Tecnicas de Laboratorio nº427

Page 1


LĂ­neaLab, S.L. C/ De la Mora, 47 08918 Badalona Tel. 93 320 76 00 Fax 93 320 76 01 E-mail: infolinealab@linealab.es www.linealab.es



Nº 427 - DICIEMBRE 2017

SUMARIO

hazte fan

711 724

novedades catálogos

Catálogos y documentación

727

control alimentario

Análisis de las micotoxinas en harina (maíz y trigo) con el Mycotoxin Screening System de Shimadzu

730

baños de agua

Julabo presenta la revolución de los baños de agua

732

companies

Bühler: New state-of-the-art application center for thin-film technology opened in Germany

734

companies

Zeiss continues growth trajectory

736

food control

Harmonization and standardization in food molecular microbiology: Listeria monocytogenes and Salmonella spp. cases David Rodríguez-Lázaro.

742

food control

Assessment of feed additives produced from or containing microorganisms Tackling antimicrobial resistance risks Rosella Brozzi.

744

uncertainty

Uncertainty of measurement of microbiological counts Seppo Ilmari Niemelä.

750

trade fairs

What will the process industry look like in 2025?

752

encuentros

XVI Workshop “Métodos rápidos y automatización en microbiología alimentaria”

“La Editorial a los efectos previstos en el artículo 32.1 párrafo segundo del vigente TRLPI, se opone expresamente a que cualquiera de las páginas de esta obra o partes de ella sean utilizadas para la realización de resúmenes de prensa. Cualquier forma de reproducción, distribución, comunicación pública o transformación de esta obra solo puede ser realizada con la autorización de sus titulares, salvo excepción prevista por la ley. Diríjase a CEDRO (Centro Español de Derechos Reprográficos) si necesita fotocopiar o escanear algún fragmento de esta obra (www.conlicencia.com; 91 702 19 70 / 93 272 04 47)”.

Revista disponible también para:

754 761

noticias guía del comprador

técnicas de LABORATORIO

644

Nº 427 DICIEMBRE 2017



novedades

Novedades

JULABO

Presto: dispositivos de gran potencia y dinamismo Ya se trate del control de la temperatura de reactores, ensayos de estrés en materiales o simulación de temperatura, la serie Presto de Julabo se creó para regular la temperatura con un alto grado de precisión y con el fin de garantizar unas fases de enfriamiento y calentamiento de extraordinaria rapidez. En particular, los modelos Presto W91 (en la foto), W92, W91x y W92x se benefician de un aumento considerable de su capacidad de refrigeración y calefacción. Así, la capacidad de calefacción pasa de 12 kW a 18 kW. Los modelos W92tt(x) ofrecen incluso el doble de capacidad calorífica. Asimismo, la capacidad de refrigeración de todos los modelos W92 ha aumentado notablemente; por ejemplo, a 25 kW con una temperatura de 20 °C. Los modelos especiales Presto W92x y Presto W92ttx también están disponibles con una bomba de engranaje de gran potencia. El ensamblaje magnético de las bombas crea un circuito de refrigeración con sello hidráulico, gracias al cual se impide que se produzcan condensación y olores. Mediante el uso de componentes de gran eficiencia, las series Presto W91 y W92 destacan por su alto rendimiento de calefacción, re-

frigeración y bombeo, factores que lo convierten en un auténtico producto de primera calidad. Una característica especial de los Presto se halla en el panel táctil industrial a color integrado de 5,7”. Este panel proporciona una visualización clara y sen-

cilla de toda la información relevante, y mejora considerablemente el manejo gracias a que puede controlarse tocando con los dedos. Los Presto son silenciosos como un susurro, por lo que apenas se oyen en el laboratorio. Además, funcionan a altas temperaturas ambiente (hasta +40 °C) de manera controlada y fiable. Las numerosas interfaces facilitan nuevas posibilidades de control remoto por medio de redes y su integración en sistemas de control. En caso de avería, una caja negra integrada permite recibir asistencia rápida del equipo de servicios de Julabo. Hay más información sobre los Presto W-91 y Presto W-92 en: https://www.julabo.com/es/productos/ sistemas-dinamicos-de-control-de-temperatura/control-de-temperatura-presto/presto-w91 https://www.julabo.com/es/productos/ sistemas-dinamicos-de-control-de-temperatura/control-de-temperatura-presto/presto-w92

www.julabo.com (Véase anuncio en la sección Guía del Comprador.)

técnicas de LABORATORIO

714

Nº 427 DICIEMBRE 2017


novedades ZEISS

Field emission scanning electron microscope Zeiss introduces its new field emission scanning electron microscope (FE-SEM) Zeiss GeminiSEM 450. The instrument combines ultrahigh resolution imaging with the capability to perform advanced analytics while maintaining flexibility and ease-of-use. With Zeiss GeminiSEM 450, users benefit from high resolution, surface sensitive imaging and an optical system that ideally supports them in obtaining the best analytical results – especially when working with low voltages. High-throughput electron backscatter diffraction (EBSD) analysis and low voltage X-ray spectroscopy (EDS) deliver excellent results due to Zeiss Gemini 450’s ability to precisely and independently control spot size and beam current. With the Gemini 2 design, it is possible to always work under optimized conditions as the user can switch seamlessly between imaging and analytical modes at the touch of a button. This makes Zeiss GeminiSEM 450 the ideal platform for the highest demands in imaging and analytical performance. In addition, this equipment has been designed to cater for a broad variety of sample types from classical conductive metals to beam sensitive polymers. In particular the variable pressure technology of Zeiss GeminiSEM 450 reduces charging on nonconductive samples without compromising Inlens detection capabilities and at the same time enables high resolution EDS analysis by minimizing the skirt effect. Based on this design, Zeiss GeminiSEM 450 provides a flexible instrument suited to a broad variety of applications in materials science, industrial labs and life sciences. “With Zeiss GeminiSEM 450 we have introduced a new FESEM flagship for highest performance analytics and ultrahigh

Metal foams like this open cell nickel foam are widely used as cathode substrate in batteries or super-capacitors. This highly topographic foam is characterized with large depth of focus (DOF) using the Inlens SE detector of Zeiss GeminiSEM 450 at 8 kV.

EBSD analysis of a cross-section of a Canadian coin at 20 kV and 5 nA. The total characterization of 185 thousand points takes just 20 minutes. Zeiss GeminiSEM 450 lets you achieve high current and high density simultaneously.

resolution. In addition to this product launch, we are also rolling out significant enhancements to both the Zeiss GeminiSEM and Zeiss Sigma families. As an example, the Zeiss Sigma family now benefits from the introduction of the high resolution gun mode that has previously only been available on the Zeiss Gemini series” says Dr. Michael Albiez, head of Electron microscopy at Zeiss.


novedades LEE

Boquillas pulverizadoras Lee Company ofrece al mercado una amplia gama de boquillas pulverizadoras: • adaptables al sistema 062 Minstac creado por The Lee Company • diferentes diámetros de boquilla disponibles • con o sin ayuda de aire comprimido. www.theleeco.com

MICROKIT

Quanti-P/A, nueva patente Todos somos testigos de los graves problemas que la detección de anaerobios conlleva en el laboratorio de microbiología de aguas y alimentos (hasta un 49% de falsos negativos por filtración de membrana en m-CP y en TSC, según los intercomparativos Seilagua de Microkit y hasta un 38,5% de falsos negativos en el método ISO con TSC Agar, según los intercomparativos Seilalimentos de Microkit). Por otra parte, en aguas se exige recuento para luego tener que indicar “0 ufc/100 mL”, lo que, aparte de tenernos todo el día contando ceros, impide triunfar al único kit que ha demostrado su eficacia en este parámetro (el Clostricult P/A de Microkit), al ser de presencia/ausencia y, por tanto, no indicar “recuento 0” sino ausencia (como si en microbiología no fuese lo mismo ausencia que 0). Por todo ello, Microkit ha reinventado la forma de conseguir recuentos fiables de anaerobios en 50-100 ml de agua y en 1 g de alimento. Ha denominado a esta nueva patente de Microkit “Quanti-PA”, porque aúna la tecnología desarrollada

con el hidragar de las DryPlates® (gelifica en frío a diferencia del agar-agar de toda la vida), con la tecnología de sus kits P/A, permitiendo convertir éstos en un método de recuento muy fiable, fácil de emplear (un solo analista puede procesar completamente hasta 50 muestras

técnicas de LABORATORIO

716

Nº 427 DICIEMBRE 2017

por hora), que además ahorra las jarras y atmósferas de anaerobiosis y, sobre todo, ahorra a los anaerobios (y a los analistas) el estrés de la filtración. En alimentos, además, esta nueva tecnología permite el recuento en 1 g (el método tradicional permite solo el recuento en 0,1 g), por lo que multiplica por 10 el límite inferior de cuantificación y el límite de detección. Ya están en el mercado los tres kits más necesarios con esta nueva tecnología: para Clostridium perfringens y sus esporas, para Clostridios sulfito-reductores y sus esporas y para Enterococos fecales. Útiles en el mismo formato, tanto para aguas como para alimentos y otras muestras sólidas. El modo de empleo puede consultarse en https://www.youtube. com/watch?v=A8WifR8mZ1k&t=7s. Solicite folleto completo a: microkit@microkit.es www.microkit.es (Véase anuncio en la sección Guía del Comprador.)


novedades ZEISS

Machine learning capability for microscopy On December 12th Zeiss announced Zeiss ZEN Intellesis, a new machine learning capability that enables researchers to perform advanced analysis of their imaging samples across multiple microscopy methods. The first algorithmic solution introduced by the Zeiss ZEN Intellesis platform makes integrated, easy to use, powerful segmentation for 2D and 3D datasets available to the routine microscopy user. Zeiss ZEN Intellesis software is available for the company’s full range of optical, confocal, X-ray, electron and ion microscopes. Dr. Markus Weber, Co-CEO of the Zeiss Microscopy Business Group, says, “Zeiss ZEN Intellesis is an important first step in our goal to rapidly bring new solutions to our customers through digitalization. By adding robust new capabilities like machine learning to our microscopy systems, we are initiating a stepchange in the way our customers in industry and academia manage and process vast amounts of imaging data generated by a range of imaging modalities. This enables them to easily and intelligently obtain scalable, quantitative insight.” Zeiss ZEN Intellesis allows users to train machine learning classifications on Zeiss image data sets as well as on any images readable by Zeiss ZEN software for any Zeiss microscopes. It applies that trained classifier across large, multi-dimensional datasets. It uniquely allows for multiple spatially registered datasets, acquired using correlative microscopy and classical image analysis tools, to be used in parallel during classification. Zeiss ZEN Intellesis also works with 6D datasets, including multichannel 3D stacks or tile images. In a geological example, a researcher might study sulfide mineralogical distribution using both coaxial light and backscattered electron imaging modalities. These techniques are first spatially registered before training a classifier, operating on both datasets at the same time. Once trained, this classifier can then be applied rapidly across a large area that is truly representative of subsurface geological heterogeneity, enabling large area mineralogical analysis using quantitative correlative microscopy.

Low contrast mining mineralogy grains, imaged using reflected light microscopy Left: Classified with machine learning; Right: Unclassified.

In addition to geological research that includes petroleum and mining industries, applications are currently in development for life sciences, materials science, metals research, manufacturing and assembly, and routine laboratory microscopy. Zeiss ZEN Intellesis brings new imaging solutions to a wider audience of researchers through an ecosystem of correlative workflows. Zeiss ZEN Intellesis works with any image format readable by Zeiss ZEN software platform, including CZI, TXM, OMETIFF, JPG, and PNG, and is data-agnostic. It can be used in conjunction with other software platforms offered by Zeiss, including Zeiss Atlas 5 for correlative microscopy, as well as any other 3D analytical tools on which users may rely such as ORS Dragonfly for imaging and analysis. Zeiss ZEN Intellesis is offered on a 30-day free trial basis, obtainable from the Zeiss Microscopy Online Shop: ZEN Software. Existing customers may use it in conjunction with their Zeiss ZEN Blue or Zeiss ZEN Lite software, while new users may freely download Zeiss ZEN Lite in order to test the capabilities of Zeiss ZEN Intellesis: www.zeiss.com/microscopy/int/downloads/zen.html


novedades

SARTORIUS STEDIM BIOTECH

New Versions of Data Analytics Software Solutions Sartorius Stedim Biotech (SSB), a leading international supplier for the biopharmaceutical industry, has introduced a new version of its SIMCA® and SIMCA®-online data analytical solutions, which are offered by its subsidiary Sartorius Stedim Data Analytics, formerly known as Umetrics. Every day, businesses generate a vast array of data derived from a variety of different sources. This data holds the key to better performance. The challenge is to interpret this information in a meaningful way. However, with so many parameters and such vast system complexity to consider, it is hard to find a solution that is both powerful and smart enough. SIMCA®, an established advanced data analytics and visualization program as part of the company’s proven Umetrics™ Suite, makes it possible to combine and analyze data from all sources to isolate, understand and act on the hidden gems that hold the secret to better decisionmaking and greater business success. SIMCA®’s multivariate data analysis engine enables companies to swiftly detect and analyze deviations from normal operating conditions by modelling an idealized process. Once this model is transferred into SIMCA®online, it serves as a valuable reference for your current production. The newly enhanced software offers an intuitive graphical interface and the flexibility to handle complex data, such as reworking, splitting and merging, and more. SIMCA® projects can be uploaded directly to an available SIMCA®-online server for real-time visualization of the process from a data point of view. The real-time monitoring and prediction system, SIMCA®-online, constantly monitors processes to provide a continuous snapshot of the users’ operations. It not only helps to identify when set parameters change, but also enables remedial action to be taken before production is affected,

ensuring that product quality remains consistent. With this level of control, it is possible to maximize resource efficiency, minimize operational costs and benefit from increased confidence in end-product quality. Among the new features in SIMCA®-online is the selfservice analytics capability, which allows anyone to create fundamental process models, regardless of their background. The new notification system, along with the new web client, gives the user peace of mind about the quality of production anywhere and anytime as this system provides an overview of the production processes on devices such as tablets or mobile phones. SIMCA® and SIMCA®online have been developed according to GAMP5 and have been extensively tested and validated. These programs are also used by the EMA and FDA for Real-Time Release testing. - See what others don’t. As leading experts for analyzing data, Sartorius Stedim Data Analytics helps companies in any industry, which include the pharma, chemical and food sectors, find the growth opportunities they

need using the comprehensive Umetrics™ Suite. These solutions enable them to harness the wealth of data within an organization, identifying vital elements to improve the results of research, product development and manufacturing processes. With improved process understanding and more consistent product quality, users will be able to reduce risk, speed up time to market and accelerate business growth. A complete solution encompasses software, training, support and project management. Also, as part of the Sartorius Group, a global company with approximately 7,500 employees, Sartorius Stedim Data Analytics provides the backup of an international network. - Experience the benefits for your business today. Find out how our solutions can help your business grow, whichever industry you are in. Visit www.umetrics.com to access a trial version of SIMCA® and view the details of our free SIMCA®-online simulation. www.sartorius.com

The real-time monitoring and prediction system, SIMCA®-online, constantly monitors processes to provide a continuous snapshot of the users’ operations.

técnicas de LABORATORIO

718

Nº 427 DICIEMBRE 2017


novedades RETSCH

Knife mill Grindomix GM 200 What do thousands of food laboratories world-wide have in common? They use the knife mill Grindomix GM 200! The standard mill for sample homogenization in the food industry has been completely redesigned and further improved. Tough? Fatty? Fibrous? No problem for the GM 200! The Grindomix GM 200 is the perfect mill to homogenize dry, oily, fatty, soft and tough sample materials - for analysis results with minimum standard deviation. New features of the GM 200 include: • Significantly improved performance: thanks to the new 1,000 W drive, the GM 200 is powerful enough to homogenize even difficult samples like tough meat with skin or fibrous plants or spices very quickly and efficiently • Boost Function: a speed of 14,000 rpm can be activated for a few seconds to facilitate homogenization of tough or sticky materials • Operation via touch display: easy, well-structured menu navigation, access to MyRETSCH web portal • Memory options: in addition to 8 SOPs, 4 program sequences may be stored (ideal for combining pre- and fine grinding cycles).

