10 minute read

An electric debate

Figure 1. All of India’s installed capacity from 1947 - 2002.

Figure 2. India’s installed capacity between 2009 - 2010 and 2019 - 2020.

Figure 3. Growth of coal and RES installed capacity.

capacity are the increasing electricity demand and also the necessity to electrify unelectrified parts of India to provide power for all citizens in the country.

The major sources of India’s installed electricity capacity are fossil fuels such as coal, gas, diesel, and non-fossil fuels such as nuclear, hydropower (>25 MW), and renewable energy sources (RES). RES include small hydro projects (<25 MW), biomass gasifiers, biomass power, urban and industrial waste power, solar energy, and wind energy.

Figure 2 demonstrates that in the time period shown both coal and RES have seen a large jump in terms of installed capacity when compared to the other sources. In 2009, the percentage contribution of coal to India’s installed capacity was 53% (the installed capacity of coal also includes lignite), followed by hydropower (23%), gas (11%), and RES (10%). The installed capacity of RES in 2009 was 15.52 GW and increased by more than five times to 86.76 GW in 2019.

In unison with the government of India’s schemes to promote RES, there has been a rapid increase in the installation of RES in the last 10 years.

The role of coal and RES

Figure 3 presents the yearly growth of coal and RES in the last decade. In 2009, the installed capacity of coal was 84 GW and increased at a rate of 143% to 205 GW in 2019. As discussed earlier, RES increased at a growth rate of 459% from 15.52 GW to 86.76 GW. However, in the last five years the growth of coal installation has significantly reduced, as seen in Figure 3. Between 2015 and 2019 the growth rate of coal’s installed capacity was 11%, whereas RES increased at a higher rate of 89% in the same time period.

The status of renewable energy sources

The progression in the installed capacity of RES is presented in Figure 4. The growth in capacity addition of small hydropower and biopower is much less in the discussed time period, whilst the majority of growth is in wind power and solar power. In 2013 the installed capacity of wind power was 21.04 GW, and increased to 37.67 GW in 2019. Solar power in the same time period increased approximately 15 times – from 2.63 GW to 34.41 GW. This can be attributed to the various policies by the government of India promoting the installation of these two abundantly available RES.

The continued use of coal

Despite this large increase in installed capacity of RES, coal is the major source of power generation in the country. The percentage contribution of coal in installed capacity in 2019 increased to 55% followed by RES (23%), hydropower (12%), and gas (7%). The main reason for this is the addition of highly intermittent solar and wind power into the installed capacity of the electricity system. The generation from solar and wind power are variable across hours, days, and seasons. In a country such as India, the generation of solar power is only possible from 7.00 am to 6.00 pm. During Summer, the generation from solar power is expected to be very high, but in monsoon season the generation will be low. The same is also applicable to wind power. In monsoon season the generation from wind power will be high and in other seasons it may be at a lower level.

The efficient operation of the electricity grid requires a firm power generating source, but the power generation from RES is not firm and fluctuates in nature. In contrast, all of the conventional sources (coal, gas, oil, and nuclear) provide firm power for the seamless operation of the electricity grid in matching the supply and demand. Once switched on, the conventional power generation sources (firm power) will generate electricity continuously, subject to the availability of fuel.

The cost of going green

Going green requires an equal amount of conventional power plants (in this case, coal) to be added to the electricity system. There is a huge cost involved in this with respect to installation, operation, and maintenance. The focus on becoming more RES friendly means that the country has become more dependent on coal power plants.

For example, without RES, the cost of 1 MW of coal consists of its installation, operation and maintenance. In comparison, the cost of 1 MW of RES is the installation, operation, and maintenance cost of 1 MW of RES, as well as the installation, operation, and maintenance costs of 1 MW of coal.

Since the installation of coal power plants has reached saturation in the last few years, and with the government plan to increase its RES capacity to 175 GW, soon India is expected to have an electricity system with a greater percentage of RES in its installed capacity and generation. However, coal will be the major player in the years to come, albeit a smaller percentage. It will take a long time for RES to usurp coal as the major power generating source in the country.

