@paÌn¾a@µi@òÓýÈÛbi@ò–b©a@ë‹ÐÛa@á›m :òrÛbrÛa òÇìàa @ @:(y3) sÛbrÛa ÉibnÛa Ìn¾a
:(y3) sÛbrÛa Ìn¾a óÜÇ (x1) Þëþa ÝÔn¾a Ìn¾a qdm א
א א
א
א
:(H0) .
א
א א
א
א א
:(H1)
א
.
:(y3) ÉibnÛa Ìn¾a óÜÇ (x2) ïãbrÛa ÝÔn¾a Ìn¾a qdm א א
(
)א
א
:(H0)
. א א
(
א )א
א .
:(H1)
א
.1
.2
א א
א
א
46
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
MANOVA †‡Èn¾a@åíbjnÛa@ÝîÜ¥
Zpaì©a :pbãbîjÛa Þb‚†g
Linear Model GLM
:
א
א
א
א
א
א
،Analyze
، Multivariate ..
א א
(1
(2
א
47
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
sÛbrÛa@Ý—ÐÛa
: א
א
א
(y1 , y2, y3)
א
א א
א
א
א
א
.
. Dependent Variables: א
[ אx2 ، x1]
א :
א
א
א
א
א א
א
.
.Fixed Factor(s):
،Model
א
.
48
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
MANOVA †‡Èn¾a@åíbjnÛa@ÝîÜ¥
: א
: .Full factorial א
Factors
א
.Model א
א
א
. Interaction .
א
א
א :
א
א
אא
א.
Custom
[ x2 ، x1]
א
א
.
& Covariates
Main effects
א
.
،Continue
א
.
א
א
، ok
א
(3
@ @ZÞëa‡§a@åß@µÇìã@pbu‹ƒ¾a@òzЖ@åà›nm :
א
:Multivariate Tests א
:Þëþa Þ뇧a
49
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
sÛbrÛa@Ý—ÐÛa
א
א א
א א
( א4) .
א .
א
Wilks'
، א
א
א א
אא א א
:
א א
א
א
אא
א א.1
Wilks' Lambda
א.2
Hotelling' s Trace
א.3
Roy's Largest Root
א.4
א א
א א
Pillai's Trace
−
אא א א
א א
א
א
אא
א
א
) Lambda
50
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
MANOVA †‡Èn¾a@åíbjnÛa@ÝîÜ¥
א
א
א א
א
א
.(
א א
א
א
א
א
P.Value
א א
א
א א
Wilks' Lambda
0.002
7.925
0.387
X1
0.028
4.028
0.554
X2
@ @ZÕîÜÈnÛa :
אא
.Hx2, x1I
א א
P.Value
א ،
א א (
א
א .
)א
א
א א
א (0.05)
א
א
א
א
א
: Tests of Between-Subjects Effects
א
א
،
.
א
א
א
א
א א
א א
א א
א א
:ïãbrÛa Þ뇧a א
א
אא
א א
51
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
sÛbrÛa@Ý—ÐÛa
:
א א
א
אא
א א
א
NHy1I@Þëþa@ÉibnÛa@Ìn¾a@óÜÇ@Hx2, x1I@qdnÛ@åíbjnÛa@ÝîÜ¥@Þë‡u N1 @HÒI@òàîÓ
P.Value @ @òiìa 0.001
16.769
@Áìnß pbÈi‹¾a
ò틨a@pbuŠ†
1.740
1
@ÊìઠpbÈi‹¾a 1.740
0.015
7.327
0.760
1
0.760
**
**
0.104
17
1.765
**
**
**
19
4.265
åíbjnÛa@Š‡—ß א
א
(x1)
א
א
א
(x2)
א א א
52
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
MANOVA †‡Èn¾a@åíbjnÛa@ÝîÜ¥
:ÕîÜÈnÛa
א
: ( y 1)
(y1)
א
.٪5
.
א א
א
א (
א
(x1)
א
א
. P.Value
0.001
א
)
א
.٪5
א
Z
א א (x2)
א
א א
0.015
א
א
.
P.Value
:Hy2I@ïãbrÛa@ÉibnÛa@Ìn¾a@óÜÇ@Hx2, x1I@qdnÛ@åíbjnÛa@ÝîÜ¥@Þë‡u N2 @HÒI@òàîÓ
P.Value @ @òiìa 0.017
6.969
@Áìnß pbÈi‹¾a
@ÊìઠpbÈi‹¾a
ò틨a@pbuŠ†
1.301
1
1.301
0.088
3.282
0.612
1
0.612
**
**
0.187
17
3.172
**
**
**
19
5.085
åíbjnÛa@Š‡—ß א
א
(x1)
א
א
א
(x2)
א א א
:ÕîÜÈnÛa
:
א
53
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
sÛbrÛa@Ý—ÐÛa
(y2)
א
א
.٪5 ( y 2)
(x1)
א
א
א
א .٪5
.
0.017
(x2)
א
א
א
א
א
P.Value
א
.
0.088
P.Value
:Hy3I@sÛbrÛa@ÉibnÛa@Ìn¾a@óÜÇ@Hx2, x1I@qdnÛ@åíbjnÛa@ÝîÜ¥@Þë‡u N3
@HÒI@òàîÓ
P.Value @ @òiìa 0.751
0.104
@Áìnß pbÈi‹¾a
@pbuŠ† ò틨a
0.421
@ÊìઠpbÈi‹¾a
1
0.421
0.287
1.209
4.900
1
4.900
**
**
4.052
17
68.885
**
**
**
19
74.206
åíbjnÛa@Š‡—ß
א
א
(x1)
א
א א
א
(x2)
א א
:ÕîÜÈnÛa
(y3)
א .٪5
א
(x1)
א
א
:
א
א
א
0.751
. P.Value
54
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
MANOVA †‡Èn¾a@åíbjnÛa@ÝîÜ¥
(y3)
.٪5
א
א
א
(x2)
א
א
א
.
0.287
P.Value
@paÌn¾a@µi@HÞ@ †bjn¾a@qdnÛa@ëcI@ÝÇbÐnÛa@ŠbjnÇüa@À@‰‚þa@òÛby@À@Zò@ îãbrÛa@òÛb¨a @ @ZòÜÔn¾a @ @Z:òîöb—ya ë‹ÐÛa א
א
א
א
،
:
،
א
א
א א
א
א
:Hy1I ÉibnÛa@Ìn¾a@óÜÇ@Þ†bjn¾a@qdnÛa@ëc@ÝÇbÐnÛa@qdm (X1 , X2)
א א
.
א
א
א
א
(X1 , X2)
א א .
א
:(H0)
א
א א
א
א
א
א
:(H1)
א
א
א א
:Hy2I ÉibnÛa@Ìn¾a@óÜÇ@Þ†bjn¾a@qdnÛa@ëc@ÝÇbÐnÛa@qdm (X1 , X2)
א א
.
א
א
א
א
(X1 , X2)
א א .
א א
.1
:(H0)
א
א
א
א
.2
א א א
א
:(H1)
א א
55
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
sÛbrÛa@Ý—ÐÛa
:Hy3I ÉibnÛa@Ìn¾a@óÜÇ@Þ†bjn¾a@qdnÛa@ëc@ÝÇbÐnÛa@qdm (X1 , X2)
א א
א
.
א
א
א
(X1 , X2)
א א
א
א
א
א
א א
א
.
:(H0)
.3
א
א
א
:(H1)
א א
@ @Zòßbç@òÃìzÜß
א
،
א א
א א
:
@ @ X3
א
א
X2
X1
X3
X1
א
א
X2
X3
א
א
X2
X1
א
א
א
א.ﺃ
א.ﺏ
א.ﺝ
א.ﺩ
@ @Zpaì©a Multivariate:
،Custom
א
א א
א
א א
אא Full factorial
א
א
Model
:
א
56
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
MANOVA †‡Èn¾a@åíbjnÛa@ÝîÜ¥
،ok
א.
א
א
א
،Continue :
א א
א
@ @ZwöbnäÛa@Íí‹Ðm 57
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
sÛbrÛa@Ý—ÐÛa
א Wilks' Lambda
א
P.Value
א א
א
א
Wilks' Lambda
0.003
7.554
0.382
X1
0.025
4.256
0.523
X2
0.302
1.339
א
0.777
א
X1*X2
@ @ZÕîÜÈnÛa א א
:
P.Value
א .(0.05)
א
.
א א
א
א
אא
א
. Hx2, x1I א
א א
א (0.05) א
P.Value
58
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
MANOVA †‡Èn¾a@åíbjnÛa@ÝîÜ¥
א
א
אא
א א
א
א
א א
א
א ،
א
א
: NHy1I@Þëþa@ÉibnÛa@Ìn¾a@óÜÇ@Hx2, x1I@qdnÛ@åíbjnÛa@ÝîÜ¥@Þë‡u N4
א .
א
א
א א
א
א،
א
א א
.
:
א א
א
א א
א א
59
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
sÛbrÛa@Ý—ÐÛa @HÒI@òàîÓ @ @òiìa
P.Value 0.001
@Áìnß pbÈi‹¾a
15.787
0.018
1.7405
6.898
@ÊìઠpbÈi‹¾a
ò틨a@pbuŠ† 1
0.7605
åíbjnÛa@Š‡—ß א
1.7405
1
א
(x1)
א
א
0.7605
א
(x2)
א א
0.947
0.005
0.0005
א
0.0005
1
(
(x2)
**
**
0.11025
16
1.764
**
**
**
17
4.2655
א
א
א
א א
א
( אx1) א
(
:
א
א
א
א
א
0.947
א
א
P.Value
א
(
א
.٪5
א
א א
א
–
(y1)
.
(y1)
א
−
א
א
א .
א
Z:ÕîÜÈnÛa
P.Value
)א
x2, x1)
.٪5 )
א א
. (
x2, x1)
א
:Hy2I@ïãbrÛa@ÉibnÛa@Ìn¾a@óÜÇ@Hx2, x1I@qdnÛ@åíbjnÛa@ÝîÜ¥@Þë‡u N5
60
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
MANOVA †‡Èn¾a@åíbjnÛa@ÝîÜ¥
@HÒI@òàîÓ
@Áìnß pbÈi‹¾a
P.Value @ @òiìa 0.012
7.918
0.071
@pbuŠ† ò틨a
1.3005
3.729
@ÊìઠpbÈi‹¾a
1.3005
1
0.6125
1
0.6125
åíbjnÛa@Š‡—ß א
א
(x1)
א
א
א
(x2)
א א
0.087
3.315
0.5445
א
0.5445
1
(
**
**
0.16425
16
2.628
**
**
**
19
5.0855
x2, x1) א א
:ÕîÜÈnÛa
: ( y 1)
א
א א
. א ( y 1)
א א
(x1)
.٪5 א
(
א
א
א
א .٪5
(
א
א −
א
א א א
)
א
:Hy3I@sÛbrÛa@ÉibnÛa@Ìn¾a@óÜÇ@Hx2,
א
P.Value
א א א
–
x2, x1)
.
א א
א
. ( אx2) P.Value
x1I@qdnÛ@åíbjnÛa@ÝîÜ¥@Þë‡u N6
61
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
sÛbrÛa@Ý—ÐÛa
@HÒI@òàîÓ P.Value @ @òiìa
@Áìnß pbÈi‹¾a
@pbuŠ† ò틨a
@ÊìઠpbÈi‹¾a
åíbjnÛa@Š‡—ß א
0.752
0.1036
0.4205
1
א
0.4205
א
(x1) א
0.288
1.2077
4.9005
1
א
4.9005
א
(x2) א
0.338
0.9760
3.9605
1
א
3.9605 (
**
**
4.05775
16
64.924
**
**
**
19
74.2055
x2, x1) א א
:ÕîÜÈnÛa : א א
א א
(x1) (
א
א
א א
א א
x2, x1) א
א
א
P.Value
א
א א
א א
( אx2)
א
، (y 3)
א
.٪5
א
:é@ ãc@æbîjÛa@åÇ@Ë .
א
62
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
@ @Éia‹Ûa@Ý—ÐÛa @@ @@ @@ @@ @@ @@ @@ @@ @ @@ð†byþa@‹íbÌnÛa@ÝîÜ¥ Analysis of Covariance
(ANCOVA)
63
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
64
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
ANCOVA ð†byþa ‹íbÌnÛa@ÝîÜ¥
@@
@ @Éia‹Ûa@Ý—ÐÛa @@ @@ @@ @@ @@
ð†byþa ‹íbÌnÛa@ÝîÜ¥ Analysis of Covariance (ANCOVA)
:ò߇Ôß א
א
ANCOVA
א
.(
א א א
א
א א
א א א
(
א
א
،
א
א
א
)
א
) אANOVA א
،
א
ANCOVA
.(1)
א
א
@ @ZïÜàÇ@Þbrß ،
א
א:l @ ìܾa ،
א
א
،
א
א
א
א
א
א א
א
א א
א א
. ٪5
،Control
Variable
א
א
1
Covariates
65
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
Éia‹Ûa@Ý—ÐÛa
ò퉆äØ⁄a@òÈßbu
א (Y)
ð…aìÛa@lìäu@òÈßbu
א (x)
@ @ñŠçbÔÛa@òÈßbu
א (x)
א (Y)
א (x)
א (Y)
3
0.66
12
0.75
15
0.70
6
0.25
18
0.82
11
0.65
18
0.79
5
0.40
8
0.50
20
0.94
14
0.65
16
0.60
14
0.74
*
*
15
0.55
*
*
*
*
18
0.90
@ @Zòîöb—ya@ë‹ÐÛa א א .
א
א
א
א
א
א א .
א
א
א
א
:
א
א
א
א א
:
א
א
@ @ZpbãbîjÛa@Þb‚†g
66
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ANCOVA ð†byþa ‹íbÌnÛa@ÝîÜ¥
@ @Šbjn‚üa@‰îÐäm@paì‚ א
GLM Linear Model
:
א
א
א
א
א
،Analyze ، Univariate ..
א
(1
א
67
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
Éia‹Ûa@Ý—ÐÛa
: א
Dependent
א
א
א
[y] .
א
א
א
א
Treatment
א
א
א
א
א
◘
Variable:
א
◘
.Fixed Factor(s): .Covariate(s) א
א :
א א
[X] א
א
◘ ،Ok
א
(2
68
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ANCOVA ð†byþa ‹íbÌnÛa@ÝîÜ¥
:
P.Value
( )
א
א א
א
א
א
،
א
א
0.616
0.506
7.521
2
14.503
*
*
14.325
11
157.578
*
*
*
13
172.081
א
א
א
א א
@ @ZÕîÜÈnÛa
69
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
Éia‹Ûa@Ý—ÐÛa
א
א
א א
א א
P.Value
.
א
א
:
א
א א א،0.05
א
א
א
א
א 0.616
:òÃìzÜß א
One-Way
א
א א
א
א
א א
א
. א
א א
א
א
א
ANCOVA
א :
o
Two-Way ANCOVA
o
N-Way ANCOVA
70
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
Ă&#x;bŠa@Ă?—Ă?Ă›a @@ @@ @@ @@ @@ @@ @@ @@ â€ â€ĄĂˆnža@‚ĂbĂŒnĂ›a@Ă?ĂŽĂœÂĽ Multivariate Analysis of Covariance
(MANCOVA)
71
‍ ×? " ! Ůˆ×?‏# .... ‍ ×? ×? Ůˆ Ůˆ Ůˆâ€Ź
0020109787442 $%&' ‍ * ) ( ×?‏+ ‍ Ůˆ×?‏, $- . ‍ " Ůˆ×?‏/01‍ ×?‏2 * 3$ # & 4‍د‏
72
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
MANCOVA †‡Èn¾a ‹íbÌnÛa@ÝîÜ¥
@@
@ @ßb©a@@Ý—ÐÛa @ †‡Èn¾a ‹íbÌnÛa@ÝîÜ¥ Multivariate Analysis of Covariance
@@
(MANCOVA)
@@ @ @Zò߇Ôß
א
MANOVA
א
א א א
א א
א
א
MANCOVA
،( (
א
א
)
א
א
א א
) א
MANCOVA
.(1)
א א
א
:Þbrß א
א
. ٪5
א:
א
א،
א
א
، א א
،Control
Variable
א
א א
א א א
א
א א
א
א
1
Covariates
73
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ßb©a@Ý—ÐÛa
@ @ò–b©a@pbÈßb§a
א
א
òîßìبa pbÈßb§a
א
א א
א
א א
16
11
3
13
15
5
12
13
4
7
18
6
5
17
2
16
10
4
7
6
1
14
11
7
3
2
4
18
7
6
11
7
3
6
14
4
14
4
2
15
6
2
8
17
2
14
4
4
@ @Zòîöb—ya@ë‹ÐÛa :(y1) ÉibnÛa Ìn¾a óÜÇ (x1) ÝÔn¾a Ìn¾a qdm .1 א א
א
:(H0)
.
א
א
א
74
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
MANCOVA †‡Èn¾a ‹íbÌnÛa@ÝîÜ¥
א
א א
א
:(H1)
א
א
.
:(y2) ÉibnÛa Ìn¾a óÜÇ (x1) ÝÔn¾a Ìn¾a qdm .2 א
א א
א
:(H0)
א
א
:(H1)
א
א
. א
א א
א .
@ @ZpbãbîjÛa@Þb‚†g
75
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ßb©a@Ý—ÐÛa
@ @ZŠbjn‚üa@‰îÐäm@paì‚ א
Linear Model GLM
:
א
א
א
א
א
،Analyze
א
א
א
، Multivariate ..
: א
א
(y1 , y2)
א
א
א
(1
א
א
א
א
א
◘
. Dependent Variables: Fixed
א
א
א
[x1]
א
א
◘
.Factor(s): Covariate(s):
א
א :
א א
cov1
א
א ، ok
◘ א
(2
76
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
MANCOVA †‡Èn¾a ‹íbÌnÛa@ÝîÜ¥
א א א
א
א
א
א
אא P.Value
(y1, y2) .٪5
77
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ßb©a@Ý—ÐÛa
78
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
‘†bÛa@Ý—ÐÛa @@ @@ @@ @@ @@ @@ @@ @@ ÂbjmŠüa ÝîÜ¥ Correlation Analysis
79
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
80
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
Correlation Analysis ÂbjmŠüa@ÝîÜ¥
@ @‘†bÛa@Ý—ÐÛa
@@ @@
@ @ÂbjmŠüa@ÝîÜ¥
@@
@Correlation Analysis
@@ @ @Zò߇Ôß
(
)
،(1−) , (1+) א
א
א
א (−)
א
א
א
א .
،
א א
א، (+) .
א
א
א
@ @:ÂbjmŠüa@ÝßbȾ@îíbÔß@òqýq@SPSS@wßbã‹i@â‡Ôí@LòßbÇ@òЗi א
א
א
:Pearson æ@ ìi@ÂbjmŠa@ÝßbÈß .
א
א
א
: Spearman's rho@k @ m‹ÜÛ@æbßj@ÂbjmŠa@ÝßbÈß .2 .
א
א א
.1
א
א
:Kendall's
א
א
tau km‹ÜÛ@Þ @ a‡ä×@ÝßbÈß
.3
.
@ @ZÂbjmŠüa@ÝßbÈß@òíìäÈß@Šbjn‚a 81
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
‘†bÛa@Ý—ÐÛa
@ @ZµÏ‹ @åß@Šbjn‚üa@òÛby@À .1
H0 : ρ = 0 H1 : ρ ≠ 0
:
א
א
א
א
א
א
א
:( H 0 )
א
א
:( H 1 )
א
א
.
א
א
א
א .
Z‡yaë@Ò‹ @åß@Šbjn‚üa@òÛby@À .2
א
:
א
א :
.
א
א
H0 : ρ ≤ 0 H1 : ρ f 0
א
:
א
א :
.
א
א
H0 : ρ ≥ 0 H1 : ρ p 0
:
א
א
א א
א
:[
1] Þbrß :lìܾa
.
א
א
א
−
82
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
Correlation Analysis ÂbjmŠüa@ÝîÜ¥
.
:
. א
א
א−
א
o
א
o .٪5
Šb‚†üa
Ý‚‡Ûa
15
100
10
120
30
150
40
180
45
200
20
210
80
190
50
400
100
250
60
350
90
600
@@ @ @ZpbãbîjÛa@Þb‚†g :
א
83
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
‘†bÛa@Ý—ÐÛa
@ @Z:paì©a ZµÏ‹ @åß@Šbjn‚üa@òÛby@À@Züëc Bivariate
אCorrelate
א :
א א
א
،Analyze א
א
א ،..
(1
84
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
Correlation Analysis ÂbjmŠüa@ÝîÜ¥
:
א
א
א
א
:
א
א
א
א−
(income, savings)
. Variables: א
א
א
א
.( א
Two-
.
אא
א
.( א
א
−
) Pearson א
א
א
א
−
) tailed
،Ok
א
(2
@@ @ @ZbèîÜÇ ÕîÜÈnÛaë@wöbnäÛa@Íí‹Ðm p-value
ÂbjmŠüa@ÝßbÈß
0.043
0.617
85
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
‘†bÛa@Ý—ÐÛa
.(0.617+)
א
א
،٪4.3
א
0.043
א
א
א
א
א
א
(
א
א −
P.Value
א
א
:
)א
– ،٪ 5
א
א
א .
@ @Z‡yaë@Ò‹ @åß@Šbjn‚üa@òÛby@À@Zbîãbq א
אא،
אא :
H0 : ρ ≤ 0
א
א א
א
א
H1 : ρ f 0 One
@ @Zpaì©a
א
– tailed :
א
א
א א
א
א א Two
א
(1
– tailed
86
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
Correlation Analysis ÂbjmŠüa@ÝîÜ¥
.
אא
א
א
،Ok
(2
:ÕîÜÈnÛaë@wöbnäÛa@Íí‹Ðm @ @ÂbjmŠüa@ÝßbÈß
@ @p-value 0.021
،٪2.1 א
א
:
P.Value
0.021
א .
0.617
א א
א (
א
א
،٪ 5 א
)א
א
א
א
[2] א
א
א
Þbrß
א א :
א
א
،
87
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
‘†bÛa@Ý—ÐÛa
@ @õb—ya@ñ†bß@pa‹í‡Ôm @ @òjba@ñ†bß@pa‹í‡Ôm
א
א א
א
א
:lìܾa . .(
א )
א
−
א−
. ٪5
88
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
Correlation Analysis ÂbjmŠüa@ÝîÜ¥
:
א א
א
א
א א
א 1
2
3
4
@ @‹í‡ÔnÛa 5
6
@ @†ìØÛa
@ @ZpbãbîjÛa@Þb‚†g
:paì©a א
א
Correlate
:
א
א
א א
א
،Analyze
א
،Bivariate ..
(1
89
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
‘†bÛa@Ý—ÐÛa
:
א
א
א
א
:
א
א
א
(account, stat)
א
−
. Variables: א
). Pearson
א
− (
Spearman
א
Two-
א
א .
.
אא
א
א
א
−
א
−
tailed
א
،Ok
א
(2
90
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
Correlation Analysis ÂbjmŠüa@ÝîÜ¥
@ @ZÕîÜÈnÛaë@wöbnäÛa@Íí‹Ðm
p-value
ÂbjmŠüa@ÝßbÈß
0.027
0.692 −
: .(0.692−)
–
א
א א
א
،٪2.7 −
א
א
א −
P.Value
0.027
א
א
א
א
،٪5 .
91
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
‘†bÛa@Ý—ÐÛa
Correlation Matrix .
ÂbjmŠüa@òÏìЗß
א
:[3] Þbrß :
א א
א
X4
X3
X2
X1
24
10
35
12
18
8
20
20
10
5
45
15
6
14
60
4
16
12
33
11
17
11
50
14
11
15
36
25
10
18
25
16
15
20
44
14
45
15
12
18
25
4
15
24
33
11
15
14
א
lìܾa
92
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
Correlation Analysis ÂbjmŠüa@ÝîÜ¥
ZpbãbîjÛa@Þb‚†g
:paì©a א
א
Correlate
:
א
א
א א
א
،Analyze
א
،Bivariate ..
(1
93
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
‘†bÛa@Ý—ÐÛa
א
: א
א
א
(X1 ,
X2
,
X3
,
X 4)
א
א
א
א
א
−
.Variables א –
–
א .
א
،
א
Person
א
،
−
א
א
Two-tailed
א
א
( אSig. ) P.Value .
Output
א
−
א
א
א . OK :
א
(2
א
94
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
Correlation Analysis ÂbjmŠüa@ÝîÜ¥
: wöbnäÛa@Íí‹Ðm א א
P.Value
א
א
א
0.042
0.594 −
(X2) (X1)
0.483
0.225 −
(X3) (X1)
0.450
0.241
(X4) (X1)
0.573
0.181
(X3) (X2)
0.007
0.728 −
(X4) (X2)
0.750
0.103 −
(X4) (X3)
95
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
‘†bÛa@Ý—ÐÛa
:ÕîÜÈnÛa (X4) (X2)
א
(X2) (X1)
א
P.Value
א
، ٪5
א
א
،٪5
א
P.Value
א
א .
א
א
Partial Correlation ïö§a@ÂbjmŠüa )
א
(
)
א
א א
א
א א
א א
א
،
،
א
:
א
.(
א
א
א
א
.
א :(
א
א
.(
א
א: (1) )א
א
א
4) Þbrß
א א
א
א
96
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
Correlation Analysis ÂbjmŠüa@ÝîÜ¥
@ @ñ‹þa@À@õbäiþa@†‡Ç
@ @Šb‚†üa
@ @Ý‚‡Ûa
2 1
15 10
100 120
2
30
150
2 3 5 4 2 1 3 1
40 45 20 80 50 100 60 90
180 200 210 190 400 250 350 600
@ @ZpbãbîjÛa@Þb‚†g
97
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
‘†bÛa@Ý—ÐÛa
@ @Zpaì©a א
Correlate
:
א
א
א
א
א
א
،Analyze
א
א
(1
א
א
،Partial ..
: א
א
:
א
א א−
(income, savings) Variables:
א
א
א
א
children
−
Controlling for
.
אא
א
א
،Ok
א
(2
98
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
Correlation Analysis ÂbjmŠüa@ÝîÜ¥
@ @ZÕîÜÈnÛaë@wöbnäÛa@Íí‹Ðm
א
–
p-value
ÂbjmŠüa@ÝßbÈß
0.065
0.6022
א
א
א
א
א .
א
: –
א
א
א
א
א
א ،
א
א
@ @Zñ‚c@òÃìzÜß א
א א
א. . א א
، א
א
א
א
א
99
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
‘†bÛa@Ý—ÐÛa
100
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
ÉibÛa@Ý—ÐÛa
@@ @@ @@ @@ @@ @@ @@ @@ @ @ÁîjÛa@óݨa@‰a†−üa@Ýîܤ
@ @Simple Linear Regression Analysis
101
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
102
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥
@ @ÁîjÛa@ó©a@Ša‡®üa@ÝîÜ¥@ @Simple Linear Regression Analysis א א
א
−
א א
א
: −
( א
Simple Regression Models Multiple
א
– Regression Models
( Y) :
א
א
◘
א
א
◘
:ÁîjÛa@ó©a@Ša‡®üa@xˆb¹ :Þëþa@ÊìäÛa
א א
)א
א
א
א
א
א א
א
א
،(X)
Y = B0 + B1 X
@ @Z†‡Èn¾a@ó©a@Ša‡®üa@xˆb¹@Z@óãbrÛa@ÊìäÛa
،(X’s)
(Y) :
א א
א
א א
א
Y = B0 + B1 X 1 + B2 X 2 + B3 X 3 + ............ + Bk X k
א א
א : (k )
:Ša‡®a@xˆì¹@ÕîÏìm@paì‚
103
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ÉibÛa@Ý—ÐÛa
א
א ،
א א א
אא
א
א
،
א א
א
:
:òí‹ÄäÛa@Âë‹“Ûa@Zü ëc (1
@áر@ ð‰Ûa@ô‹ÄäÛa@‘bþa@Éß@ Ša‡®üa@pýßbÈß@áîÓë@paŠb’g@ HòîÔäß@ ëcI@ ÖbÐma
:òaŠ‡Ûa@Ý«@ñ‹çbÄÛa
،
א א
–
א
א
א
، −
א
א
א :
א א .
א
א א
א
א א
א
א
א
א
א
−
א
א
، )
א
א
.
א
א
א
− א
א
.( א א
א
א
א א
א .
: א
א
:xˆìàäÜÛ@òíÐnÛa@ñŠ‡ÔÛa@HòíbÐ×@ëcI@ÞìjÓ (2 104
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥
א
:Ša‡®üa@xˆìàäÛ@òíÐnÛa@ñŠ‡ÔÛbi א
א א
א
א
א
א
א
א א
،
א א
א
.
،
א א
א
א א
א
א
א א
،
.
א
א א
א א
.
א
، א
، ٪40 ٪30
א ٪60
א א
א א
.
@ @Zòîšbí‹Ûa@Âë‹“Ûa@Zbîãbq :
:Ša‡®üa@xˆìàäÛ@òîÜØÛa@òíìäȾa (1 א
א
א א
א.
א א
א
:
א א א
א א
،
א א
א
א א
א
א
א
) ( ].[F- test
א א
،
א
א א
א א א
)א
א א
א א
א
:
( ؟.
א א
א א א א
105
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
ÉibÛa@Ý—ÐÛa
א .
א
،
א
: .(
א א T -
)
א א א א א
א
א
א
א
)]
א
א
א
א
:xˆìàäÜÛ òîö§a òíìäȾa (2
.א
א
، .[(test
.Ša‡®üa@xˆì¹@bÈß@‹í‡Ôm@À@ò߇ƒn¾a@òÔí‹Ûa@Âë‹’@‹Ïaìm@ô‡ß (3 .OLS
א
א
א
:
:
א
א
:Normality Test ïÓaìjÜÛ@ïÛbànyüa@ÉíŒìnÛa@òîÛa‡nÇa − א
א
א
א
،( ) א
،א
( ) א
א
א
א
א
. א ، א
א א
אא א
،
א א
א א
א
106
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
à ÎjĂ›a@ïŠa@Ĺ a‥Žßa@Ă?ĂŽĂœÂĽ
‍×?‏
.(1)
‍×?‏
‍×?‏
‍×?‏
.
‍×?‏
30
‍×?‏
‍×?‏
‍×?‏
:ĂŻĂ“aĂŹjĂœĂ› ĂŻma‰Ûa ÞýÔnď‰Ăźa − ‍×?‏
ŘŒâ€Ť×?‏
.
‍×?‏
‍×?‏
(F) ŘŒ (T)
‍×?×?‏
‍×? ×? ×?‏
‍×?‏
‍×? ×?‏
‍×?‏
‍×?‏ ‍×?‏
ŘŒ
‍×?‏
‍×?‏ ‍×?‏
‍×? ×?‏
‍×?‏
(R2) ŘŒ
.
‍×?‏
‍×?‏
:Homoscedasticity (ĂĽĂbjnĂ›a pbjq Ĺ bjn‚a) ĂŻĂ“aĂŹjĂ›a ãb¤ Ĺ bjn‚g ‍×?‏
‍×?‏
‍×?‏ ‍×?‏
.(2)
ŘŒ ‍×? ×?‏ ‍×?‏
‍×?‏
‍×?‏
‍×?‏
. ‍×?‏
‍×?‏
‍×?‏
‍×?‏
− ‍×?‏
‍×?‏ ‍×?‏
‍ ×?â€ŹŘŒ biased
:òÔibÛa@Ă‚ĂŤâ€šâ€œĂ›a@Ă•ĂŽjď‹ąm@òÎĂ?ĂŽĂ—@Ă˛ĂŽĂœĂ ĂˆĂ›a@Ă˛ĂœrĂ&#x;Ăžbi@|ťÏäď‰ĂŤ
:ĂžbrĂ&#x; 1
Palta, Mari, (2003)," Quantitative Methods in population health: Extensions of ordinary regression", Wiley – IEEE, p 6.
2
Berk, Richard A., (2003)," Regression analysis: a constructive critique", Sage publications Inc., p 144.
107
‍ ×? " ! Ůˆ×?‏# .... ‍ ×? ×? Ůˆ Ůˆ Ůˆâ€Ź
0020109787442 $%&' ‍ * ) ( ×?‏+ ‍ Ůˆ×?‏, $- . ‍ " Ůˆ×?‏/01‍ ×?‏2 * 3$ # & 4‍د‏
ÉibÛa@Ý—ÐÛa
: Úýènüa
Ý‚‡Ûa
127
158
130
160
129
175
125
157
115
130
119
150
121
152
124
162
97
125
92
115
85
125
114
145
118
140
110
142
119
140
104
138
102
126
א
א
א א
:lìܾa . ؟٪5
א
א
א
:paì©a 108
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥
:
א
א
Regression
:
א
א
א א
א
،Analyze א
،Linear
(1
א
(2
א
109
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ÉibÛa@Ý—ÐÛa
א
: א
א
א
א
Consumption [y]
א
א
א
א .
. Respondent א
א
א
Income
א
(x)
א
.
. Independent(s) :
א
א
א
א
،Statistics
א
(3
110
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥
:
א
א
אא
] ،Durbin – Watson א
א
א
א
.
א
. [Residuals א Model Fit
א
א
א א
א
א
Estimates
א
א. .
.
א Save
א
א
א א
א
Continue
:
א :
א
.
א א
א א
א
(4 א
111
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ÉibÛa@Ý—ÐÛa
א
: א א
א
א
אא .
Unstandardized Predicted Values
א
א
א
.
standardized Residuals
. א
א
א
Plots
א
א
א
Continue
א
:
א
א :
א
. א
א
א
(5 א
112
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥
: א א א
א
א
אא .
Normal probability plot
. Standardized Residual Plots .
א
א
א ،ok
א
א
Continue
א
א:
א
:
א
.
א
،א
(6
א
Durbin-Watson Šbjn‚a@ïöb—ygë@‡í‡znÛa@ÝßbÈß@Þë‡u .1
:
א
א
אא
113
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ÉibÛa@Ý—ÐÛa
א
א
א
.(
א א
. א
) א
א:Std.
)א
Error
. א
א
א א
:R ( .(
א
:R Square (
:Adjusted R Square ( of
א – א
א
א
א
א (
)
the
א
Estimate
،
(
א
.(1)(MSE) :Durbin-Watson (
א
א
א
:ANOVA åíbjnÛa@ÝîÜ¥@Þë‡u .2
: .א .
א
א
א
א
א
:Model
:Sum of Squares
.
א
אא (
(
MSE 1
114
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥
. .
א
א
א،
א
:df
(
:Mean Square (
.
) (א
:F
:Sig
א
P.Value
.
א
(
(
א
:Ša‡®üa@pýßbÈß@Þë‡u .3
: א:Unstandardized ) א א
א
،
א
א
אא
Coefficients
א
.(Std. Error)
א
א א
Standardized Coefficients
.( .
א
(
א
Constant
،(
)א
א
) (א
(
א :t (
115
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ÉibÛa@Ý—ÐÛa
א .[(
]אP.Value
א
) א
:Sig
א
א
א
(
א
@ïÈîàvnÛa@Þbànyüaë@‡çb“¾a@ïÈîàvnÛa@Þbànyüa@µi@òÓýÈÜÛ@ïãbîi@ÝØ’ .4 @ @NÉÓìn¾a
@@ א
א א
א .א
א
א א
אא א
א
א
:òÃìzÜß 116
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥
، Data View Standardized
א
)
،
،
א א
א
res_1
(Residuals ( yˆ )
א
pre_1
א
−
א :
א .
א א
א א
א א
א א
א
א− א
117
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ÉibÛa@Ý—ÐÛa
א
א א א א
א
א
א
א.
א
א
א
א
א
، א
א א
)א
א
(.
א
א
@ @Zpaì©a (1
א א
(2
א
Graphs
א
Scatter
א
א
א
:
א
א
א
א
:
،Simple
Define
118
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥
: א א
Standard
א
.Y Axis א (
א )א
א
א א
א
א
אא
א
(
Residual [zre_1]
א
א
(
Unstandardized Predicted Value [pre_1]
.X Axis א :
א
א
א
א
א ok
א א
(3
119
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ÉibÛa@Ý—ÐÛa
@@ ،א
א
א :
א
א
א
א
א א א
א
א
@ð‰Ûa@ Ša‡®üa@xˆì¹@òîyý–@óÜÇ@áبaë@wöbnäÛa@óÜÇ@ÕîÜÈnÛa @ @ZéÔîÏìm@ @ @ZŠ‡Ô¾a@Ša‡®üa@xˆì¹ :@üëc Y = 8.149 + 0.735 X
120
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥
:
،
א
:( β 0 )
. (8.149)
.(0.735)
:( β1 ) א
א א
א
א
◘ א
א
◘ @@
Nòí‹ÄäÛa@Âë‹“Ûa@Z@bîãbq
(1
:Ša‡®üa pýßbÈß òàîÓë paŠb’g (òîÔäß ) ÖbÐmg ،
א
א א
א :
א
א .(
( .
א
א א
א
א א
א
א.
א
)
א
א )א
א
א
א
،
.
: Consumption
א
א א
א
= 8.149 + 0.735 Income
א א
א .
א א
א
:òßbç@òÃìzÜß
121
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ÉibÛa@Ý—ÐÛa
א
א א
א א
א ،
،
א
א א
א
א א
. א א א
א
א א
א .
א
א א
א
א
: xˆìàäÜÛ òíÐnÛa ñŠ‡ÔÛa
(2
א
א
،[ R-Sq (adj) ]
א
א
א
(R-Sq)
א .
א
:ÕîÜÈnÛa@òÔí‹ ، (
א
،( א،
)
א )א
א
א א
א
א א
א
א
א . א
א
א
، ٪ 77.1 א א
א א
א
א א
٪
א
א
א
א
77.1
٪77.1 (٪22.9)
:òîšbí‹Ûa@Âë‹“Ûa@Z:brÛbq : xˆìàäÜÛ òîÜØÛa òíìäȾa
(1
122
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥
:òîöb—ya ë‹ÐÛa .
א .
א א
א
:( H 0 )
א
א
:( H 1 )
א
א
◘
:‹‚e ÝØ“i ë‹ÐÛa א א
א .(
א
:( H 0 ) א .(
)
א א
א
א:( H 1 )
◘
א א
א
)
:bèîÜÇ ÕîÜÈnÛaë wöbnäÛa Íí‹Ðm א
ANOVA
א P. Value
א F
cal
MS
◘
א
א
SS
א
DF
א
א
Source
א
א
0.0000
54.814
2244.036
2244.036
1
*
*
40.939
614.082
15
א
*
*
*
2858.118
16
א :ÕîÜÈnÛa
123
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ÉibÛa@Ý—ÐÛa
،
א
P.Value
א
א
א
א
:
א א
،٪5
א
א
، .
א
א
א
א
א
.
א
.
0
0
=0
1
0
≠0
H :B H :B
0
1
=0
1
1
≠0
H :B H :B
א
א
א
א
א
:xˆìàäÜÛ òîö§a òíìäȾa
(2
:âìèоa
◘
א
א
א
، [T - test ] ( )
א
א
א
א
א
،
:ña†þa
◘
:òîöb—ya ë‹ÐÛa ÝØ’
◘
א :( B 0 )
−
:( B1 )
−
:bèîÜÇ ÕîÜÈnÛaë wöbnäÛa Íí‹Ðm
◘
א
124
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥
P. Value
( )
א
א
א
א
0.578
0.569
8.149
0.000
7.404
0.735
B B
0
1
:ÕîÜÈnÛa א א
א
P.Value
0.578
א
א
، ( B0 )
א
،٪ .
0.000
א
א
،٪ א
א
א
،( B1 )
א .
א
5
א
א
P.value
◘
א
א
5
( B1 ) א
א
.òí†bÈÛa ô‹Ì—Ûa pbÈi‹¾a Âë‹’
(3
Normality Test ïÓaìjÜÛ@ïÛbànyüa@ÉíŒìnÛa@òîÛa‡nÇa :Þëþa@‹“Ûa
:òîöb—ya ë‹ÐÛa .
.
א
א
א
א
א א:(H0)
א א:(H1)
א
א
◘
א
א
125
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ÉibÛa@Ý—ÐÛa
א א
א
א
א
:
א
@ @bîãbîi@Z¶ëþa@òÔí‹Ûa א א
א
א
א
א א
א
א א
א
.
א
א א א
א
،
א
א
א א
א
א
א
א א
،
א
א א
א
. א
א
א
א
אא
א
א א
א
،
،
א א
א א
)
(.
126
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥
@@
@LHÒë‹ä@–@Òë‹uìßìÜ×I@Šbjn‚a@åß@Ý×@Šbjn‚a@âa‡ƒnbi@bîiby @ZòîãbrÛa@òÔí‹Ûa @ @ZHÙîÜíë@–@ëib’I@Šbjn‚aë
@ @paì©a א
Descriptive
:
א
א
א
א
א
، Analyze
، Explore
א
א
(1
Statistics
127
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ÉibÛa@Ý—ÐÛa
(2ﰲ ﺍﳌﺮﺑﻊ ﺍﳊﻮﺍﺭﻱ ﺍﻟﺬﻱ ﺃ ( ﻗﻢ ﺑﻨﻘﻞ ﺍﳌﺘﻐﲑ
ﺃﻣﺎﻣﻚ:
Standardized Residual
ﺇﱃ ﺍﳌﺮﺑﻊ ﺍﻟﺬﻱ
ﺑﻌﻨﻮﺍﻥ .Dependent List ﺏ ( ﻭﻣﻦ ﺍﻻﺧﺘﻴﺎﺭﺍﺕ Displayﺍﺧﺘﺮ .Plots ﺝ ( ﰒ ﺃﻧﻘﺮ ﻓﻮﻕ ﺍﻻﺧﺘﻴﺎﺭ
Plots..
ﰲ ﻧﻔﺲ ﺍﳌﺮﺑﻊ ﺍﳊﻮﺍﺭﻱ ﺍﻟﺬﻱ
ﺃﻣﺎﻣﻚ ،ﺳﻴﻈﻬﺮ ﻟﻨﺎ ﻣﺮﺑﻊ ﺣﻮﺍﺭﻱ ﺟﺪﻳﺪ ،ﻛﻤﺎ ﻳﻠﻲ:
(3
ﰲ ﻫﺬﺍ ﺍﳌﺮﺑﻊ ﺍﳊﻮﺍﺭﻱ :ﻗﻢ ﲟﺎ ﻳﻠﻲ: 128
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥
ﺃ ( ﻧﺸﻂ ﺍﻻﺧﺘﻴﺎﺭ
Normality Plots with tests
ﻣﻦ ﺧﻼﻝ
ﺍﻟﻀﻐﻂ ﻣﺮﺓ ﻭﺍﺣﺪﺓ ﺑﺎﳌﺎﻭﺱ ﰲ ﺍﳌﺮﺑﻊ ﺍﻷﺑﻴﺾ ﺍﻟﺬﻱ ﺃﻣﺎﻡ ﻫﺬﺍ ﺍﻻﺧﺘﻴﺎﺭ. ﺏ ( ﰒ ﻣﻦ ﺍﻻﺧﺘﻴﺎﺭﺍﺕ ﺍﻻﺧﺘﻴﺎﺭ
Leaf
–
Boxplots and
ﺍﺧﺘﺮ .Noneﰒ ﻗﻢ ﺑﺘﻌﻄﻴﻞ
– ،Stemﺍﳍﺪﻑ ﻣﻦ ﻫﺬﻩ ﺍﳋﻄﻮﺓ ﻫﻮ
ﺗﻘﻠﻴﻞ ﺍﳌﺨﺮﺟﺎﺕ ﺍﻟﱵ ﻟﺴﻨﺎ ﰲ ﺣﺎﺟﺔ ﺇﻟﻴﻬﺎ. ﺝ ( ﰒ ﺍﺿﻐﻂ Continueﻟﻠﻌﻮﺩﺓ ﻟﻠﻤﺮﺑﻊ ﺍﳊﻮﺍﺭﻱ ﺍﻟﺴﺎﺑﻖ. ﰒ ﺍﺿﻐﻂ ،OKﺳﻨﺤﺼﻞ ﻋﻠﻰ ﺍﻟﻨﺘـﺎﺋﺞ ﺍﻟﺘﺎﻟﻴـﺔ ﰲ ﻧﺎﻓـﺬﺓ ﺍﳌﺨﺮﺟـﺎﺕ
(4
:Output
:ÕîÜÈnÛaë@wöbnäÛa@Íí‹Ðm
◘
א
א א
א א
א
–
א
–
א
א
P. value
א
0.129
17
0.20
0.970
17
0.780
129
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
ÉibÛa@Ý—ÐÛa
:ÕîÜÈnÛa@òÔí‹ א
א
P.Value
א א
א
א
א
א
،
א
[ א
א
א
א
א א
. א
א
א
] א
א
،
א
א
0.05
א
א .
א
◘
א
א
@ZïÓaìjÜÛ@ïma‰Ûa@ÞýÔnüa@ZïãbrÛa@‹“Ûa
:òîöb—ya@ë‹ÐÛa א
א
א
א
)
א א
:(H0)
א .( א א
) א א
א
:(H1)
א
א
א
א
◘
.( א א
:áبa@ña†c א
א א
א
א
א
Durbin
– Watson Test :Šbjn‚üa@‰îÐäm@paì‚
:(DW)
◘
א
◘
:¶ëþa@ñì©a
130
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥
א
א
Durbin-Watson
א א
، א
Durbin
א
א
א
א
)
א
א
א
.(2.224)
א
:òîãbrÛa@ñì©a :(– Watson
Durbin
א .(n)
א
– Watson
א
،
א،(dL)
א
،(K) :
א
א א
א: .(du)
א
، 15 = n ، 1 = k
א
d L = 1.08 d u = 1.36
:א א ، א
א א
א
א
א:òrÛbrÛa@ñì©a
א
א א :
: .( 4-dL<DW<4 ) .( 0<DW<dL )
א א:
: .( 2<DW<4-du)
(1
א
א
א
א
א א:
א א א
א:
א א
א
(2 א
131
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ÉibÛa@Ý—ÐÛa
.( du<DW<2) ،
א
א
א א :
Durbin
א א
א
.(4-du<DW<4-dL) :
א
א
.(dL<DW<du)
א
א
. 2.224
א
–
א א ،(
א:
)
א
)
1.36
א
) 15
:æc@b·ë
א
DW
א
א
:
(3
−
−
du
] (Watson
K
א
(
א
(4-1.36= 2.64) א.[ ٪ 5 .2<DW(2.22417)<2.64
−
، (2<DW<4-du)
:Ša‹ÔÛa@æìØí@áq@åßë א [ א
) א א א א
א
א
א
]
. א :( :
א
א
א
א
א
א
.( א א א
א
א
א
)אïÓaìjÛa@ãb¤@Šbjn‚a@Z@sÛbrÛa@‹“Ûa@ א
א
132
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥
:ïãbîjÛa@á‹Ûa@Þý‚@åß@Z¶ëþa@òÔí‹Ûa א :( א
א
א א א
א
א
)
א
،
א
@@ א
א ،(
א א א א
، א א
א
] . א
א
א
א א
: æc@bäç@Åyýí
א א א
א
א
. א
א
א
)
א
א א
[ א
133
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ÉibÛa@Ý—ÐÛa
، .
א
א
א
Goldfield
א
– Quandt
(Goldfield – Quandt òÔí‹ I@òîib¨a@òÔí‹Ûa@ZòîãbrÛa@òÔí‹Ûa @ @Zpaì©a א
א
א
א
.1
: א
א
א
א
Sort Cases
. א.
Data
:
Sort
א
א
א
א
א
א ) Ascending
א
Income (x)
א א
א
א
א
.
א
.by
א
Sort Order
.(
134
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥
،ok
.א
א
א
(
.2 א
1
،
א
א
٪20
א
)א
א
א (،
א 3
א
)א
).(10) ،(9) ،(8
א
)،(1
א
א .א
:
3.4
א א א
) 3.4 = 0.20 × 17ﻤﺸﺎﻫﺩﺓ(
135
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
ÉibÛa@Ý—ÐÛa
،
א :א
7
)...........(2) ،(1
א
)........(12) ،(11
) ،(7א
).(17
א
א
.3 א
، א
)( א
א
א
א
א א
א א
א
)(SSE א
.
א
:
א
א א ،
א
א א
א
: א א
Data
א
א
א
Select Cases
א
:
136
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥
:
א
א
א
א א
Based on time or case range
:
א
:
Continue
، א
א
א
א
א
.
،ok
א
א
א
א
א
א
א
،
:
א
א א א
א
Range
א
א א
א א
א
א
א א
א
137
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ÉibÛa@Ý—ÐÛa
א א א
. א
א אא
א )(y
)(x
،
:
138
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥
(SSE)(1)
א
:
אא
.(411.690) @HSSEIH2I@
א
א
( )
א @ @Z
א
139
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ÉibÛa@Ý—ÐÛa
.(44.824)
:
א
(SSE)(2)
،
( אFˆ )
א
א
( )
(SSE )2 44.824 Fˆ = = = 0.1088 (SSE )1 411.690
140
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ÁîjÛa@ï©a@Ša‡®üa@ÝîÜ¥
)(
) ˆ ( Fא
א
א
א
א ،א
א
) ،( α א
א
0.1088
، 5.05א א
א
) ˆ ( Fא
א
) ˆ ( Fא
) F(5, 5, 0.05א א
) (F
.
æc@‡−@bäçë א
א א
א
.
א
א א
א א
.
141
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
ÉibÛa@Ý—ÐÛa
@@ @@ @@ @@
142
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
åßbrÛa@Ý—ÐÛa @@ @@ @@ @@ @@ @@ @@ @@ @ @†‡Èn¾a@Ša‡®üa@ÝîÜ¥ Multiple Regression
143
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
144
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
†‡Èn¾a@ï©a@Ša‡®üa@ÝîÜ¥
@ @åßbrÛa@Ý—ÐÛa
@ @†‡Èn¾a@ï©a@Ša‡®üa@ÝîÜ¥ @Multiple Linear Regression א
،
א
א
، OLS
@†@ ìuë@â@ ‡Ç
א א
א
א
א
א
א
.Multicollinearity òíÐnÛa@paÌn¾a@µi@ó‚@xa놌a @ @Zó©a@xa놌übi@‡—Ôí .
א א א
א
א
א
א א
א
א
،א
א
א א
א
א
א
:
،
א
.(1)
א
א
א
א
א
אא
א
א א
א
א
:
א
א
א
א
@ Z¶ëþa@ òÔí‹Ûa
א א
א
. 0.7− ، 0.7+
א
1
Makridakis, Spyros, (1998), " Forecasting: methods & applications", 3 rd Edition, John Wiley & sons Inc., p 288.
145
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
@ @åßbrÛa@Ý—ÐÛa
א
Variance
א
.
א
א א
א א
.
א
ZòîãbrÛa@ òÔí‹Ûa
inflation factor (VIF)
א @ @:
(5)
א
(VIF) א א
:Þbrß
@@ .٪5
،
א
א
א
:lìܾa
146
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
†‡Èn¾a@ï©a@Ša‡®üa@ÝîÜ¥
:paì©a :
א
Regression
:
א
א
א
א
א
א
א
،Analyze
،Linear
(1
א
א
(2
147
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
@ @åßbrÛa@Ý—ÐÛa
א
:
. Respondent א א
א
א
א
א
[y]
א
א א
(x1, X2, X3)
א
א
א
א
א
.
.
. Independent(s) :
א
א
א
א
،Statistics
א
.
148
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
†‡Èn¾a@ï©a@Ša‡®üa@ÝîÜ¥
א
:
א
אא
] ،Durbin – Watson א
א
א
א
.
א
. [Residuals א ] א א
א א
א .
א
א א
א
א .[ א
.
א
Collinearity diagnostics
א א
Model Fit
א
א
Estimates
א
א
א
א
א
א ..
א
א
Continue
. א
.
149
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
@ @åßbrÛa@Ý—ÐÛa
א
Save
א
:
א :
א
: א א
א
א
א א
א
(3
א
א
א
אא .
Unstandardized Predicted Values
א
א .
א א
standardized Residuals
א
א
א
Continue
א
. .
150
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
†‡Èn¾a@ï©a@Ša‡®üa@ÝîÜ¥
א
Plots
א
:
א :
א א
א א
: א א א .
א
א
א
א
אא .
Normal probability plot
. Standardized Residual Plots א
(4
א
א
א
،ok
Continue
א:
א
א
א
א
. (5
א .א
א
@ð‰Ûa@Ša‡®üa@xˆì¹@òîyý–@óÜÇ@áبaë@wöbnäÛa@óÜÇ@ÕîÜÈnÛa ZéÔîÏìm@ @ @ZŠ‡Ô¾a@Ša‡®üa@xˆì¹@Zü ëc Y = 4.421 + 0.345 X1 – 1.367 X2 + 0.209 X3
151
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
@ @åßbrÛa@Ý—ÐÛa
:
א
،
. (4.421)
א א
א
:( β 0 )
א
◘ א
אא
א
◘
.(0.345)
( β1 ) o
.(-1.367)
( β2 ) o
.(0.209)
( β3 ) o
@ @Nòí‹ÄäÛa@Âë‹“Ûa@Z@bîãbq :Ša‡®üa@pýßbÈß@òàîÓë@paŠb’g@HòîÔäß@ëcI@ÖbÐma א
א
א
א
א
א א א
،٪ א א
א א א
،א
.
א
א
א
٪ 65.2
(٪
א א
א
א
: xˆìàäÜÛ òíÐnÛa ñŠ‡ÔÛa (2 א
א
65.2
א
א
(1
א (X1,
34.8)
X2, X3)
א،(Y)
א
،
א
א א
א
א
א
. א
א
@ @Nòîšbí‹Ûa@Âë‹“Ûa@ZZbrÛbq 152
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
†‡Èn¾a@ï©a@Ša‡®üa@ÝîÜ¥
Z@xˆìàäÜÛ@òîÜØÛa@òíìäȾa H1 ◘ א
:
א
א
א
) :( H 0
א
א
) :( H 1
א
א
א
◘ א
. .
א
:
א
) :( H 0
א
א )
א
א
) :( H 1א
א
◘
א
(.
א
)
א
א א
א
א
א
(.
:
: ،
P.Value
א
א א
א
א א
א א
א
א
א
א
א
:
،٪ 5
א
، א
א
.
153
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
@ @åßbrÛa@Ý—ÐÛa
א
ANOVA
א א P. Value
א
א F
א
MS
SS
cal
א
DF
א
א
Source
א
א
0.000
12.874
2.292
6.877
3
*
*
0.178
2.849
16
א
*
*
*
9.726
19
א
:xˆìàäÜÛ@òîö§a@òíìäȾa (2 : 0
0
=0
1
0
≠0
H :B H :B
0
1
=0
1
1
≠0
H :B H :B
0
2
=0
1
2
≠0
H :B H :B
א
א
◘
:( B0 )
−
:( B1 )
−
:( B 2 )
−
154
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
†‡Èn¾a@ï©a@Ša‡®üa@ÝîÜ¥
) :( B3
−
א
◘
א
=0
3
0
≠0
3
1
H :B H :B
: א
א א
א
א
א
B B
4.421
11.895
0.345
0.931
0.365
2
B
-1.367
-5.545
0.000
3
B
0.209
3.854
0.001
1
: ) :( B0 א
א
א
) (
0.000
0
א
א
P. Value
א
P.Value
،٪ 5 א
א
،
א
א
א
א א
.
155
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
@ @åßbrÛa@Ý—ÐÛa 0.365
א
א
:( B1 )
א
P.Value
א
،٪ 5 .
،
א
א א
א
،٪5 .
،0.001 א
א א
א
،٪
.
א ( B2 )
א ، ( B3 )
א
P.Value
א
( B1 )
א :( B2 )
א
P.Value
א
א
א א
א
5
א
( B3 )
.òí†bÈÛa ô‹Ì—Ûa pbÈi‹¾a Âë‹’ (3 Normality Test
ïÓaìjÜÛ ïÛbànyüa ÉíŒìnÛa òîÛa‡nÇa :Þëþa ‹“Ûa
: .
א
.
א :
א א א
א
◘ א
א א:(H0)
א
א
א א:(H1)
א
א
א א
א
א
א
@ @bîãbîi :¶ëþa@òÔí‹Ûa
156
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
†‡Èn¾a@ï©a@Ša‡®üa@ÝîÜ¥
א
א
א
א .
א .(
א
א א
א א א
א
)
א
:
א
א
א א א
،
א
– Ò닪ìÜ×) Šbjn‚a åß Ý× Šbjn‚a âa‡ƒnbi bîiby :òîãbrÛa òÔí‹Ûa @ @:(ÙîÜíë – ëib’) Šbjn‚aë ،(Òìã‹àî
@ @paì©a
157
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
@ @åßbrÛa@Ý—ÐÛa
(1
א
(2
ﰲ ﺍﳌﺮﺑﻊ ﺍﳊﻮﺍﺭﻱ ﺍﻟﺬﻱ
א
، Analyze Statistics
א
א
، Explore
ﺃ -ﻗﻢ ﺑﻨﻘﻞ ﺍﳌﺘﻐﲑ
Descriptive
א
א
א
א
:
ﺃﻣﺎﻣﻚ: Standardized Residual
ﺇﱃ ﺍﳌﺮﺑﻊ
ﺍﻟﺬﻱ ﺑﻌﻨﻮﺍﻥ .Dependent List ﺏ -ﻭﻣﻦ ﺍﻻﺧﺘﻴﺎﺭﺍﺕ Displayﺍﺧﺘﺮ .Plots ﺝ -ﰒ ﺃﻧﻘﺮ ﻓﻮﻕ ﺍﻻﺧﺘﻴﺎﺭ
Plots..
ﰲ ﻧﻔﺲ ﺍﳌﺮﺑﻊ ﺍﳊﻮﺍﺭﻱ ﺍﻟﺬﻱ
ﺃﻣﺎﻣﻚ ،ﺳﻴﻈﻬﺮ ﻟﻨﺎ ﻣﺮﺑﻊ ﺣﻮﺍﺭﻱ ﺟﺪﻳﺪ ،ﻛﻤﺎ ﻳﻠﻲ:
158
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
†‡Èn¾a@ï©a@Ša‡®üa@ÝîÜ¥
(3
ﰲ ﻫﺬﺍ ﺍﳌﺮﺑﻊ ﺍﳊﻮﺍﺭﻱ :ﻗﻢ ﲟﺎ ﻳﻠﻲ:
ﺃ -ﻧﺸﻂ ﺍﻻﺧﺘﻴﺎﺭ
Normality Plots with tests
ﻣﻦ
ﺧﻼﻝ ﺍﻟﻀﻐﻂ ﻣﺮﺓ ﻭﺍﺣﺪﺓ ﺑﺎﳌﺎﻭﺱ ﰲ ﺍﳌﺮﺑﻊ ﺍﻟﺬﻱ ﺃﻣﺎﻡ ﻫﺬﺍ ﺍﻻﺧﺘﻴﺎﺭ. ﺏ -ﰒ ﻣﻦ ﺍﻻﺧﺘﻴﺎﺭﺍﺕ ﺍﻻﺧﺘﻴﺎﺭ
Leaf
–
Boxplots and
ﺍﺧﺘﺮ .Noneﰒ ﻗﻢ ﺑﺘﻌﻄﻴﻞ
– ،Stemﺍﳍﺪﻑ ﻣﻦ ﻫﺬﻩ ﺍﳋﻄﻮﺓ
ﻫﻮ ﺗﻘﻠﻴﻞ ﺍﳌﺨﺮﺟﺎﺕ ﺍﻟﱵ ﻟﺴﻨﺎ ﰲ ﺣﺎﺟﺔ ﺇﻟﻴﻬﺎ. ﺝ -ﰒ ﺍﺿﻐﻂ Continueﻟﻠﻌﻮﺩﺓ ﻟﻠﻤﺮﺑﻊ ﺍﳊﻮﺍﺭﻱ ﺍﻟﺴﺎﺑﻖ. (4
ﰒ ﺍﺿﻐﻂ ،OKﺳﻨﺤﺼﻞ ﻋﻠﻰ ﺍﻟﻨﺘـﺎﺋﺞ ﺍﻟﺘﺎﻟﻴـﺔ ﰲ ﻧﺎﻓـﺬﺓ ﺍﳌﺨﺮﺟـﺎﺕ :Output
159
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
@ @åßbrÛa@Ý—ÐÛa
א
◘
:
א א
א
א א
א
א
א א
–
א
–
א
◘ 0.05
א
א
א
0.166
20
0.149
0.929
20
0.189
א ،
א
א
א
P.Value
،
. א
א
: א
א
P. value
א א
א
א
א
א א א
] א
א
א א
א
א א
א [
א א .
@ @@ZïÓaìjÜÛ@ïma‰Ûa@ÞýÔnüa@ZïãbrÛa@‹“Ûa
◘
א
א
:
א
א
):(H0
א
א
):(H1
א א
א א א (.
א
)
א א
א
)
א
א
א
א א (.
160
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
†‡Èn¾a@ï©a@Ša‡®üa@ÝîÜ¥
א א
◘
:
א
א
Watson Test
א
◘ א
א
א
א
א
א א
– . Durbin
א
:
:
א
א
א
א
):(DW א
)(DW
א
א
−א
،
).(1.488
:
א
א
א
)
א
:(Durbin – Watson א
א
:
16 = n ، 3 = k
d L = 0.86 d u = 1.73
א
א
א
א א
א א:
:א
א
א א
א
א
א א
א ،
: א
(1
א
א
א
א
א
: :א :א
) .( 4-dL<DW<4 ) .( 0<DW<dL
161
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
@ @åßbrÛa@Ý—ÐÛa
:
א
.( 2<DW<4-du)
א:
.( du<DW<2) ،
א:
א
(2
א
א
א
א
א א :
−
א א
א
.(4-du<DW<4-dL) :
א
א
.(dL<DW<du)
א
א
. (0.86<DW<1.73) א א
א .
:
، dL<DW<du :
א
−(
אא
(3
– א
א
)א א
א. א
@ @ZHåíbjnÛa@pbjq@Šbjn‚aI@ïÓaìjÛa@ãb¤@Šbjn‚a@Z@sÛbrÛa@‹“Ûa@ :
א
א :ïãbîjÛa@á‹Ûa@Þý‚@åß :¶ëþa òÔí‹Ûa
א
א
א א א
א .
א
@ @Zpaì©a א
א
א
Scatter
א
א
Graphs
:
(1
א
162
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
†‡Èn¾a@ï©a@Ša‡®üa@ÝîÜ¥
،Simple
: א
א :
א
א
א
א א
: א Standard
.Y Axis א
א
א א
א א
אא
א
Define
א
אא
−
residual [zre_1]
163
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
@ @åßbrÛa@Ý—ÐÛa
א
− א
א
(2
)א
Unstandardized Predicted Value
א
][pre_1
א
א
(
א .X Axis
א א
ok
א
א
:
א
: א )
א א א
א א
א א א א
.
א
א א א א
א
א
(،
א א ،
א
]
א
א [
164
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
†‡Èn¾a@ï©a@Ša‡®üa@ÝîÜ¥
א
. א
.
א
א
א
א
Goldfield
א
א
– Quandt
(Goldfield – Quandt òÔí‹ I@òîib¨a@òÔí‹Ûa@ZòîãbrÛa@òÔí‹Ûa @ @Zpaì©a א
א א
א
א
א
Sort Cases
א
א
.
א
א Ascending
א
(x3) א א
א
: א
א
א
.Sort א
Sort Order
.(
א
א.
Data
:
א
.1
א
אא by
א
. א א )
165
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
@ @åßbrÛa@Ý—ÐÛa
،ok
.א
א
א
(
.2
א א
א
٪20 א
א
) .(1א
1
א
א
:
א
،
א א
4
א
).(12) ،(11) ،(10) ،(9 א :א
א
)4 = 0.20 × 20
א
)،(x3
א
8
)א
א ، א
א
)،(1
(
.
166
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
†‡Èn¾a@ï©a@Ša‡®üa@ÝîÜ¥
א
א
א
א،(8)
א
.(20) (SSE) .
א
...........(2)
........(14) ،(13)
א
א
א
، :
، א א
א א
א א
.3
א
א
א
א א
א א
Select Cases
א
א
:
אo
Data
:
:
א
א
א
א
א א
Based on time or case range
:
א
א
.
א
א
א
o א
Range
167
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
@ @åßbrÛa@Ý—ÐÛa
א
o
א
א
א א א
،ok
א
א
:
.א
Continue
א א
א א א
א ،
א א א
א א א
א
،
א
:
168
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
†‡Èn¾a@ï©a@Ša‡®üa@ÝîÜ¥
.
א א
א
א
.
،
אא
א
א )(y
)(x's
:
אא
א
:
א
)(SSE)(1
).(0.721
.
א
א
@HSSEIH2I
א
@ @:
169
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
@ @åßbrÛa@Ý—ÐÛa
א
א
א
)(SSE)(2
).(0.334
170
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
†‡Èn¾a@ï©a@Ša‡®üa@ÝîÜ¥
:
،
( אFˆ )
.
( אFˆ )
.
(SSE )2 0.334 = = 0.4632 Fˆ = (SSE )1 0.721 א
0.4632
א
א א
א א
א، 3.44 .
א
אF(8, 8, 0.05) א
.
א
א
@ @ZH@òÜÔn¾a@I òíÐnÛa@paÌn¾a@µi@ó©a@xa놌üa@â‡Ç@‹’@Z@Éia‹Ûa@‹“Ûa
:(VIF) åíbjnÛa@მm@ÝßbÈß@âa‡ƒnbiZü ëc Coefficients
א
אא :
א
،
א
171
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
@ @åßbrÛa@Ý—ÐÛa
:ÕîÜÈnÛaë@wöbnäÛa@Íí‹Ðm א
Tolerance
VIF
0.976
1.025
X1
0.955
1.047
X2
0.946
1.057
X3
א
: א א
א
א
، (5 )
אא .
(VIF)
א א
א
:א
Tolerance
. VIF =
1 Tolerance
Correlation Matrix ÂbjmŠüa@òÏìЗß
Zbîãbq
:paì©a ،Bivariate
א
א
Correlate
:
Analyze
א
א
א
א
א
(1
172
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
†‡Èn¾a@ï©a@Ša‡®üa@ÝîÜ¥
אא
(2 א א
א
א
א :
א
א ،Variables
א
א א א
)(X1, X2, X3
،ok
:
173
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
@ @åßbrÛa@Ý—ÐÛa
:Õj@b¿@|›ní א א
א א א
)،(0.70 ،
א א
א א
א א
.
174
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
ÉbnÛa@Ý—ÐÛa @@ @@ @@ @@ @@ @@ @@ @@ @ @ïÜßbÈÛa@ÝîÜznÛa Factor Analysis 175
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
176
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
ïÜßbÈÛa@ÝîÜznÛa
@@ @@ @ @ïÜßbÈÛa@ÝîÜznÛa @@
Factor Analysis @ @ZïÜßbÈÛa@ÝîÜznÛa@‰îÐäm@Ýya‹ß :ÂbjmŠüa@òÏìЗß@˜zÏ :¶ëþa òÜy‹¾a א
א
א
א : א
.( א .( .(א
)א،1 .(א א
)א،(1±) א
)،
א
)א،
א
א
א
א
א .
א
.
0.25
. .
0.90
א
א
.
א א
:ï©a@xa놌üa@òÜØ“ß@†ìuë@â‡Ç@åß@‡×dnÛa :òîãbrÛa òÜy‹¾a Multi-Collinearity
א .
א א
א א
א א
א א
א ،
א א
א א
.ﺎ ﺍﻟﻘﻴﻤﺔ ﺍﳌﻄﻠﻘﺔ ﺑﺼﺮﻑ ﺍﻟﻨﻈﺮ ﻋﻦ ﺍﻹﺷﺎﺭﺓ ﻧﻌﲏ1
177
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
@ÉbnÛa@Ý—ÐÛa
א א
א
א אא
0.00001
א א א ) א.(
א
.
،(
א
) א
، 0.00001
א
א
،
א א
) 0.80
. א
א
א א
א
.(Andy Field :òäîÈÛa@ávy@òíbÐ×@ô‡ß@:òrÛbrÛa òÜy‹¾a א א
،
א א
א .
KMO
א
א א
א
א
א –
א
א
، א א
א
א
א
–
א
א
، .test
:wöbnäÛa@Ðmë@ÝßaìÈÛa@™ýƒna :òÈia‹Ûa òÜy‹¾a
@ @ZïÜàÇ@Þbrß Factor Analysis
א :
א א א
א א
א
178
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ïÜßbÈÛa@ÝîÜznÛa
@ @Zpaì©a א
Data Reduction
:
א
א
א
א א
،Analyze ،Factor
א א
א
.1
179
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
@ÉbnÛa@Ý—ÐÛa
: א
א
(x1,
x2
……..
א
x11)
א
א
א
א
.2
א .Variables א
א
א
א
،Descriptives
: א
Correlation Matrix
.3
א
א
:
א
א
אא
א א
א :
180
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ĂŻĂ&#x153;Ă&#x;bĂ&#x2C6;Ă&#x203A;a@Ă?ĂŽĂ&#x153;znĂ&#x203A;a
â&#x20AC;Ť×?â&#x20AC;Ź
â&#x20AC;Ť×?â&#x20AC;Ź
â&#x20AC;Ť×?â&#x20AC;Ź
.
(P.Value)
:KMO
â&#x20AC;Ť×?â&#x20AC;Ź
â&#x20AC;Ť×?â&#x20AC;Ź
:Significance .
.
:Coefficients
â&#x20AC;Ť×?â&#x20AC;Ź
â&#x20AC;Ť×?â&#x20AC;Ź.
Levels
â&#x20AC;Ť×?â&#x20AC;Ź
â&#x20AC;Ť×?â&#x20AC;Ź
. â&#x20AC;Ť ×?â&#x20AC;Ź.
:Determinant
â&#x20AC;Ť×?â&#x20AC;Ź
and Bartlett's test of sphericity
: .
â&#x20AC;Ť×?â&#x20AC;Ź
â&#x20AC;Ť×?â&#x20AC;Ź
: KMO test o
â&#x20AC;Ť×?â&#x20AC;Ź
: Bartlett's .
. Ř&#x152;Extraction
.
â&#x20AC;Ť×?â&#x20AC;Ź
â&#x20AC;Ť×? ×?â&#x20AC;Ź â&#x20AC;Ť×?â&#x20AC;Ź
test o
â&#x20AC;Ť×?â&#x20AC;Ź
â&#x20AC;Ť×?â&#x20AC;Ź
â&#x20AC;Ť×?â&#x20AC;Ź
Continue
â&#x20AC;Ť×?â&#x20AC;Ź
: :
â&#x20AC;Ť×?â&#x20AC;Ź
â&#x20AC;Ť×?â&#x20AC;Ź â&#x20AC;Ť×?â&#x20AC;Ź
â&#x20AC;Ť×?â&#x20AC;Ź â&#x20AC;Ť×?â&#x20AC;Ź
â&#x20AC;Ť×?â&#x20AC;Ź
. .4
â&#x20AC;Ť×?â&#x20AC;Ź
181
â&#x20AC;Ť ×? " ! Ů&#x2C6;×?â&#x20AC;Ź# .... â&#x20AC;Ť ×? ×? Ů&#x2C6; Ů&#x2C6; Ů&#x2C6;â&#x20AC;Ź
0020109787442 $%&' â&#x20AC;Ť * ) ( ×?â&#x20AC;Ź+ â&#x20AC;Ť Ů&#x2C6;×?â&#x20AC;Ź, $- . â&#x20AC;Ť " Ů&#x2C6;×?â&#x20AC;Ź/01â&#x20AC;Ť ×?â&#x20AC;Ź2 * 3$ # & 4â&#x20AC;ŤŘŻâ&#x20AC;Ź
@Ă&#x2030;ď&#x2030;bnĂ&#x203A;a@Ă?â&#x20AC;&#x201D;Ă?Ă&#x203A;a
: â&#x20AC;Ť×?â&#x20AC;Ź
: â&#x20AC;Ť×?â&#x20AC;Ź
â&#x20AC;Ť×?â&#x20AC;Ź
Method:
â&#x20AC;Ť×?â&#x20AC;Ź
Unrotated factor
.
â&#x20AC;Ť×?â&#x20AC;Ź
. Principal components â&#x20AC;Ť×?â&#x20AC;Ź
Display
solution
â&#x20AC;Ť×?×?â&#x20AC;Ź
.
: â&#x20AC;Ť×?â&#x20AC;Ź Rotated
â&#x20AC;Ť×?â&#x20AC;Ź
â&#x20AC;Ť×?â&#x20AC;Ź
)
(Display)
â&#x20AC;Ť×?â&#x20AC;Ź
Ř&#x152;
â&#x20AC;Ť×?â&#x20AC;Ź
Extraction
â&#x20AC;Ť×? ×?â&#x20AC;Ź
â&#x20AC;Ť×?â&#x20AC;Ź â&#x20AC;Ť×?â&#x20AC;Ź
â&#x20AC;Ť×?â&#x20AC;Ź
â&#x20AC;Ť×?â&#x20AC;Ź
Â&#x2122;
â&#x20AC;Ť×?â&#x20AC;Ź
Ř&#x152;Rotation
(solution
â&#x20AC;Ť×?â&#x20AC;Ź
â&#x20AC;Ť×?â&#x20AC;Ź
Principle
Method
â&#x20AC;Ť×?â&#x20AC;Ź
Component
.Varimax â&#x20AC;Ť×?â&#x20AC;Ź
â&#x20AC;Ť×?â&#x20AC;Ź
Scree plot
. Eigenvalues over
.(1)
â&#x20AC;Ť×?â&#x20AC;Ź .
â&#x20AC;Ť×?×?â&#x20AC;Ź
Extract
â&#x20AC;Ť×?×?â&#x20AC;Ź
â&#x20AC;Ť×?â&#x20AC;Ź
â&#x20AC;Ť×?â&#x20AC;Ź
â&#x20AC;Ť×?â&#x20AC;Ź
â&#x20AC;Ť×?â&#x20AC;Ź
â&#x20AC;Ť×?â&#x20AC;Ź
Â&#x2122;
â&#x20AC;Ť×?â&#x20AC;Ź
.
â&#x20AC;Ť×?â&#x20AC;Ź
:
182
â&#x20AC;Ť ×? " ! Ů&#x2C6;×?â&#x20AC;Ź# .... â&#x20AC;Ť ×? ×? Ů&#x2C6; Ů&#x2C6; Ů&#x2C6;â&#x20AC;Ź
0020109787442 $%&' â&#x20AC;Ť * ) ( ×?â&#x20AC;Ź+ â&#x20AC;Ť Ů&#x2C6;×?â&#x20AC;Ź, $- . â&#x20AC;Ť " Ů&#x2C6;×?â&#x20AC;Ź/01â&#x20AC;Ť ×?â&#x20AC;Ź2 * 3$ # & 4â&#x20AC;ŤŘŻâ&#x20AC;Ź
ïÜßbÈÛa@ÝîÜznÛa
، א א
Number of factors
.Eigenvalues over .
א
א א
א
،Rotation
א
:
א :
א
א א
א
אExtraction
א
.Varimax
:
،SPSS
א
א
אא
.
א Rotation
.5
א
א
: א
:
:Orthogonal
.
א
Continue
א א
א :
א
183
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
@ÉbnÛa@Ý—ÐÛa
:
o
.Quartimax
o
Equamax
o
א
:Oblique Rotation
א .
.Varimax
א
.Direct Oblimin
o
Promax
o
א א
( א (
א א
א ) א א
א א
)
א
א א
א
א
.
א
א
א
א
א א א
א
א
، א א
א .
.
א
א א
،Options
א א
:
:
א
א
א
א
א
.
א
Continue
א
א
א
א
א
.6
184
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ïÜßbÈÛa@ÝîÜznÛa
: א א
Sorted by size א
Suppress absolute value less
א
אא
.
א א
: א
א א
א
א
א
.(0.10) א
، than:
(0.35) א
Continue
،ok
א:
א
،
א
א
א
א
.
אא
.
. א
א
.7
@ @ZwöbnäÛa@Ðm :Correlation Matrix ÂbjmŠüa òÏìÐ—ß Þë‡u:ü ëc :
אא
185
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
@ÉbnÛa@Ý—ÐÛa
õ§aë ،Correlation )
א
א
:(ðìÜÈÛa) Þëþa õ§a א
(ïÜÐÛa) ïãbrÛa
.Sig (1 – tailed) ( א
186
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ïÜßbÈÛa@ÝîÜznÛa
:wöbnäÛa@óÜÇ@ÕîÜÈnÛa א
א
א
: א
א
.(1±)
.1
. .1
א
.
.
א
א
א א
א
א
.2
0.25
.3 .4
0.90
א
א
KMO and Bartlett's Test åß@Ý×@Šbjn‚a@wöbnã@Þë‡u
: bîãbq
:KMO Test Šbjn‚a :Þëþa Šbjn‚üa א א
א
א
א
KMO
א
אא א א
א
،
א
،
א
. .
א א
.ﺎ ﺍﻟﻘﻴﻤﺔ ﺍﳌﻄﻠﻘﺔ ﺑﺼﺮﻑ ﺍﻟﻨﻈﺮ ﻋﻦ ﺍﻹﺷﺎﺭﺓ ﻧﻌﲏ1
187
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
@ÉbnÛa@Ý—ÐÛa
א
א
Reliability
.
א
א
אא
אא
א )1974
א
0.50
،א
(Kaiser א
،
א
א
א
.
.
@ @ZwöbnäÛa@óÜÇ@ÕîÜÈnÛa א
א
א
א א
0.549
א
א
oîÜmŠbi Šbjn‚a :ïãbrÛa Šbjn‚üa אא
א Matrix
א
א
1
א
א
א א
.Kaiserא
א @ @.
Bartlett's Test
1
א
، א
א
KMO
א
א
identity Matrix
Correlation
.
: :
א
א
.
ﻣﺼﻔﻮﻓﺔ ﺍﻟﻮﺣﺪﺓ ﻫﻲ ﺍﳌﺼﻔﻮﻓﺔ ﺍﻟﱵ ﺗﺘﻜﻮﻥ ﲨﻴﻊ ﻋﻨﺎﺻﺮﻫﺎ ﻣﻦ ﺍﻟﺼﻔﺮ ،ﻓﻴﻤﺎ ﻋﺪﺍ ﺍﻟﻌﻨﺎﺻﺮ ﺍﳌﻮﺟـﻮﺩﺓ
ﻋﻠﻰ ﺍﻟﻘﻄﺮ ﺍﻟﺮﺋﻴﺴﻲ ﺗﺴﺎﻭﻱ ﺍﻟﻮﺍﺣﺪ ﺍﻟﺼﺤﻴﺢ ،ﻭﻓﻴﻤﺎ ﻳﻠﻲ ﺷﻜﻞ ﻣﺼﻔﻮﻓﺔ ﺍﻟﻮﺣﺪﺓ ﻣﻦ ﺍﻟﺪﺭﺟﺔ ﺍﻟﺜﺎﻟﺜـﺔ )ﺃﻱ 3ﺻﻔﻮﻑ ﻭ 3ﺃﻋﻤﺪﺓ( ⎤ ⎡1 0 0 ⎥⎥A = ⎢⎢0 1 0 ⎦⎥⎢⎣0 0 1
188
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
ïÜßbÈÛa@ÝîÜznÛa
.
א
א
א
:
א
:wöbnäÛa Íí‹Ðm א
א
א
P.Value
df
(2 )
0.000
55
108.896
P.Value
א .
א
،
א
א، ٪5
א
א
א
א
א
:ÕîÜÈnÛa א
א
א
،
א
א
:Multi-Collinearity ï©a xa놌üa òÜØ“ß א
א
א
אא
. ( . א
א
א
א
) א0.00001 א
א א
0.000031
. א
א
:òßbç òÃìzÜß
189
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
@ÉbnÛa@Ý—ÐÛa
א
א א
א
א
א
א
א
א א .
،
א
.1 .
א
א
אא
א
.2 א
א
@@ Total Variance Explained ‹Ð¾a@ïÜØÛa@åíbjnÛa@Þë‡u@Z@brÛbq
:א ،Initial
אא
3
Eigenvalues ò@ îö‡j¾a@òäßbØÛa@Šë‰§a@ZÞëþa@õ§a
:
א
190
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ïÜßbÈÛa@ÝîÜznÛa
אא א
א
א
א א
א
א
.
אא
א
א א :
א
: Total †ìàÇ
.1
א א
א
אא
،
א א
אא
א ،
: 4.436 + 2.019 + 1.651 + …… + 0.01958 = 11
.2
א
: % of Variance †ìàÇ
،
א
: א
א
א ،
( × 100
.
א
א
=)
א א
א א
אא
÷
= )× ( 11 ÷ 4.43559
. 40.323 = 100
191
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
@ÉbnÛa@Ý—ÐÛa
:òÃìzÜß .
א
א
. ،
א
3
א א
א א
א
א
א
א
: ٪ Cumulative †@ ìàÇ
א
% of
א
א
.3
א .Variance
Extraction
:
א
،Sums of Squared Loadings
א א Total
[‹íë‡nÛa@ÝjÓ]@ò—܃n¾a@pýîàznÛa@pbÈi‹ß@Êìàª@ZïãbrÛa@õ§a
، א
א
א
א
א
א
א א א
אא .
א
192
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ïÜßbÈÛa@ÝîÜznÛa
א
א א
א.
א
א א
Eigenvalues
. א א
א
א
|؟îz—Ûa ‡yaìÛa aˆb¾ :æa@bäç@ÞaûÛa א א
( אExtraction) ،(
א א
א
א
א
א
א
א
א
א א )א
א
א
א
א
א
א א
.
Rotation Sums of
א
@‹@ íë‡nÛa@‡Èi@pýîàznÛa@pbÈi‹ß@Êìàª@Zs @ ÛbrÛa@õ§a
:
א
א، Squared Loadings
193
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
@ÉbnÛa@Ý—ÐÛa
אא א
א
א
א
، א
א א
א א
א
א
א
Rotation
.Varimax
א
:åí‹ßc@¶g@ñŠb’a@†ìã@bäçë .1א
א
א א .
א א
،
א
א
٪40.323 א א
א
א
א
.
א
٪30.876א
א א
א
א א
א
א. .2 ]
א
א א א
، Rotation א
א
، None
א א
[،
194
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
ïÜßbÈÛa@ÝîÜznÛa
.
א
א
א
א
.
א :a‡u@âbç
א ( א א
א
א א
א )
א
א א
אא
א
א،
א
א
. א א
، א
Extraction Method
א
א א
א א א
א
Principle Component
א
– Varimax
) Component Matrix pbãìؾa@òÏìЗß@Þë‡u@ZbÈiaŠ :
א
א:(
א
195
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
@ÉbnÛa@Ý—ÐÛa
א א
א א
א .
א
א
א
א
א
א
. א א
א א
) א0.35
Rotated Component
אא אÝjÓ
(
:
א
א
א א
Options
א
@@ @‹íë‡nÛa@‡Èi@pbãìؾa@òÏìЗß@Þë‡u@Zb@ßb‚ א:(
א
א א
) Matrix
196
א " ! وא# .... א א و و و
0020109787442 $%&' * ) ( א+ وא, $- . " وא/01 א2 * 3$ # & 4د
ïÜßbÈÛa@ÝîÜznÛa
א
אא
א
אא
א
‡Èiא
א
.
אא
1
א א
א
א
א
:
1
א א א א
א א
א )(X9 , X10, X11
א
א א
א
א
א
،
א
א א
א
،
א . א
א
،א
א א
ﺍﻟﺘﺮﺗﻴﺐ ﺍﻟﺘﻨﺎﺯﱄ ﻳﺮﺟﻊ ﺇﱃ ﺃﻧﻨﺎ ﻃﻠﺒﻨﺎ ﻣﻦ ﺍﻟﱪﻧﺎﻣﺞ ﰱ ﺍﳌﺮﺑﻊ ﺍﳊﻮﺍﺭﻱ Optionsﺃﻥ ﻳﻘﻮﻡ ﺑﺘﺮﺗﻴـﺐ
ﺍﳌﺘﻐﲑﺍﺕ ﺣﺴﺐ ﺍﺭﺗﺒﺎﻃﻬﺎ ﺑﻜﻞ ﻋﺎﻣﻞ ، Sorted by sizeﻛﻤﺎ ﻫﻮ ﻣﻮﺿﺢ ﺑﺎﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ:
197
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
@ÉbnÛa@Ý—ÐÛa
א
א
א
א
א :
:
אא
:
א ) א
א
א א :א
x9
x10
א
א
)x6
א
.( x11
)x4 x7
א
.( x3
x1
.( x2
)x8
(.
x5
@ @ZÝßaìÈÜÛ@óàß@Éšë א א
א
א
א א א
א
א
.
א א
)(11
א
א
א
א א
א
א
א
.
א א א
)(9 א
א
א א
א
א
א
. א
א
א א
א
:א
א
)(10
א
א
، ،
א
א
א
א א . א
א
א א
א
،א
א
א א
א א
.
198
א א و و و # ....א " ! وא
د 2 * 3$ # & 4א " /01وא , $- .وא ( ) * +א '&0020109787442 $%
ĂŻĂ&#x153;Ă&#x;bĂ&#x2C6;Ă&#x203A;a@Ă?ĂŽĂ&#x153;znĂ&#x203A;a
:òĂbèäĂ&#x203A;a@Ă&#x20AC;ĂŤ â&#x20AC;Ť"×?â&#x20AC;Ź
â&#x20AC;Ť×?×?â&#x20AC;Ź
â&#x20AC;Ť×?â&#x20AC;Ź
:
â&#x20AC;Ť×? ×?â&#x20AC;Ź
â&#x20AC;Ť×?â&#x20AC;Ź
â&#x20AC;Ť×?â&#x20AC;Ź
â&#x20AC;Ť×?â&#x20AC;Ź
â&#x20AC;Ť×?â&#x20AC;Ź
"
â&#x20AC;Ť×?â&#x20AC;Ź
â&#x20AC;Ť×?â&#x20AC;Ź
Field, Andy P., (2005). Discovering statistics using spss nd (2 edition), London, Sage. (Chapter 15).
199
â&#x20AC;Ť ×? " ! Ů&#x2C6;×?â&#x20AC;Ź# .... â&#x20AC;Ť ×? ×? Ů&#x2C6; Ů&#x2C6; Ů&#x2C6;â&#x20AC;Ź
0020109787442 $%&' â&#x20AC;Ť * ) ( ×?â&#x20AC;Ź+ â&#x20AC;Ť Ů&#x2C6;×?â&#x20AC;Ź, $- . â&#x20AC;Ť " Ů&#x2C6;×?â&#x20AC;Ź/01â&#x20AC;Ť ×?â&#x20AC;Ź2 * 3$ # & 4â&#x20AC;ŤŘŻâ&#x20AC;Ź