The new model is already available, the old model is no longer manufactured but spare parts will be supplied for another ten years. All accessories (grinding containers, knives, lids) of the old model are compatible with the new GM 200. www.retsch.com


novedades ORTOALRESA

Novedades del 2017 Siguiendo con su política de desarrollar productos que se adapten a diferentes procesos productivos y a las necesidades de sus clientes, a lo largo de este año 2017 Ortoalresa ha lanzado una serie de novedades que van desde nuevos accesorios, equipos con más capacidad y nuevas configuraciones, hasta la serie 22 de centrífugas dotadas con una nueva pantalla táctil TFT: • Microcen 24: pequeña centrífuga que incluye un rotor con capacidad para 8 tubos de 15 ml, muy versátil, ya que dispone de una gama opcional de rotores y adaptadores. • Dilitcen 22: nueva centrífuga con mayor capacidad (hasta 4 l). • Serie 22: tanto para la línea de centrífugas para aplicaciones generales, ventiladas y refrigeradas, como para los equipos desarrollados para las aplicaciones en petróleos, ventilados y calefactados. Como novedad principal, la serie 22 incluye una nueva pantalla táctil a color y funciones como el start delay, para programar el momento en el que ha de comenzar el ciclo; el linked program, que permite enlazar hasta 8 programas consecutivos sin intervención del usuario o el sistema de localización del desequilibrio ULS, que indica en pantalla el área en la que se ha producido el desequilibrio. • Rotores que amplían la versatilidad de la gama de centrífugas de Ortoalresa, dotándolas de más capacidad, como el rotor oscilante para 28 tubos de 15 ml; el rotor angular para

32 tubos de 15 ml y 15 ml cónicos; o el rotor oscilante para 6 tubos de 250 ml. entre otros. Puede consultar estas y otras novedades en la nueva edición 2017/2018 del catálogo de productos de la firma, del que puede solicitar un ejemplar a info@ortoalresa.com. www.ortoalresa.com (Véase anuncio en la sección Guía del Comprador.)

VACUUBRAND

Controlador de vacío para bombas de vacío ya existentes El nuevo CVC 3000 detect es un controlador de vacío de dos puntos compacto, que se conecta a las bombas o a las redes de vacío ya existentes. Con su válvula de vacío con resistencia química integrada forma una unidad para el control de vacío

compacta, de fácil instalación y lista para su uso inmediato. La eficiencia del proceso de laboratorio, por ejemplo la recuperación de disolventes con un evaporador rotativo, se incrementa significativamente por el control electrónico y además protege el ambiente. La función de control “detect” encuentra y detecta el punto de ebullición de un disolvente y así minimiza los ajustes necesarios. La tediosa búsqueda manual del punto de ebullición no es necesaria, incluso durante el trabajo con mezclas de disolventes. La formación de espuma y, por lo tanto, la pérdida de material de muestra, son evitados. El usuario ahorra tiempo y puede ocuparse de tareas más importantes. Con la función del programa incluso aplicaciones más complejas pueden funcionar de forma automática y reproducible. Así la introducción de perfiles de presión y tiempo (“rampas”) es posible. El CVC 3000 detect de Vacuubrand está disponible en versión de sobremesa y en versión para el montaje en pared. www.vacuubrand.com

Controlador de vacío CVC 3000 detect (versión de sobremesa).

técnicas de LABORATORIO

(Véase anuncio en la sección Guía del Comprador.)

720

Nº 427 DICIEMBRE 2017



novedades CARBUROS METÁLICOS

LEE

Crece la gama Freshline® con el túnel de congelación criogénica Easy Freeze Carburos Metálicos, compañía del sector de gases industriales y medicinales en España que forma parte del Grupo Air Products, ha anunciado la ampliación de su gama de productos Freshline® para el procesado de alimentos. La última incorporación a la gama de túneles de congelación de la firma es Freshline® EF, especialmente diseñado para ofrecer una solución sin complicaciones para aquellos procesadores que quieran poner en marcha una nueva línea de congelación con rendimientos de hasta 500 kg/hora. El túnel de congelación Freshline® EF requiere una mínima inversión inicial, su instalación y puesta en marcha se realiza rápidamente, y se puede personalizar en función de los requisitos del cliente, teniendo en cuenta las diferentes necesidades de los procesadores de alimentos. Es fácil de operar gracias a su intuitivo sistema de control PLC y recetas programables, el nuevo túnel de congelación EF también es fácil de mantener y limpiar, además de ofrecer una excelente eficiencia en el uso de nitrógeno. Como sucede con todas las soluciones Freshline® de Carburos Metálicos, el túnel EF ofrece congelación criogénica ultrarrápida y de alta calidad, cumple con todas las normativas y buenas prácticas, y cuenta con el respaldo de un soporte continuo de ingeniería, además de la experiencia en congelación de alimentos, la capacitación, las auditorías y la asistencia que ofrece la compañía. “Es genial poder ampliar aún más nuestra gama Freshline. El túnel de congelación EF ofrece diversos beneficios para sus usuarios, que esencialmente les permite incrementar su productividad, despejar los cuellos de botella y responder a las necesidades de sus clientes de una manera más rápida y eficiente”, comenta Neil Hansford, gerente de aplicaciones de Freshline en el Reino Unido e Irlanda.

Electroválvula serie 300 “Cada vez más pequeña.” Estas cuatro palabras resumen a la perfección la principal característica de la serie 300 de Lee Company. Con dos vías con membrana separadora, estos dispositivos de 7 mm de diámetro trabajan a presiones de hasta 2 bar y a 12 ó 24 V de tensión. Cabe destacar asimismo el volumen muerto nulo. www.theleeco.com

KERN

Balanzas de suelo BFB Kern ofrece una gama de balanzas de suelo diseñadas con todo esmero, desde modelos asequibles para principiantes hasta los modelos más sofisticados de acero inoxidable, pasando por prácticas soluciones de instalación. Algunas de las características de la serie BFB son: - Plato de pesaje atornillado (IP67), higiénico y fácil de desmontar y limpiar - Indicador XXL, con aprobación de homologación [M] - Calidad industrial robusta - Opción de rampas de acceso. www.kern-sohn.com

Modelo

www.carburos.com

BFB 600K-1SNM

técnicas de LABORATORIO

Intervalo Lectura de pesada (kg) (kg)

Superficie de pesada (mm)

600

0,2

1.000x1.000

BFB 1T-4NM

1.500

0,5

1.500x1.250

BFB 3T-3NM

3.000

1

1.500x1.250

722

Nº 427 DICIEMBRE 2017



catálogos

Catálogos y documentación

GFL

RITTER

Gama de agitadores

Edición hispano-portuguesa del catálogo Robotic Consumables

GFL ofrece un catálogo de 20 páginas dedicado a su serie de agitadores, que proporcionan, según convenga, un movimiento suave, un mezclado vigoroso o un agitado intenso a partir de varias trayectorias: orbital, de vaivén, oscilanteorbital, con vibración, etc. En total, este documento presenta 15 variedades de agitadores, con cinco tipos de movimiento. Todos tienen la marca CE y ostentan el sello TÜV alemán relativo a la seguridad (GS).

Ritter ha publicado la primera edición hispano-portuguesa del folleto Robotic Consumables. Este documento contiene la gama integral de consumibles para robots de pipeteado que ofrece Ritter Medical a aquellos laboratorios que trabajan a un alto nivel de automatización. www.ritter-medical.de

www.gfl.de (Véase anuncio en la sección Guía del Comprador.)

técnicas de LABORATORIO

724

Nº 427 DICIEMBRE 2017


catálogos

FST

Instrumentos de cirugía y microcirugía de precisión El nuevo catálogo F.S.T. contiene muchos nuevos productos para complementar la gama de instrumentos de cirugía y microcirugía de precisión destinados a la investigación científica y biomédica. La gama incluye pinzas, bisturíes y, en particular, microtijeras particularmente finas para la manipulación al microscopio. Para obtener más información, visite el sitio web de FST, disponible en 5 idiomas (español incluido) y que contiene una versión descargable del catálogo. También puede hacer sus pedidos y compras en línea y por correo electrónico o teléfono, teniendo en cuenta que no hay ningún requisito mínimo de compra. www.finescience.de


catálogos ENAC

Nueva norma ISO 17025 para la acreditación de laboratorios de ensayo y calibración La norma ISO/IEC 17025:2017, que incluye los requisitos para evaluar la competencia de los laboratorios de ensayo y calibración, ha sido publicada sustituyendo al texto vigente desde 2005, con el objetivo de adaptarse a los últimos cambios en el ámbito de los laboratorios y las nuevas tecnologías de la información aplicadas a las prácticas de trabajo, además de adecuarse a la estructura del resto de las normas de la serie 17000. De acuerdo a lo decidido por ILAC, los laboratorios acreditados deberán cumplir con los nuevos requisitos en el plazo de tres años de forma que, para esa fecha, todos los certificados de acreditación deberán haber sido emitidos haciendo referencia a la nueva norma, por lo que, antes de esa fecha, la Entidad Nacional de Acreditación (ENAC) deberá haber evaluado dicho cumplimiento. Por ello, ENAC publicará en breve el correspondiente plan de transición que regule dicho proceso. La nueva norma para la acreditación de los laboratorios ha sido desarrollada conjuntamente por International Organization for Standardization (ISO) e International Electrotechnical Commission (IEC) bajo la coordinación del Comité de Evaluación de la Conformidad de ISO (CASCO). ENAC ha participado en el grupo de trabajo de CASCO encargado de la revisión de la norma. Los principales cambios en la versión 2017 son: • El alcance se ha revisado para abarcar todas las actividades de laboratorio, incluidos los ensayos, la calibración y el muestreo. • Se ha adoptado una nueva estructura para alinear la nueva norma con el resto de normas de evaluación de conformidad de la serie ISO/IEC 17000. • El enfoque de proceso ahora ahora con el desarrollado en las normas más nuevas como ISO 9001 (gestión de calidad), ISO 15189 (para laboratorios clínicos) y la serie ISO / IEC 17000 (para actividades de evaluación de conformidad), poniendo énfasis en los resultados del proceso en lugar

de en la descripción detallada de las tareas y los pasos. • La norma está más enfocada al uso de las tecnologías de la información. Dado que los manuales, los registros y los informes en soporte papel se están eliminando gradualmente, incorpora el uso de sistemas informáticos, registros electrónicos y la producción de resultados e informes electrónicos. • Se ha agregado una nueva sección que introduce el concepto de “Pensamiento basado en el riesgo” (RiskBased Thinking) en línea con la nueva versión de ISO 9001 sobre sistemas de gestión de la calidad. • La terminología ha sido actualizada. Se han incluido cambios en el Vocabulario Internacional de Metrología (VIM) y la nueva norma se alinea con la terminología ISO, que cuenta con una serie de términos y definiciones comunes para todas las normas relacionadas con la evaluación de la conformidad. ENACes la entidad designada por el Gobierno para operar en España como el único Organismo Nacional de Acreditación, en aplicación del Reglamento (CE) nº 765/2008 del Parlamento Europeo que regula el funcionamiento de la acreditación en Europa.

técnicas de LABORATORIO

726

Nº 427 DICIEMBRE 2017

ENAC tiene como misión generar confianza en el mercado y en la sociedad evaluando, a través de un sistema conforme a normas internacionales, la competencia técnica de laboratorios de ensayo o calibración, entidades de inspección, entidades de certificación y verificadores ambientales que desarrollen su actividad en los sectores de Industria, Energía, Ambiente, Sanidad, Agricultura y Alimentación, I+D+i, Transportes, Telecomunicaciones, Turismo, Servicios, Construcción, etc. Contribuye así a la seguridad y el bienestar de las personas, la calidad de los productos y servicios, la protección del entorno y, con ello, al aumento de la competitividad de los productos y servicios españoles y a una disminución de los costes para la sociedad debidos a estas actividades. La marca ENAC es la manera de distinguir si un certificado o informe está acreditado o no. Es la garantía de que la organización que lo emite es técnicamente competente para llevar a cabo la tarea que realiza, y lo es tanto en España como en los 90 países en los que la marca de ENAC es reconocida y aceptada gracias a los acuerdos de reconocimiento que ENAC ha suscrito con las entidades de acreditación de esos países.


control alimentario

Análisis de las micotoxinas en harina (maíz y trigo) con el Mycotoxin Screening System de Shimadzu

Las micotoxinas son productos químicos producidos por microorganismos y son tóxicos para humanos, animales y cultivos. Como ejemplo, las aflatoxinas son un tipo de micotoxina, que son algunas de las sustancias cancerígenas de origen natural en el mundo. Se clasifican como carcinógenos del Grupo 1 (cancerígeno para los seres humanos) por la OMS, y están sujetos a regulaciones estrictas en muchos países y regiones del mundo.

E

sta aplicación describe el análisis para detección de micotoxinas en productos de grano (harina de trigo y harina de arroz) utilizando el paquete de soluciones de la i-Serie : Mycotoxin Screening System.

viene listo para usar y consta de columnas, métodos diseñados para el análisis de micotoxinas, manual de instrucciones con métodos de análisis y plantillas para los informes. El sistema puede determinar si los niveles de micotoxinas en los alimentos superan los niveles de referencia.

Mycotoxin Screening System

Actualmente, las técnicas más comunes utilizadas para identificar las aflatoxinas en los alimentos son HPLC y LC/MS. Con HPLC, la derivatización fluorescente se realiza a menudo para mejorar la sensibilidad, aunque las desventajas de la derivatización son el tiempo requerido y su complejidad. Por otro lado,

El sistema de cribado consta de un kit, para ser usado en el HPLC i-Series de Shimadzu, con los métodos de análisis, incluido el método de pretratamiento de muestras. El sistema

técnicas de LABORATORIO

727

Nº 427 DICIEMBRE 2017


control alimentario los LC/MS son más selectivos y más sensibles, pero suponen grandes inversión en equipamiento.

Análisis de una solución estándar Las matrices a las que va dirigido este sistema de cribado son las que aparecen en la Tabla 1. Las estructuras químicas de

*MycoSpin ™ 400 y MultiSep® 227 son marcas registradas de Romer Labs.

técnicas de LABORATORIO

728

Nº 427 DICIEMBRE 2017


control alimentario

de la UE (excluyendo los límites reglamentarios para comida de bebés). La Figura 3 muestra los cromatogramas de una mezcla estándar con niveles de micotoxinas equivalentes a los niveles de referencia de la UE*.

Análisis de las micotoxinas en grano Esta sección describe el análisis de los granos molidos después del pretratamiento. La Figura 4 muestra una vista general del método de pretratamiento de las muestras. El manual de instrucciones del sistema de cribado de micotoxinas contiene más detalles. Las Figuras 5 y 6 son, respectivamente: cromatogramas de muestras pretratadas de harina de trigo blando y harina de arroz, y de muestras pretratadas de harina de trigo y harina de arroz con una mezcla estándar de las micotoxinas que se producen en granos (compuestos diana enumerados en la Tabla 1).

algunos se muestran en la Figura 2, y se muestran las condiciones analíticas en la Tabla 2. El paquete incluye archivos de métodos de análisis, que eliminan la necesidad de optimizar condiciones. Se utilizó un RF-20AXS para realizar el análisis con longitud de onda de emisión y de excitación específicas para cada analito.

La comparación del área de cada pico en el estándar mezcla que contiene micotoxinas a los niveles de referencia de la UE, y cada pico en las muestras de harina permite la identificación de si las micotoxinas presentes en las muestras de harina se encuentran en exceso y la violación de los niveles de referencia. El sistema hace esta determinación sin necesidad de complejos análisis de los resultados por parte del usuario, permitiendo un cribado rápido y efectivo de los compuestos diana. www.izasascientific.com

Aunque los límites regulatorios para los niveles de micotoxinas en los alimentos puede variar según el país y la región, el sistema está diseñado para los límites regulatorios más estrictos

(Véase anuncio en la sección Guía del Comprador.)

*Las concentraciones de la mezcla patrón están ajustadas de acuerdo al método de pretratamiento descrito en el i-Series Solution Package Mycotoxin Screening System.

técnicas de LABORATORIO

729

Nº 427 DICIEMBRE 2017


baños de agua

Julabo presenta la revolución de los baños de agua

Los baños de agua Pura de Julabo establecen estándares completamente nuevos. Su diseño es moderno y adecuado para soportar las funciones prácticas de estos equipos. Para una mayor eficiencia y aún más ventajas en la labor cotidiana del laboratorio, los nuevos modelos Pura apuestan por el esmalte.

L

os revestimientos de esmalte de las superficies son totalmente resistentes a los arañazos y tan lisos que impiden que las bacterias y otros organismos dispongan de un lecho bacteriano. La suciedad no puede adherirse a la superficie esmaltada, que es tan dura como el vidrio, lo que hace que los baños de agua Pura sean fáciles de limpiar y sin emplear productos de limpieza adicionales. Proporcionan una óptima protección higiénica, incluso mejor que la que ofrece el acero inoxidable. El revestimiento especial de esmalte para la superficie de estos baños solo puede destruirse utilizando la

técnicas de LABORATORIO

fuerza bruta, lo que garantiza una extraordinaria resistencia y durabilidad. Sin embargo, el esmalte no solo aporta beneficios al producto, sino también a la producción: así, las materias primas necesarias están disponibles en cantidades suficientes a largo plazo y no contienen sustancias de riesgo de origen natural. La producción se lleva a cabo mediante procesos respetuosos con el ambiente. Los empleados y el entorno no quedan expuestos a posibles perjuicios.

730

Nº 427 DICIEMBRE 2017


baños de agua Máxima eficiencia La transferencia de energía del calefactor integrado tiene lugar por medio de las paredes de aluminio, metal que posee una conductividad térmica 10 veces mayor que el acero inoxidable. Asimismo, las paredes laterales de policarbonato proporcionan un mejor aislamiento que el acero inoxidable, lo que se traduce en un altísimo grado de eficiencia.

Duración y seguridad La serie de baños de agua Pura incluye cinco modelos de diferentes tamaños. Con una capacidad de llenado de 1 hasta 30 l, son adecuados para tareas de control de temperatura a pequeña y gran escala. Todos los baños Pura cubren el intervalo de temperatura de trabajo de +25 °C hasta +99,9 °C y poseen una consistencia en la temperatura de ±0,2 °C. La potencia calorífica es de 2 kW en los dos Pura de gran tamaño, de 1,3 kW en los dos de tamaño intermedio y de 0,8 kW en el baño de agua más pequeño. Incluso en condiciones de poco espacio, el baño de agua Pura 4 ofrece todas las ventajas de la serie de baños de agua Pura con unas dimensiones de 21x38x30 cm. Con un volumen de llenado de 0,4 hasta 4,8 l, puede controlarse la temperatura de las cubetas más pequeñas sin ningún problema.

Funcionalidad sofisticada y seguridad en el laboratorio En el desarrollo de los baños de agua Pura se dio una gran relevancia a un manejo sencillo y práctico para el día a día. La comodidad de su uso es patente ya desde su exterior. La pantalla se lee bien incluso a grandes distancias gracias a su potente luminosidad. Las cubiertas abatibles están disponibles como accesorios y pueden retirarse y colocarse sin usar herramientas. Además, tanto diestros como zurdos pueden manipularlas. Sus asas y un peso reducido facilitan el cambio de lugar y el transporte de los baños de agua. Gracias al grifo de drenaje integrado, el vaciado de los equipos se lleva a cabo limpiamente en cualquier lugar. Los Pura están diseñados para su uso en laboratorios de tal manera que no es posible que vuelquen. Los tacos de goma antideslizantes impiden que los baños resbalen sobre superficies lisas. Gracias a la ausencia de molestos elementos de función en el baño, puede usarse toda la superficie plana interior para controlar también la temperatura de cubetas pequeñas. Así, los baños de agua proporcionan un volumen extraordinariamente grande en relación con las dimensiones exteriores. El mecanismo de escurrido integrado de los baños de agua está diseñado para adaptarse con precisión a las gradillas para tubos de ensayo, disponibles como accesorios. Para una gestión del tiempo precisa y fiable, los baños disponen de una función de temporizador interno. Transcurrido el tiempo establecido, se emite una señal acústica. Según el ajuste realizado, el dispositivo sigue funcionando o se apaga.

técnicas de LABORATORIO

Todas las piezas de Pura que están en contacto con el medio incorporan una protección eficaz contra la corrosión, si se comparan con los baños de agua convencionales. También se interrumpe la corrosión por contacto provocada por la migración de iones o la formación de elementos. El revestimiento especial de esmalte de las superficies, presente en todos los baños de agua Pura, es especialmente resistente y solo puede destruirse aplicando la fuerza bruta. El sistema de protección antisecado y de exceso de temperatura impide que los baños de agua sufran daños.

Accesorios para una mayor flexibilidad Julabo ofrece una amplia cartera de accesorios con la que el usuario podrá conseguir una mayor flexibilidad en el laboratorio. Empleando las gradillas de plástico para tubos de ensayo, la temperatura de las aplicaciones se controla fácil y claramente. Dichas gradillas están diseñadas para 60 ó 90 tubos de ensayo, o para 21 tubos con un diámetro de 30 mm. Para el control de la temperatura de, por ejemplo, frascos Erlenmeyer, la cartera de accesorios de Julabo incluye cubiertas para baños con insertos circulares. Las aperturas de los insertos circulares tienen un diámetro que varía entre 92 y 190 mm. Para el ámbito de la medicina dental, la firma dispone de una gradilla dental y de un inserto de higiene de acero inoxidable para el baño de agua pequeño Pura 4. www.julabo.com (Véase anuncio en la sección Guía del Comprador.)

731

Nº 427 DICIEMBRE 2017


companies

Bühler: New state-of-the-art application center for thin-film technology opened in Germany On November 30th Bühler opened a new state-of-the-art application center to serve customers in the thin-film industry. The center includes a testing area, a laboratory, as well as a R&D area, featuring the latest thin-film solutions from Bühler Leybold Optics. It will allow Bühler Leybold Optics to innovate customer products, create sample products, and conduct physical and durability testing.

I

nnovations for a better world is Bühler’s claim – made real by a global network of application centers dedicated to customer innovations and helping them to succeed in their industry. The thin-film application center in Alzenau, Germany, is the latest addition to this network. Spanning over 1,200 m2, it includes a testing area, a hightech laboratory, as well as a state-of-the art R&D area. Bühler invested around one million CHF in this state-of-the-art facility. “With this application center and the latest technology in optics vacuum coaters, we are able to further expand our application

Opening Ceremony.

portfolio as well as our services on product qualification. This is how we achieve the highest quality, reliability, and robustness of machines and processes for our customers” said Antonio Requena, CEO and Managing Director of Bühler’s Business Area Leybold Optics, at the opening ceremony.

Samuel Schär, CEO of Bühler’s Business Advanced Materials; Antonio Requena, CEO of Bühler’s Business Area Leybold Optics; Alzenau’s mayor Alexander Legler; Domenic von Planta, Head of Operations of Bühler’s Business Area Leybold Optics.

técnicas de LABORATORIO

The brand-new application center allows customers to produce samples for production qualifications, expand the application portfolio through layer application, and test reliability and robustness of new components. The application center includes eleven coating machines of the latest generation like the DynaJet, a vacuum sputter system for metalizing, the Leybold Optics FLC for flexible films, a Helios, the high-

732

Nº 427 DICIEMBRE 2017


companies

Ground plan of Bühler Leybold Optics Application Center.

Leybold Optics IBS.

150 key representatives of the thin-film coating industry followed Bühler Leybold Optic’s invitation to attend the opening ceremony on November 30. Speeches from Prof. Norbert Kaiser (Fraunhofer IOF Institute) about surface functionalization, from Prof. Detlev Ristau (Laser Zentrum Hannover) about highquality optical coatings, and from Alzenau’s mayor Alexander Legler were highlights of the full-day event, which concluded in a guided factory tour and an informal get-together.

precision coater for top-grade products, and the new Leybold Optics IBS for laser applications. With these machines the entire portfolio from Bühler Leybold Optics is covered in the application center to provide the customers the necessary support for their applications. In dedicated areas, durability and physical tests are possible.

Bühler Leybold Opics has achieved significant growth in recent years with a number of innovative customer solutions. With its vacuum deposition equipment, Bühler Leybold Optics contributes to higher energy efficiency, comfort, and food preservation. For instance, buildings with coated façade glass from Bühler Leybold Optics require up to 50% less energy for heating and cooling. Thin-film applied on Bühler solutions ranges from functional optics coatings for window glass to headlight reflectors as well as flexible packaging. Coatings for ophthalmic and precision optics products such as lenses, lasers, or high-end telescopes complete the Leybold Optics product portfolio.

Leybold Optics Helios.

Leybold Optics DynaJet.

Leybold Optics FLC.

técnicas de LABORATORIO

733

Nº 427 DICIEMBRE 2017


companies

Zeiss continues growth trajectory

Investments and innovations lead to best results in the company’s more than 170-year history

I

n the past 2016/17 fiscal year (ended 30 September 2017), Zeiss increased both its revenue and earnings to a record level: revenue rose by 10% to EUR 5.348 billion (prior year: EUR 4.881 billion). At EUR 770 million, earnings before interest and tax (EBIT) were significantly above the already high level of the previous year (615 million). The EBIT margin has increased to over 14%. Order intake grew by a healthy 12% and is now at EUR 5.625 billion, underscoring the growth ambitions of the technology company. “All four segments – Research & Quality Technology, Medical Technology, Vision Care/Consumer Products and Semiconductor Manufacturing Technology – are either at or above their target returns and have made a positive contribution to the most

successful fiscal year in the history of Zeiss,” said Prof. Dr. Michael Kaschke, President & CEO of Carl Zeiss AG, at the annual press conference in Stuttgart. “This development was not and is not just a matter of course. Rather, it is the result of the tremendous efforts made by all employees and partners over a long period of time. The consistent implementation of the strategic Agenda has now made a real impact and significantly increased competitiveness. Thanks to investments in cutting-edge Innovation and Customer Centers, global partnerships and strategic expansions, we have focused entirely on the needs of our customers,” said Kaschke, explaining the company’s strategy.

Positive development across all segments Revenue (in EUR million)

Research & Quality Technology Medical Technology* Vision Care/Consumer Products Semiconductor Manufacturing Technology

2016/17

2015/16 Change

1,538 1,427 1,108

1,466 1,290 1,089

+5% +11% +2%

1,212

972

+25%

* Not identical to Carl Zeiss Meditec AG

At the annual press conference in Stuttgart Prof. Dr. Michael Kaschke, President and CEO of Carl Zeiss AG, announced a new record in both revenue and earnings.

técnicas de LABORATORIO

In the Research & Quality Technology segment, the automotive market continues to drive growth at the Industrial Metrology business group. The demand for Smart Production solutions is increasing, and Zeiss is expanding its business and key networking capabilities for the Industrial Internet of Things through innovative approaches, such as its stake in the joint venture ADAMOS. Thanks to the good overall position of industry, the Microscopy business group is continuing its growth

734

Nº 427 DICIEMBRE 2017


companies trajectory. In spite of the enormous competition on the market, the Medical Technology segment is growing with innovations such as the Zeiss KINEVO 900 robotic visualization system and has made particularly significant gains in Asia. With Zeiss brand eyeglass lenses, the Vision Care/Consumer Products segment is growing slightly faster than the market. There has been sustained positive growth, including in Brazil and China. The Semiconductor Manufacturing Technology (SMT) segment is benefitting from high demand for Deep Ultra Violet (DUV) lithography systems. After a trend toward stagnation in an extremely volatile market in recent years, SMT successfully increased its revenue by 25%, a new all-time record. The determination and perseverance of the investors in the cuttingedge technology Extreme Ultra Violet (EUV) lithography is also paying off, as is the strengthened partnership with the Dutch company ASML. ASML’s 24.9% minority stake in the subsidiary Carl Zeiss SMT and the accompanying investments totalling around EUR 760 million for R&D will be instrumental in driving the comprehensive preparation of EUV technology.

Zeiss focused sharply on the subject of networking in fiscal year 2016/17. One impressive example during the last fiscal year was the Zeiss KINEVO 900 robotic visualization system for neurosurgery that revolutionizes visualization in neurosurgery. It was developed

Financial highlights

with 50 neurosurgeons from 14 countries in ten customer groups.

Zeiss generates just under 90% of its business outside Germany. Asia/Pacific (APAC) remains the largest growth region with a revenue of EUR 1.270 billion. This corresponds to an increase of 15% over the previous year after currency adjustments (1.123 billion). Revenue amounted to EUR 598 million in China alone (prior year: 504 million). The revenue in emerging economies after currency adjustments has exceeded the billion euro mark, reaching EUR 1.181 billion (prior year: 995 million). The company’s German sites have also benefited from the enormous growth in these markets. The largest single market for Zeiss remains the US with approximately EUR 1 billion. In fiscal year 2016/17, Zeiss increased its investments in research and development by around 27% to 552 million (prior year: 436 million). Investments in property, plant and equipment were increased to 183 million (prior year: 154 million). This compared to depreciations totaling EUR 160 million (prior year: 155 million). “Zeiss’s bold, global investment strategy is a key pillar of our long-term growth trajectory. Since 2010, we have spent around EUR 1.45 million on this,” says Thomas Spitzenpfeil, CFO of Carl Zeiss AG. Net liquidity has increased significantly and was at EUR 1.986 billion as of the reporting date (30 September 2016: 568 million). In particular ASML’s stake in Carl Zeiss SMT and a capital increase at Carl Zeiss Meditec AG have played a major role in strengthening liquidity. The company’s equity is at EUR 3.429 billion, equaling an almost doubled equity ratio of 47%. Thanks to a greater inventories and increased receivables, free cash flow is at EUR 658 million (prior year: 709 million) in spite of the increased EBIT.

técnicas de LABORATORIO

Employees The number of employees increased by 6%. As of the reporting date, Zeiss had 26,945 employees worldwide (prior year: 25,433). With 569 new employees, Germany saw the strongest headcount increase. Here the total headcount rose to 11,339 (prior year: 10,770).

Outlook: “Growth requires bold decisions for the road ahead” Even though a slight slowdown in the growth dynamic is evident in several emerging economies, the forecast for the global economy is good to very good, with only a few risk factors on the horizon. “Of course we have benefited from tailwinds from the positive economic climate, but ultimately you only win if you also take responsibility and make bold decisions for the road ahead,” says Kaschke. “In order to ensure success over the long term, we need to stand our ground in the face of ever stiffer competition. With its focus on innovations, targeted investments and business expansion in future-oriented fields of activity, the corporate strategy, the Zeiss Agenda 2020, serves as a compass, while the solid financial foundation provides the necessary flexibility. With our innovative products and solutions, we see transformations in technology and society such as digitalization and demographic change as a significant growth opportunity,” says Kaschke, looking ahead to the new fiscal year. In 2017/18, Zeiss anticipates a slight organic increase in revenue and a similar EBIT margin.

735

Nº 427 DICIEMBRE 2017


food control

Harmonization and standardization in food molecular microbiology: Listeria monocytogenes and Salmonella spp. cases David Rodríguez-Lázaro Área de Microbiología. Departamento de Biotecnología y Ciencia de los Alimentos, Facultad de Ciencias, Universidad de Burgos. drlazaro@ubu.es · @rodlazda

(La armonización y la estandarización en microbiología molecular alimentaria: los casos de Listeria monocytogenes y Salmonella spp)

M

icrobial analysis is a prosperous, lucrative and growing industry, with a global market of more than 2 billion analyses performed in 2014. Food microbial testing comprised more than 966 million analyses in 2013, with annual global revenues of $3.05 billion for the 2,350 food contract test labs worldwide. It is evident that the food industry requires the service of third party food contract labs to address its main demands: selectivity of the methodology, short time to delivery of fit for purpose final results, and reduction of the associated cost of analysis through efficient working practices. As a result, any alternative methodology, and in particular molecular microbial diagnostic methods must try to meet these objectives. For that two major

actions are needed: the harmonization of the route from the design and development of a molecular microbial diagnostic method to its final effective implementation in routine food labs, and global effort towards standardization of molecular methods. In this presentation, we review the current situation on harmonisation and standardization of molecular microbial diagnostic method, and the particular cases of Listeria monocytogenes and Salmonella spp. will be presented.

Introduction: The market of food microbiology diagnostics

analyses in 2014 (Strategic consulting Inc, 2014a), with food and water testing areas comprising more than 70% (Strategic consulting Inc, 2014a). Food microbiology testing comprised more than 966 million analyses in 2013, with an annual increase in the total test volumes of 128% (Strategic Consulting Inc, 2013). Interestingly, the percentage of the testing volume devoted to foodborne pathogens has been historically much lower than that for index/indicator microorganisms, but the derived cost is, however, higher, and the increasing annual demand of those analysis has grown (from 13.7% in 1998 to 23.2% in 2013) (Strategic Consulting Inc, 2013).

Microbial analysis is a prosperous, lucrative and growing industry, with a global market of more than 2 billion

The food industry prefers not to perform microbiology tests in situ by its own laboratories and personnel, but prefer

técnicas de LABORATORIO

736

Nº 427 DICIEMBRE 2017


food control to submit them to third party contract labs, and this trend is ever increasing (annual increase 9.4% worldwide) (Strategic consulting Inc, 2013). As an example, 61% of the Salmonella testing from the food industry was performed in food contract labs in the USA in 2013 (from 37% in 2001) (Strategic consulting Inc, 2014b). Globally, it represents a market of 2,350 food contract test labs worldwide and annual global revenues of $3.05 billion in 2013 (a 5-year increase of 156.41%) (Strategic consulting Inc, 2013). Similarly, the availability of diagnostic tests and consumables for food microbiology testing based on different technologies has increased during the last two decades. The number of companies providing diagnostic test kits has grown more than 400% in this period and the number of kits and tests available in the market has also increased exponentially; diagnostic companies prepare diagnostics tests in advance of legal microbiological requirements. However, the high number of companies in the market and the financial pressures affecting third party testing laboratories are likely to result in a reduction of the growth (and even a decrease) in the number of diagnostic companies and related test kits.

Evolutions of food microbiology diagnostics: From Petri dishes to PCR Microbiology diagnostics is a relatively young microbiological sub-discipline. We have to go back to the late 19th century to find the basis of the current established approach for microbiology testing (and particularly for food microbiology diagnostics), i.e. the isolation of presumptive strains on solid media. In 1881, a seminal paper described the use of solid media for study of pathogenic microorganisms (Koch, 1881). Since then, it has become the gold standard, particularly in food microbiology (bacteriology); each major foodborne bacterial pathogen

possesses an international standard (i.e. ISO standard) for its detection and identification based on a final step of isolation in particular solid media (e.g. the ISO standard 11290-1 for detection of Listeria monocytogenes, or the ISO standard 6579-1 for detection of Salmonella). However, this methodological procedure is tedious and time-consuming, laborious, prone to errors due to massive handling of different plates and bottles in different steps. It is furthermore unable to detect bacterial pathogens in a particular physiological state namely viable but not cultivable (VBNC), in which bacterial strains are still viable and therefore able to pose a subsequent risk for consumers, but they cannot grow in solid media. In addition, the isolation of a particular strain in a given medium specific for a class of pathogen only represents a presumptive result (detection) and must be completed with biochemical and/or serological tests (identification). This can result in a significant delay before a confirmed result can be provided. One century after the Robert Koch’s seminal paper, these drawbacks could be finally fulfilled in the mid-1980’s by a key development, the polymerase chain reaction (PCR) technique (Saiki et al., 1985, 1988; Mullis et al., 1986). At first, this technique, although very promising was still difficult to implement in routine analysis as it required the addition of new DNA polymerase in each cycle and the PCR equipment was still quite rudimentary. The arrival of DNA polymerases from extremophilic microorganisms such as Thermus aquaticus (the bacterium from which the Taq DNA polymerase is obtained) and new developments in PCR equipment (particularly more efficient Peltier systems) generated a biotechnological revolution: PCR has been used in more than 365,000 scientific publications (search ‘PCR’ in pubmed.com), and has been applied in many different areas due to its versatility, specificity and sensitivity, and particularly for microorganism identification (Rodríguez-Lázaro et

técnicas de LABORATORIO

737

Nº 427 DICIEMBRE 2017

al., 2007; Rodríguez-Lázaro, and Hernández, 2013). A new PCR development, real-time PCR (qPCR) (Heid et al., 1996), further spurred that revolution and continues to do so. It represents a significant advance in many molecular techniques involving nucleic acids analysis allowing the monitoring of the synthesis of new amplicon molecules during the PCR by fluorescence (i.e. in real time), and not only at the end of the reaction (Rodríguez-Lázaro and Hernandez, 2013). Major advantages of qPCR are the reduced risk of carryover contamination due to its closedtube format (no post-amplification handling), fast and easy to perform analysis, high precision and accuracy, excellent selectivity, significantly higher reliability and sensitivity of the results (down to 1 microbial cell or genome equivalent per reaction) and extremely wide dynamic range of quantification (Rodríguez-Lázaro and Hernandez, 2013). Since Heid and coworkers’ seminal paper published in 1996 (Heid et al., 1996), the number of publications where qPCR is used has increased nearly exponentially. Similarly, the number of available platforms has moved from a handful in the late 1990’s to around 60 currently (2016) provided by more than 15 biotechnology companies (http://cyclers.gene-quantification. info). Similarly, the international bodies for standardisation in food analysis (the International Organisation for Standardisation –ISO, and the European Committee for Normalisation –CEN) have launched several ad hoc expert groups for the development of ISO-EN standards based on PCR (e.g. the TAG3 group for development of PCR based standards for detection of pathogens in food, and TAG 4 for the development of ISO standards for detection of enteric viruses in food by PCR). Currently 10 ISO PCR-related standards have been published w w w. i s o . o r g / i s o / h o m e / s e a r c h . htm?qt=food+pcr+microbiology Harmonisation in the design and development of a novel methodology, and global efforts for standardisation


food control The International Union of Food Science and Technology (IUFOST) held the 13th World Congress of Food Science and Technology in Nantes in September, 2006, with a symposium entitled “Analytical Methodology in Food Safety: current status, lessons learned and future challenges” in which different aspects of food safety were discussed (bacteria, viruses, parasites, antibiotic resistance, etc). A review paper was subsequently published (Rodríguez-Lázaro et al., 2007) in which the most important conclusions were included, and one of the main areas of discussion was the current challenges. Several aspects were defined including the development of rational and easy-to-use strategies for pre-amplification treatment of the food samples, the design and application of analytical controls, the unambiguous determination of viable forms and the development of strategies for the quantitative use of real time PCR (Rodríguez-Lázaro et al., 2007). It is quite surprising that these challenges have not all been met after almost one decade. Many scientific publications are still being published trying to address one or several of these aspects, indicating that the problems are still an issue requiring resolution. In addition to the challenges previously described, there are other aspects that are very important in the food chain (both for the food industry and third party food contract labs). Between them; two are really important: the harmonisation in the design and development of a novel methodology, and global efforts for standardisation. Over the last 25 years the research community has devoted extensive resources in harnessing the evolving knowledge of the genome to the development of technologies for rapid and sensitive detection of different foodborne microbial targets. A considerable body of information and techniques has been built up thereby, but the methods have very often not been transferred to deployment in routine analysis. Thus, there has been little effective return to society from

the resources which it has provided. This is largely because hitherto there has been no systematically defined route which development of a method must follow from conception by the method developer to implementation by the analytical community. In the first instance a clearly defined business plan, proving the societal need and the market for the method should be produced. Next, the minimal performance criteria, including cost efficiency, necessary to fulfil the intended purpose must be acknowledged. Subsequently, progress towards development must follow a traceable and recorded path. The new method must be demonstrably valid, i.e. perform at least as well as any established standard, and be repeatable and reproducible. Communication of the method should be done in a systematic way, with preplanned dissemination and training activities leading to its widespread recognition among the necessary stakeholders. Over the last decade, molecular detection methods have been developed at a relatively high pace. For instance, quantitative real-time PCR has become very popular as a detection tool. However, the perceived ease of use of the method and the frequent lack of understanding of all important parameters in the workflow contributing to accurate and precise results – both among users, authors and reviewers- has resulted in an accumulation of unreliable reports in the scientific literature. Among the most compelling stories are the retraction of the Science breakthrough paper of the year 2005 (Hwang et al., 2005) due to irreproducible qPCR results, and the USA lawsuit resulting after a publication of a report on the alleged causal link between the MMR vaccine and autism with children (Uhlmann et al., 2002). It turned out that the conclusions were false, based on anomalies in the lab when conducting and analyzing the qPCR data. To improve the quality

técnicas de LABORATORIO

738

Nº 427 DICIEMBRE 2017

and transparency of experiment design, data-analysis and reporting of results, the Minimal Information for publication of Quantitative PCR Experiments (MIQE) guidelines were established in 2009 (Bustin et al., 2009). While adoption of the guidelines is going relatively well, with more than 4,800 citations (Google Scholar, October 2016), the guidelines are focused on the application of qPCR in biomedical research. For diagnostic applications in other fields (including foodborne pathogens), wider and more flexible guidance is required. In addition, the MIQE-proposed universal data format RDML (Real-time PCR Data Markup Language) (Lefever et al., 2009) to store, exchange and report raw qPCR data is not compatible with data coming from applications such as digital PCR, high-resolution melting, and next-generation sequencing. The requirement for good laboratory practice, quality assurance programs and accreditation, in its turn requires the availability of standard methods. Research laboratories are continually developing novel molecular diagnostic methods, and hundreds of new tests have been published, but very few have actually been implemented in end-user laboratories. In large part, this is because their customers increasingly demand that only accredited standard methods are used for analysis of foodborne microorganisms. As regards analysis for pathogens, standard protocols have been available for many years for culture-based microbiological methods, but standards based on alternative methods for analysis of foods have been formulated only recently. Successful reproduction of results, in the hands of different personnel under different laboratory conditions with various batches of reagents, is an absolute prerequisite for adoption of a nucleic acid amplification-based detection method as a standard (Hoorfar and Cook, 2003; Malorny et al., 2003). It is desirable for end-users and reference laboratories to have access to open-formula, non-


food control commercial and non-proprietary assays for which the targets, performance characteristics and validation criteria are known (Hoorfar and Cook, 2003). However, while many published methods present in-house validation data, inter-laboratory reproducibility data is largely lacking. Such data are necessary to demonstrate the robustness of tests. From a foodborne pathogen perspective, the early international activities aimed at developing standardized nucleic acid-based methods for detection, determined their repeatability and reproducibility (Abdulmawjood et al., 2004; D’Agostino et al., 2004; Josefsen et al., 2004; Malorny et al., 2004); however they were not fully validated as alternative methods according to ISO 16140 (ISO, 2003) to demonstrate that their performance characteristics were at least the equivalent of the culturebased standard methods (D’Agostino and Rodriguez-Lazaro, 2009). This is what is required to be able to convince the potential end-users of these methods’ effectiveness as reliable and robust alternatives that can stand alongside the “gold standard” method, and to be able to realise their full potential as tools in the continual battle against the ever-present threat of foodborne pathogens (D’Agostino and Rodriguez-Lazaro, 2009). Progress however has been made: PCR-based methods for detection of Salmonella spp. (Löfström et al., 2009; Malorny et al., 2007) and Campylobacter spp. (Krause et al., 2006) in foods have been fully validated, and in the case of the Salmonella method become a national (DIN) standard. At present, detection of norovirus in foods is not represented by an international standard; however the CEN TC 275 / WG6 / TAG4 is developing methods to detect norovirus and hepatitis A virus in leafy green vegetables, shellfish, and soft fruit. The methods which contain real time reverse transcription-PCR assays, are designed to be quantitative, and incorporate sample process and

amplification controls; publication of the IS/TS preliminary standards was in 2013, and publication of the full standards is scheduled for 2018.

The cases of Listeria Monocytogenes and Salmonella The European Union granted a multiyear collaborative research project BaseLine (www.baselineeurope.eu) to analyse and develop sampling strategies to support the European policies in food safety with the final goal of improve quantitative risk analysis. One of the main purpose of BaseLine was the validation and harmonization of alternative molecular methods for detection of main foodborne pathogens such as Salmonella spp. and Listeria monocytogenes. In particular, BaseLine made an international effort to validate an alternative method based on an ISOcompatible pre-enrichment coupled to bacterial DNA extraction and real-time PCR detection of Salmonella spp. and Listeria monocytogenes in two of the major food contamination sources; pork meat and cheese.

The validation study The Istituto Superiore di Sanità (ISS) (Italy) was the organizing laboratory and led the studies for both Salmonella spp. and Listeria monocytogenes. Thirteen laboratories from seven European countries participated in the trial for Salmonella spp.: the University of Bologna (Italy); the National Veterinary Institute (Norway); the Centro Nacional de Tecnologia y Seguridad Alimentaria (Spain); the National Food Chain Safety Office (Hungary); the University of Zagreb (Croatia); the Instituto Tecnológico Agrario de Castilla y León (Spain); the University of Copenhagen (Denmark); the French Agency for food, environmental and occupational health safety, Anses(France), the Istituto Zooprofilattico Sperimentale (IZS) delle Venezie (Italy); the IZS del Lazio e

técnicas de LABORATORIO

739

Nº 427 DICIEMBRE 2017

Toscana (Italy); the IZS della Lombardia e dell’Emilia Romagna (Italy) and the IZS del Mezzogiorno (Italy). Twelve laboratories from six European countries participated in the trial for Listeria monocytogenes: the Centro Nacional de Tecnologia y Seguridad Alimentaria (CNTA) (Spain); Instituto Tecnológico Agrario de Castilla y León (Spain); the Istituto Zooprofilattico Sperimentale (IZS) dell’Abruzzo e Molise (Italy); the Istituto Zooprofilattico Sperimentale (IZS) del Lazio e Toscana (Italy); the Istituto Zooprofilattico Sperimentale (IZS) della Lombardia e dell’Emilia Romagna (Italy); the Istituto Zooprofilattico Sperimentale (IZS) delle Venezie (Italy); the National Food Chain Safety Office (Hungary); the Norwegian Veterinary Institute (NVI) (Norway); University of Bologna (UniBO) (Italy); the University of Copenhagen (Denmark); and the University of Zagreb(Croatia). Each participant was provided with a standard operating procedure (SOP) for performance of this trial. The organizing laboratory provided to the participating laboratories, materials (pork meat and reference material as Lenticule® discs in the case of Salmonella spp. or cheese and Lyophilized bacteria in the case of L. monocytogenes) and all reagents to perform Real-Time PCR. The organizing laboratory provided the foodstuffs and the lyophilized strains in ready to use, coded containers, as well as all reagents to perform the RealTime PCR assay by a courier service. This means that the laboratories performing the analysis were blind to the actual content of the pathogens in each sample. The laboratories performed the artificial contamination of 8 food samples using 8 blind coded lyophilized bacterial strains for each level of contamination (M, L, and B). After the experimental contamination of food samples, a tenfold dilution of each sample in BPW was performed for Salmonella or in Half Fraser for L. monocytogenes. Samples were homogenised for 90 s, and incubated at 37 °C ± 1 °C for 18 hours ± 2 hours.


food control Samples were subsequently analysed following the two methodological alternatives: traditional culture method (ISO6579:2002/Corr. 1:2004 or ISO 11290-1:1996+Amd.1:2004 for L. monocytogenes) for Salmonella or ISO and the alternative methods (the specific Real-Time PCR-based methods). All the laboratories did not show appreciable problems during the ring trial for Salmonella, but one of the laboratories was excluded for L. monocytogenes as it reported serious problems during the preparation of the trial materials leading to negative results from both ISO and alternative methods. In the case of Salmonella, all the results obtained from artificially contaminated samples showed a correct determination by both methodologies. However, results were differnt for L. monocytogenes: at a low level load of L. monocytogenes (10 CFU per 25 g of sample) and concomitant contamination of L. innocua (3 CFU per sample), 70.45% (62 out 88) of the samples were considered as positive using the reference method ISO 11290-1:1996+Amd.1:2004, whereas 87.50% (77 out of 88) were considered as positive using the real-time PCRbased method. As a result, the realtime PCR-based method detected significantly more samples positive than the reference method (22.22% more samples). The classical performance parameters (the diagnostic specificity, diagnostic sensitivity, positive and negative predictive values, accordance and concordance values and the concordance odds ratio) showed excellent results for both foodborne pathogens (Delibato et al, 2014; Gianfranceschi et al., 2014). In addition, the relevant parameters defined in ISO 16140 for validation of alternative methods in food microbiology (relative accuracy, relative specificity, relative sensitivity, and false negative and positive ratios) also showed an excellent performance (Delibato et al, 2014; Gianfranceschi et al., 2014).

The results showed that Real-Time PCR methods not only has a robust detection limit of at least 10 CFU per 25 g of food sample, but also has a superior capacity for correctly determine the nature of sample tested (values of 100% for diagnostic specificity and sensitivity and for positive and negative predictive values) regardless the analysis is performed in different food samples or laboratories (values of 100% for accordance, concordance and concordance odd ratio). On top of that, the performance of the Real-Time PCR method is equal to that using the reference ISO method. This finding is demonstrated by the excellent results for the major parameters indicated in the ISO standard 16140:2003 for validation of alternative methods in food microbiology (values of 100% for relative accuracy, sensitivity and specificity, and 0% of false negative and positive ratios). Interestingly, in the L. monocytogenes study, the food samples were artificially contaminated with L. monocytogenes and cocontaminated with L. innocua to mimic as much as possible the real scenario found in food samples (Ryser, 1999; Gravani, R. 1999). Previous studies have highlighted the possibility of an overgrowth of L. monocytogenes by L. innocua, during selective enrichment, leading to high rates of false-negative results (Zitz et al., 2011; Besse et al., 2010; Oravcová et al., 2008). An important observation from the results of this inter-laboratory study was that the reference method was not completely reliable for the detection of L. monocytogenes in the presence of L. innocua. From a practical perspective, it implies the possibility of false negative results with serious consequences on public health since the non-compliant food lots will not be withdrawn from the market. In addition, false negative results can complicate the ability of public health investigators to traceback the source of contamination, allowing the spread of contamination. As a result, there is a need for improving the reference method for L. monocytogenes detection or

técnicas de LABORATORIO

740

Nº 427 DICIEMBRE 2017

alternatively shift to more sensitive methods, like the molecular method used in the current study. Interestingly, the L. monocytogenes detection by the real-time PCR method was affected to a lower extend in the same situation, which in the current study resulted in a more reliable detection of positive samples, than the reference method. As the two steps for fully validation indicated in that ISO standard (in house validation –Rodríguez-Lázaro et al., 2015a;b- and the interlaboratory studies) have been successfully conducted, we can conclude that the Real-Time PCR method meets the requirements of a diagnostic PCR and has the potential to become a standardized method for the rapid detection of both pathogens in diagnostic laboratories. On top of that, the Real-Time PCR method is cost effective (2 EUR vs. 12 EUR for Salmonella and 3 EUR vs 15 EUR for L. monocytogenes) and time saving (23 hours vs. > 7 days for positive results for Salmonella and 27 hours vs 7 days for L. monocytogenes) providing satisfactory reproducibility when carried out by different laboratories with different Real-Time PCR platforms. However, due to the high cost of an inter-laboratory study, the trials were only performed for two food category (pork meat and cheese) among those listed in the ISO 16140. Other validation studies must be conducted for other food categories (e.g. poultry meat or molluscs) to corroborate the satisfactory results obtained in this interlaboratory investigation using those foods.

References • Abdulmawjood, et al (2004). Toward an international standard for PCRbased detection of foodborne Escherichia coli O157: validation of the PCR-based method in a multicenter collaborative Trial. Journal of AOAC International 87: 856-860. • Besse et al. (2010) The overgrowth of Listeria monocytogenes by other Listeria spp. in food samples


food control undergoing enrichment cultivation has a nutritional basis. International Journal of Food Microbiology. 136(3). 345-51. • Bustin et al. (2009) The MIQE guidelines: minimum information for publication of quantitative realtime PCR experiments. Clin. Chem. 55:611-22. • D’Agostino, M. and RodríguezLázaro, D. (2009). Harmonisation and Validation of Methods in Food Safety - “Food-PCR” a case study. In: Global Issues in Food Science and Technology. Edited by: Gustavo Barbosa-Cánovas, Alan Mortimer, David Lineback, Walter Spiess, Ken Buckle and Paul Colonna. Elsevier. Pp 199-209. • D’Agostino et al.(2004). A validated PCR-based method to detect Listeria monocytogenes using raw milk as a food model – towards an international standard. Journal of Food Protection 67: 1646 - 1655. • Delibato et al. (2014) European validation of a Real-Time PCR method for detection of Salmonella spp. in pork meat. Int. J. Food Microbiol. 184: 128-133. • Gianfranceschi et al. (2014) European validation of a Real-Time PCR-based method for detection of Listeria monocytogenes in soft cheese. Int. J. Food Microbiol. 184: 134-138. • Gravani, R. 1999. Incidence and control of Listeria in food-processing facilities. 657–709. In E. T. Ryser and E. H. Marth (ed.). Listeria, listeriosis, and food safety, 2nd ed. Marcel Dekker, Inc., New York, N.Y. • Heid et al. (1996). Real time quantitative PCR. Genome Research, 6, 986-994. • Hoorfar, J., and Cook, N. (2003). Critical aspects in standardization of PCR. In Methods in Molecular Biology: PCR detection of microbial pathogens, K. Sachse and J. Frey, eds. (Totowa, USA: Humana Press), pp. 51–64. • Hwang et al. (2005) Patient-specific embryonic stem cells derived from human SCNT blastocysts. Science. 308:1777-83.

• Josefsen et al. (2004). Validation of a PCR-based method for detection of foodborne thermotolerant Campylobacters in a multi-center collaborative trial. Applied and Environmental Microbiology, 70: 4379 - 4383. • Koch (1881) Zur Untersuchungen von pathogenen Organismen. Mittheilungen aus dem Kaiserlichen Gesungheitsanye, 1, 1-48 • Krause et al. (2006). Comparative, collaborative, and on-site validation of a TaqMan PCR method as a tool for certified production of fresh, Campylobacter-free chickens. Applied and Environmental Microbiology, 72: 5463-5468. • Lefever et al. (2009) RTPrimerDB: the portal for real-time PCR primers and probes. Nucleic Acids Res. 2009 37: D942-5. • Löfström et al. (2009). Validation of a same-day real-time PCR method for screening of meat and carcass swabs for Salmonella. BMC Microbiol. 9: 85. • Malorny et al. (2004). Multicenter collaborative trial validation of a PCR-based method for detection of Salmonella in chicken and pig samples. Journal of AOAC International, 87: 861-866. • Malorny et al. (2003). Standardization of diagnostic PCR for the detection of foodborne pathogens. International Journal of Food Microbiology, 83: 39 – 48. • Malorny et al. (2007). Multicenter validation study of two blockcyclerand one capillary-based real-time PCR methods for the detection of Salmonella in milk powder. International Journal of Food Microbiology, 117: 211 – 218. • Mullis et al. (1986). Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symp. Quant. Biol. 51, 263-73. • Oravcová et al. (2008) Limitation in the detection of Listeria monocytogenes in food in the presence of competing Listeria innocua. Journal of Applied Microbiology 104. 429–437. • Rodríguez-Lázaro et al. (2007) Trends

técnicas de LABORATORIO

741

Nº 427 DICIEMBRE 2017

in Analytical Methodology in Food Safety and Quality: Monitoring Microorganisms and Genetically Modified Organisms. Trends in Food Science and Technologies. 18. 306319. • Rodríguez-Lázaro, D. and Hernandez, M. (2013) Real-time PCR in Food Science: Introduction. Curr. Issues Mol. Biol. 15: 25-38. • Ryser, E. T. 1999. Foodborne listeriosis. 299–358. In E. T. Ryser and E. H. Marth (ed.), Listeria, listeriosis, and food safety, 2nd ed. Marcel Dekker, Inc., New York, N.Y. • Saiki et al. (1985). Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350-1354. • Saiki et al. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487-491. • Strategic consulting Inc (2013) Food Micro, 8th Edition. Microbiology Testing in the Global Food Industry. • Strategic consulting Inc (2014a) Industrial Microbiology Market Review, 4th Edition: Global Review of Microbiology Testing in the Industrial Market. • Strategic consulting Inc (2014b) Food Contract Lab Report: Global Food Quality and Safety Testing by Contract Laboratories. • Uhlmann et al. (2002) Potential viral pathogenic mechanism for new variant inflammatory bowel disease. Mol Pathol. 55:84-90. • Zitz et al. (2011). Reduced detectability of Listeria monocytogenes in the presence of Listeria innocua. Journal of Food Protection. 74(8). 1282-7.


food control

Assessment of feed additives produced from or containing microorganisms Tackling antimicrobial resistance risks

Rosella Brozzi. European Food Safety Authority, FEED Unit, Parma, Italy.

Regulation (EC) No 1831/20031 stipulates that all feed additives intended to be marketed in the European Union (EU) must be safe for the target species, the consumers of products derived from the animals fed with the additives, the users and for the environment. The European Food Safety Authority (EFSA) is the EU body in charge of conducting the risk assessment of feed additives in line with the legal requirements. This work is carried out by the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) with the support of the FEED Unit.

T

he FEEDAP Panel has produced a series of guidance documents intended to support applicants in the preparation of technical dossiers, and risk assessors in the evaluation of the contained data. These guidance documents are regularly updated to take advantage of the experience gained in evaluating the data and of the new findings in science and technology. Microorganisms can be used as feed additives (e.g., probiotics, silage additives) or can be used as production strains for other additives (e.g., enzymes, amino acids, organic acids). A proper characterisation of these microorganisms is fundamental for the safety assessment. This includes, among other issues, consideration of their ability to survive antimicrobial treatments (i.e., antimicrobial resistance, AMR) and to spread this capacity. This is provision is based on the 1

legal requirements. In fact Commission Regulation (EC) No 429/2008 prescribes that microbial feed additives should not contribute to the reservoir of antibiotic resistance genes already present in the gut microbiota of animals and in the environment. So far approximately 140 strains intended to be used as feed additives have been assessed. From these, five have been found to be resistant to one or more antibiotics (EFSA, 2010, 2011, 2012a, 2012b, 2014). However, only in two cases the genetic basis of the resistance could be identified and in only one of these, the concern related to the potential transfer of the resistance determinants to other microbes could be dismissed. Consequently, in four out of these five cases the Panel could not conclude on the safety of the strains based on the criteria applicable at the time of the assessment.

Regulation (EC) No 1831/2003 of the European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition.

OJ L 268, 18.10.2003, p. 29–43.

tĂŠcnicas de LABORATORIO

742

NÂş 427 DICIEMBRE 2017


food control

The FEEDAP Panel is currently revising its guidance documents. Within this activity, a new guidance document describing the data requirements and the approach underpinning the assessment of microbial and microbial-based additives has been produced2. In this document, the assessment of the AMR of bacterial feed additives is based on two sets of data: • Phenotypic testing based on determination of the minimum inhibitory concentration (MIC) for a battery of relevant antimicrobials, • A search of the whole genome sequence for the presence of known AMR genes. • The antimicrobials are chosen to detect a wide range of antibiotic resistance determinants and to cover those relevant for use in humans and animals (i.e., critically important antimicrobials (CIAs) or highly important antimicrobials (HIAs), last revision WHO, 2016). The possibility of transfer of resistance from viable microorganisms to other microorganisms is related to the genetic basis of the resistance and is considered to be most plausible when the resistance is mediated by added/acquired genes. The current view of the FEEDAP Panel is: • Bacterial strains used as feed additives or as a source of feed additives carrying acquired genes that confer resistance to relevant antimicrobial(s) are considered to represent a risk for target species and for those exposed to the additive. • Bacterial strains used as a source of a feed additive carrying acquired AMR genes, when DNA fragments long enough to cover the corresponding complete genes are detected in the final product, the product is considered to represent a risk for target species and those exposed to the additive. However, if the absence of DNA from the production strain can be shown in the additive, this is not considered a risk. • The guidance on the characterisation of microorganisms used as feed additives or as production organisms was subject to public consultation in the period June to September 2017 and is currently under revision to take account of the comments received. It is expected to be adopted by the FEEDAP Panel and published on the EFSA website in early 2018. EFSA is actively involved in several other activities in the area of antimicrobial resistance. It provides independent scientific support and advice to risk managers on the risks to human and animal health related to the possible emergence, spread and transfer of antimicrobial resistance in the food chain and in animal populations, e.g., in the reduction of the need to use of antimicrobials in food-producing animals (EMA and

EFSA, 2016), in the monitoring and collection of information on antimicrobial resistance in food-producing animals and food (http://www.efsa.europa.eu/en/biological-hazards-data/ reports). For further information, visit: http://www.efsa.europa.eu/en/ topics/topic/antimicrobial-resistance

References - WHO (World Health Organisation) 2016. Critically important antimicrobials for human medicine – 4th rev. WHO Press. ISBN 978 92 4 151146 9. - EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); 2010. Scientific Opinion on the safety and efficacy of the product Cylactin® (Enterococcus faecium) as a feed additive for chickens for fattening. EFSA Journal 2010; 8(7):1661. [13 pp.]. doi:10.2903/j. efsa.2010.1661. - EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); 2011. Scientific Opinion on the safety and efficacy of Lactobacillus pentosus (DSM 14025) as a silage additive for all animal species. EFSA Journal 2011;9(11):2449. [8 pp.]. doi:10.2903/j.efsa.2011.2449. - EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); 2012a. Scientific Opinion on the safety and efficacy of Prostora Max (Bifidobacterium animalis) as a feed additive for dogs. EFSA Journal 2012;10(12):2964 [14 pp.] doi:10.2903/j.efsa.2012.2964. EMA (European Medicines Agency) and EFSA (European Food Safety Authority), 2017. - EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); 2012b. Scientific Opinion on the safety and efficacy of Toyocerin® (Bacillus cereus) as a feed additive for sows, piglets, pigs for fattening, cattle for fattening, calves for rearing, chickens for fattening and rabbits for fattening. EFSA Journal 2012;10(10):2924. [34 pp.]. - EFSA FEEDAP Panel (EFSA Panel on Additives and Products or Substances used in Animal Feed), 2014. Scientific Opinion on the safety and efficacy of Pediococcus pentosaceus (NCIMB 30044) as a silage additive for all animal species. EFSA Journal 2014;12(3):3610, 12 pp. - EMA (European Medicines Agency) and EFSA (European Food Safety Authority), 2017. EMA and EFSA Joint Scientific Opinion on measures to reduce the need to use antimicrobial agents in animal husbandry in the European Union, and the resulting impacts on food safety (RONAFA). [EMA/CVMP/570771/2015]. EFSA Journal 2017;15(1):4666, 245 pp. doi:10.2903/j.efsa.2017.4666.

Draft FEEDAP Panel’s guidance on the characterisation of microorganisms used as feed additives or as production organisms. It was under public consul-

2

tation until 15 September 2017 at http://www.efsa.europa.eu/en/consultations/call/170615

técnicas de LABORATORIO

743

Nº 427 DICIEMBRE 2017


uncertainty

Uncertainty of measurement of microbiological counts

Seppo Ilmari Niemelä sepponiemela89@gmail.com

Introduction

L

aboratories operating under ISO/IEC 17025 accreditation and related systems are required to evaluate measurement uncertainty (MU) for the analyses they conduct, and to report it when relevant. This requirement was brought to the attention of microbiologists in the 1990s. The initiative came from the chemical profession. A comprehensive Guide to the expression of uncertainty in measurement (GUM) elaborated by a wide international group of experts on metrology, published by ISO in 1993, became the basic document for MU evaluation. The principles were “interpreted” in a more practical way for analytical measurements, mainly of chemical nature, by the EURACHEM/ CITAC Guide (1995, second edition in 2000). Both documents exclude measurements based on counts. Because of the central position of counts in microbiological monitoring, microbiologists felt it necessary to make a contribution of their own to the MU discussion. The work began first in Finland (MIKES) and was soon followed by two ISO technical committees ISO/TC 34 (food and animal feeding stuffs) and ISO/TC 147 (Water). Results by an MPN method are not regular counts. Enumeration by MPN methods, however, is increasingly important in microbiological monitoring. The MPN principle is therefore included.

Uncertainty of measurement There is always a great deal of general uncertainty to microbiological test results. The past history of the sample

técnicas de LABORATORIO

may affect the viability of the target microbe, the microbial populations of the sample may interact in the detector during incubation, etc. It is not possible to know what percentage of the target population is caught by the analysis at any particular time. Different nutrient media will give different answers, and so on. Uncertainty of measurement (MU), is defined by ISO (1993) as “a parameter associated with the result of measurement, that characterises the dispersion of the values that could reasonably be attributed to the measurand”. The definition is quite general and leaves open the detailed content of MU and does not define what is ‘reasonable’ in the dispersion of the results. It leaves room for consideration what sources of variation should be included in the measurement uncertainty. The MU value is accordingly attached to the result and not the act of measuring. The MU estimation gives a measure of the confidence that that can be put on the analytical results, not on the laboratory competency. (ISO 19036). This is an important distinction in microbiology where a considerable parts of the variation is often generated without an identifiable cause.

Determination of MU, two approaches Microbiological count data is generated when the microbial concentration of a laboratory sample (portion of material brought to the laboratory for analysis) is estimated by a microbiological counting process. In microbiology, as well as in chemistry, the test result is derived from several observed values often involving many measurements.

744

Nº 427 DICIEMBRE 2017


uncertainty The test result is calculated from the final counts, taking into account the dilution and the volume of the test portion. Volume measurement uncertainties are involved. Additional uncertainty is caused by incubation, operator differences and uncertainty of counting. On top of everything is the intrinsic variation, random distribution of particles in perfectly mixed suspensions.

function at very low counts, at the border of the limit of detection. Also methods based on the MPN technique are almost necessary in water analysis. The component approach, which has no limitations concerning low counts and the MPN principle, therefore, became the chosen approach for water.

There are two general approaches for estimating the actual or potential variability of the test result (the uncertainty of measurement). They are nowadays preferably called the component approach and the global approach.

Component approach

Recent history Development of standards or technical guides for the evaluation and expression of measurement uncertainty for microbiological counts was begun independently and almost simultaneously for food and water microbiological methods. Expert groups were available at the time in technical committees TC 34 (food and animal feeding stuffs) and TC 147 (water). Obviously, the microbiological techniques and many methods were the same for food and water. It was natural that an attempt was made to harmonise the uncertainty estimation of water and food microbiological methods. In the end, however, it proved impossible to agree on a common standard at this stage. Food microbiologists thought the global approach more appropriate and water microbiologists wanted a guide on the component approach. There is a difference in efficiency of the approaches depending on the situation. ISO/TC 34/SC 9 considered that the “step-by-step” (component) approach does not apply satisfactorily in the case of the microbiological analysis of food, where it is difficult to build a really comprehensive model of the measurement process. For reasons they listed for instance: “possibility of overlooking a significant source of uncertainty, the analyte is a living organism, whose physiological state can be variable, and the analytical target includes different strains, different species, and different genera”. The working group concluded that, for these reasons, the microbiological analyses of food do not enable a metrologically rigorous and statistically valid estimation of MU (ISO/TS 19036:2005). This cannot be the full reason, however, because the same difficulties are present in water analysis as well. The working group for food found that the global design is not applicable to enumeration using a most probable number (MPN) technique or the analysis of low levels of microorganisms (10 colonies per plate being the limit).

The component approach is also referred to as the “step-bystep” or “bottom-up” procedure. It is based on identifying the components of uncertainty of the analytical process. Each of them is separately evaluated in whatever way is feasible. The individual components are mathematically combined to correspond with the design of the test procedure. This is the procedure introduced by the original uncertainty document GUM (ISO 1993). In practice it means forming a mental picture of the process, which is almost the same for all microbiological methods (Fig. 1). It is also helpful to write down the entire formula for calculating the final result. Often it appears that the result is based on ten or more elemental measurements (mostly volumes). The uncertainties of the elemental operations are combined by what is called the law of propagation of uncertainty to give an estimate of the combined uncertainty.

Fig. 1. Graph of a typical microbiological counting procedure.

A simple procedure without duplication is normal in daily routine analysis of samples. Formerly, it was common to duplicate the last step.

The law of propagation of uncertainty The law is based on the idea of the additivity of variance. The combined standard uncertainty (ucomb ) is obtained as the ‘quadratic sum’ of n independent components of uncertainty (u1, u2,…, un):

The important water microbiological methods of healthrelated indicator species and pathogenic organisms must

técnicas de LABORATORIO

745

Nº 427 DICIEMBRE 2017


uncertainty The uncertainty components are expressed in a scale where variances are known or believed to be additive (usually logarithmic or relative scale). It is sometimes instructive to group the components of uncertainty. Division into three groups: sub-sampling (or matrix), analytical procedure, and detector might help decide which of the approaches, component or global, would be best. An important property of the quadratic sum is namely the powerful influence of large values. Unless there is a large number of small values, contributions that are less than one third of the largest need not be quantified in detail. If matrix variability is dominant, like it probably is in difficult-to-mix solid foods, the choice is the global approach. If the matrix uncertainty is negligible, like it is in water and liquid foods, then the best choice is the component approach.

order to obtain an empirical estimate of the variability of the test result (Fig. 2). The process has also been called the “top-down” approach. The term “global” was invented to convey the idea that even all unknown sources of uncertainty are believed to be included.

Fig. 2. Minimum design for a basic experiment for the global uncertainty of measurement.

The standard statistical formula for standard deviation is applied to calculate an estimate of the uncertainty of measurement.

Component estimation

Not all identified contributions to uncertainty will make a significant contribution to the total uncertainty.

Microbiological testing laboratories generally have a program whereby a certain number of samples are analysed at least in duplicate. Duplicate data for a particular test and for particular types of samples collected over a period of time can be analysed to determine the standard deviation. If all normal sources of variation in the method are taken into account it is called the intermediate (or intra-laboratory) precision of the test method. The sources of variation include storage effects, laboratory environmental effects, operator affects, effects of using different items of equipment, different batches of media, etc. This is the preferred extent of uncertainty likely to be reported as a global estimate of MU.

There are two general ways of determining the values of variance components, called Type A and Type B evaluation.

Subsampling procedures are normally included in it whereas external sampling is not.

Type A evaluation consists of calculating the standard deviation (standard uncertainty) from a series of independent parallel measurements x1, x2, …,xn of the test quantity using the conventional statistical formula for experimental standard deviation. It can concern the entire analytical process (the final result) or parts of it (for instance repeatability of pipetting or uncertainty of counting, etc.).

The MU estimate does not characterise the analytical method itself independently from the laboratory which implements it. The critical factors associated with the method or the laboratory should be identified and demonstrated to be under control. A re-assessment of the MU is required following changes to any of the critical factors.

In Type B evaluation, the numerical value of a component of uncertainty is obtained by other means than statistical methods, most importantly from assumed statistical distributions. Some may be accounted for by data already available in the laboratory or in published tables.

In food microbiology, the effect of the matrix on MU cannot be avoided whereas the influence of the contamination level can be eliminated by log transformation. In water microbiology the matrix effect is generally negligible and the contamination level is the main cause of differences in MU.

The global approach

Problems of the global approach

In the global approach, special experiments are necessary. The entire analytical process is repeated, at least in duplicate, in

In the global method, the sources or causes of variation are not identified and assessed individually. This may be seen as

What is being measured should be clearly defined. The equation used to calculate the value of the measurand at the end of the method process is a good starting point. On the whole, general quantitative microbiological analyses are very straightforward, most being based on the same general principles, i.e. subsampling, dilution, plating, incubation, and counting (with, on occasion, confirmation of the identity of organisms) Forster (2003).

técnicas de LABORATORIO

746

Nº 427 DICIEMBRE 2017


uncertainty an advantage because the unknown sources of uncertainty are assumed to be included even though it is not known why and how. Standard deviation based on two values is very imprecise. The experimental unit depicted in Fig. 2 should be repeated many times. ISO/TS 19036 proposes a minimum of ten repetitions. The aim of the global approach is to generate MU estimates that need not be reassessed unless some important factor in the analysis chain is changed significantly. A major problem here is that it is not possible to know what factors are important because they are not evaluated separately in the global approach. Chemists sometimes speak of the MU of methods. In microbiology it is not possible to think of the uncertainty of methods independent of the matrix, the target microbe, and the concentration of the analyte. In food microbiology, the effect of the matrix on MU cannot be avoided. The influence of the contamination level can be eliminated by log transformation. The standard deviation of reproducibility shall be estimated for each type of target microorganism and for each matrix, for a given method that the laboratory uses for producing its routine results. This may lead to very extensive trials when the laboratory analyses a large variety of matrices. Many microbiological laboratories have procedures available for monitoring variability in results. The analysis of a natural sample is duplicated under intermediate reproducibility conditions. (Same sample, same day, same laboratory, but different operators and equipment.) It is relatively easy to incorporate such duplication within daily routine analyses. It only takes some planning and a little extra work. For global MU evaluation, the estimate should not depend on the concentration of the analyte. This is only possible if the variability of sub-sampling and the analytical procedure (dilution, incubation, counting, etc.) overwhelm the in trinsic variability of the final count that follows the Poisson distribution. The relative Poisson variation (distribution uncertainty) increases dramatically when the counts per plate become small. That is the main reason why MU standard for food microbiology (ISO/TS 19036:2006) had to exclude the estimation of uncertainty of low numbers (less than 10 colonies counted). MPN methods that always operate with low density suspensions are also not included in the global standard.

técnicas de LABORATORIO

Problems of the component approach Many separate calibration experiments are needed to establish reliable estimates of a great number of individual operational steps in the component approach. The components are derived by various means, such as from assumed statistical distributions, empirical calibration data or QA data, and literature. Some of them are quite easy, for instance checking the uncertainty of volumes by weighing. A special problem are the causes of uncertainty that do not appear in the calculation of the final result. Effects of incubator environment (time, temperature, and humidity variations, positional effects), personal differences in recognition and counting of colonies and equipment influences should be estimated. They might require special trials. Nevertheless laboratories shall at least attempt to identify all the components of uncertainty and make a reasonable estimation. In the evaluation of the measurement uncertainty of a method, the EURACHEM guide requires the analyst to look closely at all possible sources of uncertainty within a method and states that ”in practice, a preliminary study will quickly identify the most significant sources of uncertainty” which will be the dominating influences in the total uncertainty of the method. “Method” in this case meaning the medium, matrix, microbial population, incubation environment complex.

MPN MPN methods are mostly connected to simple designs. The practical procedure might involve only direct measuring of a sub-sample volume and the counting of positive tubes. It is safe to assume that the water sample can be mixed perfectly. The uncertainty of the MPN test result therefore consists of three components: uncertainty of volume measurement, distribution uncertainty, and the uncertainty of counting. In a perfectly mixed sample there is no other sub-sampling variability than that connected with the inherent distribution variation (Poisson and binomial in the case of MPN). It is great at the low particle density where MPN methods operate and it can be modelled mathematically. Volume uncertainty is negligible compared with the distribution uncertainty. It is only the uncertainty of counting that might add significantly to the combined uncertainty.

Methods and bias in microbiology An important principle in general metrology is to correct the result for systematic error (bias). Physicists and chemists

747

Nº 427 DICIEMBRE 2017


uncertainty are familiar with it and apply correction factors routinely. Microbiologists are very reluctant to apply corrections even when it is apparent that the count may be seriously affected (too low or too much under influence of personal interpretation, for instance).

Traditionally, however, results from microbiological analyses are presented unaccompanied by any form of uncertainty estimation. This may change although it does not seem that customers often request that information.

Microbiological methods can be considered what the EURACHEM guide calls ‘empirical methods’ (Forster, 2003). They are methods where the analytical results are dependent on the procedures used in the analysis. The method accordingly defines the measurand or, in other words, the “right” answer is not only a property of the sample or the target organism, but also of the method. (Microbiologists know well that different media give different answers in the same sample.) Possibly the majority of quantitative microbiological methods can be considered to be empirical methods, where results generated are dependent on the nutrient medium in use, time and temperatures of incubation, and inclusion or exclusion of resuscitative steps in the methods. The bias associated with the results cannot be accurately defined and is conveniently ignored or considered zero. Microbiologists are comfortable with that. In fact, they have always been reluctant to apply any bias corrections in their results for the following obvious reasons (Forster 2003):

Expression of uncertainty

• “It is virtually impossible to know the exact microbial concentration of any sample, natural or artificial.” • “Certified reference materials for running as controls alongside tests are not generally available and where these are available, it will be unlikely that they will be matrix matched.” In other words, the true value is not known.

Uncertainty in microbiology: some historical notes Long before the introduction of the GUM and EURACHEM documents there already was a long tradition of estimating the variability of microbiological count data. Almost a century microbiologists have been assured by statisticians that the variability of parallel counts can be modelled by the Poisson distribution, which means that the standard deviation (standard uncertainty) is the square root of the number of colonies counted. Dutifully, this concept has been repeated over and over again in standards, method protocols, and guides on counting. 95% CIs have been available in MPN tables almost from the beginning. It also has been known since 1920s that this estimate might underestimate the uncertainty because of so called overdispersion that may exist for many reasons.

técnicas de LABORATORIO

The final stage is to multiply the global or component (combined) estimate of standard uncertainty by a chosen coverage factor k, in order to obtain an expanded uncertainty. The expanded uncertainty U is required to provide an interval which may be expected to encompass a large fraction the distribution of values which could reasonably be attributed to the measurand, i.e, an interval within which the value of the measurand is believed to lie, with a high level of confidence. For most purposes, a coverage factor of 2 is chosen (confidence level of approximately 95%). If requested, the uncertainty information can be reported as a confidence interval or as confidence limits. For example: Result: x (units) with a confidence interval of y to z, or, x (units) with confidence limits of y and z. What is preferably determined is the experimental intralaboratory standard deviation of reproducibility on the final result of the measurement.

Bibliography • ISO/BIPM/IEC/IFCC/IUPAC/IUPAP/OIML (1993) Guide to the Expression of Uncertainty in Measurement, International Organization for Standardization, Geneva, Switzerland. • ISO/IEC 17025 (2005). General Requirements for the Competence of Testing and Calibration Laboratories. International Organization for Standardization, Geneva, Switzerland. • ISO/TS19036 (2006) Microbiology of food and animal feeding stuffs – Guidelines for the estimation of measurement uncertainty for quantitative determinations. • ISO/DIS13843 (2016). Water quality – Requirements for establishing performance characteristics of quantitative microbiological methods. • ISO/DIS 29201 (2011). Water quality – The variability of test results and the uncertainty of measurement of microbiological enumeration methods. • ISO 8199 (2005). Water quality – General guidance on the enumeration of micro-organisms by culture. International Organization for Standardization, Geneva. • Forster, L.I. (2003). Measurement uncertainty in microbiology. Journal of AOAC International, 86: 1089-1094. • Niemela, S.I. (2003) Uncertainty of quantitative determinations derived by cultivation of microorganisms. MIKES J4, 2003.

748

Nº 427 DICIEMBRE 2017



trade fairs

What will the process industry look like in 2025?

ACHEMA focal topics turn the spotlight on significant trends.

W

hat will the process industry look like in 2025? More flexible, more integrated, more biological, experts say. Three focal topics bring “Flexible Production”, “Chemical and pharma logistics” an “Biotech for Chemistry” to the forefront at ACHEMA 2018. Megatrends affect whole industries from equipment to processes to business models. Consequently, they cannot be covered within one exhibition group. ACHEMA answers to this by defining three focal topics that draw attention to developments affecting all stakeholders in the process industry, from lab supplier to pump developer to plant engineer and operator. Thus, aided by markings at the stand to dedicated topical magazines, visitors can get an overview on where the process industry is headed. ACHEMA 2018 focusses on three trends: Digitisation has been a major driver of the process industry for some time –and it’s no end in itself: “Future chemical production has to react more flexibly– to different raw materials, to a volatile energy supply, and to customer demands for more individualized products”, said Dr. Andreas Förster, Subject Matter Expert Chemistry at DECHEMA e.V. The focal topic “Flexible Production” at ACHEMA 2018 specifically addresses these aspects: • Modular plants that can be assembled from „plug and play“-components according to the requirements of different processes, production volume or locations

técnicas de LABORATORIO

750

Nº 427 DICIEMBRE 2017


trade fairs

• Robust technologies that allow for variations of production volume depending e.g. on energy supply • Automated process control that uses real time measurements to optimize processes. • “Numerous exhibitors offer relevant products or services”, said Dr. Marlene Etschmann, responsible for communicating on the focal topics at DECHEMA Ausstellungs-GmbH. „The focal topics provide them with a platform to showcase their offerings across the whole exhibition.“

selection of solvents at the interface between biotechnological and chemical reaction steps. “More than ever biotechnologists, chemists and engineers have to cooperate closely in these processes. Backward reasoning becomes even more important than it is already the case in the chemical industry”, explained Dr Kathrin Rübberdt, Head of the biotechnology department at DECHEMA e.V.. ACHEMA as the forum that covers the whole development and value chain offers stakeholders the chance to explore exactly this type of cooperation.

Closely related to flexible production are chemical and pharma logistics. These used to be perceived as something happening outside the factory gate, but in times of integrated supply chains they have become a significant factor in production. In some areas like personalized medicine, logistics even become part of the product: New therapies rely on samples being transported fast and reliably from the bedside to the lab. With track-andtrace-technologies the location of the sample can be determined at any time – an important feature in quality control not only in the pharmaceutical, but also in the chemical industry. ACHEMA 2018 takes this into account: New solutions are not only presented in the growing exhibition group pharma, packaging and storage technologies. In addition, the logistics hotspot in hall 1 offers a lot of opportunities for information and exchange.

Extensive information is provided for each of the focal topics in the run-up to ACHEMA and on site: Exhibitors offering corresponding technologies and solutions are easy to find following dedicated marks in the halls. The ACHEMA App and a dedicated magazine for each individual focal topic give a comprehensive overview and provide orientation.

The third focal topic „Biotech for Chemistry“ showcases the integration of chemical and biotechnological methods. They are no longer strictly separated; pragmatically, the method of choice is the one promising the best results. Citric acid, for example, has been produced since the 1920s by purely biotechnological means, for acetic acid, the chemical process is still more competitive. This leads to questions regarding the development of robust production strains as well as the

técnicas de LABORATORIO

ACHEMA is the world forum for chemical engineering, process engineering and biotechnology. Every three years the world’s major fair for the process industry attracts around 4,000 exhibitors from over 50 different countries to present new products, processes and services to 170,000 professionals from all over the world. The spectrum ranges from laboratory equipment, pumps and analytical devices to packaging machinery, boilers and stirrers through to safety technology, materials and software, thus covering the entire needs of the chemical, pharmaceutical and food production industries. The accompanying congress, featuring 800 scientific lectures and numerous guest and partner events, complements the wide range of themes of the exhibition. The next ACHEMA will take place from 11-15 June 2018 in Frankfurt am Main. www.achema.de

751

Nº 427 DICIEMBRE 2017


encuentros

XVI Workshop “Métodos rápidos y automatización en microbiología alimentaria”

Del 21 al 24 de noviembre de 2017 tuvo lugar el XVI workshop sobre Métodos rápidos y automatización en microbiología alimentaria (MRAMA), en la Facultad de Veterinaria de la Universitat Autònoma de Barcelona (UAB; Bellaterra, Cerdanyola del Vallès), dirigido por los Dres. Marta Capellas Puig y Josep Yuste Puigvert, profesores de Ciencia y Tecnología de los alimentos, y organizado por el Centre d’Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA) y el Departamento de Ciencia animal y de los alimentos de la UAB. Celebrado con periodicidad anual, el workshop MRAMA, de un contenido aplicado y de futuro, amplía y difunde los conocimientos teóricos y prácticos sobre métodos innovadores para detectar, contar, aislar y caracterizar rápidamente los microorganismos, y sus metabolitos, habituales en los alimentos y el agua.

E

n el workshop participaron conferenciantes de renombre. Se encargó de la ponencia inaugural el Dr. José Juan Rodríguez Jerez, profesor del citado departamento, que ofreció una visión general de los métodos rápidos y miniaturizados y la automatización en microbiología. El Dr. Armand Sánchez Bonastre, director del Servicio Veterinario de Genética Molecular de la UAB y profesor del mismo departamento, informó exhaustivamente sobre la aplicación a la seguridad alimentaria de la reacción en cadena de la polimerasa (PCR) y la secuenciación genómica masiva, métodos genéticos en constante evolución para detectar e identificar microorganismos. Rosella Brozzi, de la European Food Safety Authority (EFSA), en Parma (Italia), presentó un tema de gran importancia como es el riesgo de resistencias a los antimicrobianos. Joan Roquet-Jalmar Pàmies, en Kellogg Manufacturing España, de Valls, habló sobre la implantación de un sistema de verificación de limpieza basado en bioluminiscencia. Pascal Monzó Martos, de Productos Florida, en Vila-real, explicó su experiencia en Campylobacter y Salmonella en productos avícolas. Ana Torres Rubio, de Florette Ibérica, en Milagro, y Armando Marín Martínez, de Eurofins Análisis Alimentario Nordeste, en Tudela, también expusieron su experiencia en alimentos de IV y V ga-

técnicas de LABORATORIO

mas, respectivamente: normativa, criterios, riesgos, muestreo, tendencias, etc. El Dr. Seppo Ilmari Niemelä, de la University of Helsinki (Finlandia), transmitió magistralmente a los asistentes sus amplios conocimientos sobre la incertidumbre de la medida de los recuentos microbiológicos. Y Xavier Lizana Alcazo, de ACONSA, en St. Joan Despí, participó con una interesante ponencia acerca de una herramienta para la gestión de auditorías de higiene alimentaria. Los contenidos de las ponencias del miércoles dieron lugar a una mesa redonda en que se abordaron aspectos sobre el día a día del control microbiológico en la industria. Además, asistieron importantes empresas de microbiología, que explicaron y mostraron sus productos y sus servicios (funcionamiento, ventajas y limitaciones, y técnicas en que se basan). Estas empresas, que patrocinaron el XVI workshop MRAMA, fueron: 3M España, BC Aplicaciones Analíticas, BD Diagnostic Systems, BioControl Italia, bioMérieux España, Bio-Rad Laboratories, Bioser, BioSystems, Devea (Francia), Eppendorf Ibérica, Hygiena International (Reino Unido), IDEXX Laboratorios, iMiCROQ, Interscience (Francia), ITRAM Higiene, Laboratorios Microkit, LGC Standards, Merck (Alemania), MicroPlanet Labo-

752

Nº 427 DICIEMBRE 2017


encuentros

ratorios, Neogen Europe (Reino Unido), Nirco, PanReac AppliChem, Raypa, Thermo Fisher Diagnostics y Tiselab. También colaboran con el workshop MRAMA: ainia,centro tecnológico, el Centro Nacional de Tecnología y Seguridad Alimentaria (CNTA), Premiumlab, Productos Florida, la Associació Catalana de Ciències de l’Alimentació (ACCA), Publica, S.L. - revista Técnicas de Laboratorio, Estrategias Alimentarias - revista eurocarne, Sweet Press - revista Tecnifood, la Sociedad Española de Microbiología (SEM), la Asociación de Consultores y Formadores de España en Seguridad Alimentaria (ACOFESAL), la Sociedad Española de Seguridad Alimentaria (SESAL), la Agència de Salut Pública de Barcelona, la Agència de Salut Pública de Catalunya, y la Sociedad Española de Químicos Cosméticos (SEQC). El workshop ha sido, de nuevo, una actividad exitosa, tanto por los ponentes y sus aportaciones, como por la asistencia de público y la participación de las empresas de microbiología. Reunió a 208 personas, de diversos colectivos nacionales e internacionales: (i) Laboratorios, asesorías y consultorías, e industrias de los ámbitos agroalimentario (entre otros, los sectores cárnico y avícola, lácteo, comidas preparadas, panificación y bollería, cacao, bebidas analcohólicas –aguas, bebidas refrescantes– y alcohólicas –cervecero, cava–, ingredientes y aditivos, preparados alimenticios, productos dietéticos, envasado), biotecnológico, cosmético, material para laboratorios, etc.; (ii) Profesores y estudiantes de la UAB (grado de Ciencia y Tecnología de los alimentos, y tercer ciclo) y otras universidades; (iii) Otros centros de investigación; (iv) Administración. Durante tres días se realizaron unas sesiones prácticas en el laboratorio, en las que se trabajó con algunos equipos y los

técnicas de LABORATORIO

productos más innovadores del campo de los métodos rápidos y la automatización. Y se organizaron cuatro talleres: (i) Uso de los recursos para microbiología predictiva disponibles en internet, a cargo de Montse Vila Brugalla (Agència de Salut Pública de Barcelona); (ii) ¿Peligros microbiológicos en los sistemas APPCC? ¡Por fin, identifícalos correctamente en tu empresa!, a cargo de Jon Basagoiti Azpitarte (Imagining Management Systems, Ermua); (iii) Micotoxinas, un peligro oculto. Métodos rápidos de detección, a cargo de Bioser – Romer Labs Diagnostic (Austria); (iv) El fraude alimentario en los esquemas de certificación. Un nuevo reto para las industrias, a cargo de SGS ICS Ibérica. La mesa redonda previa a la clausura oficial, con varios ponentes y profesionales de empresas de microbiología, versó sobre la instrumentación en microbiología de los alimentos, las tendencias del mercado mundial y otros temas de actualidad del sector, y constató, junto con las ponencias del workshop, la preocupación por el creciente riesgo de resistencias a los antimicrobianos; la importancia del correcto muestreo, relacionado directamente con la contaminación del producto; la relevancia de la automatización en el laboratorio; la diversidad de necesidades en cuanto a métodos microbiológicos, según el sector, adaptándose siempre a los criterios y las normativas; así como los progresos en el desarrollo de soluciones que aportan rapidez, precisión, sensibilidad y especificidad. El XVII workshop MRAMA se celebrará del 20 al 23 de noviembre de 2018. http://jornades.uab.cat/workshopmrama

753

Nº 427 DICIEMBRE 2017


noticias

Noticias

EMPRESAS

Serviquimia participó en la convención de ventas bienal Lab Logistics Group 2017 En octubre tuvo lugar en Mainz (Alemania) la Convención de Ventas bienal organizada por el Grupo Lab Logistics Group. Con más de 800 participantes entre socios, distribuidores, expositores y el staff de LLG, el encuentro tuvo un doble objetivo. Por un lado, acudieron más de 100 fabricantes/distribuidores con su propio stand, y pudieron mostrar sus últimos lanzamientos y sus productos estrella. Se organizaron formaciones durante los dos días para entrar más en detalle y poder conocer no solo el producto, sino también herramientas de venta. Por otro lado, los participantes y socios de LLG tuvieron la oportunidad de reencontrarse con compañeros de profesión de todo el mundo y debatir sobre el negocio: una ocasión verdaderamente enriquecedora. LLG forma el mayor grupo de distribuidores de laboratorio. Cuenta con 33 socios de Europa, Asia y Australia. Tiene su sede y almacenes en Meckenheim (Alemania), desde donde mueve más de 200.000 referencias. Serviquimia forma parte de dicho grupo desde hace más de 35 años, y tiene una destacada posición como socio en España. El mayor volumen de negocio de Serviquimia se realiza a través del catálogo, pero LLG también

es su carta de presentación para poder negociar con fabricantes líderes del sector desde una posición privilegiada. Duran, Brand, Bürkle, Huber, Memmert, Vitlab, Buchi, Grant, IKA, Cole-Parmer, Whatman, Hamilton, Henke, Becton-Dickinson, Thermo, Eppendorf, Raypa, Vacuubrand, Motic, Bandelin, etc., son solo algunos de los fabricantes con los que trabaja a través de LLG y que hacen de Serviquimia un proveedor flexible y competitivo para los laboratorios de lros clientes. Además, LLG cuenta desde hace algu-

técnicas de LABORATORIO

754

Nº 427 DICIEMBRE 2017

nos años con su propia línea de fungibles, equipos y reactivos bajo el nombre de LLG-Labware, desde material de plástico y vidrio, pasando por agitadores, baños de ultrasonidos, estufas de secado y pipetas. También desarrolla una gama de medios para biología molecular de calidad. www.serviquimia.com (Véase anuncio en la sección Guía del Comprador.)


noticias PREMIOS

Galardón para el programa de eHealth de la hormona de crecimiento de Merck Los Premios de Excelencia en el Mercado Farmacéutico (PMEA, por sus siglas en inglés), entregados por la revista Pharmaceutical Market Europe, han reconocido al Programa de eHealth de la hormona de crecimiento de la compañía de ciencia y tecnología Merck como el ganador en la categoría de Excelencia en Innovación. El premio, entregado en una ceremonia celebrada en Londres (Reino Unido), destaca las iniciativas de innovación tecnológica que han contribuido a la mejora de los resultados de salud y del cuidado del paciente a través de un abordaje diferencial. El programa de eHealth de la hormona de crecimiento de Merck se impuso en la final a otros dos proyectos: ‘Bayer iMCM Lighthouse Project’, para hipogonadismo, de Bayer, y ‘Make The ConnectionHelping Paediatricians Join the Dots to Recognise MPS I’, para mucopolisacaridosis tipo I, de Sanofi Genzyme. El programa PMEA se diseñó con el objetivo de reconocer y alentar la excelencia, las mejores prácticas y la innovación en mercados locales, europeos y mundiales. Reflejando el dinamismo del entorno de

la salud, así como el desarrollo de nuevas vías inteligentes para mejorar la asistencia y los resultados de salud, PMEA reconoce las prácticas centradas en el paciente que garantizan los tratamientos y aportan resultados relevantes. En esa línea, el jurado de los premios ha reconocido que “el proyecto de Merck es realmente innovador. La plataforma Easypod™ representa un fantástico ejemplo de triaje entre paciente, cuidador y profesional sanitario, sobre todo en lo que se refiere a la gran forma en la que logra el compromiso en pacientes de corta edad. Ha logrado tasas de adherencia destacables en parte gracias al dispositivo.” El ecosistema eHealth de Merck en la hormona de crecimiento para el tratamiento de trastornos de crecimiento tiene tres componentes, que pueden funcionar juntos y por separado, entre los que destaca el sistema de seguimiento del tratamiento con hormona de crecimiento Saizen® Easypod™ System. Easypod™ es el único dispositivo de inyección electrónico y totalmente automatizado para la administración de

hormona de crecimiento que proporciona registro electrónico de la historia de dosis, facilitando la adherencia del paciente a largo plazo a la terapia. Además, los datos de inyecciones se pueden transferir de forma inalámbrica desde la casa del paciente a una nube de datos segura, con el consiguiente ahorro de tiempo en consulta. A este dispositivo hay que añadirle Easypod™ connect, una web de gestión del tratamiento que ayuda al profesional sanitario a estar informado en tiempo real de la adherencia de sus pacientes. La web permite enviar recordatorios de tratamiento de forma automática vía correo electrónico o SMS a los pacientes, para poder corregir casos de baja adherencia. A Saizen® Easypod™ System se le puede añadir Saizoom, un divertido juego de smartphone que enseña a los pacientes con trastornos del crecimiento acerca de su enfermedad y el tratamiento, así como la app Growlink, que facilita la monitorización de los datos por parte de los padres. www.merck.es

COMPANIES

IDEX Health & Science Announces Acquisition of New Microfluidics Company IDEX Health & Science, LLC announced on December 12th the acquisition of thinXXS Microtechnology that will accelerate growth of its microfluidics consumables business. Located in Zweibrücken, Germany, thinXXS Microtechnology is a leader in the development and production of plastic microfluidic consumables serving the Life Sciences, Point of Care, and Veterinary markets. This acquisition will serve to establish IDEX Health & Science as the leader in microfluidic technologies, and sharpen its focus on the growth of integrated optofluidic sub-systems, components, and highly engineered solutions across its target markets. Commenting on the acquisition, IDEX Health & Science President Gus Salem stated, “thinXXS is our second microfluidic asset acquisition that represents an incremental building block to our microfluidic technologies platform.” Salem continued, “The company’s market-leading technology and product portfolio are a fantastic fit with our microfluidics growth strategy by providing greater access to our core life science

técnicas de LABORATORIO

instrumentation market and creating new growth opportunities within the Point of Care, and Veterinary markets.” IDEX Health & Science is the global authority in fluidics and optics for the life sciences market, offering a three-fold advantage to customers by bringing optofluidic paths to life with products, people, and engineering expertise. Respected worldwide for solving complex problems, IDEX Health & Science delivers complete life science instrumentation development innovation for analytical, diagnostic and biotechnology applications. With the industry’s broadest portfolio of state-of-the-art components and capabilities, IDEX Health & Science is changing the vision for optofluidic solutions, anticipating customers’ needs with intelligent solutions for life. Product offerings include: connections, valves, pumps, degassers, column hardware, manifolds, microfluidics, consumables, integrated fluidic assemblies, filters, lenses, shutters, laser sources, light engines and integrated optical assemblies. www.idex-hs.com

755

Nº 427 DICIEMBRE 2017


noticias ALMIRALL

Apoyo a la innovación y el talento joven en el “Innovators Under 35 Europe: Spain Gathering” La compañía farmacéutica Almirall, S.A., patrocinó el acto “Innovators Under 35 Europe: Spain Gathering”, organizado el 30 de noviembre por la MIT Technology Review, del Instituto Tecnológico de Massachusetts (MIT, por sus siglas en inglés). La organización, que reconoció en septiembre a los 35 jóvenes innovadores con más talento de Europa, se reunió en el Barcelona Tech City para premiar a los 10 Top Spanish Talents. Almirall participó en un workshop con Top talents europeos para analizar cómo aplicar sus innovaciones y su talento al campo de la dermatología. En este sentido, Pedro Luis González Atienza, director de Innovation & New Product Planning en Almirall y ponente en la sesión, destacó: “En Almirall llevamos la Ciencia y la innovación en nuestro ADN desde hace más de 40 años. Contamos con una larga historia en apoyar el emprendimiento para superar los desafíos a través de la innovación. Tener hoy la oportunidad de reconocer a estos jóvenes talentos y de compartir con ellos nuestros proyectos ha sido toda una experiencia en positivo”, y ha añadido, “estos jóvenes han demostrado una capacidad de ingenio muy necesaria en estos tiempos. Por eso estamos aquí, para dar visibilidad a los avances tecnológicos del futuro.” Convertir la Ciencia en beneficios para los pacientes es la esencia del trabajo de Almirall. Consciente de que existen muchas ideas innovadoras ahí fuera, la compañía colabora con entidades científicas, académicas y tecnológicas, para encontrar nuevas aplicaciones y productos que avancen en la salud de la piel. Fiel a este principio, Almirall patrocinó, en calidad de global partner, esta iniciativa promovida por el MIT. Asimismo, como parte de su estrategia de colaboración externa, recientemente se ha creado la plataforma de innovación abierta AlmirallShare, para ayudar a identificar soluciones innovadoras para la salud de la piel.

Durante la celebración, los 10 finalistas españoles presentaron sus proyectos de investigación y Eduardo Jorgensen fue reconocido con el premio Innovador del Año España 2017 gracias a su proyecto de desarrollo de un páncreas artificial. De los 10 finalistas españoles que han optado al premio Innovador del Año España 2017, tres lograron entrar en la lista de 35 ganadores europeos y recibieron una mención especial por ello: · Eduardo Jorgensen –MedicSen: Su páncreas artificial aumentará la adhesión al tratamiento y mejorará la calidad de vida de los diabéticos. · Rubén Costa – Instituto IMDEA Materiales: Sus bio-leds ecológicos y de bajo coste reemplazarán a los sistemas actuales de iluminación. · Carles García –Fundación Fisabio: Su dispositivo médico disminuye los efectos secundarios provocados por una incorrecta aplicación de la anestesia epidural. Creada en 1999, Innovadores Menores de 35 es una comunidad global de innovadores, pioneros y agentes del cambio, y el reconocimiento más prestigioso otorgado por la MIT Technology Review. Muchos de los ganadores de ediciones pasadas son ahora mundialmente reconocidos, habiendo desarrollado ideas innovadoras que han evolucionado en

técnicas de LABORATORIO

756

Nº 427 DICIEMBRE 2017

proyectos exitosos y empresas sostenibles que están transformando el mundo. En 2011 la MIT Technology Review amplió esta búsqueda de talento a Europa celebrando ediciones locales de los premios en varios países, entre ellos España. Las ediciones locales se han unificado en una única edición regional europea en busca de los 35 mejores Innovadores Menores de 35 de la UE. Almirall se centra en la salud de la piel. Colabora con profesionales de la salud, aplicando la Ciencia para proporcionar soluciones médicas a pacientes y futuras generaciones. Sus esfuerzos se centran en luchar contra las enfermedades de la piel y ayudar a la gente a sentirse y verse mejor. Apoya a los profesionales sanitarios en su mejora continua, aportando soluciones innovadoras donde sean necesarias. La compañía, fundada en 1943 y con sede en Barcelona, cotiza en la Bolsa de Valores española. Es una fuente clave de creación de valor para la sociedad, gracias al compromiso adquirido con sus principales accionistas y a su decisión de ayudar a los demás, comprendiendo sus desafíos y utilizando la Ciencia para ofrecer soluciones para la vida real. El total de ingresos en 2016 fue de 859,3 millones de EUR y más de 2.000 empleados están dedicados a la Ciencia.


noticias

ZEISS

Executive Board enlarged The Supervisory Board of Carl Zeiss AG has decided to expand the Executive Board of the Zeiss Group, which currently has four members. This is in line with the implementation of the Zeiss portfolio strategy and anchors the business responsibility in the Executive Board. Effective 1 January 2018, two positions will be added to the Executive Board of the Zeiss Group headed by President & CEO Dr. Michael Kaschke, one for the Semiconductor Manufacturing Technology segment and the other for Research & Quality Technology. “Zeiss is still on course for further growth in important future markets, as evidenced by the record figures from the past fiscal year. The setup of Zeiss as a portfolio company initiated several years ago in line with market and customer segments is key for continuing this successful path. This is now also fully reflected in the structure of the Executive Board,” says Dr. Dieter Kurz, Chairman of the Supervisory Board of Carl Zeiss AG. - Effective 1 January 2018, the current Head of the Semiconductor Manufacturing Technology (SMT) business group, Dr. Karl Lamprecht, will serve as Member of the Executive Board responsible for the Semiconductor Manufacturing Technology segment. “Karl Lamprecht is well-versed in the special challenges posed by the volatile semiconductor market, and has an extensive network of both partners and customers. Over the past 12 years, he has contributed significantly to the success of the Semiconductor Manufacturing Technology business group and consequently to the success of Zeiss,” says Dr. Michael Kaschke. “We wish Karl Lamprecht much success in his new role and responsibilities as Executive Board Member of the Zeiss Group.”

Peter.

Lamprecht.

- Also effective 1 January 2018, the current Head of the Industrial Metrology (IMT) business group, Dr. Jochen Peter, will lead as a Member of the Executive Board the entire Research & Quality Technology segment which comprises the IMT as well as the Microscopy business group. “The Research & Quality Technology segment offers considerable growth potential for the Zeiss Group – in particular as a result of the opportunities offered by digitalization and smart industries. There are many points of intersection between the business groups IMT and Microscopy with great opportunities for our customers,” says Dr. Michael Kaschke. “We are delighted that Jochen Peter will lead this Zeiss segment directly as Member of the Executive Board. We wish him much success.” - Thomas Spitzenpfeil, whose responsibilities as Member of the Executive Board currently include the role as CFO and CIO, will pursue after eight successful years at Zeiss new challenges outside the Zeiss Group. He and the Supervisory Board have

agreed not to extend his appointment for a third term. The Supervisory Board would like to express its sincere thanks to Mr. Spitzenpfeil for his work over the years. It has asked him to stay on, if possible, until the scheduled end of his appointment on 30 September 2018 and to support the President & CEO with integrating the new Executive Board Members. “Thomas Spitzenpfeil has made many important contributions to the success of Zeiss since 2010, in particular his achievements in setting up and evolving the shared service functions Accounting, Financial Systems and Corporate IT,” adds Dr. Dieter Kurz. A search is already underway to find a successor for the position of CFO of the Zeiss Group. In addition to the newly appointed Members of the Executive Board headed by President & CEO Dr. Michael Kaschke, Dr. Matthias Metz, Head of the Vision Care/Consumer Products segment, Dr. Ludwin Monz, Head of the Medical Technology segment, and CFO Thomas Spitzenpfeil will continue to be members of the Executive Board.

técnicas de LABORATORIO

757

Nº 427 DICIEMBRE 2017


noticias ACREDITACIÓN

AENOR laboratorio, acreditado para analizar enterotoxina estafilocócica AENOR laboratorio ha obtenido la acreditación de ENAC (Entidad Nacional de Acreditación) para la realización de ensayos de enterotoxina estafilocócica por inmunofluorescencia (ELFA) en alimentos con el objetivo de reforzar la seguridad alimentaria y evitar posibles intoxicaciones alimentarias. La enterotoxina es un tipo de toxina que generan las bacterias estafilocócicas y que suele encontrarse en productos en los que el proceso de elaboración elimina los estafilococos, como los productos deshidratados, leches en polvo, alimentos pasteurizados o quesos curados, entre otros. Las intoxicaciones alimentarias por estafilococos se relacionan a veces con elevadas concentraciones de la bacteria; pero en muchos casos la muerte de la bacteria impide su detección, pudiendo estar presente la toxina estafilocócica, que es la verdadera responsable de dichas intoxicaciones. En estos casos la toxina puede desencadenar la intoxicación. Por este motivo, el análisis de enterotoxina estafilocócica complementa los análisis de estafilococos, garantizando una mayor seguridad de los alimentos analizados. Con más de 600.000 análisis realizados, AENOR laboratorio se ha convertido en un referente en el control de calidad de alimentos, aguas, materias primas y piensos destinados a alimentación animal, así como de productos cosméticos y nutraceúticos. Además, el laboratorio ha obtenido la acreditación del Programa de Ensayos Microbiológicos de Alimentos, la cual se concede únicamente a aquellos laboratorios que cuentan con acreditación ENAC todos los microorganismos recogidos en el Reglamento CE nº 2073/2005. Estos reconocimientos suponen un respaldo a la capacidad, solvencia y competencia técnica del laboratorio especializado en la realización de controles de calidad y seguridad alimentaria. AENOR, a través de la certificación y de la evaluación de la conformidad, contribuye a mejorar la calidad y competitividad

de las empresas, sus productos y servicios; de esta forma ayuda a las organizaciones a generar uno de los valores más apreciados en la economía actual: la confianza. AENOR es la entidad líder en certificación en España, ya que sus reconocimientos son los más valorados y se encuentra entre las 10 principales certificadoras del mundo. Actualmente, más de 77.000 centros de trabajo tienen alguno de los certificados de AENOR, que apoyan a las organizaciones en campos como la Gestión de la Calidad, Gestión Ambiental, I+D+i, Seguridad y Salud en el Trabajo o Eficiencia Energética. Asimismo, la Entidad ha realizado 470 verificaciones y validaciones ambientales y más de 8.000 inspecciones. En el campo de la formación desarrolla la mejor oferta en español en herramientas de gestión, mientras que su acción editorial abarca desde las normas a valoradas obras técnicas. AENOR es una entidad de ámbito mundial, que ya desarrolla operaciones en 90 países. Acompaña a las empresas en su expansión exterior, tanto en la implantación en otros mercados como en la exportación de productos. En España dispone de una red de 20 sedes.

MEETINGS

2nd Sartorius Research Xchange Forum focuses on Regenerative medicine and Cell therapy Promoting interdisciplinary exchange between science and industry on the topics of regenerative medicine and cell therapy: this is the objective Sartorius will be pursuing by hosting its second Research Xchange Forum on March 20 and 21, 2018, at Sartorius College in Goettingen. Experts from the biotechnology sector will report on the new developments in cell therapy.

Sartorius has gained guest speakers Dr. Priscilla N. Kelly, editor of the journal Science, and Dr. Stefan W. Hell, the winner of the Nobel Prize in Chemistry 2014 and a professor at the Max Planck Institute for Biophysical Chemistry. As part of the Forum, the Sartorius & Science Prize will be conferred, which Sartorius together with the scientific journal offers to recognize research

técnicas de LABORATORIO

758

Nº 427 DICIEMBRE 2017

contributions made in regenerative medicine and cell therapy. The prize winner and the three finalists will present on their research results. To attend the Forum, register at https:// promotions.sartorius.com/rxf2018; registrations received up to January 15 will receive an early-bird discount. Research Xchange Forum 2018: https:// promotions.sartorius.com/rxf2018


noticias LAUDA

Nueva identidad de marca: una piedra angular importante para el futuro Lauda destaca en el mercado de regulación precisa de temperatura en tecnología médica, ensayos de materiales, biotecnología, laboratorios, investigación y producción. Con un nuevo diseño corporativo, Lauda pretende dar a conocer en todo el mundo su calidad sin compromisos y su amplia competencia. La agencia de branding con sede en Múnich Martin et Karczinski ha rediseñado completamente la identidad corporativa para representar adecuadamente la expansión de la posición en el mercado de Lauda a través de la innovación. El alma de la nueva identidad de marca la constituyen la nueva marca denominativa y un nuevo lema. El logotipo consiste en el símbolo de grado (°), de uso internacional para la medición de la temperatura, en un gradiente de color rojo-azul. Esto transmite de forma visual la competencia central de la empresa «Desarrollo de sistemas cerrados para la regulación de la temperatura desde frío hasta caliente» de forma sencilla de

Nueva identidad de marca para Lauda.

The Sartorius & Science Prize for Regenerative Medicine & Cell Therapy: https://www.passionforscience.com/ win-it# The Sartorius Group is a leading international pharmaceutical and laboratory equipment provider with two divisions: Bioprocess Solutions and Lab Products & Services. Bioprocess Solutions with its broad product portfolio

La nueva marca

El nuevo logotipo de Lauda.

denominativa de Lauda.

entender, a la vez que inteligente. Asimismo, el nuevo lema «°FAHRENHEIT. °CELSIUS. °LAUDA.» se orienta en la misma dirección. De forma intemporal y consciente de sí misma se comunica que Lauda es el socio para una regulación precisa de la temperatura. Para asegurar el rigor en todas las comunicaciones corporativas y para transmitir seriedad, el nuevo universo cromático y el nuevo lenguaje visual están fuertemente influidos por la marca denominativa. El énfasis en los colores primarios rojo y azul aporta una tonalidad inconfundible de la marca Lauda, el mensaje visual correspondiente se resalta a través de un enfoque nítido. De esta forma, el nuevo lenguaje visual contribuye a los valores de marca «enfocado» y «comprensible». Complementado con un elegante gris hielo en la tipografía, se consigue un estilo consecuente y progresivo. El nuevo diseño corporativo de Lauda está destinado a sentar la base para un futuro lleno de éxitos.

www.lauda.de

focusing on single-use solutions helps customers produce biotech medications and vaccines safely and efficiently. Lab Products & Services, with its premium laboratory instruments, consumables and services, concentrates on serving the needs of laboratories performing research and quality assurance at pharma and biopharma companies and on those of academic research institutes.

técnicas de LABORATORIO

759

Nº 427 DICIEMBRE 2017

Founded in 1870, the company earned sales revenue of more than 1.3 billion EUR in 2016. More than 6,900 people work at the Group’s 50 manufacturing and sales sites, serving customers around the globe.

www.sartorius.com


Normas de colaboración en

1. Los trabajos se remitirán al Departamento de Redacción de la revista (Publica, S.L., C/ Monturiol, 7, local 1 - 08018 Barcelona / miguel@publica.es) junto con una autorización para su publicación. Estudiado el trabajo por el Comité de Redacción, se acusará el recibo con la aceptación o no del mismo. Se devolverán (si los autores lo solicitan) las colaboraciones que no se ajusten, por su contenido, a la temática de la revista. 2. Texto y presentación: los artículos estarán preferentemente en castellano (también se aceptarán en inglés) y no sobrepasarán el equivalente a 10 DIN A4 (sin contar gráficos y/o figuras). Se estudiará la publicación fragmentada de artículos más extensos. Se ruega utilizar los editores más comunes del mercado (Word, OpenOffice...). Si el trabajo incluye imágenes o fotografías se aportarán en archivos aparte (JPG, TIF, PDF….) y deberán estar escaneadas a una resolución mínima de 300 ppp. En cualquier caso se solicita, si es posible, el envío de un ejemplar en soporte papel.

En el encabezamiento de la colaboración constarán su título, el nombre y los apellidos de los autores y el centro o empresa (si procede) donde se ha realizado el trabajo. Los artículos se acompañarán de un resumen que señale el objeto del trabajo, algún detalle experimental, si se estima oportuno, y las conclusiones obtenidas. A ser posible, el título y este resumen se incluirán también en inglés si el artículo está en castellano. La bibliografía se incluirá al final del texto, numerada correlativamente y consignando en cada cita apellido e inicial(es) del autor, año de publicación, título y nombre de la publicación. Las referencias numéricas a la bibliografía se escribirán en el texto del trabajo entre paréntesis. Los pies de gráficos, figuras y fotografías se presentarán juntos, por orden y en párrafo aparte al final del artículo.

3. Tablas, gráficos y figuras. Se pide la máxima pulcritud en la realización de tablas y gráficos para conseguir una reproducción del original lo más fiel posible. Los gráficos (esquemas, croquis y dibujos en general), si no se presentan en soporte informático directamente utilizable, se prefieren por este orden: reproducciones bien impresas; originales realizados sobre papel; fotocopias de alta calidad, en tamaños iguales o superiores a los deseados para su publicación y teniendo en cuenta que el factor más importante es, en este caso, el contraste de las imágenes. Las fotografías, si no se proporcionan en soporte informático o vía correo electrónico, se prefieren por este orden: copias en papel fotográfico en color o B/N; diapositivas o transparencias en color o B/N y, finalmente reproducciones bien impresas. Las tablas, gráficos y figuras se presentarán al final del artículo. Las referencias numéricas de las figuras se citarán en el texto cuando corresponda. 4. Los autores recibirán sin cargo un ejemplar de la revista en que haya aparecido su colaboración. Si desean más ejemplares (hasta 10) lo harán constar en la carta que acompañe al trabajo. Se estudiarán otras condiciones de envío de ejemplares a petición de los autores. 5. Estas normas no afectan (aunque son una buena orientación) a colaboraciones como noticias de empresa, descripciones de nuevos aparatos y equipos, programas de actos y congresos, ferias, salones y jornadas, reseñas de libros, artículos de opinión, etc. 6. Si desean ampliar esta información pueden utilizar el teléfono 933 215 045 (ext. 2004) o el e-mail citado.

760 Nº 427 DICIEMBRE 2017



guía del COMPRADOR

A


guía del COMPRADOR

A-B


guía del COMPRADOR

C


guía del COMPRADOR

C-D-E


guía del COMPRADOR

F-G-H


guía del COMPRADOR

G-H-I


guía del COMPRADOR

H-I-J


guía del COMPRADOR

DISEÑO, FABRICACIÓN, INGENIERÍA Y APLICACIONES ESPECIALES EN:

• • • • • • •

CROMATOGRAFÍA DE GASES HRGC CROMATOGRAFÍA DE LÍQUIDOS HPLC y LC SISTEMA MULTIDIMENSIONAL HPLC+HRGC (Pat) SISTEMAS COMBINADOS HRGC-HPLC-DIP-MS ESPACIO DE CABEZA, P&T, SPME, ... LABORATORIO DE ANÁLISIS ESPECIALIZADOS CURSOS DE FORMACIÓN

Barcelona T +34.93.590.28.40 F +34.93.590.28.44 ventas@konik-group.com Madrid T +34.91.328.25.26 F +34.91.328.36.54 madrid@konik-group.com Única compañía europea con gama completa de HRGC/HPLC/MS

K-L-M


guía del COMPRADOR

M-N-O


guía del COMPRADOR

O-P-Q


guía del COMPRADOR

R-S


guía del COMPRADOR ® Shodex Capture the essence

High Performance LC columns www.shodex.es

Shodex Europa info: Tel.: +49 89 9399 6237 Distribuidor España: ANORSA Tel.: +34 93 3006050 www.anorsa.com

S-T


guía del COMPRADOR

T-V-W






Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.