The generation scenario

The quantity of electricity generated from non-RES in the year 2014 - 2015 was 1048 billion units, and this figure has gradually increased to 1250 billion units in 2018 - 2019. Similarly, the generation from RES in the year 2014 - 2015 was 62 billion units and this increased by more than double to 127 billion units in 2018 - 2019. Furthermore, with the increase in electricity demand over recent years, the contribution of RES generation has also increased from 5% in 2014 - 2015 to 10% in 2018 - 2019.

Higher generation but lower PLF

Figure 5 shows that the generation from conventional power plants has grown, in addition to the rise in RES generation to meet the increase in demand. Even with an increase in generation from conventional sources, with adequate coal power plant capacity, the majority of them are underutilised. This can be understood from Figure 6 which presents India’s plant load factor (PLF) for coal-based power plants from 2009 - 2010 to 2019 - 2020. PLF is the ratio of average power generated by the plant to the maximum power that could have been generated in a given time. Figure 6 demonstrates that PLF in 2018 - 2019 was 61%, and this is expected to decrease even further with the installation of more RES. One such example is provisional PLF in 2019 - 2020 until February which was just 56.41%. With this reduction in PLF, there are more coal power plants sitting idle without any electricity generation. This will have adverse impacts on the revenue of the power plants and also the equipment’s lifetime. Consequently, this loss in revenue should also be considered for the installation of RES.

The future of India’s electricity

To cater for the electricity demand, both conventional sources and RES are added to the electricity system. However, the electricity generation from both conventional and RES has increased significantly.

India’s goal of going green has been achieved to an extent. More RES capacity is added to the system and there is also an increase in the RES generation percentage in the electricity system; however, there has been no reduction in emissions levels. For example, if there was 120 GW of coal power plants in operation previously, and there is an increase in demand and also an increase in generation, there is still 120 GW or more of coal power plants in operation. The point to be noted here is, even though the PLF has reduced, the generation capacity has increased. Interestingly, some part of increased demand is supplied by RES.

However, with an increase in RES, the additional demand (increased demand) needed to be supplied by coal power plants has been reduced and the emissions avoided. India should be striving for a low carbon or reduced carbon electricity system and not a zero carbon electricity system. The country’s electricity sector is turning green; however, the caveat is that more RES installed capacity is added with more back-up conventional power generation capacity. The cost of RES is a higher number of idle coal power plants. Furthermore, for a country such as India, a system that is solely renewable energy is deemed not possible because of the inherent characteristics of RES. India’s expectation should be limited to an increased percentage of generation and a substantial installed capacity of RES. To have an effectively functioning electricity system that meets the increasing demand, the installation of more RES capacity alone is not a solution – there also needs to be an effective management of the demand side of the electricity system. Demand side management offers one such interesting option.

Bibliography

• www.cea.nic.in • https://powermin.nic.in • http://www.cea.nic.in/reports/annual/annualreports/annual_report-2019.pdf

Figure 4. Installed capacity of RES.

Figure 5. Electricity generation from RES and non-RES.

Figure 6. Coal and lignite based PLF in India.

René Peters, TNO and Chair of the North Sea Energy Program, the

Netherlands, sets out the objectives for the PosHYdon pilot project, which will produce offshore green hydrogen to enable the North Sea’s energy transition from oil and gas to renewables.

When it comes to the future of sustainable energy supply, renewables sectors still only go as far as speaking their good intentions and preparing roadmaps, future visions, and policy ambitions. These are often kept within the boundaries of the individual sectors: wind, gas, solar, and geothermal, with applications in power, industry built environments, mobility, or agriculture. In reality, the energy demand continues to increase and the growth of sustainable energy is barely keeping up. This is happening not only in the areas of the world with large economic growth, such as India, China and Africa, but also in North-West Europe. Price fluctuations due to a mismatch in the supply and demand of electricity will be even more challenging in the future, as countries require more energy and in particular, more electricity. Countries need to ensure the security of supply, however, many citizens do not want a wind turbine in their back yard, and solar parks face the problem of a lack of capacity on the regional grids. So how to move on from here, given the challenges facing renewable electricity? The answer is right next to the Netherlands: unlock the potential of the North Sea.

Europe has the ambition of moving towards a climate-neutral energy system that has to be reliable and affordable, and the North Sea will play a key role in achieving this. Reliability and affordability were initially achieved through North Sea oil and gas production, but this is now shifting increasingly towards renewable energy generated from offshore

This article is from: