Raptors Conservation 32/2016

Page 1


ISSN 1814–8654

Raptors Conservation ПЕРНАТЫЕ ХИЩНИКИ И ИХ ОХРАНА 2016 № 32 Æóðíàë î ïåðíàòûõ õèùíèêàõ Âîñòî÷íîé Åâðîïû è Ñåâåðíîé Àçèè Journal on raptors of the East Europe and North Asia Ñâèäåòåëüñòâî î ðåãèñòðàöèè ÑÌÈ ÏÈ ÏÈ ¹ ÔÑ77-64844 îò 10.02.2016 ã. Æóðíàë «Ïåðíàòûå õèùíèêè è èõ îõðàíà» ÿâëÿåòñÿ ïå÷àòíûì îðãàíîì Ðîññèéñêîé ñåòè èçó÷åíèÿ è îõðàíû ïåðíàòûõ õèùíèêîâ. Æóðíàë èçäà¸òñÿ ÎÎÎ «Ñèáýêîöåíòð» â ïàðòí¸ðñòâå ñ Èíñòèòóòîì ñèñòåìàòèêè è ýêîëîãèè æèâîòíûõ ÑÎ ÐÀÍ (Íîâîñèáèðñê). Ðåäàêòîðû íîìåðà: Èãîðü Êàðÿêèí (Öåíòð ïîëåâûõ èññëåäîâàíèé, Í. Íîâãîðîä), Ýëüâèðà Íèêîëåíêî (Ñèáýêîöåíòð, Íîâîñèáèðñê). Ôîòîãðàôèÿ íà ëèöåâîé ñòîðîíå îáëîæêè: Ñàìêà ñòåïíîãî îðëà (Aquila nipalensis) íà ãíåçäå ñ ïòåíöàìè. Ðîññèÿ, Ðåñïóáëèêà Êàëìûêèÿ, 2 èþíÿ 2015 ã. Ôîòî È. Êàðÿêèíà.  èëëþñòðàöèè çàäíåé ñòîðîíû îáëîæêè èñïîëüçîâàíû ôîòîãðàôèè È. Êàðÿêèíà, Ê. Ïðîñåíö Òðèëàð, Ä. Òîìå. Äèçàéí: Ä. Ñåíîòðóñîâ, À. Êëåù¸â. ¸ðñòêà: Ä. Êàòóíîâ. Êîððåêòóðà: À. Êàþìîâ. Ïåðåâîä: Å. Øíàéäåð, Ô. ôîí Ýéëåð, À. Âàëååâà, Ä. Åðåìååâà.

Ðåäàêöèîííàÿ êîëëåãèÿ: Ñ.Â. Áàêêà, ê.á.í., ÑÎÏÐ, Í. Íîâãîðîä, Ðîññèÿ; sopr@dront.ru Ò.Î. Áàðàáàøèí, ê.á.í., ÐÃÏÓ, Ðîñòîâ-íà-Äîíó, Ðîññèÿ; timbar@bk.ru Ð.Õ. Áåêìàíñóðîâ, Åëàáóæñêèé èíñòèòóò ÊÔÓ, Åëàáóãà, Òàòàðñòàí, Ðîññèÿ; rinur@yandex.ru Ñ.À. Áóêðååâ, ê.á.í., ÈÏÝÝ ÐÀÍ, Ìîñêâà, Ðîññèÿ; sbukreev62@mail.ru Ñ.Â. Âàæîâ, ê.á.í., ÀÃÀÎ èì. Â.Ì. Øóêøèíà, Áèéñê, Ðîññèÿ; aquila-altai@mail.ru Â.Ì. Ãàëóøèí, àêàä. ÐÀÅÍ, ïðîô., ä.á.í., ÌÏÃÓ, Ìîñêâà, Ðîññèÿ; v-galushin@yandex.ru È.Ô. Æèìóë¸â, àêàä. ÐÀÍ, ïðîô., ä.á.í., ÈÌÊÁ ÑÎ ÐÀÍ, Íîâîñèáèðñê, Ðîññèÿ; zhimulev@mcb.nsc.ru Í.Þ. Êèñåë¸âà, äîö., ê.ïåä.í., ÍÃÏÓ, Í. Íîâãîðîä, Ðîññèÿ; sopr@dront.ru À.Ñ. Ëåâèí, äîö., ê.á.í., Èíñòèòóò çîîëîãèè ÌÎèÍ, Àëìàòû, Êàçàõñòàí; levin_saker@mail.ru Î.Â. Ìèòðîïîëüñêèé, ïðîô., ä.á.í., Íàöèîíàëüíûé óíèâåðñèòåò, Òàøêåíò, Óçáåêèñòàí; olmit@list.ru À.Ñ. Ïàæåíêîâ, ê.á.í., ÖÑ «ÂÓÝÑ», Ñàìàðà, Ðîññèÿ; f_lynx@mail.ru Å.Ð. Ïîòàïîâ, Ph.D., Áðèí Àôèíñêèé Êîëëåäæ, Ïåíñèëüâàíèÿ, ÑØÀ; EugenePotapov@gmail.com Þ.Ñ. Ðàâêèí, ïðîô., ä.á.í., ÈÑèÝÆ ÑÎ ÐÀÍ, Íîâîñèáèðñê, Ðîññèÿ; zm@eco.nsc.ru È.Ý. Ñìåëÿíñêèé, Ñèáýêîöåíòð, Íîâîñèáèðñê, Ðîññèÿ; oppia@yandex.ru À.À. ×èáèë¸â, ÷ëåí-êîðð. ÐÀÍ, ïðîô., ä.ã.í., Èíñòèòóò ñòåïè ÓðÎ ÐÀÍ, Îðåíáóðã, Ðîññèÿ; orensteppe@mail.ru À.À. Øåñòàêîâà, äîö., ê.á.í., ÍÍÃÓ, Í. Íîâãîðîä, Ðîññèÿ; f_s_c@mail.ru Å.Ï. Øíàéäåð, ê.á.í., Ñèáýêîöåíòð, Áåðäñê, Ðîññèÿ; equ001@gmail.com S. Hulka, Ph.D., Natural Research, UK; simon.hulka@natural-research.org T. Katzner, Ph.D., West Virginia University, USA; todd.katzner@mail.wvu.edu M.J. McGrady, Ph.D., Natural Research, UK; MikeJMcGrady@aol.com

The Raptors Conservation Journal is periodical publication of the Russian Raptor Research and Conservation Network. The Raptors Conservation Journal is published of the LLC Sibecocenter under the partnership agreement with the Institute of Systematics and Ecology of Animals, Siberian Branch of RAS (Novosibirsk). Editors: Igor Karyakin (Center of Field Studies, N. Novgorod), Elvira Nikolenko (Sibecocenter, Novosibirsk). Photo on the front cover: Female of the Steppe Eagle (Aquila nipalensis) in the nest with nestlings. Russia, Republic of Kalmykia, 2 June 2015. Photo by I. Karyakin. Photos on the back cover by I. Karyakin, K. Prosenc Trilar and D. Tome. Design by D. Senotrusov, A. Kleschev. Page-proofs by D. Katunov. Proof-reader by A. Kajumov. Translation by E. Shnayder, F. von Euler, A. Valeeva, D. Eremeeva.

Àäðåñ ðåäàêöèè: ÎÎÎ «Ñèáýêîöåíòð» 630090, Ðîññèÿ, Íîâîñèáèðñê, à/ÿ 547 Editorial adress: LLC Sibecocenter P.O. Box 547, Novosibirsk, Russia, 630090 Tel.: +7 923 150 12 79 Tel.: +7 923 154 32 95 E-mail:

rc_news@mail.ru ikar_research@mail.ru elvira_nikolenko@mail.ru

Âåá-ñàéò / Web-site: http://sibecocentr.ru Ýëåêòðîííàÿ âåðñèÿ/RC online http://www.rusraptors.ru http://rrrcn.ru/rc-rus.php http://rrrcn.ru/rc-en.php http://elibrary.ru/title_about.asp?id=7576 http://issuu.com/raptors_conservation DOI: 10.19074/1814-8654 Ïðàâèëà äëÿ àâòîðîâ äîñòóïíû íà ñàéòå æóðíàëà Guidelines for Contributors available on website of the journal


Events

Raptors Conservation 2016, 32

3

Events СОБЫТИЯ (1) Êîíòàêò Âèêòîð Áåëèê raptors-NEA@mail.ru (1) Contact: Victor Belik raptors-NEA@mail.ru

(2) Contact: David La Puma Co-chair of the Meeting Director david.lapuma@ njaudubon.org Lillian Armstrong Co-chair of the Meeting Special Events Coordinator lillian.armstrong@ njaudubon.org

1 2

Î÷åðåäíàÿ VII Ìåæäóíàðîäíàÿ êîíôåðåíöèÿ ïî èçó÷åíèþ è îõðàíå õèùíûõ ïòèö Ñåâåðíîé Åâðàçèè ñîñòîèòñÿ â ã. Ñî÷è (Ðîññèÿ) íà áàçå Ñî÷èíñêîãî íàöèîíàëüíîãî ïàðêà 19–24 ñåíòÿáðÿ 2016 ã. Îðãàíèçàòîðû: Ñî÷èíñêèé íàöèîíàëüíûé ïàðê, Þæíûé ôåäåðàëüíûé óíèâåðñèòåò, Ìåíçáèðîâñêîå îðíèòîëîãè÷åñêîå îáùåñòâî è Ðàáî÷àÿ ãðóïïà ïî ñîêîëîîáðàçíûì è ñîâàì Ñåâåðíîé Åâðàçèè. Ñîãëàñíî ïðåäâàðèòåëüíîé ïðîãðàììå ðàáîòà êîíôåðåíöèè áóäåò ðàçáèòà íà 6 ñåññèé, ÷àñòü èç êîòîðûõ áóäåò ïðîõîäèòü ïàðàëëåëüíî: 1. ñîâðåìåííîå ñîñòîÿíèå àðåàëîâ è ïîïóëÿöèé õèùíûõ ïòèö â Ñåâåðíîé Åâðàçèè; 2. èçó÷åíèå è îõðàíà îðëîâ Ñåâåðíîé Åâðàçèè; 3. äèíàìèêà ÷èñëåííîñòè è îõðàíà ñîêîëîâ â Ñåâåðíîé Åâðàçèè; 4. àäàïòèâíûå àñïåêòû ýêîëîãèè õèùíûõ ïòèö; 5. èçó÷åíèå è îõðàíà ñîâ Ñåâåðíîé Åâðàçèè; 6. ñîñòîÿíèå ïîïóëÿöèé õèùíûõ ïòèö è ñîâ â ðåãèîíàõ Ñåâåðíîé Åâðàçèè. Âòîðîå èíôîðìàöèîííîì ïèñüìî è ïðåäâàðèòåëüíàÿ ïðîãðàììà äîñòóïíû íà ñàéòå Ðîññèéñêîé ñåòè èçó÷åíèÿ è îõðàíû ïåðíàòûõ õèùíèêîâ1. Êîíòàêò (1). Åæåãîäíàÿ êîíôåðåíöèÿ Ôîíäà èññëåäîâàíèÿ ïåðíàòûõ õèùíèêîâ (Raptor Research Foundation) ñîñòîèòñÿ 16–20 îêòÿáðÿ 2016 ã. â Êåéï-Ìýé (Íüþ-Äæåðñè, ÑØÀ) ïðè ïîääåðæêå ñòàíöèè íàáëþäåíèÿ çà ïòèöàìè îòäåëåíèÿ Íàöèîíàëüíîãî Îäþáîíîâñîêîãî îáùåñòâà â Íüþ-Äæåðñè. Âñòðå÷à áóäåò ïðîõîäèòü â Ãðàíä Îòåëå Êåéï-Ìýé2, ðàñïîëîæåííîì íà áåðåãó îêåàíà â Êåéï-Ìåé, Íüþ-Äæåðñè. Êåéï-Ìåé – ýòî âñåìèðíî èçâåñòíîå ìåñòî íàáëþäåíèÿ ìèãðàöèè õèùíûõ ïòèö â âîñòî÷íîé ÷àñòè Ñåâåðíîé Àìåðèêè. Êîíôåðåíöèÿ 2016 ãîäà ïðèóðî÷åíà ê ïèêó ìèãðàöèè õèùíûõ ïòèö è ïðèòîêó ðàííèõ ìèãðèðóþùèõ âîäíî-áîëîòíûõ ïòèö. Ñðàçó ïîñëå êîíôåðåíöèè ïðîéä¸ò 70-é åæåãîäíûé ôåñòèâàëü íàáëþäàòåëåé ïòèö, ÷òî ïîçâîëèò ó÷àñòíèêàì êîíôåðåíöèè ïîó÷àñòâîâàòü â í¸ì.

http://rrrcn.ru/ru/archives/26157 http://www.grandhotelcapemay.com

VII International Conference on research and conservation of raptors in North Eurasia will be hold in Sochi (Russia) on the basis of the Sochi National Park in 19–24 September 2016. Organizers of the Conference: Sochi National Park, Southern Federal University, Menzbir Ornithological Society and the Working Group on birds of prey and owls of Northern Eurasia. According to the preliminary program the work of the Conference will be divided into 6 sessions, some of which will run at the same time. The second information letter and preliminary program of the Conference is available on the web-site of the RRRCN1. Contact (1). Annual Meeting of the Raptor Research Foundation will be hold in 16–20 October 2016 in the Cape May (New Jersey, USA) supported by the New Jersey Audubon Society’s Cape May Bird Observatory. The meeting will be held at the Grand Hotel of Cape May located on the oceanfront


4

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32 Êðàéíèé ñðîê ïîäà÷è òåçèñîâ – 2 ìàÿ 2016 ã. Âñÿ èíôîðìàöèÿ î êîíôåðåíöèè äîñòóïíà íà ñàéòå Ôîíäà èññëåäîâàíèÿ ïåðíàòûõ õèùíèêîâ3. Êîíòàêò (2).

(3) Contact: Marta Curti curti.marta@ peregrinefund.org

3 4

×åòâ¸ðòàÿ êîíôåðåíöèÿ ïî íåîòðîïè÷åñêèì ïåðíàòûì õèùíèêàì ñîñòîèòñÿ â ã. Ëà Ôîðòóíà (Êîñòà-Ðèêà) 10–13 îêòÿáðÿ 2016 ã. Îðãàíèçàòîðû: Ôîíä ïåðíàòûõ õèùíèêîâ Êîñòà-Ðèêè, Ôîíä ñàïñàíà è Ñåòü ëþáèòåëåé íåîòðîïè÷åñêèõ ïåðíàòûõ õèùíèêîâ. Áèîëîãè, ñòóäåíòû, ñîêîëüíèêè, ïðåïîäàâàòåëè è ýêîëîãè ñîáåðóòñÿ âìåñòå, ÷òîáû ïîäåëèòüñÿ ñâîèìè ïîñëåäíèìè ðåçóëüòàòàìè èññëåäîâàíèé, óñïåõàìè è ïðîáëåìàìè. Êîíôåðåíöèÿ ñòàíåò ìåñòîì âñòðå÷è ñïåöèàëèñòîâ è áóäåò ñïîñîáñòâîâàòü íàëàæèâàíèþ äèàëîãà è ñîòðóäíè÷åñòâà â îáëàñòè ðåøåíèÿ ïðîáëåì ñîõðàíåíèÿ õèùíèêîâ è íåéòðàëèçàöèè óãðîç, òàêèõ êàê ðàçðóøåíèå ñðåäû îáèòàíèÿ, ïîðàæåíèå ýëåêòðè÷åñêèì òîêîì, ïðåñëåäîâàíèå ÷åëîâåêîì è èçìåíåíèå êëèìàòà. Ïîìèìî 3-õ äíåé íàó÷íûõ ïëåíàðíûõ çàñåäàíèé è ïîëíîãî äíÿ òðåíèíãîâ ïî èçó÷åíèþ ïåðíàòûõ õèùíèêîâ, ó ó÷àñòíèêîâ áóäåò âðåìÿ, ÷òîáû íàñëàäèòüñÿ ãîðîäîì Ëà Ôîðòóíà. Ìåñòî ïðîâåäåíèÿ êîíôåðåíöèè – îäèí èç ñàìûõ ïîñåùàåìûõ ðàéîíîâ ñòðàíû, îêðóæ¸ííûé íàöèîíàëüíûìè ïàðêàìè, âîäîïàäàìè. Ðÿäîì íàõîäèòñÿ íûíå áåçäåéñòâóþùèé âóëêàí Àðåíàëü, ÷òî äåëàåò åãî îòëè÷íûì ìåñòîì äëÿ íàáëþäåíèÿ çà ïòèöàìè è àêòèâíîãî îòäûõà. Êðàéíèé ñðîê ïîäà÷è òåçèñîâ – 10 èþëÿ 2016 ã. Âñå òåçèñû áóäóò ðàññìîòðåíû íà îòíîøåíèå ê òåìå êîíôåðåíöèè. Ïðåäïî÷òåíèå áóäåò îòäàíî ìàòåðèàëàì, îðèåíòèðîâàííûì íà íåîòðîïè÷åñêèõ õèùíèêîâ. Ìàòåðèàëû ìîãóò áûòü îñíîâàíû íà ýìïèðè÷åñêèõ èññëåäîâàíèÿõ èëè îáçîðàõ îïóáëèêîâàííûõ äàííûõ. Âñÿ èíôîðìàöèÿ î êîíôåðåíöèè äîñòóïíà íà ñàéòå êîíôåðåíöèè4. Êîíòàêò (3).

http://www.raptorresearchfoundation.org/conferences/current-conference http://nrn.peregrinefund.org

Ñîáûòèÿ in Cape May, NJ. The Cape May is a world-renowned raptor migration site in eastern North America. The Conference in 2016 to coincide with the peak of raptor migration while also a fantastic time for landbird diversity and the influx of early migrating waterbirds; truly one of the best times of the year for a migration spectacle! The 70th annual NJ Audubon Cape May Autumn Birding Festival will be held immediately following the RRF Conference, allowing conference attendees to take advantage of being in one of North America’s top birding destinations during peak migration. Abstracts and symposia for the conference are due on the 2nd of May 2016. All information about Conference is available on the web-site of the Raptor Research Foundation3. Contact (2). IV Neotropical Raptor Network Conference will be hold in La Fortuna (Costa Rica) in 10th–13th October 2016. la Fundacion Rapaces Costa Rica. Organizers of the Conference: la Fundacion Rapaces Costa Rica, Peregrine Fund and the Neotropical Raptor Network. Biologists, students, falconers, educators, and conservationists will come together to share their latest research results, successes and challenges. The conference will also act as a meeting point to foster discussion and collaboration on solutions to both present and future conservation issues such as habitat destruction, electrocution, human persecution of raptors and climate change. Apart from 3 days of scientific plenary sessions, and a full day of Raptor Skills Courses there will be time to enjoy the town of La Fortuna, itself. One of the most-visited areas of the country, the area is surrounded by national parks, waterfalls and of course, the now dormant Arenal volcano, making it an excellent location for birding and other outdoor activities. The deadline for abstract submission is July 10th 2016. All abstracts will be reviewed for relevance to the conference theme and for content. Preference will be given to papers focused on Neotropical Raptors. Papers may be based on empirical research or reviews of published data. All information about Conference is available on the Conference website4. Contact (3).


Events (4) Contact: Marco Mastrorilli info@woc2016.it

(5) Contact: TURUL Robert Zmuda Post Box 11, 00-837, Warszawa, 22 Poland peregrine.conference.2017 @gmail.com

5

http://www.woc2016.it

Raptors Conservation 2016, 32 Ïÿòàÿ Âñåìèðíàÿ êîíôåðåíöèÿ ïî ñîâàì ñîñòîèòñÿ â ã. Âåíàóñ (Èòàëèÿ) 22– 26 ìàðòà 2017 ã. Ïîñëå âîñüìèëåòíåãî ïåðåðûâà Âñåìèðíàÿ êîíôåðåíöèÿ ïî ñîâàì ñòàíåò âàæíûì ñîáûòèåì äëÿ âñåõ èññëåäîâàòåëåé, íàòóðàëèñòîâ è îðíèòîëîãîâ ïîñâÿòèâøèõ ñåáÿ èçó÷åíèþ ñîâ. Ýòî ìåðîïðèÿòèå ïðåäîñòàâèò âîçìîæíîñòü âñòðåòèòüñÿ è óêðåïèòü ñîòðóäíè÷åñòâî ìåæäó îðãàíèçàöèÿìè è ñïåöèàëèñòàìè, êîòîðûå èçó÷àþò íî÷íûõ õèùíûõ ïòèö â ïîëåâûõ óñëîâèÿõ. Âñå òå, êòî õîòÿò ñäåëàòü íàó÷íûé äîêëàä íà êîíôåðåíöèè, áóäóò èìåòü âîçìîæíîñòü ïðåäñòàâèòü ìàòåðèàë, êîòîðûé çàòåì áóäåò îöåí¸í íàó÷íûì êîìèòåòîì êîíôåðåíöèè è, åñëè ïîäõîäèò, óòâåðæä¸í. Âñêîðå ôîðìà ó÷àñòèÿ ñ òåõíè÷åñêèìè òðåáîâàíèÿìè ïðåäñòàâëåíèÿ ìàòåðèàëîâ áóäåò äîñòóïíà íà ñàéòå êîíôåðåíöèè. Ïî ìàòåðèàëàì êîíôåðåíöèè áóäóò ïîäãîòîâëåíû íàó÷íûå ñòàòüè, êîòîðûå, áóäó÷è äîïîëíåííûå ðèñóíêàìè è ãðàôèêàìè (â òîì ÷èñëå öâåòíûìè ôîòîãðàôèÿìè), áóäóò îïóáëèêîâàíû â êà÷åñòâå äîïîëíåíèÿ ê èòàëüÿíñêîìó íàó÷íîìó æóðíàëó. Èíôîðìàöèÿ î ñáîðå ñòàòåé â áëèæàéøåå âðåìÿ äîëæíà ïîÿâèòüñÿ íà ñàéòå êîíôåðåíöèè. Îíëàéí-ðåãèñòðàöèÿ âñêîðå áóäåò äîñòóïíà íà ñàéòå êîíôåðåíöèè5. Êîíòàêò (4). ×åòâ¸ðòàÿ Ìåæäóíàðîäíàÿ êîíôåðåíöèÿ ïî ñàïñàíó áóäåò ïðîõîäèòü â ã. Áóäàïåøò (Âåíãðèÿ) 27 ñåíòÿáðÿ – 1 îêòÿáðÿ 2017 ã. Îðãàíèçàòîðû êîíôåðåíöèè: Îáùåñòâî îõðàíû ïðèðîäû Âåíãðèè (îôèöèàëüíûé ïàðòí¸ð BirdLife International) è Îáùåñòâî çàùèòû äèêèõ æèâîòíûõ «Falcon» èç Ïîëüøè. Êëþ÷åâûå òåìû êîíôåðåíöèè: - ïîïóëÿöèè – òåêóùåå ñîñòîÿíèå è òåíäåíöèè, - îõðàíà – ïîäõîäû è ìåòîäû, ìåæäóíàðîäíîå ñîòðóäíè÷åñòâî, - ìåñòà ãíåçäîâàíèÿ – âîññòàíîâëåíèå äðåâåñíîãíåçäÿùèõñÿ ïîïóëÿöèé è êîëîíèçàöèÿ ãîðîäîâ, - ãåíåòèêà, â òîì ÷èñëå ñèñòåìàòèêà, - çàãðÿçíÿþùèå âåùåñòâà, - áîëåçíè, - ìå÷åíèå – ïðåèìóùåñòâà, ðèñêè è ïðîáëåìû ñîòðóäíè÷åñòâà, - ïåðåìåùåíèÿ – íàïðàâëåíèå ïåðåìåùåíèé, èñïîëüçîâàíèå ñðåäû îáèòàíèÿ, èññëåäîâàíèÿ ìèãðàöèé, - óãðîçû – ïðåñëåäîâàíèå ÷åëîâåêîì, îòðàâëåíèå, ïîðàæåíèå ýëåêòðè÷åñêèì

5

V World Owl Conference will be hold in Venaus (Italy) in 22–26 March 2017. After eight years of waiting, the World Owl Conference, an important event for all researchers, naturalists and ornithologists concerned with studying owls, returns. This convention will offer a chance to meet and collaborate with the most important organisations and researchers who work and study nocturnal birds of prey on field. All those who would like to send their scientific contribution will be able to submit the material, which will be then evaluated by scientific committee of the Conference and, if suitable, approved. Soon the participation form with the technical requirements to submit material will be available online. Submitted papers extended with additional figures and pictures (including colour photographies) would be published as articles in the special issue of an Italian scientific journal. Call for the articles will be published soon at the conference web-site. Online registration will soon be available on the Conference website5. Contact (4). 4th International Peregrine Conference will be hold in Budapest (Hungary) in 27 September – 1st October 2017. Organizers of the Conference: MME/BirdLife Hungary and Society for the Protection of Wild Animals “Falcon” from Poland. The Key topics of the Conference: - populations – current status and trends, - conservation – approaches and techniques, international collaboration and cooperation, - breeding sites – tree-nesting recovery and urban colonization, - genetics – including taxonomy, - contaminants, - diseases, - ringing and marking – benefits, risks and


6

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Ñîáûòèÿ Ñàïñàí (Falco peregrinus). Ôîòî È. Êàðÿêèíà. Peregrine Falcon (Falco peregrinus). Photo by I. Karyakin.

òîêîì è ñòîëêíîâåíèÿ, - óñòîé÷èâîå èñïîëüçîâàíèå, - èçìåíåíèå êëèìàòà – ïîòåíöèàëüíîå âëèÿíèå è âîçäåéñòâèå, - ðèñê ãèáðèäèçàöèè – ðåàëüíàÿ èëè ìíèìàÿ óãðîçà? - ñàïñàíû, êàê ýêîëîãè÷åñêèå èíäèêàòîðû. Ñåêöèè áóäóò îïðåäåëåíû íàó÷íûì êîìèòåòîì íà îñíîâå ïðåäîñòàâëåííûõ òåçèñîâ. Íà êàæäóþ óñòíóþ ïðåçåíòàöèþ áóäåò âûäåëåíî ìàêñèìóì 25 ìèíóò ïëþñ 5 ìèíóò íà âîïðîñû è îòâåòû. Êîíôåðåíöèÿ áóäåò ïðîõîäèòü òîëüêî íà àíãëèéñêîì ÿçûêå, ïîýòîìó, âñå ìàòåðèàëû êîíôåðåíöèè äîëæíû áûòü ïîäãîòîâëåíû íà àíãëèéñêîì ÿçûêå. Âàæíûå äàòû: 15 ìàðòà 2017 ã. – êðàéíèé ñðîê ïîäà÷è ïðåäëîæåíèé íà êðóãëûå ñòîëû è ìàñòåð-êëàññîâ, 15 àïðåëÿ 2017 ã. – êðàéíèé ñðîê ïîäà÷è òåçèñîâ, 15 ìàÿ 2017 ã. – ïîñëåäíèé äåíü áåñïëàòíîé ðåãèñòðàöèè, 1 àâãóñòà 2017 ã. – êðàéíèé ñðîê äëÿ ñòàíäàðòíîãî ðåãèñòðàöèîííîãî âçíîñà (ó÷àñòíèêè äîëæíû áûòü çàðåãèñòðèðîâàíû ê ýòîé äàòå è äîëæíû áûòü âêëþ÷åíû â íàó÷íóþ ïðîãðàììó). Òåçèñû äîëæíû áûòü íà àíãëèéñêîì ÿçûêå, íå áîëåå 500 ñëîâ. Ñáîðíèê òåçèñîâ áóäåò íàïå÷àòàí äî íà÷àëà êîíôåðåíöèè. Âñÿ èíôîðìàöèÿ î êîíôåðåíöèè, âêëþ÷àÿ îíëàéí-ðåãèñòðàöèþ äîñòóïíà íà ñàéòå êîíôåðåíöèè6. Âîçìîæíà ïîääåðæêà ó÷àñòèÿ â êîíôåðåíöèè è ëüãîòíàÿ îïëàòà îðãàíèçàöèîííîãî âçíîñà. Äëÿ ïîëó÷åíèÿ ïîääåðæêè èëè ëüãîò íåîáõîäèìî ñâÿçàòüñÿ ñ îðãàíèçàòîðàìè êîíôåðåíöèè è îáúÿñíèòü ïðè÷èíû íåâîçìîæíîñòè óïëàòû ïîëíîãî îðãâçíîñà è/èëè ó÷àñòèÿ â êîíôåðåíöèè áåç îïëàòû ïðîåçäà è/èëè ïðîæèâàíèÿ. Êîíòàêò (5).

Ñàïñàí íà ãíåçäå c êëàäêîé. Ôîòî Å. Ïîòàïîâà. Peregrine Falcon in the nest with clutch. Photo by E. Potapov. 6

http://www.peregrinus.pl/en/peregrine-conference-budapest-2017

problems in cooperation, - movements – dispersal, habitat use and migration studies, - threats – human persecution, poisoning, electrocution and collisions, - sustainable use, - climate change – potential influences and impacts, - hybridisation risk - real or perceived? - Peregrines as ecological indicators. The sessions will be decided by Scientific Committee on the basis of provided abstracts. Each oral presentation will be a maximum of 25 minutes, plus 5 minutes for questions and answers. The Conference will be held in English only, so please prepare all your materials in English. Important dates: 15 March 2017 – Deadline for submission of proposals for Round-Tables and Workshops, 15 April 2017 – Deadline for submission of abstracts, 15 May 2017 – Deadline for discounted registration free, 1 August 2017 – Deadline for standard registration fee (participants must be registered by this date to be included in the Scientific Program). Abstracts must be in English, maximum 500 words. The book of abstracts will be published in advance of the Conference. All information about the Conference and online registration is available on the Conference website6. Contact (5).


Events (6) Êîíòàêò Àëåêñåé Ëåâàøêèí Ðîññèéñêàÿ ñåòü èçó÷åíèÿ è îõðàíû ïåðíàòûõ õèùíèêîâ aple_avesbp@mail.ru https://vk.com/nestboxer https:// www.facebook.com/ aple.avesbp (6) Contact: Alexey Levashkin RRRCN aple_avesbp@mail.ru https://vk.com/nestboxer https:// www.facebook.com/ aple.avesbp

7 8 9 10 11 12 13 14 15 16 17

Raptors Conservation 2016, 32  2016 ã. â Íèæíåì Íîâãîðîäå (Ðîññèÿ) óñòàíîâëåíû âåá-êàìåðû íà ãí¸çäàõ ÿñòðåáà-òåòåðåâÿòíèêà (Accipiter gentilis) è ñåðîé íåÿñûòè (Strix aluco). Êðóãëîñóòî÷íîå âåùàíèå îðãàíèçîâàíî ñ àïðåëÿ ìåñÿöà íà ñàéòå Ðîññèéñêîé ñåòè èçó÷åíèÿ è îõðàíû ïåðíàòûõ õèùíèêîâ è íà ñàéòå êîìïàíèè Ivideon. Àïïàðàòóðà è òåõíè÷åñêèå ðåøåíèÿ îò êîìïàíèè Ivideon7. Ñâÿçü îáåñïå÷åíà ÌÒÑ. Ñåðàÿ íåÿñûòü – ðåäêàÿ ñîâà, çàíåñ¸ííàÿ â Êðàñíóþ êíèãó Íèæåãîðîäñêîé îáëàñòè. Ñîâñåì íåäàâíî, êàêèå-òî 30 ëåò íàçàä, ýòà ñîâà áûëà îáû÷íîé âî âñ¸ì Âîëãî-Óðàëüñêîì ðåãèîíå, íî çàòåì å¸ ÷èñëåííîñòü äîñòàòî÷íî ðåçêî óïàëà. Íåÿñûòü ïðàêòè÷åñêè èñ÷åçëà íà ãíåçäîâàíèè íà Óðàëå è â Ïîâîëæüå, â òîì ÷èñëå è â Íèæíåì Íîâãîðîäå, ãäå ðàíåå ãíåçäèëàñü âî âñåõ ïàðêàõ. Ýòà ñîâà – òèïè÷íûé äóïëîãí¸çäíèê è èñïûòûâàåò ÿâíûé íåäîñòàòîê â ãíåçäîïðèãîäíûõ äåðåâüÿõ, ïîýòîìó îõîòíî ñåëèòñÿ â ñïåöèàëüíûõ ãíåçäîâûõ ÿùèêàõ, ðàçâåøèâàåìûõ îðíèòîëîãàìè â ëåñàõ Íèæåãîðîäñêîé îáëàñòè.  îäèí èç òàêèõ ãíåçäîâûõ ÿùèêîâ, çàíÿòûé íåÿñûòÿìè, â 2015 ã. áûëà óñòàíîâëåíà âåá-êàìåðà, òðàíñëèðîâàâøàÿ æèçíü ñîâ.  2016 ã. òðàíñëÿöèÿ èç ýòîãî ãíåçäà ïðîäîëæåíà8, 9. ßñòðåá-òåòåðåâÿòíèê – îáû÷íàÿ õèùíàÿ ïòèöà, íàñåëÿþùàÿ ëåñà ïî âñåé òåððèòîðèè Âîëãî-Óðàëüñêîãî ðåãèîíà, â òîì ÷èñëå è Íèæåãîðîäñêîé îáëàñòè. Ýòîò ÿñòðåá – îðíèòîôàã, ïèòàþùèéñÿ ïðåèìóùåñòâåííî ïòèöàìè. Íåñêîëüêî ïàð ÿñòðåáîâ-òåòåðåâÿòíèêîâ ãíåçäèòñÿ â ëåñîïàðêàõ Íèæíåãî Íîâãîðîäà. Íà îäíî èç ãîðîäñêèõ ãí¸çä ýòîãî ÿñòðåáà è óñòàíîâëåíà âåá-êàìåðà, êîòîðàÿ âïåðâûå áóäåò òðàíñëèðîâàòü æèçíü ÿñòðåáîâ-òåòåðåâÿòíèêîâ â 2016 ã.12, 13. Âåùàíèå ñ âåáêàìåð, óñòàíîâëåííûõ íà ãí¸çäàõ õèùíûõ ïòèö â ðàçíûõ òî÷êàõ Ìèðà äîñòóïíî íà ñàéòå Ðîññèéñêîé ñåòè èçó÷åíèÿ è îõðàíû ïåðíàòûõ õèùíèêîâ16. Êîíòàêò (6).

http://ru.ivideon.com/ http://rrrcn.ru/ru/archives/26432 – ñòðàíèöà âåùàíèÿ http://rrrcn.ru/forum/viewtopic.php?f=42&t=269 – îáñóæäåíèå íà ôîðóìå rrrcn.ru/en/archives/26432 – broadcast page http://rrrcn.ru/forum/viewtopic.php?f=42&t=269 – discussion at forum (in Russian) http://rrrcn.ru/ru/archives/26429 – ñòðàíèöà âåùàíèÿ http://rrrcn.ru/forum/viewtopic.php?f=42&t=304 – îáñóæäåíèå íà ôîðóìå http://rrrcn.ru/en/archives/26429 – broadcast page http://rrrcn.ru/forum/viewtopic.php?f=42&t=304 – discussion at forum (in Russian) http://rrrcn.ru/ru/webcam http://rrrcn.ru/en/webcam

7

Webcams on nests of Goshawk (Accipiter gentilis) and Tawny Owl (Strix aluco) are installed in Nizhny Novgorod (Russia) in 2016. Hour broadcast has been organized since April on the website of the Russian Raptor Research Network and on the website of the Ivideon company. The equipment and technical solutions from Ivideon7. MTS has provided communication. The Tawny Owl is a rare owl, listed in the Red Data Book of the Nizhny Novgorod region. More recently, 30 years ago, this owl was a common species throughout the Volga region, but then its number has fallen sharply enough. The Tawny Owl virtually disappeared to breed in the region, including in Nizhny Novgorod, where earlier used to nest in all parks. This owl is a typical hole-nesting species and suffers from a distinct lack of trees with holes suitable for nesting so willingly occupies special nest-boxes installed by ornithologists in the forests of the Nizhny Novgorod region. In one of these boxes, occupied by owls webcam was installed in 2015, and broadcasted life of owls. In 2016, translation from this nest continued10, 11. The Goshawk is a common bird of prey inhabiting forests throughout the Nizhny Novgorod region. This hawk mostly preys on birds. Several pairs of Goshawks breed in the forest parks of Nizhny Novgorod. Webcam was installed on one of such nests. It is the first translation of the Goshawk’s life in 201614, 15. Broadcasting from webcams installed in the nests of birds of prey in different parts of the World is available on the website of RRRCN17. Contact (6).


8

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ

Raptor Research ИЗУЧЕНИЕ ПЕРНАТЫХ ХИЩНИКОВ The Ecology of the Ural Owl at South-Western Border of Its Distribution (Slovenia) ЭКОЛОГИЯ ДЛИННОХВОСТОЙ НЕЯСЫТИ НА ЮГО-ЗАПАДНОЙ ГРАНИЦЕ СВОЕГО РАСПРОСТРАНЕНИЯ (СЛОВЕНИЯ) Vrezec A. (National Institute of Biology; Slovenian Museum of Natural History, Ljubljana, Slovenia) Врежек А. (Национальный институт биологии, Словенский музей естественной истории, Любляна, Словения)

Contact: Al Vrezec National Institute of Biology Večna pot 111 SI-1000, Ljubljana Slovenia al.vrezec@nib.si

Ðåçþìå  Ñëîâåíèè äëèííîõâîñòàÿ íåÿñûòü (Strix uralensis) íàõîäèòñÿ íà þãî-çàïàäíîé ãðàíèöå ñâîåãî ðàñïðîñòðàíåíèÿ è ïðèíàäëåæèò ê þæíîìó ïîäâèäó Strix uralensis macroura. Ò¸ìíàÿ îêðàñêà õàðàêòåðíà äëÿ ýòîãî ïîäâèäà – ñîâû ñ òàêîé îêðàñêîé ñîñòàâëÿþò îò 5 äî 15 % íàñåëåíèÿ. Ðàçìåð ãíåçäîâîé ïîïóëÿöèè äëèííîõâîñòîé íåÿñûòè â Ñëîâåíèè îöåíèâàåòñÿ â 400–700 ïàð. Ïëîòíîñòü ðàñïðåäåëåíèÿ ãíåçäîâûõ òåððèòîðèé êîëåáëåòñÿ â ïðåäåëàõ îò 0,9 äî 13,4 òåððèòîðèé íà 10 êì2, à ñàìàÿ âûñîêàÿ ïëîòíîñòü íàáëþäàåòñÿ â ãîðíûõ ëåñàõ íà þãå Äèíàðñêîãî íàãîðüÿ.  ëåñàõ ñ äîìèíèðóþùèìè ëèñòâåííûìè äåðåâüÿìè, ïëîòíîñòü ðàñïðåäåëåíèÿ ãíåçäÿùèõñÿ ïàð çíà÷èòåëüíî âûøå, ÷åì â ëåñàõ ñ âûñîêîé äîëåé õâîéíûõ äåðåâüåâ. Äëèííîõâîñòàÿ íåÿñûòü ðàçìíîæàåòñÿ â äèàïàçîíå ìåæäó 150 è 1600 ì íàä óðîâíåì ìîðÿ. Áîëüøàÿ ÷àñòü ãí¸çä íàéäåíà â åñòåñòâåííûõ óñëîâèÿõ – â äóïëàõ èëè ïîëóäóïëàõ (56 %) è íà ïíÿõ (20 %). Ãíåçäîâûå ÿùèêè â Ñëîâåíèè çàíèìàþòñÿ ðåæå – â íèõ íàéäåíî 29 % ãí¸çä. Ïî êðàéíåé ìåðå, â ãîðíûõ ðàéîíàõ ðàçìíîæåíèå íà÷èíàåòñÿ äîâîëüíî ïîçäíî, â ïåðèîä ñ 15 ìàðòà ïî 21 èþíÿ. Ñðåäíèé ðàçìåð êëàäêè ñîñòàâëÿåò 3,3±1,0 ÿéöà â ãíåçäå. Îêîëî 80 % âñåõ ãí¸çä óñïåøíî – èç íèõ âûëåòàåò ïî êðàéíåé ìåðå îäèí ìîëîäîé. Ðàöèîí äëèííîõâîñòûõ íåÿñûòåé çíà÷èòåëüíî ðàçëè÷àåòñÿ ìåæäó ïåðèîäîì ðàçìíîæåíèÿ è íåãíåçäîâûì ïåðèîäîì â ñâÿçè ñ ñåçîííîñòüþ íàëè÷èÿ äîáû÷è. Ñîãëàñíî áèîìàññå íàèáîëåå âàæíîé äîáû÷åé â ïåðèîä ðàçìíîæåíèÿ íåÿñûòåé ÿâëÿþòñÿ ìûøè (Muridae), ïîë¸âêè (Arvicollidae) è åâðîïåéñêèé êðîò (Talpa europaea), íî â íåãíåçäîâîé ïåðèîä ïðåîáëàäàþò ïîë¸âêè è ñîíè (Gliridae). Ñîíÿ-ïîë÷îê (Glis glis), êàæåòñÿ, èìååò î÷åíü âàæíóþ ðîëü â ïåðèîä ïîñëå ðàçìíîæåíèÿ.  êà÷åñòâå êðóïíîãî ëåñíîãî õèùíèêà, ãíåçäÿùèåñÿ äëèííîõâîñòûå íåÿñûòè ôîðìèðóþò ñîîáùåñòâî ëåñíûõ ïåðíàòûõ õèùíèêîâ çà ñ÷¸ò âûòåñíåíèÿ âèäîâ ñðåäíåãî ðàçìåðíîãî êëàññà, òàêèõ êàê ñåðàÿ íåÿñûòü (Strix aluco), ÷òî ïîçâîëÿåò áîëåå ìåëêèì ñîâàì, íàïðèìåð ìîõíîíîãèì ñû÷àì (Aegolius funereus) óñïåøíî îñâàèâàòü ãîðíûå ëåñà íà áîëåå íèçêèõ âûñîòàõ â ïðåäåëàõ ñâîåãî àðåàëà. Òåì íå ìåíåå, ýòà ìîäåëü íå ÿâëÿåòñÿ îáùåé äëÿ âñåãî àðåàëà äëèííîõâîñòîé íåÿñûòè, ïîñêîëüêó ýêîëîãèÿ è ìîðôîëîãèÿ íåÿñûòè è äðóãèõ âèäîâ ñîâ ìîãóò áûòü âåñüìà ðàçëè÷íû â äðóãèõ ðåãèîíàõ, ïîýòîìó íåîáõîäèìû ýêîëîãè÷åñêèå èññëåäîâàíèÿ èç ðàçíûõ ÷àñòåé àðåàëà äëèííîõâîñòîé íåÿñûòè. Êëþ÷åâûå ñëîâà: ñîâû, äëèííîõâîñòàÿ íåÿñûòü, Strix uralensis macroura, Þãî-Âîñòî÷íàÿ Åâðîïà, Ñëîâåíèÿ, ìåëàíèçì, ýêîëîãèÿ, ãíåçäîâàÿ áèîëîãèÿ. Ïîñòóïèëà â ðåäàêöèþ 22.02.2016 ã. Ïðèíÿòà ê ïóáëèêàöèè 06.03.2016 ã. Abstract In Slovenia the Ural Owl (Strix uralensis) is on its south-western limit of distribution and belongs to the southern subspecies Strix uralensis macroura. Dark coloured owls are characteristic for this subspecies and represent between 5 to 15 % of the population. Slovenian breeding population size is estimated at 400 to 700 pairs. The densities of territories ranges between 0.9 to 13.4 territories per 10 km2, and the highest are reached in mountain forests of southern Dinaric region. In the forests with dominant deciduous trees, e.g. Beech (Fagus sylvatica) and Pedinculate Oak (Quercus robur), the breeding densities are significantly higher than in the forests with higher proportion of coniferous trees, e.g. Norway Spruce (Picea abies). The species does not select specific altitude and throughout Slovenia it occurs between 150 and 1600 m a.s.l. The most of the nest found at natural nest-sites were in tree holes or semi-holes (56 %) and at the tree stumps (20 %). Nest boxes were occupied less frequently in Slovenia with occupancy rate of 29 %. At least in mountain regions breeding begins quite late, between 15 March to 21 June. Average clutch size is 3.3±1.0 eggs per nest. About 80 % of all nests are successful raising at least one young. The diet shifts significantly between breeding and non-breeding period due to the seasonality in prey availability. According to the biomass the most important prey in breeding period are mice (Muridae), voles (Arvicollidae) and mole (Talpa europaea), but in the non-breeding period voles and dormice (Gliridae) predominate. Large Fat Dormouse (Glis glis) seems to have very important role in the post-breeding period. As a large forest-dwelling predator the Ural Owl shapes the raptor community in the forest by excluding mezopredator species, as Tawny Owl (Strix aluco), what allows smaller raptors, e.g. Boreal Owl (Aegolius funereus) to expend their ranges to lower elevations. However, this pattern is not general through the whole Ural Owl range since species ecology and morphology could be regionally quite different, therefore ecological studies from different parts of Ural Owl range are needed. Keywords: owls, Ural Owl, Strix uralensis macroura, SE Europe, Slovenia, melanism, ecology, breeding biology. Received: 22/02/2016. Accepted: 06/03/2016. DOI: 10.19074/1814-8654-2016-32-8-20


Raptor Research

Raptors Conservation 2016, 32 Ââåäåíèå Õîòÿ äëèííîõâîñòàÿ íåÿñûòü (Strix uralensis) ÿâëÿåòñÿ òèïè÷íûì áîðåàëüíûì âèäîì, èìååòñÿ òðè å¸ èçîëèðîâàííûå þæíûå ïîïóëÿöèè: îäíà íà îñòðîâàõ ßïîíèè, äèôôåðåíöèðîâàâøàÿñÿ â íåñêîëüêî ïîäâèäîâ (König, Weick, 2008), äðóãàÿ â ãîðàõ Êèòàÿ, îïèñàííàÿ êàê S. u. davidi (Sherzinger, Fang, 2006), è òðåòüÿ – â ãîðàõ Öåíòðàëüíîé è Þãî-Âîñòî÷íîé Åâðîïû, îïèñàííàÿ êàê S. u. macroura (Kohl, 1977), êîòîðàÿ ðàññìàòðèâàåòñÿ â êà÷åñòâå ëåäíèêîâîãî ðåëèêòà (Mikkola, 1983). Îäíàêî, íåäàâíèå ãåíåòè÷åñêèå èññëåäîâàíèÿ â åâðîïåéñêîé ÷àñòè àðåàëà äëèííîõâîñòîé íåÿñûòè ïîêàçàëè î÷åíü ìàëî ðàçëè÷èé ìåæäó ñåâåðíûìè (ïîäâèä S. u. liturata) è þæíûìè (ïîäâèä S. u. macroura) å¸ ïîïóëÿöèÿìè, ñòàâÿ òåì ñàìûì ïîä âîïðîñ ïîäâèäîâóþ êîíöåïöèþ (Hausknecht et al., 2013). Òåì íå ìåíåå, ñåâåðíûå (S. u. liturata) è þæíûå (S. u. macroura) äëèííîõâîñòûå íåÿñûòè äåìîíñòðèðóþò äîâîëüíî áîëüøèå ìîðôîëîãè÷åñêèå ðàçëè÷èÿ (Vrezec, 2009). S. u. macroura ÿâëÿåòñÿ êðóïíûì ïîäâèäîì è â íàñòîÿùåå âðåìÿ îãðàíè÷åíà â ðàñïðîñòðàíåíèè â îñíîâíîì Êàðïàòàìè è Äèíàðñêèì íàãîðüåì, íî ðàñïðîñòðàíÿåòñÿ òàêæå è â Àëüïû (ðèñ. 1).  ïðîøëîì äëèííîõâîñòàÿ íåÿñûòü äàííîãî ïîäâèäà âûìåðëà â áîëåå çàïàäíûõ ðàéîíàõ (Scherzinger, 2006). Îáùàÿ ÷èñëåííîñòü íàñåëåíèÿ ïîäâèäà macroura íåäàâíî áûëà îöåíåíà îêîëî 6500 ãíåçäÿùèõñÿ ïàð (Mebs, 2007).  Äèíàðñêîì íàãîðüå ðàñïðîñòðàíåíèå äëèííîõâîñòîé íåÿñûòè äîâîëüíî õîðîøî èçó÷åíî â Ñëîâåíèè è Õîðâàòèè (íàïðèìåð, Mihelič et al., 2000; Vrezec, 2007; Tutiš et al., 2009), íî äàííûå î÷åíü ñêóäíû èç Áîñíèè è Ãåðöåãîâèíû, Ñåðáèè è ×åðíîãîðèè (Puzović et al., 2003; Kotrošan, Hatibović, 2012).  Ñëî-

9

Introduction Although the Ural Owl (Strix uralensis) is a typical boreal species there are three isolated southern populations known, one on islands of Japan differentiated into several subspecies (König, Weick, 2008), one in mountains of China described as S. u. davidi (Sherzinger, Fang, 2006), and the third in Central and SE European mountains described as S. u. macroura (Kohl, 1977), which are being considered as glacial relics (Mikkola, 1983). However, recent genetic study in European part of Ural Owl distribution revealed very little differences between northern (subspecies S. u. liturata) and southern populations (subspecies S. u. macroura) taking subspecific concept in Ural Owl under question (Hausknecht et al., 2013). However, northern (S. u. liturata) and southern (S. u. macroura) Ural Owls exhibits quite large morphological differences (Vrezec, 2009). The S. u. macroura is the largest Ural Owl subspecies and is nowadays confined mainly to Carpathians and Dinaric Alps, but spreading also to the Alps (fig. 1). In the past it became extinct in more western regions (Scherzinger, 2006). The total population of macroura subspecies was recently estimated at roughly 6500 breeding pairs (Mebs, 2007). In the Dinaric part of its distribution the Ural Owl is quite well known in Slovenia and Croatia (e.g. Mihelič et al., 2000; Vrezec, 2007; Tutiš et al., 2009), but the data are very scarce from Bosnia and Herzegovina, Serbia, and Montenegro (Puzović et al., 2003; Kotrošan, Hatibović, 2012). In Slovenia the Ural Owl population reaches its south-western border of distribution, and some territorial or breeding pairs were found also in Italy and Austria (Feldner et al., 2006; Genero, Benussi, 2007). The tradition of Ural Owl research in Slovenia is quite long lasting with first scientific mention of the species at the end of 18th century by Scopoli (1769) and Hacquet (1791) under the names of Strix sylvestris and Strix nigra respectively (Vrezec et al., 2007). During 19th century several data about Ural Owl occurrence were col-

Ðèñ. 1. Àðåàë íûíå èçîëèðîâàííîãî þæíî-åâðîïåéñêîãî ïîäâèäà äëèííîõâîñòîé íåÿñûòè (Strix uralensis macroura). Fig. 1. Distribution range of nowadays isolated southEuropean subspecies of the Ural Owl (Strix uralensis macroura).


10

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32 âåíèè äëèííîõâîñòàÿ íåÿñûòü íàõîäèòñÿ íà þãî-çàïàäíîé ãðàíèöå ðàñïðîñòðàíåíèÿ, íî â ïîñëåäíåå âðåìÿ áûëè îáíàðóæåíû îòäåëüíûå òåððèòîðèàëüíûå èëè ãíåçäÿùèåñÿ ïàðû òàêæå â Èòàëèè è Àâñòðèè (Feldner et al., 2006; Genero, Benussi, 2007). Òðàäèöèÿ èññëåäîâàíèÿ äëèííîõâîñòîé íåÿñûòè â Ñëîâåíèè èìååò äîâîëüíî ïðîäîëæèòåëüíóþ èñòîðèþ ñ ìîìåíòà ïåðâîãî íàó÷íîãî óïîìèíàíèÿ âèäà â êîíöå XVIII âåêà ïîä íàçâàíèÿìè Strix sylvestris (Scopoli, 1769) è Strix nigra (Hacquet, 1791) (Vrezec et al., 2007).  òå÷åíèå XIX âåêà ñîáðàííûå íåêîòîðûå äàííûå î âñòðå÷àåìîñòè äëèííîõâîñòîé íåÿñûòè, îñîáåííî â çèìíèé ïåðèîä, ïîäòâåðäèëè, ÷òî âèä íå ÿâëÿåòñÿ ðåäêèì â Ñëîâåíèè (Ponebšek, 1917). Ïîäðîáíàÿ èíôîðìàöèÿ î ðàçìíîæåíèå è çèìíåì ðàñïðåäåëåíèè äëèííîõâîñòîé íåÿñûòè áûëà îïóáëèêîâàíà äî êîíöà XX âåêà (Sovinc, 1994; Geister, 1995), êîãäà òàêæå áûëè ïðåäïðèíÿòû èññëåäîâàíèÿ ïî ñèñòåìàòèêå ïîïóëÿöèé è ýêîëîãèè âèäà. Öåëüþ äàííîé ðàáîòû ÿâëÿåòñÿ îáîáùåíèå îïóáëèêîâàííûõ è íåîïóáëèêîâàííûõ èññëåäîâàíèé ïî ìîðôîëîãèè äëèííîõâîñòîé íåÿñûòè, å¸ ïîïóëÿöèé, âûáîðó ìåñò îáèòàíèÿ, áèîëîãèè ðàçìíîæåíèÿ, ïèòàíèþ è å¸ çíà÷åíèþ â êà÷åñòâå ãëàâíîãî õèùíèêà â ëåñíîé ýêîñèñòåìå Þãî-Âîñòî÷íîé Åâðîïû. Ìàòåðèàëû è ìåòîäû Îöåíêà ìîðôîëîãè÷åñêèõ õàðàêòåðèñòèê ×àñòîòà ìåëàíèçìà â þæíî-åâðîïåéñêîé ïîïóëÿöèè äëèííîõâîñòîé íåÿñûòè äîâîëüíî âûñîêà, íà ÷òî áûëî îáðàùåíî áîëüøîå âíèìàíèå â ïðîøëîì (Ponebšek, 1917; Kohl, 1977; Vrezec, Tutiš, 2003; Vrezec, 2009). Äëÿ îöåíêè ÷àñòîòû âñòðå÷àåìîñòè ÷åòûð¸õ öâåòîâûõ ìîðôîòèïîâ â ïîïóëÿöèè äëèííîõâîñòîé íåÿñûòè â Ñëîâåíèè, îïèñàííûõ ðàíåå (ðèñ. 2; Vrezec, 2009), ÷òîáû ïîëó÷èòü áîëåå èëè ìåíåå íåïðåäâçÿòûé ðåçóëüòàò, â íàñòîÿùåì èññëåäîâàíèè áûëè îáðàáîòàíû ñëåäóþùèå äàííûå: (1) ìóçåéíûå êîëëåêöèè (òîëüêî ïòèöû, êîòîðûå áûëè íàéäåíû ì¸ðòâûìè â ïîëå), (2) äàííûå ïîëåâûõ èññëåäîâàíèé ãíåçäîâîé áèîëîãèè (ïðåèìóùåñòâåííî ïòèöû íà ãí¸çäàõ), è (3) ôîòîãðàôèè, ñäåëàííûå â äèêîé ïðèðîäå, ñ èíôîðìàöèåé î ìåñòîïîëîæåíèè âñòðå÷åííûõ ïòèö (îñíîâíîé èñòî÷íèê ôîòîãðàôèé äëèííîõâîñòûõ íåÿñûòåé â Ñëîâåíèè – ôîòî-ñàéò «Foto Narava»18).

18

http://galerija.foto-narava.com

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ lected especially during the winter period confirming that the species was not rare in Slovenia (Ponebšek, 1917). However, detailed breeding and winter distribution was provided till the end of 20th century (Sovinc, 1994; Geister, 1995), when also systematic population and ecological studies were taken place. The aim of this paper is to summarize published and unpublished studies on the species morphological characteristics, population survey, habitat selection, breeding biology, diet and its significance as a top predator in a forest ecosystem in SE Europe. Materials and Methods Morphological characteristics assessment The frequency of melanism in SouthEuropean population of Ural Owl is quite high, and has paid a lot of attention in the past (Ponebšek, 1917; Kohl, 1977; Vrezec, Tutiš, 2003; Vrezec 2009). In order to assess frequency of generally four colour morphotypes in Ural Owl population in Slovenia described so far (fig. 2; Vrezec, 2009), we have collected the following types of data into the study in order to get more or less unbiased sample: (1) museum skins (only birds that were found dead in the field), (2) data from breeding biology studies in the field (predominantly from nestboxes), and (3) photographs taken in the wild with location details given (main source of photographs of Ural Owls in Slovenia was the photographic webpage Foto Narava18). Survey methodology Two survey approaches have been applied in studies of Ural Owls in Slovenia: (1) territory survey using playback methods and (2) nest survey using nestboxes. In the last 15 years several population surveys were conducted in Slovenia and most of them used a point count method with playback (male territorial call) stimulation to record territorial owls (e.g. Benussi, Genero, 1995; Prešern, Kohek, 2001; Ambrožič, 2002; Vrezec, 2003). The survey method is based on counting hooting owls at survey points that are about 1000 meters apart. At each point the owls are recorded at the distance of 500 m, and therefore an effective survey area of 0.78 km2 around each point is defined for calculating the density of territories (Vrezec, 2003) or compared as relative abundance index (no. of territories per


Raptor Research

Raptors Conservation 2016, 32

11

Ðèñ. 2. ×åòûðå îáùåïðèçíàííûõ ìîðôîòèïà, âûÿâëåííûõ â þæíî-åâðîïåéñêîé ïîïóëÿöèè äëèííîõâîñòîé íåÿñûòè (Strix uralensis macroura): (à) áëåäíàÿ ìîðôà, (b) ñåðàÿ ìîðôà, (ñ) ÷àñòè÷íî ìåëàíèñòè÷åñêàÿ ìîðôà è (d) ìåëàíèñòè÷åñêàÿ ìîðôà. Ðèñóíêè Æàðêî Âðåæåêà. Fig. 2. Four generally recognized morphotypes found in south-European Ural Owl (Strix uralensis macroura) population: (a) pale morph, (b) grey morph, (c) partly melanistic morph and (d) melanistic morph. Drawings by Žarko Vrezec.

Ìåòîäîëîãèÿ èññëåäîâàíèÿ Äâà ïîäõîäà áûëè ïðèìåíåíû ïðè èçó÷åíèè äëèííîõâîñòîé íåÿñûòè â Ñëîâåíèè: (1) îáñëåäîâàíèå òåððèòîðèé ñ èñïîëüçîâàíèåì ìåòîäà âîñïðîèçâåäåíèÿ àóäèîôàéëîâ âèäîñïåöèôè÷åñêèõ çâóêîâ è (2) èçó÷åíèå ãíåçäîâîé áèîëîãèè ñ èñïîëüçîâàíèåì ãíåçäîâûõ ÿùèêîâ. Çà ïîñëåäíèå 15 ëåò áûëî ïðîâåäåíî íåñêîëüêî èññëåäîâàíèé ïî ÷èñëåííîñòè ïîïóëÿöèé äëèííîõâîñòîé íåÿñûòè â Ñëîâåíèè, è â áîëüøèíñòâå èç íèõ èñïîëüçîâàëñÿ ìåòîä ïîäñ÷åòà âîêàëèçèðóþùèõ ïòèö íà òî÷êàõ ñ âîñïðîèçâåäåíèåì òîêîâûõ ñèãíàëîâ ñàìöîâ äëÿ ñòèìóëÿöèè ãîëîñîâîé àêòèâíîñòè òåððèòîðèàëüíûõ ñîâ (íàïðèìåð, Benussi, Genero, 1995; Prešern, Kohek, 2001; Ambrožič, 2002; Vrezec, 2003). Ìåòîä èññëåäîâàíèÿ îñíîâàí íà ïîäñ÷¸òå «óõàíüÿ» ñîâ â òî÷êàõ ó÷¸òà, êîòîðûå ðàñïðåäåëåíû íà ðàññòîÿíèè îêîëî 1000 ìåòðîâ äðóã îò äðóãà.  êàæäîé òî÷êå ñîâû ðåãèñòðèðóþòñÿ íà ðàññòîÿíèè 500 ì, è, ñëåäîâàòåëüíî, ýôôåêòèâíàÿ ïëîùàäü ó÷¸òà ñîñòàâëÿåò 0,78 êì2 âîêðóã êàæäîé òî÷êè, îïðåäåëÿÿ òåì ñàìûì ó÷¸òíóþ ïëîùàäü äëÿ ðàñ-

10 survey points). However, the method cannot be used with equal success throughout the year since vocal activity of Ural Owl is seasonally changing. Although Ural Owl vocalizes through the whole year, except in winter months, its response to the playback is most intensive in spring and again in autumn (fig. 3; Vrezec, in prep.). Therefore all population surveys were done in the breeding period between March and June. Breeding biology of the Ural Owl in Slovenia was until recently known only from occasionally and rarely found nests (Perušek, 1998; Vrezec, Kohek, 2002). With systematic survey of nest boxes started in 2002 several new data about clutch and brood size and breeding success were obtained. The most frequently used nestbox type for Ural Owls in Slovenia was large semi-open nestbox (fig. 4). Nestbox material was also the main source of material for diet studies in the breeding period. The studies over the role of the Ural Owl as the top predator in a forest ecosystem were dealing with the species diet (Vrezec, 2000; 2001) and its intraguild interactions with other owl species (Mihelič, 2002; Vrezec, Tome, 2004a; 2004b; Vrh, Vrezec, 2006). Region Slovenia (46.119°N, 14.839°E) is a small European country with 20,273 km2, but with very diverse landscape extending from the sea level up to 2864 m a.s.l. (Mt. Triglav) with average elevation 557 m a.s.l. In the country several biogeographical regions meet with Mediterranean region on SW, montane Alps on N and Dinaric Alps on S, and lowland subpannonian region at E. Forest is the prevailing landscape type in Slovenia covering at least 58 % of the country (Ančik et al., 2006) with Beech (Fagus sylvatica), Oaks (Quercus), White Fir (Abies alba), Norway Spruce (Picea abies) and Pines (Pinus) as the dominant tree species.


12

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32 ÷¸òà ïëîòíîñòè íàñåëåíèÿ ñîâ (Vrezec, 2003). Ëèáî äàííûå ó÷¸òîâ èñïîëüçóþòñÿ äëÿ ñðàâíåíèÿ èíäåêñîâ îòíîñèòåëüíîé ÷èñëåííîñòè (êîëè÷åñòâî èíäèâèäóàëüíûõ òåððèòîðèé ñîâ íà 10 òî÷åê ó÷¸òà). Òåì íå ìåíåå, ýòîò ìåòîä íå ìîæåò áûòü èñïîëüçîâàí ñ òàêèì æå óñïåõîì â òå÷åíèå âñåãî ãîäà, òàê êàê èíòåíñèâíîñòü âîêàëèçàöèè äëèííîõâîñòûõ íåÿñûòåé èçìåíÿåòñÿ â çàâèñèìîñòè îò ñåçîíà. Õîòÿ äëèííîõâîñòàÿ íåÿñûòü âîêàëèçèðóåò â òå÷åíèå âñåãî ãîäà, çà èñêëþ÷åíèåì çèìíèõ ìåñÿöåâ, å¸ ðåàêöèÿ íà âîñïðîèçâåäåíèå âèäîñïåöèôè÷åñêèõ ñèãíàëîâ íàèáîëåå èíòåíñèâíà âåñíîé è ñíîâà îñåíüþ (ðèñ. 3, Vrezec, â ïå÷àòè). Ïîýòîìó âñå ó÷¸òû ÷èñëåííîñòè íàñåëåíèÿ áûëè ïðîâåäåíû â ïåðèîä ðàçìíîæåíèÿ â ïåðèîä ñ ìàðòà ïî èþíü. Ãíåçäîâàÿ áèîëîãèÿ äëèííîõâîñòîé íåÿñûòè â Ñëîâåíèè äî íåäàâíåãî âðåìåíè áûëà ñëàáî èçó÷åíà, íàáëþäåíèÿ âåëèñü îò ñëó÷àÿ ê ñëó÷àþ, à ãí¸çäà íàõîäèëèñü ðåäêî (Perušek, 1998; Vrezec, Kohek, 2002). Ñ ïîìîùüþ ñèñòåìàòè÷åñêîãî îáñëåäîâàíèÿ ãíåçäîâûõ ÿùèêîâ, íà÷àâøåãîñÿ â 2002 ãîäó, áûëè ïîëó÷åíû íîâûå äàííûå î ðàçìåðàõ êëàäîê è âûâîäêîâ è óñïåõå ðàçìíîæåíèÿ íåÿñûòåé. Èç ðàçíûõ òèïîâ ãíåçäîâûõ ÿùèêîâ, â Ñëîâåíèè íàèáîëåå ÷àñòî èñïîëüçîâàëèñü äëèííîõâîñòûìè íåÿñûòÿìè áîëüøèå ïîëóîòêðûòûå ãíåçäîâûå ÿùèêè (ðèñ. 4). Îáñëåäîâàíèå ãíåçäîâûõ ÿùèêîâ òàêæå ïîçâîëèëî ñîáðàòü îñíîâíîé ìàòåðèàë ïî ïèòàíèþ ñîâ â ïåðèîä ðàçìíîæåíèÿ. Èçó÷åíèå ðîëè äëèííîõâîñòîé íåÿñûòè â êà÷åñòâå õèùíèêà âåðõíåãî òðîôè÷åñêîãî óðîâíÿ â ëåñíîé ýêîñèñòåìå îñíîâàíû íà ïîâèäîâîì àíàëèçå ïèòàíèÿ (Vrezec, 2000,

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ More than 35 % of the country is included in Natura 2000 network of conservation important sites in European Union. The core of Ural Owl population is confined to montane regions of Dinaric Alps and Alps (Mihelič et al., 2000), in which also the species in studied the most. Results and Discussion The plumage colour variation from pale to dark is clinal in SE European population of the Ural Owl (figs. 5, 6). The number of distinguishable morphs is difficult to define and the four morphs considered here must be considered somewhat arbitrary. Within this study we have inspected 60 adult owls and classify them to one of the four morphotypes. According to this study of museum skins and field observations, general estimations indicate that melanistic birds altogether represents 12 % of population is Slovenia (2 % of partially melanistic and 10 % of melanistic birds), while the pale (27 %) and grey morph (61 %) are the most common. Melanistic Ural Owls (see fig. 7) were actually found to occur over the whole Carpathian-Dinaric distribution range but according to museum collections, dark individuals are more common in the southern part (Kohl, 1977). From the field, only data from the recent intensive studies of breeding pairs in the Dinaric Alps in Croatia and Slovenia are available, revealing that the proportion of partially melanistic morph and melanistic morph individuals (taken together) is about 6 % in the wild (n=54; Vrezec, Tutiš, 2003). If considering just ringed chicks from Slovenia (n=56), 5.4 % of chicks had been melanistic (fig. 8). Overall we can therefore expect that partially melanistic and melanistic individuals represent 5–15 % of the population in the wild, but can vary locally. However, genetical and

Ðèñ. 3. Ñåçîííîñòü àêòèâíîñòè âîêàëèçàöèè äëèííîõâîñòîé íåÿñûòè (Strix uralensis) â Ñëîâåíèè, ïîëó÷åííàÿ ïî êîëè÷åñòâó òî÷åê â ñîîòâåòñòâèè ñ ðåãèñòðàöèÿìè ñïîíòàííûõ îòâåòîâ ñîâ (1579 òî÷åê ó÷¸òà) è ñïðîâîöèðîâàííûõ ñ ïîìîùüþ âîñïðîèçâåäåíèÿ îòâåòîâ ñîâ (573 ðåãèñòðàöèè). Èíäåêñ àêòèâíîñòè âîêàëèçàöèè ñòàíäàðòèçîâàí ïî òàêîâîé â ìàðòå. Fig. 3. Seasonality of vocal activity of the Ural Owl (Strix uralensis) in Slovenia obtained by point count according to records of spontaneous calls (1579 point counts events) and provoked calls using playback (573 point count events). Vocal activity index is standardized according to March.


Raptor Research

Ðèñ. 4. Áîëüøîé ïîëóîòêðûòûé ãíåçäîâîé ÿùèê, èñïîëüçóåìûé â èññëåäîâàíèÿõ ãíåçäîâîé áèîëîãèè äëèííîõâîñòîé íåÿñûòè (Strix uralensis) â Ñëîâåíèè. Fig. 4. Large semi-open nestbox type used in breeding biology studies of Ural Owl (Strix uralensis) in Slovenia.

Raptors Conservation 2016, 32

2001) è å¸ âçàèìîîòíîøåíèÿõ ñ äðóãèìè âèäàìè ñîâà (Mihelič, 2002; Vrezec, Tome, 2004a, 2004b; Vrh, Vrezec, 2006). Ðåãèîí èññëåäîâàíèé Ñëîâåíèÿ (46,119° ñ.ø., 14,839° â.ä.) ÿâëÿåòñÿ íåáîëüøîé åâðîïåéñêîé ñòðàíîé ïëîùàäüþ 20273 êì2, íî ñ î÷åíü ðàçíîîáðàçíûì ëàíäøàôòîì ïðîñòèðàþùèìñÿ îò óðîâíÿ ìîðÿ äî 2864 ì íàä óðîâíåì ìîðÿ (ãîðà Òðèãëàâ), ñî ñðåäíèìè âûñîòàìè îêîëî 557 ì íàä óðîâíåì ìîðÿ.  ñòðàíå íåñêîëüêî áèîãåîãðàôè÷åñêèõ ðåãèîíîâ: Ñðåäèçåìíîìîðüå íà þãî-çàïàäå, Àëüïèéñêèå ãîðû íà ñåâåðå è Äèíàðñêîå íàãîðüå íà þãå, à òàêæå ñóá-ïàííîíñêàÿ íèçìåííîñòü íà âîñòîêå. Ëåñà ÿâëÿþòñÿ ïðåîáëàäàþùèì òèïîì ëàíäøàôòà â Ñëîâåíèè è îõâàòûâàþò íå ìåíåå 58 % òåððèòîðèè ñòðàíû (Ančik et al., 2006), ñîñòîÿò èç áóêà (Fagus sylvatica), äóáà (Fagus sylvatica), áåëîé ïèõòû (Abies alba), åëè (Picea abies) è ñîñíû (Pinus) â êà÷åñòâå äîìèíèðóþùèõ âèäîâ äåðåâüåâ. Áîëåå 35 % òåððèòîðèè ñòðàíû âõîäèò â ñåòü äëÿ ñîõðàíåíèÿ âàæíûõ ìåñò â Åâðîïåéñêîì Ñîþçå «Natura 2000». ßäðî íàñåëåíèÿ äëèííîõâîñòîé íåÿñûòè îãðàíè÷èâàåòñÿ ãîðíûìè ðàéîíàìè Äèíàðñêîãî íàãîðüÿ è Àëüï (Mihelič et al., 2000), â êîòîðûõ ýòîò âèä íàèáîëåå èçó÷åí. Ðåçóëüòàòû è îáñóæäåíèå Èçìåíåíèå öâåòà îïåðåíèÿ îò áëåäíîãî äî ò¸ìíîãî ÿâëÿåòñÿ êëèíàëüíûì â þæíîåâðîïåéñêîé ïîïóëÿöèè äëèííîõâîñòîé íåÿñûòè (ðèñ. 5, 6). Êîëè÷åñòâî ðàçëè÷èìûõ ïåðåõîäíûõ ìîðô òðóäíî îïðåäåëèòü òî÷íî, ïîýòîìó ÷åòûðå ìîðôû, ðàññìàòðèâàåìûå â ñòàòüå, íåñêîëüêî ïðîèçâîëüíû.  ðàìêàõ äàííîãî èññëåäîâàíèÿ ìû ïðîâåëè îïèñàíèå 60 âçðîñëûõ ñîâ è îòíåñëè èõ ê îäíîìó èç ÷åòûð¸õ ìîðôîòèïîâ. Ñîãëàñíî

13

ecological background of frequent melanism occurrence in southern population of the Ural Owl still awaits further studies since it is still not clear why melanistic Ural Owls are presented in South European population only since no such birds have been reported for Northern Europe (P. Saurola, pers. comm.). Melanistic owls occur also in other Strix species, i.e. Tawny (S. aluco) (Aebischer, 2008) and Great Grey Owl (S. nebulosa) (Rudovskiy, Karyakin, 2010), but it seems that melanism is most frequently and regular occurring only in the South European population of the Ural Owl. The current estimation of the Ural Owl breeding population size in Slovenia is 400 to 700 pairs (Vrezec, Mihelič, 2002). In the breeding period the species is very common in Southern Dinaric region with local densities ranging from 1.0 to 13.4 territories / 10 km2 (Vrezec, 2003; Rubinić et al., 2007). In Northern Alpine region the densities are on average lower ranging from 0.9 to 4.6 territories / 10 km2 (Svetličič, Kladnik, 2001; Vrezec, 2007), probably due to the differences in forest structure. However, the densities reached in Slovenia are among the highest known for the species, similar to Poland and Slovakia, but much higher compared to northern regions (e.g. Vrezec, 2003; Krištin et al., 2007). In Slovenia the Ural Owl was found breeding in coniferous (i.e. Adenostylo glabrae-Piceetum) as well as in mixed (i.e. Omphalodo-Fagetum s. lat.; fig. 9) and deciduous (i.e. Pseudostellario-Quercetum roboris; fig. 10) forest types. However, in the forests with dominant deciduous trees, e.g. Fagus sylvatica and Quercus robur, the breeding densities (median 3.5 territories / 10 km2) were found to be significantly higher (U=2.00, p<0.05) than in the forests with higher proportion of coniferous trees, e.g. Picea abies (median 1.0 territories / 10 km2). More detailed study over Ural Owl habitat preferences was conducted in a montane Dinaric Beech forest with Fir (Omphalodo-Fagetum s. lat.), but in neither of discussed habitat parameters Ural Owl performed significant selection (Ambrožič, 2004; Vrezec, Tome, 2004a). On the other hand, compared to its close relative, the Tawny Owl, it was established that Ural Owl is much more avoiding human settlements and their vicinity during the breeding period than the Tawny Owl (Vrezec, Tome, 2004b). Compared to montane forests in lowland the Ural Owl is in general a rare breeder. This is most probably the consequence of


14

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ Ðèñ. 5. Èçìåíåíèå öâåòà îïåðåíèÿ ó þæíûõ ïîïóëÿöèé äëèííîõâîñòûõ íåÿñûòåé (Strix uralensis macroura) êëèíàëüíî, êàê ïîêàçàíî â ýòîì âûâîäêå ñ îäíèì ìåëàíèñòîì, îäíèì ïòåíöîì áëåäíîé ìîðôû è íåñêîëüêèìè ïòåíöàìè ñåðîé ìîðôû. Ôîòî Êàòàðèíû Ïðîñåíö Òðèëàð. Fig. 5. The plumage colour variation in the southern Ural Owl (Strix uralensis macroura) population is clinal as shown in this brood with one melanistic, one pale and several grey morph chicks. Photo by Katarina Prosenc Trilar.

ýòîìó èññëåäîâàíèþ ìóçåéíûõ ýêçåìïëÿðîâ è ïîëåâûõ íàáëþäåíèé ïòèö, ïîêàçàíî, ÷òî ìåëàíèñòû â öåëîì ñîñòàâëÿåò 12 % íàñåëåíèÿ Ñëîâåíèè (2 % ÷àñòè÷íûå ìåëàíèñòû è 10 % ïîëíûå ìåëàíèñòû), â òî âðåìÿ êàê áëåäíàÿ (27 %) è ñåðàÿ ìîðôû (61 %) ÿâëÿþòñÿ íàèáîëåå ðàñïðîñòðàí¸ííûìè. Ìåëàíèñòû äëèííîõâîñòîé íåÿñûòè (ñì. ðèñ. 7) áûëè íàéäåíû íà âñ¸ì ïðîòÿæåíèè àðåàëà âèäà â Êàðïàòî-Äèíàðñêîì ðåãèîíå, íî ñîãëàñíî àíàëèçó ìóçåéíûõ êîëëåêöèé, ò¸ìíûå îñîáè áîëåå ðàñïðîñòðàíåíû â þæíîé ÷àñòè ðåãèîíà (Kohl, 1977). Ñîãëàñíî ïîëåâûì Ðèñ. 6. Ïðèìåð èçìåíåíèÿ îêðàñêè îïåðåíèÿ ëèöåâîãî äèñêà ó âçðîñëûõ ïòèö â þæíîé ïîïóëÿöèè äëèííîõâîñòîé íåÿñûòè (Strix uralensis macroura) â Ñëîâåíèè. Ôîòî Àëà Âðåæåêà. Fig. 6. An example of variation in face mask plumage coloration in adult birds in the southern Ural Owl (Strix uralensis macroura) population in Slovenia. Photos by Al Vrezec.

human impact since large forest complexes in the old growth phase with thick-trunk trees were mostly cut down in the past. Only some old Oak forests were preserved in the eastern part of Slovenia, where Ural Owls breed in high density 7.8 territories / 10 km2 (Ambrožič, Vrezec, in prep.). This data indicates that in lowland Ural Owls can breed in as high densities as in montane forests (fig. 11) since no altitudinal preference was found according to systematic playback population surveys (Mann-Whitney U=1471, ns). Therefore the Ural Owl is considered as a very tolerant species regarding its altitudinal distribution (Tome, 1996), and was found from lowlands up to a tree line, 150–1600 m a.s.l. (Mihelič et al., 2000). There are only few nests of Ural Owls at natural nest-sites found so far in Slovenia (n=23), and the majority of them were situ-


Raptor Research

Ðèñ. 7. Âçðîñëàÿ ñàìêà äëèííîõâîñòîé íåÿñûòè (Strix uralensis macroura) – ìåëàíèñò. Ôîòî Äàâîðèíà Òîìå. Fig. 7. Melanistic Ural Owl (Strix uralensis macroura) – adult female. Photo by Davorin Tome.

Raptors Conservation 2016, 32

äàííûì (òîëüêî ðåçóëüòàòû íåäàâíèõ èíòåíñèâíûõ èññëåäîâàíèé ãíåçäÿùèõñÿ ïàð â Äèíàðñêîì íàãîðüå â Õîðâàòèè è Ñëîâåíèè) äîëÿ ÷àñòè÷íûõ è ïîëíûõ ìåëàíèñòîâ âìåñòå âçÿòûõ ñîñòàâëÿåò îêîëî 6 % â äèêîé ïðèðîäå (n=54; Vrezec, Tutiš, 2003). Åñëè ðàññìàòðèâàòü òîëüêî îêîëüöîâàííûõ ïòåíöîâ èç Ñëîâåíèè (n=56), òî 5,4 % ïòåíöîâ áûëè ìåëàíèñòàìè (ðèñ. 8). Íà îñíîâàíèè âûøåñêàçàííîãî, ìû ìîæåì îæèäàòü, ÷òî ÷àñòè÷íûå è ïîëíûå ìåëàíèñòû ñîñòàâëÿþò 5–15 % îò ÷èñëåííîñòè ïîïóëÿöèè â äèêîé ïðèðîäå, íî ýòîò ïîêàçàòåëü ìîæåò èçìåíÿòüñÿ äëÿ ëîêàëüíûõ òåððèòîðèé. Òåì íå ìåíåå, ãåíåòè÷åñêàÿ è ýêîëîãè÷åñêàÿ ïðåäïîñûëêè ÷àñòîãî ÿâëåíèÿ ìåëàíèçìà â þæíîé ïîïóëÿöèè äëèííîõâîñòîé íåÿñûòè åù¸ îæèäàþò äàëüíåéøèõ èññëåäîâàíèé, òàê êàê äî ñèõ ïîð íå ïîíÿòíî, ïî÷åìó ìåëàíèñòè÷åñêèå äëèííîõâîñòûå íåÿñûòè ïðåäñòàâëåíû â þæíîé ÷àñòè åâðîïåéñêîãî àðåàëà âèäà è íè îäíîé îñîáè íå áûëî çàðåãèñòðèðîâàíî â Ñåâåðíîé Åâðîïå (P. Saurola, pers. comm.). Ìåëàíèñòû âñòðå÷àþòñÿ òàêæå è ó äðóãèõ âèäîâ íåÿñûòåé (Strix), íàïðèìåð ñåðîé íåÿñûòè (S. aluco) (Aebischer, 2008) è áîðîäàòîé íåÿñûòè (S. nebulosa) (Rudovskiy, Karyakin, 2010), íî êàæåòñÿ, ÷òî ìåëàíèçì íàèáîëåå ÷àñòî è ðåãóëÿðíî íàáëþäàåòñÿ òîëüêî â þæíî-åâðîïåéñêîé ïîïóëÿöèè äëèííîõâîñòîé íåÿñûòè. Òåêóùàÿ îöåíêà ÷èñëåííîñòè ðàçìíîæà-

Ðèñ. 8. Ìåëàíèñò – ïòåíåö äëèííîõâîñòîé íåÿñûòè (Strix uralensis macroura) ãîòîâûé ïîêèíóòü ãíåçäîâîé ÿùèê. Ôîòî Àëà Âðåæåêà. Fig. 8. Melanistic Ural Owl (Strix uralensis macroura) chick before leaving the nestbox. Photo by Al Vrezec.

15

ated in tree holes or semi-holes (56 %) or at the top of tree stumps (20 %). Therefore the abundance of old trees suitable to provide large enough holes is essential for the species (Lõhmus, 2003). The most common breeding trees in Slovenia are Fagus sylvatica, Acer pseudoplatanus and Picea abies, occasionally Abies alba, Quercus robur and Q. petraea (Vrezec, 2007). Only few nests (16 %) were found in abandoned nests of raptors (e.g. Common Buzzard Buteo buteo, Honey Buzzard Pernis apivorus) or Black Stork (Ciconia nigra), one at the ground and one at the hunters hide (Perušek, 1998; Vrezec, Kohek, 2002). Data on the breeding biology of the species were collected mainly from the nest boxes, although they were occupied less frequently as for example in Finland (Saurola, 2007). So far only 29 % of available nest boxes in montane forests were occupied (n=49 nestboxes). There were 1 to 5 eggs laid (3.3±1.0 eggs per nest) in the nest boxes, 1.5±1.2 young per nest were fledged, and 80 % of nests were successful raising at least one young (table 1). In general, in montane forests of Slovenia the first eggs in Ural Owl nests were found from 15 March to 21 June (Vrezec, 2007), but in lowlands breeding can start already in February (Vrezec, Tutiš, 2003). Ural Owl is predominantly small mammal predator, and proportion of other alterna-


16

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Ðèñ. 9. Òèïè÷íîå ìåñòîîáèòàíèå äëèííîõâîñòîé íåÿñûòè (Strix uralensis) â Ñëîâåíèè â Äèíàðñêîì áóêîâî-åëîâîì ëåñó (OmphalodoFagetum s. lat.) ñ äîìèíèðîâàíèåì áóêà (Fagus sylvatica). Ôîòî Àëà Âðåæåêà. Fig. 9. Typical montane habitat of the Ural Owl (Strix uralensis) in Slovenia with Beech (Fagus sylvatica) as the dominant tree species; Dinaric Beech and Fir forest association (Omphalodo-Fagetum s. lat.). Photo by Al Vrezec.

þùåéñÿ ïîïóëÿöèè äëèííîõâîñòîé íåÿñûòè â Ñëîâåíèè ñîñòàâëÿåò îò 400 äî 700 ïàð (Vrezec, Mihelič, 2002).  ïåðèîä ðàçìíîæåíèÿ ýòîò âèä îáû÷åí â þæíîé ÷àñòè Äèíàðñêîãî íàãîðüÿ ñ ëîêàëüíîé ïëîòíîñòüþ îò 1,0 äî 13,4 ãíåçäîâûõ ó÷àñòêîâ / 10 êì2 (Vrezec, 2003; Rubinić et al., 2007).  ñåâåðíîé ÷àñòè àëüïèéñêîé îáëàñòè ïëîòíîñòü íàñåëåíèÿ â ñðåäíåì íèæå è âàðüèðóþò â äèàïàçîíå îò 0,9 äî 4,6 ãíåçäîâûõ ó÷àñòêîâ / 10 êì2 (Svetličič, Kladnik, 2001; Vrezec, 2007), âåðîÿòíî, èç-çà ðàçëè÷èé â ñòðóêòóðå ëåñîâ. Ïëîòíîñòè ðàñïðåäåëåíèÿ âèäà â Ñëîâåíèè ÿâëÿþòñÿ îäíèìè èç ñàìûõ âûñîêèõ èçâåñòíûõ äëÿ âèäà, ïîäîáíî Ïîëüøå è Ñëîâàêèè, è îíè çíà÷èòåëüíî âûøå òàêîâûõ â ñåâåðíûõ ðåãèîíàõ (íàïðèìåð, Vrezec, 2003; Krištin et al., 2007).  Ñëîâåíèè äëèííîõâîñòàÿ íåÿñûòü áûëà íàéäåíà íà ãíåçäîâàíèè â õâîéíûõ (Adenostylo glabrae-Piceetum), à òàêæå â ñìåøàííûõ (Omphalodo-Fagetum; ðèñ. 9) è ëèñòâåííûõ (Pseudostellario-Quercetum roboris; ðèñ.10) ëåñàõ. Òåì íå ìåíåå, â ëåñàõ ñ äîìèíèðóþùèìè ëèñòâåííûìè äåðåâüÿìè, òàêèìè êàê áóê (Fagus sylvatica) è äóá (Quercus robur), ïëîòíîñòü ãíåçäîâàíèÿ (â ñðåäíåì, 3,5 ãíåçäîâûõ ó÷àñòêîâ / 10 êì2) çíà÷èòåëüíî âûøå (U=2,00, ð<0,05), ÷åì â ëåñàõ ñ âûñîêîé äîëåé õâîéíûõ äåðåâüåâ, òàêèõ êàê åëü (Picea abies) (â ñðåäíåì, 1,0 ãíåçäîâîé ó÷àñòîê / 10 êì2). Áîëåå äåòàëüíîå èññëåäîâàíèå âûáîðà ìåñòîîáèòàíèé äëèííîõâîñòîé íåÿñûòüþ áûëî ïðîâåäåíî â ãîðíûõ åëîâî-áóêîâûõ ëåñàõ (OmphalodoFagetum) Äèíàðñêîãî íàãîðüÿ, íî âî âñåõ ñëó÷àÿõ äëèííîõâîñòûå íåÿñûòè çàíèìàëè ìåñòîîáèòàíèÿ ñî çíà÷èòåëüíîé ôëóêòóàöèåé ïàðàìåòðîâ ñðåäû îáèòàíèÿ (Ambrožič, 2004; Vrezec, Tome, 2004a). Ñ äðóãîé ñòî-

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ tive prey, birds, amphibians and insects, is very low in its diet, up to 12.2 % in Slovenia (table 2). The proportion of alternative prey species is increased in the pre-breeding and breeding period, and decreased in post-breeding period. This may be due to the lack of main prey species, small mammals, in the environment in early spring. The seasonality of prey availability is therefore reflecting in significantly different diet of the Ural Owl in the breeding versus nonbreeding period (χ2=159.5, p<0.001). In the breeding period between March and June the main Ural Owl prey according to biomass are mice (Muridae), voles (Arvicolidae) and mole (Talpa europaea), but in the non-breeding period voles and dormice (Gliridae) predominate, since the Fat Dormouse (Glis glis) is the dominant prey species reaching localy even 58.8 % by number and 93.9 % by biomass of the prey species taken (Vrezec, 2000b). Late occurrence of the Fat Dormouse in the diet is due to the habit of this dormant and abundant small mammal since it reaches population peak as late as in summer (Kryštufek, Flajšman, 2007). As a big predatory bird the Ural Owl influences also the distribution of other owl species in the guild. Smaller owls, e.g. Long-Eared Owl (Asio otus), could be preyed upon (Vrezec, 2001), but also Ural Owl could be preyed upon by larger species, e.g. Eagle Owl (Bubo bubo) (Mihelič, 2002). A strong competition between Ural and Tawny Owls has been detected in montane forests, where larger Ural Owl competitively excludes smaller Tawny Owl from its territory (Vrezec, Tome, 2004b). One possible explanation could be strong interspecific territorial aggressiveness of Ural Owl against smaller Tawny Owl as shown with playback experiments (Vrh, Vrezec, 2006). In mixed montane forests in the Dinaric region also a third owl species, the Boreal Owl (Aegolius funereus), is present. Its territories were found to overlap with Ural Owl, but not with Tawny Owl territories (Vrezec, Tome, 2004a). In sympatry, the Boreal Owl thus extended its distribution due to exclusion of the Tawny Owl by the Ural Owl from certain areas. This relationship was interpreted as a one-sided, positive indirect interaction between the largest and the smallest predators in the guild, which was the first positive indirect interaction described within top predator communities. However, this pattern is not obvious over all Ural Owl distribution, since it was


Raptor Research

Ðèñ. 10. Íèçìåííûå ìåñòîîáèòàíèÿ äëèííîõâîñòîé íåÿñûòè (Strix uralensis) â Ñëîâåíèè – íàèáîëåå ÷àñòî ïîéìåííûå äóáîâûå ëåñà PseudostellarioQuercetum roboris (ñ ïîëíûì äîìèíèðîâàíèåì äóáà ÷åðåø÷àòîãî Quercus robur). Ôîòî Àëà Âðåæåêà. Fig. 10. Lowland habitat of the Ural Owl (Strix uralensis) in Slovenia are most frequently Pedinculate Oak (Quercus robur) forest stands; flooded Oak forest PseudostellarioQuercetum roboris. Photo by Al Vrezec.

Raptors Conservation 2016, 32 ðîíû, áûëî óñòàíîâëåíî, ÷òî ïî ñðàâíåíèþ ñî ñâîèì áëèçêèì ðîäñòâåííèêîì, ñåðîé íåÿñûòüþ, äëèííîõâîñòàÿ íåÿñûòü ãîðàçäî áîëüøå èçáåãàåò íàñåë¸ííûõ ïóíêòîâ è èõ îêðåñòíîñòåé â ïåðèîä ðàçìíîæåíèÿ, ÷åì ñåðàÿ íåÿñûòü (Vrezec, Tome, 2004b). Ïî ñðàâíåíèþ ñ ãîðíûìè ëåñàõ â íèçìåííûõ ëåñàõ äëèííîõâîñòàÿ íåÿñûòü ðåäêèé ãíåçäÿùèéñÿ âèä. Ýòî, ñêîðåå âñåãî, ÿâëÿåòñÿ ñëåäñòâèåì àíòðîïîãåííîãî âîçäåéñòâèÿ, òàê êàê â íèçìåííîñòÿõ áîëüøèå ëåñíûå ìàññèâû ñòàðîãî ëåñà ñ êðóïíîñòâîëüíûìè äåðåâüÿìè â îñíîâíîì áûëè âûðóáëåíû â ïðîøëîì. Òîëüêî íåêîòîðûå ñòàðûå äóáîâûå ëåñà ñîõðàíèëèñü â âîñòî÷íîé ÷àñòè Ñëîâåíèè, ãäå äëèííîõâîñòûå íåÿñûòè ãíåçäÿòñÿ ñ âûñîêîé ïëîòíîñòüþ – 7,8 ãíåçäîâûõ ó÷àñòêîâ / 10 êì2 (Ambrožič, Vrezec, in prep.). Ýòè äàííûå ïîêàçûâàþò, ÷òî â ðàâíèííûõ ëåñàõ äëèííîõâîñòûå íåÿñûòè ìîãóò ðàçìíîæàòüñÿ ñ âûñîêîé ïëîòíîñòüþ, êàê è â ãîðíûõ ëåñàõ (ðèñ. 11). Òàêèì îáðàçîì, â õîäå èññëåäîâàíèÿ ãíåçäÿùèõñÿ ïîïóëÿöèé äëèííîõâîñòîé íåÿñûòè, êàêîãî-ëèáî ïðåäïî÷òåíèÿ âûñîòíîãî äèàïàçîíà íå óñòàíîâëåíî (Mann-Whitney U=1471, ns). Ïîýòîìó äëèííîõâîñòàÿ íåÿñûòü ñ÷èòàåòñÿ î÷åíü ïëàñòè÷íûì âèäîì â îòíîøåíèè ðàñïðåäåëåíèÿ â âûñîòíîì äèàïàçîíå (Tome, 1996) è áûëà íàéäåíà îò ñàìûõ íèçèí äî âåðõíåé ãðàíèöû ëåñà, 150–1600 ì íàä óðîâíåì ìîðÿ (Mihelič et al., 2000).  Ñëîâåíèè èçâåñòíî íåáîëüøîå ÷èñëî ãí¸çä äëèííîõâîñòîé íåÿñûòè, óñòðîåííûõ â åñòåñòâåííûõ ïîëîñòÿõ (n=23), è áîëüøèíñòâî èç íèõ áûëè ðàñïîëîæåíû â äóïëàõ èëè ïîëóäóïëàõ äåðåâüåâ (56 %) èëè â ïîëîñòÿõ âåðõíåé ÷àñòè ïíåé (20 %). Ïîýòîìó îáèëèå ñòàðûõ äåðåâüåâ ñ äîñòàòî÷íî áîëüøèìè ïîëîñòÿìè, ïðèãîäíûìè äëÿ ãíåçäîâàíèÿ, èìååò âàæíîå çíà÷åíèå

17

shown that Ural Owl can be the worst enemy to Boreal Owl in northern boreal forests (Korpimäki, Hakkarainen, 2012). Across its range Ural Owl exhibits quite substantial differences in its overall morphology and ecology thus studies over species general ecology in different parts of its range are highly needed to understand all aspects of ecological niche of this large forest-dwelling predator. The species biology and ecology are very well studied in Fennoscandia (e.g. Saurola, 2007), while studies in other parts of species range are absent or only regionally confined, but increasing in the last decade. References Aebischer A. Eulen und Käuze. Auf den Spuren der nächtlichen Jäger. Haupt Verlag, Bern, 2008: 1–248. Ambrožič Š. [Owls of Trnovski gozd: density, altitudinal distribution and interspecific relations]. – Acrocephalus. 2002. 23: 129–134. (In Slovene). Ambrožič Š. [Distribution of four owl species (Strigidae) at Trnovski gozd in relation to some ecological factors]. Graduation Thesis, University of Ljubljana, Ljubljana, 2004: 1–73. Ančik E., Rejec Brancelj I., Kušar U., eds. [Environment indicators 2005]. Ministrstvo za okolje in prostor, Agencija RS za okolje, Ljubljana, 2006: 1–242 (In Slovene). Benussi E., Genero F. [Ural Owl (Strix uralensis macroura) at Trnovsi gozd (Slovenia). Survey in the area]. – Suppl. Ric. Biol. Selvaggina, 1995. No. 22: 563–568 (In Italian). Feldner J., Rass P., Petutsching W., Wagner S., Malle G., Buschenreiter R.K., Wiedner P., Probst R. Avifauna Kärntens, Die Brutvögel. Naturwissenschaftlicher Verein für Kärnten, Klagenfurt, 2006: 1–423. Geister I. [Ornithological atlas of Slovenia]. DZS, Ljubljana, 1995: 1–287 (In Slovene). Genero F., Benussi E. New data and status of Ural Owl (Strix uralensis) in Italy / Müller J., Scherzinger W., Moning C. (eds.). – European Ural Owl workshop. Bavarian Forest National Park, Grafenau, 2007: 36–41. Hacquet B. Neueste physikalisch-politische Reisen in den Jahren 1788 – 95 durch die Dacischen und Sarmatischen oder Nördlichen Karpathen. 2. Theil. Kaspische Buch, Nürnberg, 1791: 1– 531. Hausknecht R., Jacobs S., Müller J., Zink R., Frey H., Solheim R., Vrezec A., Kristin A., Mihok J., Kergalve I., Saurola P., Kuehn R. Phylogeographic analysis and genetic cluster recognition for the conservation of Ural Owls (Strix uralensis) in Europe. – J. Ornithol. 2013. DOI: 10.1007/ s10336-013-0994-8. Kohl S. Über die taxonomische stellung der Südost-europäischen Habichtskäuze, Strix uralensis macroura Wolf, 1810. Muzeul Brukenthal, Studii


18

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Ðèñ. 11. Âûñîòíîå ðàñïðåäåëåíèå äëèííîõâîñòîé íåÿñûòè (Strix uralensis) â Ñëîâåíèè ïî äàííûì ó÷¸òà ãíåçäîâûõ òåððèòîðèé (Nareas=15, Nsurvey points=368, Nowl =126). territories Fig. 11. Altitudinal distribution of Ural Owl (Strix uralensis) abundance in Slovenia according to playback survey of territories (Nareas=15, Nsurvey points=368, Nowl =126). territories

äëÿ âèäà (Lõhmus, 2003). Íàèáîëåå ðàñïðîñòðàí¸ííûìè ãíåçäîâûìè äåðåâüÿìè â Ñëîâåíèè ÿâëÿþòñÿ áóê (Fagus sylvatica), êë¸í áåëûé (Acer pseudoplatanus) è åëü (Picea abies), èíîãäà ïèõòà áåëàÿ (Abies alba), äóáû ÷åðåø÷àòûé (Quercus robur) è ñêàëüíûé (Q. petraea) (Vrezec, 2007). Ëèøü íåìíîãèå ãí¸çäà (16 %) áûëè íàéäåíû â çàáðîøåííûõ ãí¸çäàõ õèùíûõ ïòèö, íàïðèìåð, êàíþêà (Buteo buteo), îñîåäà (Pernis apivorus), èëè ÷¸ðíîãî àèñòà (Ciconia nigra), à òàêæå îäíî ãíåçäî íà çåìëå è îäíî íà îõîòíè÷üåì óêðûòèè (Perušek, 1998; Vrezec, Kohek, 2002). Äàííûå î ãíåçäîâîé áèîëîãèè âèäà áûëè ñîáðàíû â îñíîâíîì èç ãíåçäîâûõ ÿùèêîâ, õîòÿ îíè áûëè çàíÿòû ðåæå, ÷åì, íàïðèìåð, â Ôèíëÿíäèè (Saurola, 2007). Äî ñèõ ïîð òîëüêî 29 % èç óñòàíîâëåííûõ èñêóññòâåííûõ ãíåçäîâèé â ãîðíûõ ëåñàõ áûëè çàíÿòû íåÿñûòÿìè (èç 49 ãíåçäîâûõ ÿùèêîâ).  ÿùèêàõ áûëî îò 1 äî 5 ÿéöà, â ñðåäíåì 3,3±1,0 ÿéöà íà óñïåøíîå ãíåçäî, 1,5±1,2 ìîëîäûõ íà óñïåøíîå ãíåçäî, ïðè ýòîì 80 % ãí¸çä áûëè óñïåøíûìè â êîòîðûõ ïî ìåíüøåé ìåðå îäèí ìîëîäîé óñïåøíî âûëåòåë (òàáë. 1).  ãîðíûõ ëåñàõ Ñëîâåíèè ïåðâûå êëàäêè äëèííîõâîñòîé íåÿñûòè áûëè íàéäåíû â ãí¸çäàõ ñ 15 ìàðòà ïî 21 èþíÿ (Vrezec, 2007), íî â íèçèííûõ ìåñòîîáèòàíèÿõ ðàçìíîæåíèå ìîæåò íà÷àòüñÿ óæå â ôåâðàëå (Vrezec, Tutiš, 2003). Äëèííîõâîñòàÿ íåÿñûòü äîáûâàåò ïðåèìóùåñòâåííî ìåëêèõ ìëåêîïèòàþùèõ, à äîëÿ äðóãèõ àëüòåðíàòèâíûõ æåðòâ, òàêèõ êàê ïòèö, çåìíîâîäíûõ è íàñåêîìûõ, ÿâëÿåòñÿ î÷åíü íèçêîé â å¸ ðàöèîíå, äî 12,2 % â Ñëîâåíèè (òàáë. 2). Äîëÿ àëüòåðíàòèâíûõ âèäîâ äîáû÷è óâåëè÷èâàåòñÿ âî âðåìÿ òîêîâàíèÿ è â ïåðèîä ðàçìíîæåíèÿ, è ñíè-

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ si Comunicäri. – St. nat. 1977. 21: 309–334. König C., Weick F. Owls of the World. Second Edition. Christopher Helm, London, 2008: 1–528. Korpimäki E., Hakkarainen H. The Boreal Owl – Ecology, Behaviour and Conservation of a ForestDwelling Predator. Cambridge University Press, Cambridge, 2012: 1–359. Kotrošan D., Hatibovič E. Raptors in Bosnia and Herzegovina – their status and perspectives for monitoring development. – Acrocephalus. 2012. 33: 173–179. Krištin A., Mihok J., Danko Š., Karaska D., Pačenovsky S., Saniga M., Bodova M., Balazs C., Šotnar K., Kornan J., Olekšak M. Distribution, abundance and conservation of the Ural Owl Strix uralensis in Slovakia / Müller J., Scherzinger W., Moning C. (eds.). – European Ural Owl workshop. Bavarian Forest National Park, Grafenau, 2007: 9–15. Kryštufek B., Flajšman B. [Dormouse and Man]. Ekološki forum LDS, Liberalna akademija, Ljubljana, 2007: 1–248 (In Slovene). Lõhmus A. Do Ural owls (Strix uralensis) suffer from the lack of nest sites in managed forests? – Biological Conservation. 2003. 110: 1–9. Mebs T. Summary on population and conservation status of the Ural Owl (Strix uralensis) in Europe / Müller J., Scherzinger W., Moning C. (eds.). – European Ural Owl workshop. Bavarian Forest National Park, Grafenau, 2007: 6–7. Mihelič T. [Diet of the Eagle Owl Bubo bubo in SW Slovenia]. – Acrocephalus. 2002. 23: 81–86 (In Slovene). Mihelič T., Vrezec A., Perušek M., Svetličič J. [The Ural Owl Strix uralensis in Slovenia]. – Acrocephalus. 2000. 21: 9–22 (In Slovene). Mikkola H. Owls of Europe. T & AD Poyser, London, 1983: 1–397. Perušek M. [The Ural Owl Strix uralensis breeding in Kočevje-Ribnica region]. – Acrocephalus. 1998. 19: 99–103 (In Slovene). Ponebšek J. [Our raptors, I. part: Owls]. Carniola, Muzejsko društvo za kranjsko, Ljubljana, 1917: 1–155 (In Slovene). Prešern J., Kohek K. [Survey of the Ural Owl Strix uralensis macroura at Mt. Javorniki]. – Acrocephalus. 2001. 22: 167–169 (In Slovene). Puzović S., Simić D., Saveljić D., Gregelj J., Tucakov M., Stojnić N., Hulo I., Ham I., Vizi O., Šćiban M., Ružić M., Vučanović M., Jovanović T. [Birds of Serbia and Montenegro – breeding population sizes and trends: 1990–2002]. – Ciconia. 2003. 12: 35–120 (In Serbian). Rubinić B., Božič L., Denac D., Kmecl P. [Monitoring report on selected bird species at Special Protected Areas]. DOPPS-BirdLife Slovenia, Ljubljana, 2007: 1–62 (In Slovene). Rudovskiy, V.S., Karyakin, I.V. Records of Melanistic Great Grey Owls in the Usinskaya Depression, Western Sayan Mountains, Russia. – Raptors Conservation. 2010. 18: 175– 176 [Ðóäîâñêèé Â.Ñ., Êàðÿêèí È.Â. Âñòðå÷è áîðîäàòûõ íåÿñûòåé – ìåëàíèñòîâ â Óñèíñêîé êîòëîâèíå, Çàïàäíûé Ñàÿí, Ðîññèÿ. – Ïåðíàòûå


Raptor Research

19

Raptors Conservation 2016, 32

Òàáë. 1. Ðàçìåðû êëàäîê è âûâîäêîâ, êîëè÷åñòâî ìîëîäûõ, ïîêèíóâøèõ ãí¸çäà è óñïåõ ðàçìíîæåíèÿ äëèííîõâîñòîé íåÿñûòè (Strix uralensis) â ãíåçäîâûõ ÿùèêàõ â ãîðíûõ ëåñàõ Ñëîâåíèè. Table 1. Clutch and brood size, number of fledged young, and breeding success of the Ural Owl (Strix uralensis) in the nest boxes from montane forests in Slovenia.

Median / Ñðåäíåå Minimum / Ìèíèìóì Maximum / Ìàêñèìóì Breeding success [% of eggs] Óñïåõ ðàçìíîæåíèÿ [% îò îòëîæåííûõ ÿèö] Breeding success [% of nests] Óñïåõ ðàçìíîæåíèÿ [% îò ãí¸çä] N [nests] / ×èñëî ãí¸çä

Clutch [eggs per nest] Brood [young per nest] Êëàäêà Âûâîäîê (÷èñëî ïòåíöîâ (÷èñëî ÿèö íà ãíåçäî) íà ãíåçäî) 3.0 2.0 1 0 5 5 68.1%

Fledged [young per nest] Ñë¸òêè (÷èñëî ìîëîäûõ íà ãíåçäî) 1.5 0 4 54.2%

89.6%

80.0%

31

20

30

æàåòñÿ â ïåðèîä ïîñëå ðàçìíîæåíèÿ. Ýòî ìîæåò áûòü ñâÿçàíî ñ îòñóòñòâèåì ðàííåé âåñíîé îñíîâíûõ âèäîâ æåðòâ – ìåëêèõ ìëåêîïèòàþùèõ. Ïîýòîìó ñåçîííîñòü íàëè÷èÿ äîáû÷è îòðàæàåòñÿ íà çíà÷èòåëüíî èíîì ðàöèîíå äëèííîõâîñòîé íåÿñûòè â ãíåçäîâîé ïåðèîä ïî ñðàâíåíèþ ñ íåãíåçäîâûì ïåðèîäîì (χ2=159,5, ð<0,001).  ïåðèîä ðàçìíîæåíèÿ (ñ ìàðòà ïî èþíü) îñíîâíîé äîáû÷åé äëèííîõâîñòîé íåÿñûòè, ñîãëàñíî áèîìàññå, ÿâëÿþòñÿ ìûøè (Muridae), ïîë¸âêè (Arvicolidae) è êðîòû (Talpa europaea), íî â íåãíåçäîâîé ïåðèîä ïîë¸âêè è ñîíè (Gliridae) ïðåîáëàäàþò, òàê êàê ñîíÿ-ïîë÷îê (Glis glis) ñòàíîâèòñÿ äîìèíèðóþùèì âèäîì äîáû÷è, äîñòèãàÿ äàæå 58,8 % â ëîêàëüíûõ âûáîðêàõ ïî êîëè÷åñòâó è 93,9 % ïî áèîìàññå ñðåäè âñåõ âèäîâ äîáû÷è (Vrezec, 2000b). Ïîçäíåå ïîÿâëåíèå ñîíè-ïîë÷êà â ðàöèîíå äëèííîõâîñòîé íåÿñûòè ñâÿçàíî ñî ñïÿ÷êîé

õèùíèêè è èõ îõðàíà. 2010. ¹ 18. Ñ. 175– 176]. URL: http://rrrcn.ru/ru/archives/19395 Date accessed: 20.02.2016. Saurola P. Finnish Ural Owls (Strix uralensis): an overview on population parameters / Müller J., Scherzinger W., Moning C. (eds.). – European Ural Owl workshop. Bavarian Forest National Park, Grafenau, 2007: 42–49. Scherzinger W. Die Wiederbegründung ds Habichtskauz-Vorkommens Strix uralensis im Böhmerwald. – Ornithol Anz. 2006. 45: 97–156. Scherzinger W., Fang Y. Field observations of the Sichuan Wood Owl Strix uralensis davidi in western China. – Acrocephalus. 2006. 27: 3–12. Scopoli I.A. Annus I. Historico-Naturalis. Descriptiones Avium. Sumtib. Christ. Gottlob Hilscheri, Lipsiae, 1769: 1–168. Sotenšek B. [Food niches of two sympatric owl species Ural Owl (Strix uralensis) and Tawny Owl (Strix aluco) during breeding season]. Graduation Thesis, University of Ljubljana, Ljubljana, 2012: 1–80 (In Slovene). Sovinc A. [Winter ornithological atlas of Slove-

Òàáë. 2. Ïèòàíèå äëèííîõâîñòîé íåÿñûòè (Strix uralensis) â ãíåçäîâîé ïåðèîä (ìàðò–èþíü) è â íåãíåçäîâîé ïåðèîä â Ñëîâåíèè (èñòî÷íèêè äàííûõ: Vrezec, 2000; 2001, íåîïóáëèêîâàííûå; Sotenšek, 2012). Table 2. Overview of Ural Owl (Strix uralensis) diet in breeding (March–June) and non-breeding period in Slovenia (data sources: Vrezec, 2000; 2001, unpubl.; Sotenšek, 2012).

Prey group Æåðòâû Soricidae (Áóðîçóáêè) Talpidae (Êðîòû) Arvicollidae (Ïîë¸âêè) Muridae (Ìûøè) Gliridae (Ñîíè) Mustellidae (Ìåëêèå êóíüè) Aves (Ïòèöû) Amphibia (Àìôèáèè) Insecta (Íàñåêîìûå) Lumbricidae (Äîæäåâûå ÷åðâè) N (prey items) / ×èñëî æåðòâ

Breeding period Ãíåçäîâîé ïåðèîä %N %B % îò ÷èñëà æåðòâ % îò áèîìàññû æåðòâ 2.8 0.9 5.8 14.8 25.2 21.3 47.6 50.3 4.9 7.7 0.0 0.0 1.1 2.8 1.5 1.8 10.8 0.4 0.1 <0.1 789

Non-breeding period Íåãíåçäîâîé ïåðèîä %N %B % îò ÷èñëà æåðòâ % îò áèîìàññû æåðòâ 23.3 8.2 3.5 6.8 43.1 48.0 18.8 9.8 4.9 20.6 0.5 2.3 1.5 2.8 1.5 1.3 3.0 0.1 0.0 0.0 202


20

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32 ýòîãî âèäà è îáèëèåì äðóãèõ âèäîâ ìåëêèõ ìëåêîïèòàþùèõ (ñîíÿ-ïîë÷îê äîñòèãàåò ïèêà íàñåëåíèÿ â êîíöå ëåòà) (Kryštufek, Flajšman, 2007). Êàê êðóïíàÿ õèùíàÿ ïòèöà äëèííîõâîñòàÿ íåÿñûòü âëèÿåò íà ðàñïðåäåëåíèå äðóãèõ âèäîâ ñîâ â ãèëüäèè. Áîëåå ìåëêèå ñîâû, íàïðèìåð, óøàñòàÿ ñîâà (Asio otus), ìîãóò ñòàíîâèòüñÿ äîáû÷åé äëèííîõâîñòîé íåÿñûòè (Vrezec, 2001), íî è ñàìà íåÿñûòü ìîæåò ñòàíîâèòüñÿ äîáû÷åé êðóïíûõ âèäîâ, íàïðèìåð, ôèëèíà (Bubo bubo) (Mihelič, 2002). Ñèëüíàÿ êîíêóðåíöèÿ ìåæäó äëèííîõâîñòîé è ñåðîé íåÿñûòÿìè áûëà îáíàðóæåíà â ãîðíûõ ëåñàõ, ãäå áîëüøàÿ äëèííîõâîñòàÿ íåÿñûòü âûòåñíÿåò ìåíüøóþ ñåðóþ íåÿñûòü ñ å¸ òåððèòîðèé (Vrezec, Tome, 2004b). Îäíèì èç âîçìîæíûõ îáúÿñíåíèé ýòîãî ìîæåò áûòü ñèëüíàÿ ìåæâèäîâàÿ òåððèòîðèàëüíàÿ àãðåññèâíîñòü äëèííîõâîñòîé íåÿñûòè ïî îòíîøåíèþ ê áîëåå ìåëêîé ñåðîé íåÿñûòè, êàê ïîêàçàíî ñ ýêñïåðèìåíòàìè âîñïðîèçâåäåíèÿ âèäîñïåöèôè÷åñêèõ ñèãíàëîâ îáîèõ âèäîâ (Vrh, Vrezec, 2006).  ñìåøàííûõ ãîðíûõ ëåñàõ Äèíàðñêîãî íàãîðüÿ òàêæå îáèòàåò òðåòèé âèä ñîâ, ìîõíîíîãèé ñû÷ (Aegolius funereus). Çäåñü íàéäåíû åãî ãíåçäîâûå ó÷àñòêè, ïåðåêðûâàþùèåñÿ ñ ó÷àñòêàìè äëèííîõâîñòîé íåÿñûòè, íî íå ñ ãíåçäîâûìè ó÷àñòêàìè ñåðîé íåÿñûòè (Vrezec, Tome, 2004a). Òàêèì îáðàçîì, äëèííîõâîñòàÿ íåÿñûòü â çîíå ñèìïàòðèè ðàñøèðÿåò îáëàñòü ðàñïðîñòðàíåíèÿ ìîõíîíîãîãî ñû÷à çà ñ÷¸ò âûòåñíåíèÿ ñåðîé íåÿñûòè ñ îïðåäåë¸ííûõ òåððèòîðèé. Ýòî áûëî èíòåðïðåòèðîâàíî êàê îäíîñòîðîííåå âëèÿíèå, â ðåçóëüòàòå âçàèìîäåéñòâèÿ íàèáîëüøåãî è íàèìåíüøåãî õèùíèêîâ â ãèëüäèè. Òåì íå ìåíåå, ýòà ìîäåëü íå ÿâëÿåòñÿ îáùåé äëÿ âñåãî àðåàëà äëèííîõâîñòîé íåÿñûòè, òàê êàê áûëî ïîêàçàíî, ÷òî äëèííîõâîñòàÿ íåÿñûòü ìîæåò áûòü ñåðü¸çíûì âðàãîì ìîõíîíîãîãî ñû÷à â ñåâåðíûõ áîðåàëüíûõ ëåñàõ (Korpimäki, Hakkarainen, 2012). Íà îáøèðíîì ïðîñòðàíñòâå ñâîåãî àðåàëà äëèííîõâîñòàÿ íåÿñûòü äåìîíñòðèðóåò âåñüìà ñóùåñòâåííûå ðàçëè÷èÿ â ìîðôîëîãèè è ýêîëîãèè, ïîýòîìó èññëåäîâàíèÿ ýêîëîãèè ýòîãî âèäà â ðàçíûõ ÷àñòÿõ àðåàëà íàñóùíî íåîáõîäèìû, ÷òîáû ïîíÿòü âñå àñïåêòû ýêîëîãè÷åñêîé íèøè ýòîãî êðóïíîãî ëåñíîãî õèùíèêà. Áèîëîãèÿ è ýêîëîãèÿ äëèííîõâîñòîé íåÿñûòè î÷åíü õîðîøî èçó÷åíû â Ôåííîñêàíäèè (Saurola, 2007), â òî âðåìÿ êàê èññëåäîâàíèÿ â äðóãèõ ÷àñòÿõ àðåàëà âèäà îòñóòñòâóþò, ëèáî îãðàíè÷åíû ëèøü ðåãèîíàëüíûì óðîâíåì, íî, òåì íå ìåíåå, èõ ÷èñëî ðàñò¸ò â ïîñëåäíåå äåñÿòèëåòèå.

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ nia]. Tehniška založba Slovenije, Ljubljana, 1994: 1–452 (In Slovene). Svetličič J., Kladnik T. [Distribution and density of the Ural Owl Strix uralensis at Mt. Krašica in Savinja Alps]. – Acrocephalus. 2001. 22: 155– 158 (In Slovene). Tome D. [Altitudinal distribution of owls in Slovenia]. Acrocephalus, 1996, ¹ 17 P. 2–3 (In Slovene). Tutiš V., Radović D., Ćiković D., Barišić S., Kralj J. Distribution, density and habitat relationships of the Ural Owl Strix uralensis macroura in Croatia. – Ardea. 2009. 97: 563–570. Vrezec A. [Contribution to the knowledge on the diet of the Ural Owl Strix uralensis macroura at Kočevsko]. – Acrocephalus. 2000. 21: 77–78 (In Slovene). Vrezec A. Winter diet of one female Ural Owl (Strix uralensis) at Ljubljansko barje (Central Slovenia). – Buteo. 2001. 12: 71–76. Vrezec A. Breeding density and altitudinal distribution of the Ural, Tawny, and Boreal Owls in North Dinaric Alps (central Slovenia). – J. Raptor Res. 2003. 37: 55–62. Vrezec A. The Ural Owl (Strix uralensis macroura) – Status and overview of studies in Slovenia / Müller J., Scherzinger W., Moning C. (eds.). – European Ural Owl workshop. Bavarian Forest National Park, Grafenau, 2007: 16–31. Vrezec A. Melanism and plumage variation in macroura Ural Owl. – Dutch Birding. 2009. 31. 159–170. Vrezec A., Kohek K. [Some breeding habits of the Ural Owl Strix uralensis in Slovenia]. – Acrocephalus. 2002. 23: 179–183 (In Slovene). Vrezec A., Mihelič T. [Distribution, density and habitat selection of the Ural Owl Strix uralensis in Slovenia during breeding period] / Juillard M., eds. – 41e Colloque interregional d’Ornithologie, Porrentruy–Suisse. Societe des Sciences naturelles du Pays de Porrentruy (SSNPP), Porrentruy, 2002: 35–37 [In French]. Vrezec A., Smole J., Vrh Vrezec P. Descriptions of European owl species by Scopoli (1769): a problem of overlooked European owl names? – World Owl Conference, 31 October – 4 November 2007, Groningen. 2007: 127. Vrezec A., Tome D. Habitat selection and patterns of distribution in a hierarchic forest owl guild. – Ornis Fennica, 2004a. 81: 109–118. Vrezec A., Tome D. Altitudinal segregation between Ural Owl Strix uralensis and Tawny Owl S. aluco: evidence for competitive exclusion in raptorial birds. – Bird Study. 2004b. 52: 264–269. Vrezec A., Tutiš V. Characteristics of North Dinaric Ural Owl (Strix uralensis macroura) population / Schwerdtfeger O., Schwerdtfeger J., eds. – Ecology and Conservation of European Owls. 4th Meeting of European Owl-Experts, Dornbirn, 2003: 75. Vrh P., Vrezec A. Interspecific territorial vocal activity of the Ural Owl (Strix uralensis) towards Tawny Owl (Strix aluco), sympatric owl competitor: a playback experiment. – Razprave IV. Razreda SAZU. 2006. 47: 99–105.


Raptor Research

Raptors Conservation 2016, 32

21

Diet of the White-Tailed Eagle During the Breeding Season in the Polesski State Radiation-Ecological Reserve, Belarus ПИТАНИЕ ОРЛАНА-БЕЛОХВОСТА В ГНЕЗДОВОЙ ПЕРИОД В ПОЛЕССКОМ ГОСУДАРСТВЕННОМ РАДИАЦИОННОЭКОЛОГИЧЕСКОМ ЗАПОВЕДНИКЕ, БЕЛАРУСЬ Yurko V.V. (Polesski State Radiation-Ecological Reserve, Hoyniki, Republic of Belarus) Юрко В.В. (Полесский государственный радиационно-экологический заповедник, г. Хойники, Республика Беларусь)

Êîíòàêò: Âàëåðèé Þðêî Ãîñóäàðñòâåííîå ïðèðîäîîõðàííîå íàó÷íîèññëåäîâàòåëüñêîå ó÷ðåæäåíèå «Ïîëåññêèé ãîñóäàðñòâåííûé ðàäèàöèîííî-ýêîëîãè÷åñêèé çàïîâåäíèê» Áåëàðóñü, ã. Õîéíèêè, óë. Â. Òåðåøêîâîé, ä. 7 Ïî÷òîâûé àäðåñ: 220019, Áåëàðóñü, Ìèíñê, óë. Þ. Ñåìåíÿêî, 22–103 òåë.: +7 017 396 50 80 +3 7529 363 19 54 Valyurko@mail.ru Contact: Valeri Yurko Polesie State RadiationEcological Reserve (PSRER), Republic of Belarus, Hoyniki, Tereshkovoi str., 7 Post address: Yu. Semenyako str., 22–103 Minsk, Republic of Belarus, 220019 Valyurko@mail.ru tel.: +7 017 396 50 80 +3 7529 363 19 54

Ðåçþìå  ñòàòüå ïðîàíàëèçèðîâàí ìàòåðèàë çà 2006–2015 ãã. ïî ïèòàíèþ îðëàíà-áåëîõâîñòà (Haliaeetus albicilla) â ãíåçäîâîé ïåðèîä íà òåððèòîðèè Ïîëåññêîãî ãîñóäàðñòâåííîãî ðàäèàöèîííî-ýêîëîãè÷åñêîãî çàïîâåäíèêà. Ïðèâåäåíû ñâåäåíèÿ î 127 æåðòâàõ 27 âèäîâ ïîçâîíî÷íûõ æèâîòíûõ, ñîáðàííûõ â ãí¸çäàõ è ïîä íèìè. Âûÿñíèëîñü, ÷òî îñíîâó ïèòàíèÿ ýòîãî õèùíèêà ñîñòàâëÿþò ïîçâîíî÷íûå òð¸õ êëàññîâ: ðûáû (Pisces) 48,1 %, ïòèöû (Aves) 41,7 % è ìëåêîïèòàþùèå (Mammalia) 10,2 %. Îñíîâíûìè âèäàìè æåðòâ â íàñòîÿùåå âðåìÿ, íà êîòîðûõ ñïåöèàëèçèðóåòñÿ îðëàí-áåëîõâîñò â ãíåçäîâîé ïåðèîä, ÿâëÿþòñÿ ëåù (Abramis brama) – 22,0 %, ÷¸ðíûé àèñò (Ciconia nigra) – 12,6 %, ùóêà (Esox lucius) – 10,2 %, êàáàí (Sus scrofa) – 7,1 %, áåëûé àèñò (Ciconia ciconia) – 6,3 %, êðÿêâà (Anas platyrhynchos) – 5,5 % è ëûñóõà (Fulica atra) – 5,5 %, âìåñòå ñîñòàâëÿþùèå 69,2 % èëè 2/3 ðàöèîíà ýòîãî õèùíèêà. Áûëî óñòàíîâëåíî, ÷òî äëÿ ìåñòíîé ïîïóëÿöèè îðëàíà-áåëîõâîñòà õàðàêòåðåí êàííèáàëèçì è åãî äîëÿ ñîñòàâëÿåò 2,4 %. Êëþ÷åâûå ñëîâà: îðëàí-áåëîõâîñò, Haliaeetus albicilla, ïèòàíèå, ðàöèîí, Áåëàðóñü. Ïîñòóïèëà â ðåäàêöèþ: 28.02.2016 ã. Ïðèíÿòà ê ïóáëèêàöèè: 11.03.2016 ã. Abstract This article presents data on the diet of the White-Tailed Eagle (Haliaeetus albicilla) collected during breeding seasons of 2006–2015 in the Polesski State Radiation-Ecological Reserve. The data included 127 records of prey remains belonging to 27 species of vertebrates collected in and under the nests. We discovered that the diet of the White-tailed Eagle mainly consists of vertebrates of three classes: fishes (Pisces) 48.1 %, birds (Aves) 41.7 % and mammals (Mammalia) 10.2 %. At the present, the main prey species in the diet of the White-Tailed Eagle in the breeding season are: Bream (Abramis brama) – 22.0 %, Black Stork (Ciconia nigra) – 12.6 %, Northern Pike (Esox lucius) – 10.2 %, Wild Boar (Sus scrofa) – 7.1 %, White Stork (Ciconia ciconia) – 6.3 %, Mallard (Anas platyrhynchos) – 5.5 % and Eurasian Coot (Fulica atra) – 5.5 %. Together these species makes up 69.2 % or 2/3 of the diet of this raptor. We also established that cannibalism is a character feature of the local population of White-Tailed Eagle, and its proportion is 2.4 %. Keywords: White-Tailed Eagle, Haliaeetus albicilla, feeding, diet, prey, cannibalism, Belarus. Received: 28/02/2016. Accepted: 11/03/2016. DOI: 10.19074/1814-8654-2016-32-21-31

Ââåäåíèå Îðëàí-áåëîõâîñò (Haliaeetus albicilla) íà òåððèòîðèè Ïîëåññêîãî ãîñóäàðñòâåííîãî ðàäèàöèîííî-ýêîëîãè÷åñêîãî çàïîâåäíèêà (ÏÃÐÝÇ) ÿâëÿåòñÿ îáû÷íûì âèäîì ñðåäè äíåâíûõ õèùíûõ ïòèö. Åãî îáùàÿ ÷èñëåííîñòü ñîñòàâëÿåò áîëåå 100 îñîáåé, èç êîòîðûõ ãíåçäÿòñÿ – 15–20 ïàð (Þðêî, 2015). Ýòîò âèä ïòèö ÿâëÿåòñÿ ñàìûì êðóïíûì ïåðíàòûì õèùíèêîì Áåëàðóñè. Òèïè÷íûé ïîëèôàã, êîðìèòñÿ ðàçíîîáðàçíîé ïèùåé: ðûáîé, ïòèöàìè, ìëåêîïèòàþùèìè.  ñåðåäèíå ïðîøëîãî âåêà èç-çà ïèòàíèÿ îõîòíè÷üèìè âèäàìè æèâîòíûõ, îðëàí ñ÷èòàëñÿ âðåäíîé ïòèöåé è àêòèâíî óíè÷òîæàëñÿ íà âñ¸ì ïðîòÿæåíèè ñâîåãî àðåàëà (Ìàëü÷åâñêèé, Ïóêèíñêèé, 1983; Êðàñíàÿ êíèãà ÐÑÔÑÐ, 1985; Âèíîêóðîâ, 1987; Ãàâðèëþê, 2004).  íàñòîÿùåå âðåìÿ èç-çà ïîâñåìåñòíîé îõðàíû íàáëþäàåòñÿ áûñòðûé

Introduction The White-Tailed Eagle (Haliaeetus albicilla) is a common species among diurnal birds of prey in the Polesski State Radiation-Ecological Reserve. Its population number exceeds 100 individuals, including 15–20 breeding pairs (Yurko, 2015). Currently, the population is rapidly growing due to general conservation measures. Therefore the issue of the diet of the White-Tailed Eagle becomes pertinent. Study area Polesski State Radiation Ecological Reserve (PSRER) is located in the extreme south-east of Belarus. The central and south-western part of the PSRER is covered with woodland of different tree-type associations, and extends over 1104 km2.


22

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32 ðîñò åãî ÷èñëåííîñòè.  ýòîé ñâÿçè èçó÷åíèå ïèòàíèÿ îðëàíà-áåëîõâîñòà îñòà¸òñÿ àêòóàëüíûì è ñåé÷àñ. Õàðàêòåðèñòèêà ðàéîíà èññëåäîâàíèé Ãåîãðàôè÷åñêè Ïîëåññêèé ãîñóäàðñòâåííûé ðàäèàöèîííî-ýêîëîãè÷åñêèé çàïîâåäíèê íàõîäèòñÿ íà êðàéíåì þãîâîñòîêå Áåëàðóñè (Þðêî, 2015). Ôèçèêî-ãåîãðàôè÷åñêèå è êëèìàòè÷åñêèå óñëîâèÿ áëàãîïðèÿòñòâóþò ïðåîáëàäàíèþ çäåñü ëåñíûõ è áîëîòíûõ ýêîñèñòåì. Öåíòðàëüíàÿ è þãî-çàïàäíàÿ ÷àñòü ÏÃÐÝÇ â çíà÷èòåëüíîé ìåðå ïîêðûòà ðàçíîãî òèïà ëåñàìè, ïðîèçðàñòàþùèìè íà ïëîùàäè 1104 êì2. Ñåâåðî-âîñòî÷íàÿ ÷àñòü çàïîâåäíèêà îáëåñåíà íåçíà÷èòåëüíî è â îñíîâíîì ïðåäñòàâëåíà çàáðîøåííûìè ïîëÿìè è äåãðàäèðóþùèìè ïîëüäåðàìè. Áîëîòà, â îñíîâíîì íèçèííûå, ïðèóðî÷åíû ê âîäîòîêàì è ñîñòàâëÿþò 84 êì2. Âåðõîâûå áîëîòà âñòðå÷àþòñÿ ôðàãìåí-

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ Bogs, mainly in the lowlands, cover an area of 84 km2. Several rivers cross the territory of the PSRER: Slovechna, Wjit, Neswitch, Braginka, Zhelon, and the biggest one, Pripyat. The length of Pripyat on the protected territory is about 100 km. Other water bodies are numerous drainage canals and oxbow lakes, and several large-scale shallow inundations (fig. 1). Materials and methods Data on the diet of the White-Tailed Eagle was collected in 2006–2015 on the territory of Narovlyanskiy and Khoynikskiy districts of the PSRER, where we observed with various periodicity one and five nests, respectively. In 2014 we systematically observed a nest located on a watch-tower, from the second half of April to the middle of May. We visited this nest once in every three days, during 28 days. Prey re-

Ðèñ. 1. Ìåñòîîáèòàíèÿ îðëàíà áåëîõâîñòà (Haliaeetus albicilla) íà òåððèòîðèè Ïîëåññêîãî ãîñóäàðñòâåííîãî ðàäèàöèîííî-ýêîëîãè÷åñêîãî çàïîâåäíèêà: ââåðõó ñëåâà – ðåêà Ïðèïÿòü, ââåðõó ñïðàâà – ×èêàëîâè÷ñêîå çàòîïëåíèå, âíèçó ñëåâà – ñòàðè÷íîå îçåðî, âíèçó ñïðàâà – îêðåñòíîñòè Ïîãîíÿíñêîãî çàòîïëåíèÿ. Ôîòî Â. Þðêî. Fig. 1. Breeding habitats of the White-Tailed Eagle (Haliaeetus albicilla) in the Polesski State Radiation-Ecological Reserve: above on the left – river Pripyat, above on the right – Chikalovichskoye flooding, below on the left – oxbow lake, below on the right – surroundings of Pogonyanskoye flooding. Photos by V. Yurko.


Raptor Research

Raptors Conservation 2016, 32 òàðíî è íåâåëèêè ïî ïëîùàäè. ×åðåç çàïîâåäíèê ïðîòåêàþò ðåêè: Ñëîâå÷íà, Âèòü, Íåñâè÷, Áðàãèíêà, Æåëîíü, è ñàìàÿ êðóïíàÿ ðåêà Ïîëåñüÿ – Ïðèïÿòü. Ÿ ïðîòÿæ¸ííîñòü íà çàïîâåäíîé òåððèòîðèè ñîñòàâëÿåò îêîëî 100 êì. Èç äðóãèõ âîäî¸ìîâ ìíîãî÷èñëåííû ìåëèîðàòèâíûå êàíàëû è ñòàðè÷íûå îç¸ðà, èìåþòñÿ êðóïíûå ìåëêîâîäíûå çàòîïëåíèÿ: Áîðùåâñêîå, Ïîãîíÿíñêîå, ×èêàëîâè÷ñêîå è äðóãèå (ðèñ. 1). Ìàòåðèàë è ìåòîäû èññëåäîâàíèÿ Ìàòåðèàë ïî ïèòàíèþ îðëàíà-áåëîõâîñòà ñîáðàí â 2006–2015 ãîäàõ íà òåððèòîðèè Íàðîâëÿíñêîãî è Õîéíèêñêîãî ó÷àñòêîâ ÏÃÐÝÇ, ãäå ñ ðàçíîé ïåðèîäè÷íîñòüþ êîíòðîëèðîâàëè îäíî è ïÿòü ãí¸çä ñîîòâåòñòâåííî.  öåëÿõ ìèíèìèçàöèè ôàêòîðà áåñïîêîéñòâà, îñìîòð ãí¸çä çà ñåçîí ãíåçäîâàíèÿ ñîñòàâëÿë 2–4 ðàçà è â îñíîâíîì ñ íà÷àëà àïðåëÿ äî ñåðåäèíû ìàÿ.  áîëåå ïîçäíèå ñðîêè âëåçàòü íà ãí¸çäà íå æåëàòåëüíî. Îïåðèâøèåñÿ ïòåíöû ñìåëî áðîñàþòñÿ âíèç è âåðíóòü èõ îáðàòíî â ãíåçäî áûâàåò äîâîëüíî ñëîæíî.  2014 ãîäó çà îäíèì ãíåçäîì, ðàñïîëîæåííîì íà âûøêå-ìàÿêå, âåëîñü ñèñòåìàòè÷åñêîå íàáëþäåíèå â òå÷åíèå 28 äíåé ñî âòîðîé ïîëîâèíû àïðåëÿ è äî ñåðåäèíû ìàÿ. Ãíåçäî ïîñåùàëîñü ñ ïåðèîäè÷íîñòüþ îäèí ðàç â òðè äíÿ. Îñòàíêè æåðòâ èäåíòèôèöèðîâàëè íà ìåñòå è ïî âîçìîæíîñòè ôîòîãðàôèðîâàëè, ïîãàäêè ïðîñìàòðèâàëè â ëàáîðàòîðíûõ óñëîâèÿõ. Âñÿ ñîáðàííàÿ èíôîðìàöèÿ âíîñèëàñü â MS Excel.  àíàëèçå ïèòàíèÿ îðëàíà-áåëîõâîñòà èñïîëüçîâàíû ñâåäåíèÿ î 127 æåðòâàõ 27 âèäîâ, ñîáðàííûõ â ãí¸çäàõ èëè ïîä íèìè. Ðåçóëüòàòû èññëåäîâàíèÿ è èõ îáñóæäåíèå Äëÿ îðëàíà-áåëîõâîñòà ÏÃÐÝÇ â ãíåçäîâîé ïåðèîä ðûáà (Pisces) ñîñòàâëÿåò îñíîâíóþ ÷àñòü åãî ñïåêòðà ïèòàíèÿ – 48,1 % (òàáë. 1). Çà âñ¸ âðåìÿ èññëåäîâàíèé ñðåäè ðûá, ïîéìàííûõ îðëàíàìè, áûëè îòìå÷åíû 61 îñîáü 10 âèäîâ. ×óòü áîëüøå ðûáû, ÷åì â ÏÃÐÝÇ, ïîòðåáëÿþò îðëàíû-áåëîõâîñòû íà òåððèòîðèè Âèòåáñêîé îáëàñòè Áåëàðóñè – 53,1 % (Èâàíîâñêèé, 2012), è íåìíîãî ìåíüøå – 43,1 % íà þæíîì Óðàëå â ×åëÿáèíñêîé îáëàñòè Ðîññèè (Êàðÿêèí, 1998).  Óêðàèíå, íà Ñðåäíåì Äíåïðå, ðûáà çíà÷èòåëüíî ïðåîáëàäàåò íàä

23

mains were identified in situ, pictures of remains were taken as far a possible, and pellets were investigated in the laboratory. In total, in the nests or below them, we collected a total of 127 prey specimens belonging to 27 animal species. This data was subjected to analysis. Results and discussion In the PSRER, fishes makes up 48.1 % of the total number of prey specimens of the White-Tailed Eagle (WTE) during the breeding season, i.e. the main part of its diet (table 1). During the study 61 specimens of fish belonging to 10 species were examined. More than half of them (n=28) were bream (Abramis brama), which makes up 22.0 % of the total number of prey specimens in the diet of the WTE. Overall, carps (Cyprinidae) make up about 1/3 of its diet – 31.5 % (n=40). An important part in diet of the WTE is also formed by pike (Esox lucius) (n=13; 10.2 %), crucian carp (Carassius carassius) (n=5, 3.9 %), and cat-fish (Silurus glanis) (n=4, 3.1 %) (table 1). The other class of animals which makes a significant contribution to the diet of the WTE, is birds. The proportion of birds in the diet of the WTE is 41.7 % (fig. 2). In 2014, a male WTE from the nest located on the watch-tower (fig. 3A) 13 km distant from river Pripyat brought to its nest not less than 9 fishes and 8 birds in 28 days during April and May. During the whole period of this nest observation in 2014, we found 6 skeletons of White Storks and 4 skeletons of Black Storks (fig. 3B, C). The predilection of this pair to storks could be correlated with the distant location of this nest from the river Pripyat, which is the main source of fish, and also with changing habitat conditions on their breeding territory due to overgrown reeds (Phragmites communis) and other mire vegetation on the territory of Pogonyanskoye flooding, whose banks were home for this pair of WTE for more than 10 years (fig. 4). Thus, this pair slowly lost the possibility to prey on fish. Among the prey specimens of birds consumed by the WTE during the breeding seasons in the terms of our study in the PSRER, Black Stork (Ciconia nigra) was the most abundant – 12.6 % (n=16) of the total number of all prey specimens, giving it second place among the most popular prey species of the WTE (table 1). The


24

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ

Òàáë. 1. Âèäîâîé ñîñòàâ è îáèëèå êîðìîâ îðëàíà-áåëîõâîñòà (Haliaeetus albicilla) â ãíåçäîâîé ïåðèîä 2006–2014 ãã. íà òåððèòîðèè ÏÃÐÝÇ. Table 1. Species composition of the diet of the White-Tailed Eagle (Haliaeetus albicilla) and prey abundance in the PSRER during the breeding seasons of 2006–2014.

Âèäû æåðòâ / Prey species 1. Ëåù – Abramis brama 2. Ùóêà – Esox lucius 3. Êàðàñü çîëîòîé – Carassius carassius 4. Ñîì – Silurus glanis 5. Ëèíü – Tinca tinca 6. ßçü – Leuciscus idus 7. Ãóñòåðà – Blicca bjoerkna 8. Ñóäàê – Lucioperca lucioperca 9. Îêóíü – Perca fluviatilis 10. Êàðàñü ñåðåáðÿíûé – Carassius auratus Ðûáû – Pisces 11. ׸ðíûé àèñò – Ciconia nigra 12. Áåëûé àèñò – Ciconia ciconia 13. Êðÿêâà – Anas platyrhynchos 14. Ëûñóõà – Fulica atra 15. Îðëàí-áåëîõâîñò – Haliaeetus albicilla (ïòåíåö / nestling) 16. Âîðîáüèíîîáðàçíûå – Passeriformes 17. Ñåðàÿ öàïëÿ – Ardea cinerea 18. Áîëüøàÿ áåëàÿ öàïëÿ – Casmerodius albus 19. Áîëüøîé áàêëàí – Phalacrocorax carbo (ïòåíåö / nestling) 20. Òåòåðåâ – Tetrao (Lirurus) tetrix (ñàìêà / female) 21. Êàìûøíèöà – Gallinula chloropus 22. Êóëèê-ñîðîêà – Haematopus ostralegus (ïòåíåö / chick) 23. Âîðîí – Corvus corax (ïòåíåö / nestling) Ïòèöû – Aves 24. Êàáàí – Sus scrofa 25. Áîáð – Castor fiber 26. Êîñóëÿ åâðîïåéñêàÿ – Capreolus capreolus 27. Åíîòîâèäíàÿ ñîáàêà – Nyctereutes procyonoides Ìëåêîïèòàþùèå – Mammalia Âñåãî / Total

Êîëè÷åñòâî îñîáåé n % 28 22.0 13 10.2 5 3.9 4 3.1 2 1.6 2 1.6 2 1.6 2 1.6 2 1.6 1 0.8 61 48.1 16 12.6 8 6.3 7 5.5 7 5.5 3 2.4 3 2 2

2.4 1.6 1.6

1

0.8

1

0.8

1 1

0.8 0.8

1 53 9 2 1

0.8 41.7 7.1 1.6 0.8

1

0.8

13 127

10.2 100

îñòàëüíûìè ïîçâîíî÷íûìè è ñîñòàâëÿåò îêîëî 80 % (Ãàâðèëþê è äð., 2001; Ãðèùåíêî, Ãàâðèëþê, 2012). Ñðåäè ïîéìàííûõ îðëàíàìè íà òåððèòîðèè çàïîâåäíèêà ðûá, ïî÷òè ïîëîâèíà (n=28) ïðèõîäèëàñü íà ëåùà (Abramis brama), ÷òî ñîñòàâëÿåò 22,0 % îò âñåõ âèäîâ æåðòâ. Ñõîäíóþ äîëþ ýòîãî âèäà ðûá îðëàíû-áåëîõâîñòû äîáûâàþò è íà Ñðåäíåì Äíåïðå – 26 % (Ãàâðèëþê è äð.,

WTE prey both on adult breeding storks, on young immature birds and on nestlings (fig. 6A). The White Stork (Ciconia ciconia) also plays an important role in the diet (n=8; 6.3 %). Mostly, White Storks are killed by WTE during spring migration – many prey remains of this species that were found during the migration period indicate this fact (fig. 3B). Mallard (Anas platyrhynchos) and Coot (Fulica atra) are also regularly killed by the WTE (n=7, 5.5 % for each species) (table 1). During the breeding period, the WTE also prey on Great White Egrets (Casmerodius albus) (n=2; 1.6 %) which breed in the colony located on the Chickalovichskoye flooding and outside of the colony. On single days we observed 5–7 WTE hunting simultaneously for the birds in the colony. In the population of the WTE in the PSRER, we observed two cases of cannibalism (n=2, 2.4 %) (fig. 8) in 2010 (Yurko, 2015). Occasionally, cannibalism was observed in the other populations of WTE, too (Galushin, 1980; Gavrilyuk, 2011). Mammalian species are not widely represented in the diet of the WTE – only four species (n=13), making up 10.2 % of the total number of prey specimens (fig. 2). The most important among them is Wild boar (Sus scrofa) (n=9; 7.1 %). The WTE mostly prey on suckling piglets (fig. 9). The other important mammalian species is Beaver (Castor fiber). We found sculls of this species in two nests of the WTE in 2007 and 2012, or 1.6 % of the total number of prey specimens. The WTE preys on beavers during periods of high water when lairs become flooded and beavers have to survive on the ice or bank, with diminished ability to take cover from predators. Conclusion The diet of the White-Tailed Eagle inhabiting the PSRER mainly consists of vertebrates of three classes: fishes 48.1 %, birds 41.7 % and mammals 10.2 %. The main prey species that constitute the diet of the WhiteTailed Eagle in the breeding season are: Bream (Abramis brama) – 22.0 %, Black Stork (Ciconia nigra) – 12.6 %, Pike (Esox lucius) – 10.2 %, Wild Boar (Sus scrofa) – 7.1 %, White Stork (Ciconia ciconia) – 6.3 %, Mallard (Anas platyrhynchos) – 5.5 % and Coot (Fulica atra) – 5.5 %. Together these species make up 69.2 % or 2/3 of the diet of this raptor. Other prey species make up 30.8 % or 1/3 of the diet.


Raptor Research

Raptors Conservation 2016, 32

25

Ðèñ. 2. Äîëÿ ïîçâîíî÷íûõ â ïèòàíèè îðëàíà-áåëîõâîñòà â ÏÃÐÝÇ â 2006–2014 ãã. Fig. 2. The proportion of vertebrates in the diet of the White-Tailed Eagle in the PSRER in 2006–2014.

2001).  öåëîì â ãíåçäîâîé ïåðèîä ñðåäè ïîòðåáëÿåìûõ îðëàíàìè ðûá, êàðïîâûå (Cyprinidae) ñîñòàâëÿþò îêîëî òðåòè åãî ðàöèîíà (n=40) èëè 31,5 %. Ñëåäóåò îòìåòèòü, ÷òî ïðåîáëàäàíèå â ïèòàíèè îðëàíà-áåëîõâîñòà òîãî èëè èíîãî âèäà ðûá âî ìíîãîì çàâèñèò îò âðåìåíè è ïðîäîëæèòåëüíîñòè èõ íåðåñòà.  þãîâîñòî÷íîì Ïîëåñüå íåðåñò ëåùà, êàê ïðàâèëî, ïðîäîëæàåòñÿ áîëåå äåñÿòè äíåé, è ïðè ýòîì îí íåðåñòèòñÿ â äâà-òðè ïðè¸ìà ñ ïåðåðûâàìè â íåñêîëüêî íåäåëü (Ðûáû…, 1989).  òî æå âðåìÿ ó êðàñíîï¸ðêè (Scardinius erythropthalmus) è ãóñòåðû (Blicca bjoerkna), ïåðèîä íåðåñòà ñîñòàâëÿåò âñåãî 2–3 äíÿ (Ðÿáîâ, 2004). Òàêæå âàæíóþ ðîëü â ïèòàíèè îðëàíîâ ÏÃÐÝÇ èãðàåò ùóêà (Esox lucius) (n=13; 10,2 %). Çàòåì ñëåäóåò çîëîòîé êàðàñü (Carassius carassius) (n=5) è ñîì (Silurus Ðèñ. 3. Âûøêà ñ ãíåçäîì îðëàíà-áåëîõâîñòà — À, îñòàíêè àèñòîâ â ãíåçäå îðëàíà íà âûøêå â 2014 ãîäó — Â, ÷åðåïà áåëîãî àèñòà (Ciconia ciconia) (íèæíèé ðÿä) è ÷¸ðíîãî àèñòà (Ciconia nigra) (âåðçíèé ðÿä) èç ãíåçäà îðëàíà-áåëîõâîñòà, 2014 — Ñ. Ôîòî Â. Þðêî. Fig. 3. Tower with the nest of a White-Tailed Eagle – A, remains of Storks in the nest of the White-Tailed Eagle on the tower in 2014 – B, skulls of White Stork (Ciconia ciconia) (bottom row) and Black Stork (Ciconia nigra) (top row) from the nest of the White-Tailed Eagle in 2014 – C. Photos by V. Yurko.

glanis) (n=4), íà äîëþ êîòîðûõ ïðèõîäèòñÿ 3,9 % è 3,1 % îò âñåãî ðàöèîíà ñîîòâåòñòâåííî. Îñòàëüíûå âèäû ðûá â ïèòàíèè îðëàíîâ ïî äîëåâîìó ó÷àñòèþ èìåþò ìåíåå 2 % è â ñóììå ñîñòàâëÿþò 8,8 % (ñì. òàáë. 1). Âòîðûì ñóùåñòâåííûì êëàññîì æèâîòíûõ, äîáûâàåìûõ îðëàíàìè-áåëîõâîñòàìè íà òåððèòîðèè ÏÃÐÝÇ, ÿâëÿþòñÿ ïòèöû (Aves). Èõ âêëàä â ðàöèîí èññëåäóåìîãî õèùíèêà ñîñòàâëÿåò 41,7 % (ðèñ. 2). Êàê âèäèì, ïòèöû óñòóïàþò ðûáàì âñåãî 6,4 %. Ñõîäíàÿ äîëÿ ïòèö â ðàöèîíå îðëàíîâ çàôèêñèðîâàíà è â Âèòåáñêîé îáëàñòè – 41,8 % (Èâàíîâñêèé, 2012). Îäíàêî âèäîâîé ñîñòàâ ïòèö â ïèòàíèè îðëàíîâ âîñòî÷íîãî Ïîëåñüÿ è Áåëîðóññêîãî Ïîîçåðüÿ êàðäèíàëüíî îòëè÷àåòñÿ èç-çà ðàçëè÷èÿ áèîãåîöåíîçîâ.  2014 ãîäó èññëåäîâàíèÿ ïèòàíèÿ îðëàíà-áåëîõâîñòà ïðîâîäèëèñü â ãíåçäå, ðàñïîëîæåííîì íà âûøêå-ìàÿêå (ðèñ. 3A), ÷òî îêîëî Ïîãîíÿíñêîãî çàòîïëåíèÿ è óäàë¸ííîì îò ðåêè Ïðèïÿòü íà 13 êì. Îêàçàëîñü, ÷òî çà 28 äíåé â àïðåëå-ìàå ñàìåö ïðèí¸ñ â ãíåçäî íå ìåíåå 9 ðûá è 8 ïòèö. À çà âåñü ïåðèîä èññëåäîâàíèÿ (2014 ã.) â èõ ãíåçäå áûëî îáíàðóæåíî äå-


26

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ Ðèñ. 4. Ïîãîíÿíñêîå çàòîïëåíèå çàðîñøåå òðîñòíèêîì (Phragmites communis) – ââåðõó è Ïîãîíÿíñêèé êàíàë çàðîñøèé òåëîðåçîì (Stratoides aloides) – âíèçó. Ôîòî Â. Þðêî. Fig. 4. Pogonyanskoye flooding overgrown with reeds (Phragmites communis) – above, and Pogonyanskiy canal overgrown with water aloe (Stratoides aloides) – below. Photos by V. Yurko.

ñÿòü ñêåëåòîâ: 6 áåëûõ è 4 ÷¸ðíûõ àèñòîâ (ðèñ. 3B, C). Ñëåäóåò îòìåòèòü, ÷òî ñ ñàìîãî íà÷àëà èññëåäîâàíèé (2007 ã.) ñàìåö óêàçàííîé ïàðû, à âîçìîæíî è ñàìêà, ñïåöèàëèçèðîâàëèñü íà äîáû÷å àèñòîîáðàçíûõ (Ciconiiformes). Ïðè÷¸ì îíè ëîâÿò êàê ñàìîê, òàê è ñàìöîâ, áîëåå ñèëüíûõ è îáëàäàþùèõ áîëüøèì âåñîì. Ïðèñòðàñòèå

ýòîé ïàðû îðëàíîâ ê àèñòîîáðàçíûì, âåðîÿòíî, ñâÿçàíî ñ óäàë¸ííîñòüþ èõ ãíåçäà îò îñíîâíîãî èñòî÷íèêà ïèùè – ðåêè Ïðèïÿòü è ñ ïîñòåïåííî èçìåíèâøèìèñÿ ýêîëîãè÷åñêèìè óñëîâèÿìè íà èõ òåððèòîðèè. Äåëî â òîì, ÷òî Ïîãîíÿíñêîå çàòîïëåíèå, íà áåðåãó êîòîðîãî îíè ãíåçäÿòñÿ óæå áîëåå 10 ëåò, ïîñòåïåííî çàðîñëî òðîñòíèêîì (Phragmites communis) è äðóãèìè áîëîòíûìè ðàñòåíèÿìè, à êàíàëû ñòàëè ìåíåå ïðîòî÷íûìè (ðèñ. 4) è ñïëîøü ïîðîñëè òåëîðåçîì (Stratoides aloides). Òàêèì îáðàçîì, ýòà ïàðà îðëàíîâ-áåëîõâîñòîâ ïîñòåïåííî ëèøèëàñü âîçìîæíîñòè äîáûâàòü îñíîâíîé èñòî÷íèê ïðîïèòàíèÿ – ðûáó. Âïðî÷åì, ïàðû, ãíåçäÿùèåñÿ íà óäàëåíèè 3–5 êì îò ðåêè Ïðèïÿòü, òàêæå èíîãäà äîáûâàþò àèñòîâ, íî â ìåíüøåì êîëè÷åñòâå – îäíîãî-äâóõ çà ñåçîí ãíåçäîâàíèÿ (ðèñ. 5). Íà çíà÷èòåëüíóþ ðîëü ïòèö â ðàöèîíå îðëàíîâ-áåëîõâîñòîâ â ãíåçäîâîé ïåðèîä óêàçûâàþò è äðóãèå àâòîðû (Ãàâðèëþê è äð., 2001; Ï÷åëèíöåâ, 2001; Ñïèðèäîíîâ è äð., 2011; Sandor et al., 2015). À â òàêèõ ðåãèîíàõ Ðîññèè êàê Ïå÷îðñêî-Èëû÷ñêîì çàïîâåäíèêå (Äîíàóðîâ, 1948), íà îçåðå Áàéêàë (Mlíkovský, 2009) è â Àðõàíãåëüñêîé îáëàñòè (Ðûêîâà, 2013) ïòèöû ñðåäè ïîçâîíî÷íûõ ñîñòàâëÿëè îñíîâíóþ ÷àñòü åãî ðàöèîíà. Ñðåäè ïîòðåáëÿåìûõ îðëàíîì-áåëîõâîñòîì â ãíåçäîâîé ïåðèîä ïòèö, íà òåððèòîðèè ÏÃÐÝÇ íà ïåðâîì ìåñòå îêàçàëñÿ ÷¸ðíûé àèñò (Ciconia nigra) (n=16), è íà âòîðîì ñðåäè âñåõ âèäîâ æåðòâ 12,6 % (ñì. òàáë. 1). Îðëàíû-áåëîõâîñòû ëîâÿò êàê âçðîñëûõ ðàçìíîæàþùèõñÿ àèñòîâ, òàê è íåïîëîâîçðåëóþ ìîëîä¸æü, è ïòåíöîâ íà ãí¸çäàõ. Íåîïåð¸ííûõ ïòåíöîâ ñðàçó

Ðèñ. 5. Îñòàíêè ÷¸ðíîãî àèñòà è êàáàíà (Sus scrofa) â ãíåçäå îðëàíà íà ð.Ïðèïÿòü. Ôîòî Â. Þðêî. Fig. 5. Remains of Black Stork and Wild Boar (Sus scrofa) in the nest of the White-Tailed Eagle from the river Pripyat. Photo by V. Yurko.


Raptor Research

Raptors Conservation 2016, 32

27

Ðèñ. 6. Ïåðüÿ ïòåíöà ÷¸ðíîãî àèñòà, óáèòîãî îðëàíîì – A, îñòàíêè áåëîãî àèñòà óáèòîãî îðëàíîì â èþíå 2007 – B. Ôîòî Â. Þðêî. Fig. 6. Feathers of a nestling Black Stork killed by the White-Tailed Eagle – A, the remains of a White Stork killed by White-Tailed Eagle in June 2007 – B. Photos by V. Yurko.

óíîñÿò èç ãíåçäà, à ïòåíöîâ áîëåå ñòàðøèõ âîçðàñòîâ óáèâàþò è îùèïûâàþò íà çåìëå îêîëî èõ æå ãíåçäà (ðèñ. 6A). Ïî-âèäèìîìó, îðëàíû òàêæå ïîñòóïàþò è ñî âñåìè êðóïíûìè ïòèöàìè, ãíåçäÿùèìèñÿ ñ íèìè ïî ñîñåäñòâó. Ïî êðàéíåé ìåðå, â ïîñëåäíèå ïÿòü ëåò íàáëþäåíèé â ðàäèóñå îêîëî êèëîìåòðà îò ãí¸çä îðëàíîâ, ïî÷òè âñå äðóãèå êðóïíûå äåíäðîôèëüíûå ïòèöû ïåðåñòàëè ãíåçäèòüñÿ. Ëèøü âîðîí (Corvus corax) ïîêà âûäåðæèâàåò àãðåññèþ, íåñìîòðÿ íà òî, ÷òî óæå ÿâëÿåòñÿ îáúåêòîì ïèòàíèÿ ýòîãî õèùíèêà (ñì. òàáë. 1).  ýòîé ñâÿçè ïîêàçàòåëåí ôàêò îáíàðóæåíèÿ â ãíåçäå îðëàíîâ-áåëîõâîñòîâ ïòåíöîâ ÿñòðåáà-òåòåðåâÿòíèêà (Accipiter gentilis) íà òåððèòîðèè Ìîðäîâñêîãî çàïîâåäíèêà Ðîññèè (Ñïèðèäîíîâ è äð., 2011). Òàêæå ñóùåñòâåííóþ ÷àñòü ñïåêòðà ïèòàíèÿ îðëàíîâ ñîñòàâëÿåò è áåëûé àèñò (Ciconia ciconia) – (n=8; 6,3 %). Áîëüøóþ ÷àñòü ýòèõ ïòèö îðëàíû-áåëîõâîñòû äîáûâàþò âî âðåìÿ âåñåííåé ìèãðàöèè, íà ÷òî

óêàçûâàþò èõ îñòàíêè â ýòîò ïåðèîä (ñì. ðèñ. 3B). Îòäåëüíûå îñîáè áåëûõ àèñòîâ ïûòàþòñÿ åæåãîäíî çàêðåïèòüñÿ ïî ñåâåðíîé ãðàíèöå çàïîâåäíèêà, à òàêæå íåîäíîêðàòíî îòìå÷àëè ýòîò âèä â ëåòíèé ïåðèîä â öåíòðàëüíîé ÷àñòè ÏÃÐÝÇ. Îäíàêî âñå èõ ïîïûòêè, ïî-âèäèìîìó, â áîëüøèíñòâå ñëó÷àåâ çàêàí÷èâàþòñÿ òðàãè÷åñêè. Òàê â ñåðåäèíå èþíÿ 2007 ãîäà íà òåððèòîðèè çàïîâåäíèêà óäàëîñü ïîíàáëþäàòü çà êîëëåêòèâíîé îõîòîé íà áåëîãî àèñòà äâóõ âçðîñëûõ îðëàíîâ. Îäèí èç íèõ ïðåñëåäîâàë àèñòà â óãîí, âòîðîé ëåòåë ÷óòü ñçàäè è âûøå. Òàêèì îáðàçîì èçìîòàâ ñâîþ æåðòâó, ëåòÿùèé âûøå îðëàí, ñõâàòèë àèñòà çà ñïèíó, ïîñëå ÷åãî âñå òðîå ïîëåòåëè âíèç. Ñïóñòÿ 10–15 ìèí îò æåðòâû îñòàëàñü òîëüêî âåðõíÿÿ ÷àñòü òóøêè (ðèñ. 6B). Ïðè ýòîì ïîéìàííîãî àèñòà îðëàíû ïîåäàëè âìåñòå. Î íàïàäåíèè îðëàíîâ-áåëîõâîñòîâ íà àèñòîâ â Ïîëåñüå ñîîáùàë åù¸ â 1916 ãîäó Â.Í. Øíèòíèêîâ (öèò. ïî Ôåäþøèí, Äîëáèê, 1967), èìåþòñÿ è áîëåå ïîçäíèå ñâåäåíèÿ (Samusenko, 1996). Òðåòüèìè â ñïèñêå æåðòâ îðëàíà ñðåäè ïòèö íàõîäÿòñÿ êðÿêâà (Anas platyrhynchos) (n=7) è ëûñóõà (Fulica atra) (n=7) – ïî 5,5 % êàæäàÿ (ñì. òàáë. 1).  äðóãèõ ðåãèîíàõ îáèòàíèÿ îðëàíà-áåëîõâîñòà íàçâàííûå âèäû ïðåîáëàäàþò è ñòîÿò ïåðâûìè ñðåäè ïòèö â ñïèñêå æåðòâ (Êàðÿêèí, 1998; Ãðèùåíêî, Ãàâðèëþê, 2012; Sandor et al., 2015). Òàêæå â ãíåçäîâîé ïåðèîä îðëàíû-áåëîõâîñòû îõîòÿòñÿ íà áîëüøóþ áåëóþ öàïëþ (Casmerodius albus) (n=2; 1,6 %) êàê â êîëîíèè, ðàñïîëîæåííîé íà ×èêàëîâè÷ñêîì çàòîïëåíèè, òàê è çà å¸ ïðåäåëàìè.  ýòîé êîëîíèè â îòäåëüíûå äíè ìîæíî íàáëþäàòü îêîëî 5–7 îõîòÿùèõñÿ îðëàíîâ-áåëîõâîñòîâ îäíîâðåìåííî. Êîëîíèÿ ñîâìåñòíîãî ïîñåëåíèÿ ñåðîé öàïëè (Ardea cinerea) è áîëüøîãî áàêëàíà (Phalacrocorax carbo), ðàñïîëîæåííàÿ íà ð. Ïðèïÿòü, òàêæå íàõîäèòñÿ ïîä ïîñòîÿííûì âíèìàíèåì èçó÷àåìîãî õèùíèêà. Ñ ïîÿâëåíèåì ïòåíöîâ â ãí¸çäàõ õîçÿåâ êî-


28

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ Ðèñ. 7. Ìîëîäîé áàêëàí (Phalacrocorax carbo) ñúåäåííûé îðëàíîì-áåëîõâîñòîì. Ôîòî Â. Þðêî. Fig. 7. Young Cormorant (Phalacrocorax carbo) eaten by the White-Tailed Eagle. Photo by V. Yurko.

ëîíèè, çäåñü èíîãäà ñêàïëèâàþòñÿ áîëåå äåñÿòêà îðëàíîâ ðàçíûõ âîçðàñòíûõ ãðóïï. Îäíàêî ó÷àñòèå ñåðîé öàïëè (n=2) è áîëüøîãî áàêëàíà (n=1) â ïèòàíèè ãíåçäÿùèõñÿ õèùíèêîâ ïîêà íåâåëèêî è ñîñòàâëÿåò 1,6 è 0,8 % ñîîòâåòñòâåííî.  äðóãèõ ðåãèîíàõ àðåàëà îðëàíà-áåëîõâîñòà äîëÿ ñåðîé öàïëè äîñòèãàåò 7,6 % (Èâàíîâñêèé, 2012) è äàæå áîëüøå – 28,9 % (Ñïèðèäîíîâ è äð., 2011). Ýòî ïðîèñõîäèò â òåõ ñëó÷àÿõ, êîãäà ïàðà îðëàíîâ ïîñåëÿåòñÿ ïî ñîñåäñòâó ñ êîëîíèåé ñåðûõ öàïåëü. Íå èñêëþ÷åíî, ÷òî â êîëîíèÿõ öàïåëü ÏÃÐÝÇ õèùíèêè áåðóò íå òîëüêî «äàíü» ñ ïòè÷üåãî íàñåëåíèÿ (ðèñ. 7), íî è âîçìîæíî, çàñòàâëÿþò öàïåëü è áàêëàíîâ ñáðîñèòü ðûáó, çàíèìàÿñü êëåïòîïàðàçèòèçìîì, î ÷¸ì óïîìèíàë åù¸ Ã.Ï. Äåìåíòüåâ (1951). Òàêæå ýòà îñîáåííîñòü ïîâåäåíèÿ îðëàíîâ îòìå÷åíà â Óêðàèíå íà Ñðåäíåì Äíåïðå (Ëîïàðåâ, 1997), â Ðîññèéñêîé Ôåäåðàöèè â áàññåéíå ð. Êàìà (Êàðÿêèí, 1998), íà Ñðåäíåì Ïîâîëæüå (Øàøêèí, 2010), íà îçåðå Áàéêàë, è â äðóãèõ ñòðàíàõ åãî àðå-

àëà (Ãàëóøèí, 1980).  2015 ãîäó áîëüøèå áàêëàíû, âåðîÿòíî, èç-çà ïîñòîÿííîãî ïðåññà õèùíèêîâ, â óêàçàííîé âûøå êîëîíèè íå ãíåçäèëèñü. Îñòàëüíûå âèäû æåðòâ ñðåäè ïòèö, îáíàðóæåííûå â ãí¸çäàõ îðëàíà-áåëîõâîñòà: òåòåðåâ (Tetrao [Lirurus] tetrix), êàìûøíèöà (Gallinula chloropus), êóëèêñîðîêà (Haematopus ostralegus) è âîðîí, áîëüøîãî çíà÷åíèÿ íå èìåþò è â äîëåâîì îòíîøåíèè ñîñòàâëÿþò ëèøü ïî 0,8 % êàæäûé (ñì. òàáë. 1). Êðîìå òîãî, â ïîãàäêàõ îðëàíîâ îáíàðóæåíû ìåëêèå êîñòè òð¸õ âîðîáüèíîîáðàçíûõ ïòèö ñîñòàâëÿþùèå 2,4 % îò îáùåãî êîëè÷åñòâà æåðòâ.  ïîïóëÿöèè îðëàíà-áåëîõâîñòà Ïîëåññêîãî ãîñóäàðñòâåííîãî ðàäèàöèîííîýêîëîãè÷åñêîãî çàïîâåäíèêà èìååò ìåñòî è êàííèáàëèçì – 2,4 % (ðèñ. 8). Ýòî ÿâëåíèå äâàæäû îòìå÷åíî â 2010 ãîäó (Þðêî, 2015). Èçðåäêà êàííèáàëèçì âñòðå÷àåòñÿ è ó äðóãèõ ïîïóëÿöèé îðëàíîâ (Ãàëóøèí, 1980; Ãàâðèëþê, 2011). Ìëåêîïèòàþùèå (Mammalia) â ïèòàíèè îðëàíà-áåëîõâîñòà ïðåäñòàâëåíû íå òàê øèðîêî, êàê ïðåäûäóùèå äâà êëàññà, âñåãî 4 âèäà (n=13) èëè 10,2 % (ñì. ðèñ. 2). Íàèáîëüøåå çíà÷åíèå èç íèõ ïðåäñòàâëÿåò êàáàí (Sus scrofa) (n=9; 7,1 %).  îñíîâíîì îðëàíû äîáûâàþò ìîëî÷íûõ ïîðîñÿò (ðèñ. 9). Îñîáü ýòîãî âèäà áîëåå ñòàðøåãî âîçðàñòà (ãîäîâàëûé), áûëà îòìå÷åíà ëèøü îäíàæäû, â ìàå 2009 ãîäà. Íà âòîðîì ìåñòå ñðåäè ìëåêîïèòàþùèõ îêàçàëñÿ áîáð (Castor fiber). ×åðåïà ýòîãî âèäà áûëè îáíàðóæåíû â äâóõ ãí¸çäàõ â 2007 è 2012 ãîäàõ (ðèñ. 10), ÷òî ñîñòàâèëî 1,6 % â ðàöèîíå îðëàíà-áåëîõâîñòà. Ýòèõ æèâîòíûõ îðëàíû äîáûâàþò â ïåðèîä ïîëîâîäüÿ, êîãäà ïðèáûâàþùàÿ âîäà çàòàïëèâàåò íîðû áîáðîâ, çàñòàâëÿÿ èõ îòñèæèâàòüñÿ íà ëüäó ëèáî íà áåðåãó, íå èìåÿ âîçìîæíîñòè óêðûòüñÿ îò õèùíèêîâ. Ñðåäè æåðòâ îðëàíà-áåëîõâîñòà ïî îäíî-

Ðèñ. 8. Îñòàíêè ïòåíöà îðëàíà – ðåçóëüòàò êàííèáàëèçìà. Ôîòî Â.Þðêî. Fig. 8. The remains of a White-Tailed Eagle’s nestling is the result of cannibalism. Photo by V. Yurko.


Raptor Research

Raptors Conservation 2016, 32

29

Ðèñ. 9. Ãîëîâà êàáàíà (Sus scrofa) â ãíåçäå îðëàíàáåëîõâîñòà. Ôîòî Â. Þðêî. Fig. 9. The head of a Wild Boar (Sus scrofa) in the nest of the White-Tailed Eagle. Photo by V. Yurko.

âçÿëè ïàâøèõ æèâîòíûõ, òî ëè îðëàíû ñàìè äîáûâàþò ðàíåíûõ èëè îñëàáëåííûõ è áîëüíûõ îñîáåé. Ïî êðàéíåé ìåðå, ñëó÷àé íàïàäåíèÿ îðëàíà-áåëîõâîñòà íà äâóõ êîñóëü áûë îòìå÷åí â çàïîâåäíèêå â ôåâðàëå 2007 ãîäà.  ïóáëèêàöèè Âîëüôãàíãà Ôèøåðà (Fisher, 2005) îïèñàíû ðåäêèå ñëó÷àè íàïàäåíèÿ îðëàíà-áåëîõâîñòà íà ñòàðûõ êîñóëü â Ãåðìàíèè. Îá îõîòå ýòîãî õèùíèêà íà ìîëîäûõ îëåíåé ïèøåò è Ã.Ï. Äåìåíòüåâ (1951).

ìó ðàçó îòìå÷åíû êîñóëÿ (Capreolus capreolus) è åíîòîâèäíàÿ ñîáàêà (Nyctereutes procyonoides), ÷òî ñîñòàâëÿåò ïî 0,8 % èõ äîëåâîãî ó÷àñòèÿ. Ïîÿâëåíèå òàêèõ êðóïíûõ æèâîòíûõ êàê ãîäîâàëûé êàáàí è êîñóëÿ â ãí¸çäàõ îðëàíîâ-áåëîõâîñòîâ íå ñîâñåì ïîíÿòíî. Òî ëè ïòèöû ïîäîáðàëè îñòàíêè ýòèõ ìëåêîïèòàþùèõ óáèòûõ âîëêàìè èëè æå Ðèñ. 10. ×åðåïà áîáðà (Castor fiber) – ñëåâà, è êîñóëè (Capreolus capreolus) – ñïðàâà ïîä ãí¸çäàìè îðëàíà-áåëîõâîñòà. Ôîòî Â. Þðêî. Fig. 10. Skulls of the Eurasian Beaver (Castor fiber) – at the left, and European Roe Deer (Capreolus capreolus) – at the right under nests of the White-Tailed Eagle. Photos by V. Yurko.

Çàêëþ÷åíèå  Ïîëåññêîì ãîñóäàðñòâåííîì ðàäèàöèîííî-ýêîëîãè÷åñêîì çàïîâåäíèêå â ïèòàíèè îðëàíà-áåëîõâîñòà â ãíåçäîâîé ïåðèîä ïðèñóòñòâóþò ïîçâîíî÷íûå òð¸õ êëàññîâ: ðûáû (Pisces) 48,1 %, ïòèöû (Aves) 41,7 % è ìëåêîïèòàþùèå (Mammalia) 10,2 %. Îñíîâíûìè âèäàìè æåðòâ â íàñòîÿùåå âðåìÿ, íà êîòîðûõ ñïåöèàëèçèðóþòñÿ îðëàíû â ãíåçäîâîé ïåðèîä, ÿâëÿþòñÿ ëåù – 22,0 %, ÷¸ðíûé àèñò – 12,6 %, ùóêà – 10,2 %, êàáàí – 7,1 %, áåëûé àèñò – 6,3 %, êðÿêâà – 5,5 % è ëûñóõà – 5,5 %, âìåñòå ñîñòàâëÿþùèå 69,2 % èëè äâå òðåòè ðàöèîíà ýòîãî õèùíèêà. Äîëÿ îñòàëüíûõ âèäîâ æåðòâ â ñóììå ñîñòàâëÿåò îäíó òðåòü èëè 30,8 %. Îðëàí-áåëîõâîñò îêàçàëñÿ íàñòîëüêî ïëàñòè÷íûì è óíèâåðñàëüíûì õèùíèêîì, ÷òî ñïîñîáåí äîáûâàòü ïðàêòè÷åñêè âñå


30

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32 âèäû æèâîòíûõ, îáèòàþùèõ íà åãî òåððèòîðèè. Èçìåíåíèå ýêîëîãè÷åñêîé îáñòàíîâêè, ëèøèâøåé îòäåëüíûå ïàðû îðëàíîâ-áåëîõâîñòîâ îñíîâíîãî èñòî÷íèêà ïèùè, ïðèâåëî ê èõ óñèëåííîé îõîòå íà ïòèö è â îñíîâíîì íà àèñòîîáðàçíûõ. Òàêæå íåõâàòêà êîðìîâ, âåðîÿòíî, ñâÿçàííàÿ è ñ âûñîêîé ïëîòíîñòüþ ìåñòíîé ïîïóëÿöèè, ïðèâîäèò îòäåëüíûå ãíåçäÿùèåñÿ ïàðû ê êàííèáàëèçìó. Ñòåïåíü ýòîãî ÿâëåíèÿ ïîêà íåâåëèêà è ñîñòàâëÿåò âñåãî 2,4 %. Íà òåððèòîðèè Ïîëåññêîãî ãîñóäàðñòâåííîãî ðàäèàöèîííî-ýêîëîãè÷åñêîãî çàïîâåäíèêà ïîñëåäíèå äâà ãîäà (2014– 2015 ãã.) âîçíèêëà ñèòóàöèÿ, êîòîðàÿ çíà÷èòåëüíî óìåíüøèëà ÷èñëåííîñòü îñíîâíûõ âèäîâ æåðòâ îðëàíà-áåëîõâîñòà. Èç-çà çàñóõè, ïðèâåäøåé ê ïåðåñûõàíèþ çàòîïëåíèé, ìíîãèõ ìåëèîðàòèâíûõ êàíàëîâ è íåáîëüøèõ ñòàðè÷íûõ îç¸ð, áûëè ñèëüíî ïîäîðâàíû ðûáíûå çàïàñû. Âèðóñ àôðèêàíñêîé ÷óìû ñâèíåé (À×Ñ) ïðèâ¸ë ê ðåçêîìó ñîêðàùåíèþ ÷èñëåííîñòè êàáàíà, ïîãîëîâüå êîòîðîãî óìåíüøèëîñü ïî÷òè â äåñÿòü ðàç. Òàêæå â íåñêîëüêî ðàç ñîêðàòèëàñü è ïðîäîëæàåò ïàäàòü ÷èñëåííîñòü ÷¸ðíîãî àèñòà. Âñå ýòè ôàêòîðû, ïî-âèäèìîìó, äîëæíû ïîâëèÿòü íà èçìåíåíèå ïèòàíèÿ îðëàíà-áåëîõâîñòà ïî êðàéíåé ìåðå â áëèæàéøèå 2–3 ãîäà, ïîêà íå âîññòàíîâÿòñÿ ðûáíûå çàïàñû è ïîãîëîâüå êàáàíà. Êàê áóäóò ðàçâèâàòüñÿ äàëüíåéøèå ñîáûòèÿ âî âçàèìîîòíîøåíèÿõ «õèùíèê-æåðòâà» ïîêàæóò äàëüíåéøèå èññëåäîâàíèÿ. Áëàãîäàðíîñòè Âûðàæàþ èñêðåííþþ áëàãîäàðíîñòü äèðåêòîðó çàïîâåäíèêà Ï.Ì. Êóäàíó, âñåãäà íàõîäèâøåìó âîçìîæíîñòü âûäåëèòü àâòîòðàíñïîðò. Õî÷åòñÿ îòìåòèòü òàêæå è ñâîèõ êîëëåã Â.Í. Ëóêàøåâè÷à è Â.×. Äîìáðîâñêîãî çà äèñêóññèè è öåííûå óêàçàíèÿ. È îñîáóþ áëàãîäàðíîñòü õî÷ó âûñêàçàòü Í.Í. Ïèí÷óê çà ïîìîùü â ñáîðå ìàòåðèàëà, à òàêæå äðóãèì ñïåöèàëèñòàì Íàó÷íîãî îòäåëà ýêîëîãèè ôàóíû ÏÃÐÝÇ: À.À. Êîñàðþ, À.À. Êîðíèåíêî, Â.À. Øàðêåâè÷ó è Ä.Î. Øàòèëî. Ëèòåðàòóðà Âèíîêóðîâ À.À. Ðåäêèå ïòèöû ìèðà. Ì.: Àãðîïðîìèçäàò, 1987. 207 ñ. [Vinokurov A.A. Rare birds of World. Moscow, 1987: 1–207 (in Russian)]. Ãàâðèëþê Ì.Í. Èçìåíåíèå ÷èñëåííîñòè îðëàíà-áåëîõâîñòà íà òåððèòîðèè Óêðàèíû â XX ñòîëåòèè è âîçìîæíûå èõ ïðè÷èíû – Áåðêóò. 2004. Ò. 13. Âûï. 2. Ñ. 205–225. [Gavrilyuk M.N.

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ Population trends of the White-Tailed Eagle in Ukraine during XX century and probable their reasons. – Berkut. 2004. 13 (2): 205–225 (in Russian with English summary)]. URL: http://aetos.narod. ru/online/berkut13-2/ecology13-2-4.pdf Äàòà îáðàùåíèÿ: 25.02.2016. Ãàâðèëþê Ì. Ìîíèòîðèíã ïîïóëÿöèè îðëàíà-áåëîõâîñòà â Ñðåäíåì Ïðèäíåïðîâüå. – Óêðàèíñêèé öåíòð èññëåäîâàíèé õèùíûõ ïòèö. 2011. [Gavrilyuk M. 2011. Monitoring of the population of the White-tailed Eagle in the Middle Dnieper. – Ukrainian Birds of Prey Research Centre. 2011 (in Russian)]. URL: http://raptors. org.ua/ru/339 Äàòà îáðàùåíèÿ: 25.02.2016. Ãàâðèëþê Ì.Í., Ãðèùåíêî Â.Í., Äîìàøåâñêèé Ñ.Â., Ëîïàðåâ Ñ.À. Ïèòàíèå îðëàíà-áåëîõâîñòà íà Ñðåäíåì Äíåïðå: ïðåäâàðèòåëüíûå ðåçóëüòàòû. – Àêòóàëüíûå ïðîáëåìû èçó÷åíèÿ è îõðàíû ïòèö Âîñòî÷íîé Åâðîïû è Ñåâåðíîé Àçèè: Ìàò. ìåæä. êîíô. (IX Îðíèòîëîãè÷åñêàÿ êîíôåðåíöèÿ). Êàçàíü: Èçä-âî «Ìàòáóãàò éîðòû», 2001. Ñ. 163–164. [Gavrilyuk M.N., Grishchenko V.N., Domashevsky S.V., Loparev S.A. Diet of the White-Tailed Eagle in the Middle Dnieper: Preliminary Results. – Actual problems of study and protection of birds of Eastern Europe and Northern Asia: Proceedings of the International Conference (IX Ornithological Conference). Kazan, 2001: 163–164 (in Russian)]. URL: http://ecoclub.nsu.ru/raptors/publicat/raptors/ Kazan_2001.pdf Äàòà îáðàùåíèÿ: 25.02.2016. Ãðèùåíêî Â.Í., Ãàâðèëþê Ì.Í. Îðëàí-áåëîõâîñò â Êàíåâñêîì çàïîâåäíèêå è åãî îêðåñòíîñòÿõ. – Õèùíûå ïòèöû â äèíàìè÷åñêîé ñðåäå ²²² òûñÿ÷åëåòèÿ: ñîñòîÿíèå è ïåðñïåêòèâû. Òðóäû VI Ìåæäóíàðîäíîé êîíôåðåíöèè ïî ñîêîëîîáðàçíûì è ñîâàì Ñåâåðíîé Åâðàçèè. ã. Êðèâîé Ðîã, 27–30 ñåíòÿáðÿ 2012 ã. Êðèâîé Ðîã, 2012. Ñ. 335–340. [Grishchenko V.N., Gavrilyuk M.N. The White-tailed Eagle in Kaniv Reserve and its surroundings. – Birds of Prey in the Dynamic Environment of the Third Millenium: Status and Prospects. Proceedings of the 6th International Conference on Birds of Prey and Owls of North Eurasia, Kryvyi Rih, 27–30 September 2012. Kryvyi Rih, 2012: 335–340 (in Russian)]. URL: http://rrrcn.ru/wp-content/uploads/2014/05/ Pdf_txt/Raptors2012.pdf Äàòà îáðàùåíèÿ: 27.02.2016. Ãàëóøèí Â.Ì. Õèùíûå ïòèöû ëåñà. Ì.: Ëåñíàÿ ïðîìûøëåííîñòü, 1980. 158 ñ. [Galushin V.M. Birds of prey of the forest. Moscow, 1980: 1–158 (in Russian)]. Äåìåíòüåâ Ã.Ï. Îòðÿä õèùíûå ïòèöû: Accipitres èëè Falconiformes. – Ïòèöû Ñîâåòñêîãî Ñîþçà. Ò. 1. Ì.: Ñîâ. Íàóêà, 1951. Ñ. 70–341. [Dementiev G.P. Birds of prey: Accipitres or Falconiformes. – Birds of the Soviet Union. Vol. 1. Moscow, 1951: 70–341 (in Russian)]. URL: http://rrrcn.ru/ru/archives/14389 Äàòà îáðàùåíèÿ: 27.02.2016. Äîíàóðîâ Ñ.Ñ. Ðàñïðîñòðàíåíèå è ïèòàíèå äíåâíûõ õèùíûõ ïòèö â Ïå÷îðñêî-Ûëû÷ñêîì çàïîâåäíèêå. – Òðóäû Ïå÷îðñêî-Ûëû÷ñêîãî çà-


Raptor Research

Raptors Conservation 2016, 32 ïîâåäíèêà. 1948. Âûï. 4. ×. 2. Ñ. 67–87. [Donaurov S.S. Distribution and feeding of birds of prey in the Pechorsko-Ylychskiy Nature Reserve. – Proceedings of the Pechorsko-Ylychskiy Nature Reserve. 1948. 4 (2): 67–87 (in Russian)]. Èâàíîâñêèé Â.Â. Õèùíûå ïòèöû Áåëîðóññêîãî Ïîîçåðüÿ. Âèòåáñê: ÓÎ «ÂÃÓ èì. Ï.Ì. Ìàøåðîâà», 2012. 209 ñ. [Ivanovsky V.V. The Birds of Prey in the Belorussian Poozerie. Vitebsk, 2012: 1–209]. URL: http://rrrcn.ru/ru/archives/24498 Äàòà îáðàùåíèÿ: 27.02.2016. Êàðÿêèí È.Â. Ïåðíàòûå õèùíèêè Óðàëüñêîãî ðåãèîíà. Ñîêîëîîáðàçíûå (Falconiformes), Ñîâîîáðàçíûå (Strigiformes). Ïåðìü: ÖÏÈ ÑÎÆ Óðàëà / ÑîÝÑ, 1998. 483 ñ. [Karjakin I.V. Raptors of the Ural region. Falconiformes (Falconiformes), Owls (Strigiformes). Perm, 1998: 1–483 (in Russian)]. URL: http://docs.sibecocenter.ru/programs/raptors/Publ/Raptors_of_Ural.pdf Äàòà îáðàùåíèÿ: 27.02.2016. Êðàñíàÿ êíèãà ÐÑÔÑÐ (æèâîòíûå) / Í.Â. Åëèñååâ (ðåä.). Ì. Ðîññåëüõîçèçäàò, 1985. 454 ñ. [The Red Data Book of the RSFSR (the animals) / N.V. Eliseev (Eds.). Moscow, 1985: 1–454 (in Russian)]. Ëîïàðåâ Ñ.À. Èíòåðåñíûé ñëó÷àé êëåïòîïàðàçèòèçìà. – Áåðêóò. 1997. Ò. 6. Âûï. 1–2. Ñ. 69. [Loparev S.A. An interesting case of the cleptoparasitism – Berkut. 1997. 6 (12): 69 (in Russian)]. URL: http://aetos.narod.ru/pdf/berkut/berkut6.pdf Äàòà îáðàùåíèÿ: 27.02.2016. Ìàëü÷åâñêèé À.Ñ., Ïóêèíñêèé Þ.Á. Ïòèöû Ëåíèíãðàäñêîé îáëàñòè è ñîïðåäåëüíûõ òåððèòîðèé: èñòîðèÿ, áèîëîãèÿ, îõðàíà. Ò. 1.  2-õ òîìàõ. Ë.: Èçä-âî Ëåíèíãð. óí-òà, 1983. 480 ñ. [Malchevsky A.S., Pukinsky Yu.B. Birds of the Leningrad region and adjacent areas: history, biology, conservation. Vol. 1. Leningrad, 1983: 1–480 (in Russian)]. Ï÷åëèíöåâ Â.Ã. Îðëàí-áåëîõâîñò íà ñåâåðîçàïàäå Ðîññèè (Ëåíèíãðàäñêàÿ, Íîâãîðîäñêàÿ, Ïñêîâñêàÿ îáëàñòè). – Àêòóàëüíûå ïðîáëåìû èçó÷åíèÿ è îõðàíû ïòèö Âîñòî÷íîé Åâðîïû è Ñåâåðíîé Àçèè: Ìàò. ìåæä. êîíô. (IX Îðíèòîëîãè÷åñêàÿ êîíôåðåíöèÿ). Êàçàíü: Èçä-âî «Ìàòáóãàò éîðòû», 2001. Ñ. 515–516. [Pchelintsev V.G. White-Tailed Eagle in the northwest of Russia (Leningrad, Novgorod and Pskov regions). – Actual problems of study and protection of birds of Eastern Europe and Northern Asia: Proceedings of the International Conference (IX Ornithological Conference). Kazan, 2001: 515–516 (in Russian)]. URL: http://ecoclub.nsu.ru/raptors/publicat/raptors/Kazan_2001.pdf Äàòà îáðàùåíèÿ: 25.02.2016. Ðûáû: Ïîïóëÿðíûé ýíöèêëîïåäè÷åñêèé ñïðàâî÷íèê / Ïîä ðåä. Ï. È. Æóêîâà. Ìí.: ÁåëÑÝ, 1989. 311 ñ. [Fish: Popular encyclopedic reference book / P.I. Zhukov Eds. Minsk, 1989: 1–311 (in Russian)]. Ðûêîâà Ñ.Þ. Ïòèöû Áåëîìîðñêî-Êóëîéñêîãî ïëàòî: ìîíîãðàôèÿ. Àðõàíãåëüñê, 2013. 188 ñ. [Rykova S.Yu. Birds of the White Sea-Kuloi plateau: Monograph. Arkhangelsk, 2013: 1–188 (in Russian)].

31

Ðÿáîâ È.Í. Ðàäèîýêîëîãèÿ ðûá âîäî¸ìîâ â çîíå âëèÿíèÿ àâàðèè íà ×åðíîáûëüñêîé ÀÝÑ: ïî ìàòåðèàëàì ýêñïåäèöèîííûõ èññëåäîâàíèé. Ì.: Òîâàðèùåñòâî íàó÷íûõ èçäàíèé ÊÌÊ. 2004. 215 ñ. [Ryabov I.N. Radioecology of fish in the waterbodies in the zone of the Chernobyl accident: Based on field research. Moscow, 2004: 1–215 (in Russian)]. Ñïèðèäîíîâ Ñ.Í., Ãðèøóòêèí Ã.Ô., Ëàïøèí À.Ñ., Ðó÷èí À.Á. Î ïèòàíèè îðëàíà-áåëîõâîñòà â Ìîðäîâñêîì çàïîâåäíèêå, Ðîññèÿ. – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2011, ¹ 21. Ñ. 172–175. [Spiridonov S.N., Grishutkin G.F., Lapshin A.S., Ruchin A.B. The Diet of the White-Tailed Eagle in the Mordovsky State Nature Reserve, Russia. – Raptors Conservation. 2011. 21: 172–175]. http://rrrcn.ru/ru/archives/15521 Äàòà îáðàùåíèÿ: 27.02.2016. Ôåäþøèí À.Â., Äîëáèê Ì.Ñ. Ïòèöû Áåëîðóññèè. Ìí., 1967. 520 ñ. [Fedyushin A.V., Dolbik M.S. Birds of Belarus. Mn. 1967: 1–520 (in Russian)]. Øàøêèí Ì.Ì. Ðàñïðîñòðàíåíèå, ÷èñëåííîñòü è ýêîëîãèÿ îðëàíà-áåëîõâîñòà (Haliaeetus albicilla Linnaeus, 1758) â ñðåäíåì Ïîâîëæüå. – Âåñòíèê ÎÃÓ. 2010. ¹ 6 (112). Ñ. 99–102. [Shashkin M.M. Distribution, population and ecology of White-Tailed Eagle (Haliaeetus albicilla Linnaeus, 1758) in the Middle Volga region. – Vestnik of OSU. 2010. 6 (112): 99–102 (in Russian)]. URL: http://vestnik.osu.ru/2010_6/23.pdf Äàòà îáðàùåíèÿ: 27.02.2016. Þðêî Â.Â. Ãíåçäîâàÿ áèîëîãèÿ îðëàíà-áåëîõâîñòà â Ïîëåññêîì ãîñóäàðñòâåííîì ðàäèàöèîííî-ýêîëîãè÷åñêîì çàïîâåäíèêå, Áåëàðóñü. – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2015. ¹ 30. Ñ. 94–103. doi: 10.19074/18148654-2015-30-94-103 [Yurko V.V. Breeding Biology of the White-Tailed Eagle in the Polesie State Radiation-Ecological Reserve, Belarus. – Raptors Conservation. 2015. 30: 94–103. doi: 10.19074/1814-8654-2015-30-94-103]. http://rrrcn.ru/ru/archives/25978 Äàòà îáðàùåíèÿ: 27.02.2016. Mlíkovský J. Food of the White-Tailed Sea Eagle (Haliaeetus albicilla) at Lake Baikal, East Siberia. – Slovak Rapt. J. 2009: 3: 35–39. URL: http://www.nm.cz/download/pm/zoo/mlikovsky_lit/235 – 2009 – Haliaeetus-food-Baikal.pdf Äàòà îáðàùåíèÿ: 25.02.2016. Fischer W. Die Seeadler. Verlag: Westarp Wissenschaften, 2005: 1–192. Samusenko I. Ungewöhliche Jagd eines Seeadler – Paares auf einen Weißstorch. – Ornithologishe Mitteilungen. 1996. Vol. 48, ¹ 5. S. 131. Sandor A.D, Alexe V., Marinov M., Dorosencu A., Domsa C., Kiss B.J. Nest-s–ite selection, breeding success, and diet of White-Tailed Eagles (Haliaeetus albicilla) in the Danube Delta, Romania. – Turk. J. Zool. 2015. 39 (2): 300–307. URL: http://journals.tubitak.gov.tr/zoology/issues/ zoo-15-39-2/zoo-39-2-12-1401-64.pdf Äàòà îáðàùåíèÿ: 25.02.2016.


32

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ

Birds of Prey at the International Airport “Strigino”, Russia ХИЩНЫЕ ПТИЦЫ МЕЖДУНАРОДНОГО АЭРОПОРТА «СТРИГИНО», РОССИЯ Kolesova N.E. (Lobachevsky State University of Nizhny Novgorod, Russia), Strizhova S.V. (Municipal Unitary Enterprise “Blagoustroistvo”, Pavlovo, Russia) Колесова Н.Е. (Нижегородский университет имени Н.И. Лобачевского, Нижний Новгород, Россия), Стрижова С.В. (МУП «Благоустройство», Павлово, Россия)

Êîíòàêò: Íàäåæäà Êîëåñîâà 603098, Ðîññèÿ, Í. Íîâãîðîä, óë. Ïóøêèíà, 27–28. altair.5@yandex.ru Ñâåòëàíà Ñòðèæîâà 606100, Ðîññèÿ, Íèæåãîðîäñêàÿ îáëàñòü, Ïàâëîâî, óë. Êîììóíèñòè÷åñêàÿ, 29–4. ecoproekt.g@yandex.ru Contact: Nadezhda Kolesova Pushkina str., 27–28 N. Novgorod, Russia, 603098 altair.5@yandex.ru Svetlana Strizhova Kommunisticheskaya str., 29–4 Pavlovo, Nizhny Novgorod region, Russia, 606100 ecoproekt.g@yandex.ru

Ðåçþìå  ñòàòüå ïðèâîäÿòñÿ ìàòåðèàëû ïî ñåçîííîé äèíàìèêå è ïëîòíîñòè íàñåëåíèÿ õèùíûõ ïòèö íèæåãîðîäñêîãî àýðîïîðòà «Ñòðèãèíî», ñîáðàííûå çà ïåðèîä ñ íîÿáðÿ 2013 ã. ïî íîÿáðü 2014 ã. Âñåãî çà ýòî âðåìÿ áûëà çàðåãèñòðèðîâàíà 71 âñòðå÷à 9 âèäîâ õèùíûõ ïòèö è îòìå÷åíî ãíåçäîâàíèå 1 âèäà: áîëîòíîãî ëóíÿ (Circus aeruginosus). Âûÿâëåíà ñåçîííàÿ äèíàìèêà ÷èñëåííîñòè è âèäîâîãî ñîñòàâà ñîêîëîîáðàçíûõ íà òåððèòîðèè àýðîïîðòà. Íàèáîëüøåé ïëîòíîñòè è âèäîâîãî áîãàòñòâà íàñåëåíèå ïåðíàòûõ õèùíèêîâ äîñòèãàåò â êîíöå èþíÿ – èþëå, ñåíòÿáðå è àïðåëå. Ëåòíèé ïèê ÷èñëåííîñòè îáóñëîâëåí ÷àñòûìè âñòðå÷àìè îõîòÿùèõñÿ õèùíûõ ïòèö, ÷üè ãí¸çäà ðàñïîëîæåíû íà òåððèòîðèè àýðîïîðòà èëè âáëèçè íåãî. Òàêæå, óâåëè÷åíèå ÷èñëåííîñòè ïðîèñõîäèò è çà ñ÷¸ò âûëåòà ïòåíöîâ. Îñåííèé è âåñåííèé ïèêè ïëîòíîñòè íàñåëåíèÿ ïåðíàòûõ õèùíèêîâ ñâÿçàíû ñ ÷àñòûìè âñòðå÷àìè ñîêîëîîáðàçíûõ íà ïðîë¸òå âî âðåìÿ ñåçîííûõ ìèãðàöèé. Íàèáîëåå áåäíî íàñåëåíèå õèùíûõ ïòèö àýðîïîðòà â çèìíèé ïåðèîä. Êëþ÷åâûå ñëîâà: õèùíûå ïòèöû, ñîêîëîîáðàçíûå, àýðîïîðò, îðíèòîëîãè÷åñêàÿ áåçîïàñíîñòü ïîë¸òîâ. Ïîñòóïèëà â ðåäàêöèþ: 24.01.2016 ã. Ïðèíÿòà ê ïóáëèêàöèè: 28.02.2016 ã. Abstract In this article we discuss the seasonal dynamics and population density of Birds of Prey at the Nizhniy Novgorod International airport “Strigino”, based on data collected from November, 2013 to November, 2014. During this period a total of 71 raptors of 9 species were observed, including one breeding species – the Eurasian Marsh Harrier (Circus aeruginosus). The seasonal population dynamics and species composition of Birds of Prey on the territory of the airport was studied. The highest population density and species number occurred during end of June – July, in September and in April. The summer population peak was caused by regular observations of hunting birds, whose nests were located on the territory of the airport and in the close vicinity. Young birds also made a contribution to this peak. Autumn and spring population peaks were caused by more frequent observations of migrating raptors during the seasonal migrations. The lowest number of raptors in the airport was observed in winter. Keywords: birds of prey, Falconiformes, Airport, ornithological safety. Received: 24/01/2016. Accepted: 28/02/2016. DOI: 10.19074/1814-8654-2016-32-32-38

Ââåäåíèå  ñâÿçè ñ èíòåíñèâíûì ðàçâèòèåì àâèàöèè â êîíöå ÕÕ – íà÷àëå ÕÕI âåêîâ ïðîáëåìà îáåñïå÷åíèÿ áåçîïàñíîñòè ïîë¸òà àâèàñóäîâ, â ò.÷. è ïðåäîòâðàùåíèå ñòîëêíîâåíèÿ ñàìîë¸òîâ ñ ïòèöàìè ñòàíîâèòñÿ îñîáåííî àêòóàëüíîé.  çàâèñèìîñòè îò ãåîãðàôè÷åñêîãî ïîëîæåíèÿ è ðÿäà äðóãèõ ñïåöèôè÷åñêèõ óñëîâèé, êàæäûé àýðîïîðò (àýðîäðîì) èìååò ñâîé êîìïëåêñ âèäîâ ïòèö, â òîì ÷èñëå è îïàñíûõ äëÿ ñàìîë¸òîâ (ßêîáè, 1974). Íå âñå ïåðíàòûå îäèíàêîâî îïàñíû äëÿ âîçäóøíûõ ñóäîâ. Ðåàëüíóþ óãðîçó ïðåäñòàâëÿþò ïòèöû ìàññîé áîëåå ïîëóêèëîãðàììà. Ïðè÷¸ì, ÷åì êðóïíåå ïòèöà, òåì ê áîëåå ñåðü¸çíûì ïîñëåäñòâèÿì ìîæåò ïðèâåñòè ñòîëêíîâåíèå ñ âîçäóøíûì ñóäíîì (Ãðàáîâñêèé, 2008). Âûñîêîé ïîòåíöèàëüíîé óãðîçîé äëÿ áåçîïàñíîñòè ïîë¸òà àâèàñóäîâ îáëàäàþò íåêîòîðûå ñî-

Introduction Due to high-speed development of aviation at the end of XX – beginning of XXI century, the issues of safeguarding aircraft became very important. Prevention of aircraft collisions with birds is one of those. The real threat to aircraft is only posed by birds with a weight of 0.5 kg and more. The size of a bird is in direct correlation with the damage it can cause to the aircraft (Grabovskiy, 2008). Some birds of prey, which could be found at the airport, breeding or migrating, have a high potential of being a real danger for the flight safety of aircraft. Thus, a reliable estimation of seasonal variations of the number of raptors, as well as accurate data on migration routes near the airports, is of great importance to provide safety both for aircraft and birds.


Raptor Research

Raptors Conservation 2016, 32 êîëîîáðàçíûå, êîòîðûå ìîãóò âñòðå÷àòüñÿ íà òåððèòîðèè àýðîïîðòîâ, êàê íà ãíåçäîâàíèè, òàê è â ïåðèîä ñåçîííûõ ìèãðàöèé. Ïî ìíåíèþ Ì.À. Ãðàáîâñêîãî (2008) ýòî îáóñëîâëåíî ýêîëîãè÷åñêîé ïðèâëåêàòåëüíîñòüþ àýðîäðîìîâ äëÿ áîëüøîé ãðóïïû õèùíûõ ïòèö, îáèòàþùèõ â îòêðûòûõ, ñëàáîîáëåñ¸ííûõ è ãîðíûõ ëàíäøàôòàõ. Çà÷àñòóþ áèîòîïû, êîòîðûå íàñåëÿþò äàííûå âèäû, ïî ëàíäøàôòíîé ñòðóêòóðå ñõîäíû ñ òåððèòîðèÿìè àýðîïîðòîâ. Êðîìå òîãî, óãðîçà ñòîëêíîâåíèÿ ïòèöû è ñàìîë¸òà âîçðàñòàåò èç-çà òîãî, ÷òî ìíîãèå õèùíèêè âî âðåìÿ îáû÷íûõ ïåðåìåùåíèé, íå êàñàþùèõñÿ îõîòíè÷üèõ áðîñêîâ è ïîë¸òîâ, ëåòàþò äîñòàòî÷íî ìåäëåííî, çà÷àñòóþ èñïîëüçóÿ âîñõîäÿùèå ïîòîêè, è íå âîñïðèíèìàþò áûñòðî ïðèáëèæàþùèéñÿ îáúåêò êàê âîçìîæíóþ îïàñíîñòü (Áàðàáàøèí è äð., 2011). Ïîýòîìó, òî÷íàÿ îöåíêà ñåçîííûõ èçìåíåíèé ÷èñëåííîñòè, à òàêæå âûÿâëåíèÿ ïóòåé ïðîë¸òà ïåðíàòûõ õèùíèêîâ âáëèçè àýðîïîðòîâ íåîáõîäèìû äëÿ îðãàíèçàöèè ðàáîò ïî îïòèìèçàöèè áåçîïàñíîñòè ïîë¸òîâ àâèàñóäîâ è ïðåäîòâðàùåíèÿ ãèáåëè ñàìèõ ïòèö. Ìàòåðèàë, ìåòîäèêà, òåððèòîðèÿ èññëåäîâàíèé Ìàòåðèàëîì äëÿ ðàáîòû ïîñëóæèëè äàííûå, ñîáðàííûå â õîäå ïðîâåäåíèÿ îðíèòîëîãè÷åñêîãî îáñëåäîâàíèÿ Ìåæäóíàðîäíîãî àýðîïîðòà «Ñòðèãèíî». Àýðîïîðò ðàñïîëîæåí ó þãî-çàïàäíîé ãðàíèöû ã. Íèæíåãî Íîâãîðîäà â ïðèðóñëîâîé íèçèííîé ÷àñòè îêñêîé äîëèíû è â

Àýðîïðîò «Ñòðèãèíî». International Airport “Strigino”.

33

Material, methods and study area This study is based on data collected during an ornithological survey of the International airport “Strigino”. The airport is situated at the south-west border of Nizhniy Novgorod, 18 km from the confluence of rivers Volga and Oka. The predominant landscape in the area is a lowland meadow. Some parts of it are regularly tended into a lawn, the other parts are covered by 50–70 cm tall grass. At the periphery of the airport’s territory, meadows give place to a 10–15-year-old deciduous and coniferous forest undergrowth. The northern part of the airport is considerably water-logged, and drainage channels and small reservoirs are located here to collect floodwater and drain the water. Throughout the airport area, there are scattered active and abandoned buildings. The runways are located in the centre of the airport territory. Ornithological surveys were conducted from November of 2013 to November of 2014. To determine the abundance of species we used a line transect counting method without limitation of the count-stripe breadth (Ravkin, 1967). The counting route stretched along the perimeter of the airport and its length was 12 km. Results In total 9 species of birds of prey (Falconiformes) were observed (table 1, 2, 3). Most of them were encountered during the breeding season or spring and autumn migrations. Only one species – the Eura-


34

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ Âçë¸òíî-ïîñàäî÷íàÿ ïîëîñà àýðîïîðòà «Ñòðèãèíî». “Strigino” airport runway.

sian Marsh Harrier (Circus aeruginosus) was breeding directly on the territory of the airport. Its nest was located in the swampy area in the northern part of the airport. The seasonal dynamics in species composition and the number of birds of prey is presented in Tables 1, 2 and 3, and depicted in fig. 1. One migrating individual of White-Tailed Eagle (Haliaeetus albicilla) was spotted near the airport in October, 2013. 18 êì îò ìåñòà ñëèÿíèÿ ð. Îêè è ð. Âîëãè. Ðàçíîîáðàçíûå ïðèðîäíûå óñëîâèÿ â ðàäèóñå 30-êèëîìåòðîâîé çîíû îò àýðîïîðòà îáåñïå÷èâàþò áëàãîïðèÿòíûå óñëîâèÿ äëÿ ìàññîâîãî ãíåçäîâàíèÿ, ñáîðà êîðìà è îòäûõà ïòèö â ïåðèîä ñåçîííûõ ìèãðàöèé è îñåííå-çèìíèõ êî÷¸âîê (Ìîëîäîâñêèé, Çàëîçíûõ, 1999). Íà åãî òåððèòîðèè ïðåîáëàäàþò íèçèííûå ðàçíîòðàâíûå ëóãà. Èìåþòñÿ ó÷àñòêè êàê ñ ïåðèîäè÷åñêè âûñòðèãàåìûì ãàçîíîì, òàê è ñ âûñîòîé òðàâÿíîãî ïîêðîâà äî 50–70 ñì. Ïî ïåðèôåðèè ëóãà ñìåíÿþòñÿ 10–15-ëåòíèì ìîëîäûì ïîäðîñòîì ëèñòâåííûõ èëè õâîéíûõ ïîðîä. Ñåâåðíàÿ ÷àñòü àýðîïîðòà ñèëüíî îáâîäíåíà. Çäåñü ðàñïîëîæåíû ìåëèîðàöèîííûå êàíàëû è ïîíèæåíèÿ äëÿ ñêîïëåíèÿ ïàâîäêîâûõ è äðåíàæíûõ âîä. Íà òåððèòîðèè è â ðàäèóñå 1 êì îò àýðîïîðòà ìîæíî âûäåëèòü íå ìåíåå 8 ìåëêèõ âîäî¸ìîâ. Íåáîëüøóþ ÷àñòü çàíèìàþò àäìèíèñòðàòèâíûå çäàíèÿ, àíãàðû, ñêëàäû è ò.ï., ïî âñåé òåððèòîðèè àýðîïîðòà «ðàçáðîñàíû» äåéñòâóþùèå è çàáðîøåííûå õîçÿéñòâåííûå ñòðîåíèÿ.  öåíòðå íàõîäÿòñÿ âçë¸òíî-ïîñàäî÷íûå ïîëîñû, ïðîòÿæ¸ííîñòüþ 2,8 è 2,5 êì, íàïðàâëåíèåì ñåâåð-þã. Ïîäîáíîå ñî÷åòàíèå ïðèðîäíûõ óñëîâèé äåëàåò òåððèòîðèþ àýðîïîðòà âåñüìà ïðèâëåêàòåëüíîé äëÿ õèùíûõ ïòèö è èõ æåðòâ. Èññëåäîâàíèÿ ïðîâîäèëèñü â ïåðèîä ñ íîÿáðÿ 2013 ã. ïî íîÿáðü 2014 ã. Äëÿ ïîëó÷åíèÿ äàííûõ ïî ÷èñëåííîñòè âèäîâ íàìè èñïîëüçîâàëñÿ ìåòîä ó÷¸òà ïòèö íà íåîãðàíè÷åííîé ïîëîñå (Ðàâêèí, 1967). Ìàðøðóò ïðîõîäèë ïî ïåðèìåòðó àýðîïîðòà, è äëèíà åãî ñîñòàâëÿëà 12 êì.  ëåòíåå âðåìÿ ó÷¸ò ïðîâîäèëñÿ 3 ðàçà â ñóòêè (óòðîì, äí¸ì è âå÷åðîì) 2 ðàçà â ìåñÿö; âåñíîé, îñåíüþ è çèìîé – â ïåðâóþ è âî âòîðóþ ïîëîâèíó äíÿ 1 ðàç â ìåñÿö. Ôèêñèðîâàëèñü âñå îñîáè, êîòîðûå îõîòèëèñü, îòäû-

Discussion The raptor populations of the “Strigino” airport have distinct seasonal dynamics. We observed the maximum number of birds at the end of June and in July (fig. 1). This peak is caused by the regular observations of Marsh Harriers that breed and hunt on the meadow bogs in the northern part of the airport. The population density of this species was 4–7 ind. per km² in June-July. Observations of small falcons such as Common Kestrel (Falco tinnunculus) and Hobby (Falco subbuteo) also became more frequent in June–July. These species became very conspicuous at the period when young birds leave the nests. Eurasian Sparrowhawk (Accipiter nisus) and Common Buzzard (Buteo buteo) that apparently breed not far from the airport were also frequently seen along the transect. Vast meadows and shrubs surrounding the runway appear to be very attractive for numerous species of small passerine birds and murines. Thus, birds of prey actively use this area for hunting. Black Kites (Milvus migrans) were seen repeatedly during the aforementioned period of the year. Black Kites regularly fly along the northern boundaries of the airport towards a large garbage-dump. Since the Kites often fly at around 80 meters above ground and higher, they regularly cross take-off and landing routes of the aircraft, posing a real threat both to themselves and the airplanes. Two other peaks of raptor population density in the airport occur at the times of spring and autumn migrations (fig. 1). For instance, in September, the bird population density reached 2.50 ind. per km²,


Raptor Research

Raptors Conservation 2016, 32 õàëè èëè ïðîëåòàëè íàä ýòîé òåððèòîðèåé. Âñåãî ìàðøðóòîì çà âðåìÿ èññëåäîâàíèé ïðîéäåíî 324 êì. Òàêæå, äëÿ óòî÷íåíèÿ ðåçóëüòàòîâ, åæåìåñÿ÷íî ïðîâîäèëèñü íàáëþäåíèÿ íà 2 òî÷êàõ, ðàñïîëîæåííûõ ó ñåâåðíîé è þæíîé ãðàíèö àýðîïîðòà. Äëÿ âèçóàëüíîãî îïðåäåëåíèÿ èñïîëüçîâàëèñü áèíîêëè ñ 7- è 20-êðàòíûì óâåëè÷åíèåì. Ðåçóëüòàòû Âñåãî çà âðåìÿ íàáëþäåíèé íàìè áûëî çàôèêñèðîâàíî 9 âèäîâ õèùíûõ ïòèö, îòíîñÿùèõñÿ ê îòðÿäó ñîêîëîîáðàçíûå (Falconiformes) (òàáë. 1, 2, 3). Áîëüøàÿ ÷àñòü èç íèõ áûëà âñòðå÷åíà â ãíåçäîâîé ïåðèîä è âî âðåìÿ âåñåííå-îñåííèõ ìèãðàöèé. Íà ãíåçäîâàíèè, íåïîñðåäñòâåííî íà òåððèòîðèè àýðîïîðòà, îòìå÷åí òîëüêî 1 âèä – áîëîòíûé ëóíü (Circus aeruginosus). Ãíåçäî ðàñïîëàãàëàñü â ñåâåðíîé çàáîëî÷åííîé ÷àñòè àýðîïîðòà. Ëóíè îõîòèëèñü çäåñü æå, íàä ëóãîâèíàìè. Îñòàëüíûå ïòèöû èñïîëüçîâàëè äàííóþ òåððèòîðèþ òîëüêî â êà÷åñòâå ìåñò îõîòû â ãíåçäîâîé ïåðèîä: êàíþê (Buteo buteo), ïåðåïåëÿòíèê (Accipiter nisus), ïóñòåëüãà

35

and in April, 1.11 ind. per km2 (table 1). We observed Sparrowhawks on migration in September, Common Buzzards in October, and one individual of Rough-Legged Buzzard (Buteo lagopus) hunting in the northern part of the airport was observed in November. In spring, the maximum of raptor population density was observed in April (fig. 1), and most observations were of Marshharriers arriving to the breeding area, and of Common Buzzards migrating from the south. However, the number of individuals and species of raptors during the seasonal migrations, is lower than expected for a territory like this, with good foraging qualities. It seems that the main migration routes of birds of prey, as well as of other bird species, lies several km to the south and stretches along the river Oka (Noskova, Smirnova, 2015). The lowest number of birds of prey is seen in winter. We observed only one species of raptor during the bird count – a

Òàáë. 1. Ïëîòíîñòü íàñåëåíèÿ õèùíûõ ïòèö íà òåððèòîðèè àýðîïîðòà «Ñòðèãèíî» â êîíöå âåñíû è ëåòíèé ïåðèîä, îñîáåé/êì2. Table 1. The population density of birds of prey in the airport “Strigino” in the late spring and summer, ind. per km2.

Âèä Species ׸ðíûé êîðøóí Black Kite (Milvus migrans) ßñòðåá-òåòåðåâÿòíèê Northern Goshawk (Accipiter gentilis) ßñòðåá-ïåðåïåëÿòíèê Eurasian Sparrowhawk (Accipiter nisus) Îáûêíîâåííûé êàíþê Common Buzzard (Buteo buteo) Ëóãîâîé ëóíü Montagu’s Harrier (Circus pygargus) Áîëîòíûé ëóíü Eurasian Marsh-harrier (Circus aeruginosus) Îáûêíîâåííàÿ ïóñòåëüãà Common Kestrel (Falco tinnunculus) ×åãëîê Eurasian Hobby (Falco subbuteo) Îáùàÿ ïëîòíîñòü Total density

Èþíü Èþëü (âòîðàÿ (ïåðâàÿ ïîëîâèíà) ïîëîâèíà) June July (second half) (first half) 0.3 0

Ïëîòíîñòü ðàñïðåäåëåíèÿ, îñ./êì2 Population density, ind. per km2 Èþëü Àâãóñò Àâãóñò (âòîðàÿ (ïåðâàÿ (âòîðàÿ ïîëîâèíà) ïîëîâèíà) ïîëîâèíà) July August August (second half) (first half) (second half) 0.9 0.02 0.2

Ìàé May 0

Èþíü (ïåðâàÿ ïîëîâèíà) June (first half) 0.3

0

0

0

0

0

0

0.09

0

0.9

0.9

0

2

0

0

0.008

0.02

0.9

0

0

0.02

0

2

0

0

0

0

0

2

4

7

4

0.3

0

0

0

0.09

0.9

0.9

0

0

0.09

0

0

0.3

0

0

0

0.3

2.008

7.31

10.3

4.9

3.2

0.04

0.68


36

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ

Òàáë. 2. Ïëîòíîñòü íàñåëåíèÿ õèùíûõ ïòèö íà òåððèòîðèè àýðîïîðòà «Ñòðèãèíî» â îñåííå-çèìíèé ïåðèîä è íà÷àëå âåñíû, îñîáåé/êì2. Table 2. The population density of birds of prey in the airport “Strigino” in autumn and winter and early spring, ind. per km2.

Âèä Species ßñòðåá-òåòåðåâÿòíèê Northern Goshawk (Accipiter gentilis) ßñòðåá-ïåðåïåëÿòíèê Eurasian Sparrowhawk (Accipiter nisus) Îáûêíîâåííûé êàíþê Common Buzzard (Buteo buteo) Ìîõíîíîãèé êàíþê Rough-legged Buzzard (Buteo lagopus) Áîëîòíûé ëóíü Eurasian Marsh-harrier (Circus aeruginosus) Îáùàÿ ïëîòíîñòü Total density

Ñåíòÿáðü September 0.9

Îêòÿáðü October 0

Íîÿáðü November 0

Äåêàáðü December 0

Ìàðò March 0.56

Àïðåëü April 0

0.9

0.9

0

0.42

0

0

0.8

0

0

0

0

0.8

0

0

0.13

0

0

0

0

0

0

0

0

1.11

2.5

0.9

0.13

0.42

0.56

1.91

* â ÿíâàðå è ôåâðàëå õèùíûå ïòèöû íà òåððèòîðèè àýðîïîðòà âðåìÿ ó÷¸òîâ íå îòìå÷åíû / No birds of prey were observed in the airport in January and February Òàáë. 3. Êîëè÷åñòâî âñòðå÷ è ìàêñèìàëüíàÿ ïëîòíîñòü íàñåëåíèÿ õèùíûõ ïòèö íà òåððèòîðèè àýðîïîðòà «Ñòðèãèíî» â òå÷åíèå ãîäà. Table 3. The number of records and the maximum population density of birds of prey in the airport “Strigino” within a year.

Âèä Species

Êîëè÷åñòâî âñòðå÷ Records

Ìàêñèìàëüíàÿ ïëîòíîñòü (îñîáåé/êì2) Maximum density (ind. per km2)

׸ðíûé êîðøóí / Black Kite (Milvus migrans)

9

0.9 (êîíåö èþëÿ / end of July)

ßñòðåá-òåòåðåâÿòíèê Northern Goshawk (Accipiter gentilis)

6

0.9 (ñåíòÿáðü / September)

13

2 (êîíåö èþëÿ / end of July)

Îáûêíîâåííûé êàíþê Common Buzzard (Buteo buteo)

8

0.9 (êîíåö èþíÿ / end of June)

Ìîõíîíîãèé êàíþê Rough-Legged Buzzard (Buteo lagopus)

1

0.13 (íîÿáðü / November)

Ëóãîâîé ëóíü / Montagu’s Harrier (Circus pygargus)

1

2 (íà÷àëî èþíÿ / beginning of June)

23

7 (êîíåö èþíÿ / end of June)

Îáûêíîâåííàÿ ïóñòåëüãà Common Kestrel (Falco tinnunculus)

8

0.9 (êîíåö èþíÿ – íà÷àëî èþëÿ end of June – beginning of July)

×åãëîê / Eurasian Hobby (Falco subbuteo)

2

0.3 (êîíåö èþíÿ / end of June)

ßñòðåá-ïåðåïåëÿòíèê Eurasian Sparrowhawk (Accipiter nisus)

Áîëîòíûé ëóíü Eurasian Marsh-Harrier (Circus aeruginosus)

(Falco tinnunculus), ÷åãëîê (Falco subbuteo), èëè âî âðåìÿ ìèãðàöèé: îáûêíîâåííûé è ìîõíîíîãèé êàíþêè (Buteo lagopus). Çèìîé íàìè áûë çàôèêñèðîâàí âñåãî 1 âèä: ÿñòðåáïåðåïåëÿòíèê. Ñåçîííàÿ äèíàìèêà âèäîâîãî ñîñòàâà è ÷èñëåííîñòè õèùíûõ ïòèö îòîáðàæåíà â òàáëèöàõ 1, 2, 3 è íà ãðàôèêå (ðèñ. 1). Òàêæå, âáëèçè òåððèòîðèè àýðîïîðòà, â îêòÿáðå 2013 ã. çàìå÷åíà íà ïðîë¸òå îäèíî÷íàÿ îñîáü îðëàíà-áåëîõâîñòà (Haliaeetus albicilla). Ïòèöà ëåòåëà âäîëü ð. Îêè â þãî-çàïàäíîì íàïðàâëåíèè. Îáñóæäåíèå Íàñåëåíèå õèùíûõ ïòèö àýðîïîðòà «Ñòðèãèíî» èìååò ÷¸òêî âûðàæåííóþ ñåçîííóþ äèíàìèêó.

Sparrowhawk chasing Tree Sparrows and other small birds attracted by the birdfeeders mounted near the main terminal building. Vast meadows, forest edge, a garbage dump located nearby, and a low level of human disturbance makes the territory of “Strigino” airport quite attractive for 9 species of birds of prey. These species use the territory of the airport for hunting, and rarely for breeding. Throughout most of the year the population density of birds of prey is quite low. However, it has distinct seasonal dynamics with peaks in July, April and September, when the density of birds of prey can reach 10.3 ind. per km2.


Raptor Research

Raptors Conservation 2016, 32 Îñíîâíîé ïèê ÷èñëåííîñòè ïðèõîäèòñÿ íà êîíåö èþíÿ – èþëü (ðèñ. 1) è ñâÿçàí ñ ÷àñòûìè âñòðå÷àìè áîëîòíûõ ëóíåé, ãíåçäÿùèõñÿ è îõîòÿùèõñÿ íà çàáîëî÷åííûõ ëóãàõ ñåâåðíîé ÷àñòè àýðîïîðòà. Òàê, ïëîòíîñòü íàñåëåíèÿ äàííîãî âèäà â èþíå – èþëå ñîñòàâèëà 4–7 îñ./êì2. Ó÷àùàþòñÿ â ýòî âðåìÿ âñòðå÷è ìåëêèõ ñîêîëîâ: îáûêíîâåííîé ïóñòåëüãè è ÷åãëîêà. Îíè â ïåðèîä âûëåòà ïòåíöîâ ñòàíîâÿòñÿ îñîáåííî çàìåòíû. Íåðåäêî íà ìàðøðóòå îòìå÷àëèñü è òàêèå õèùíèêè êàê ÿñòðåá-ïåðåïåëÿòíèê è îáûêíîâåííûé êàíþê, ãíåçäÿùèåñÿ, âèäèìî, ïî ñîñåäñòâó ñ àýðîïîðòîì. Îáøèðíûå ëóãîâèíû è çàðîñëè êóñòàðíèêîâ âîêðóã âçëåòíî-ïîñàäî÷íîé ïîëîñû ÿâëÿþòñÿ âåñüìà ïðèâëåêàòåëüíûìè äëÿ ìíîãèõ ìåëêèõ âîðîáüèíîîáðàçíûõ ïòèö è ìûøåâèäíûõ ãðûçóíîâ. Ïîýòîìó ïåðíàòûå õèùíèêè àêòèâíî èñïîëüçóþò äàííóþ òåððèòîðèþ â êà÷åñòâå îõîòíè÷üèõ óãîäèé. Íåîäíîêðàòíî â ýòîò ïåðèîä áûëè çàìå÷åíû ÷¸ðíûå êîðøóíû (Milvus migrans). Ïòèöû ñîâåðøàëè ðåãóëÿðíûå ïåðåë¸òû â ñòîðîíó êðóïíîãî ïîëèãîíà áûòîâûõ îòõîäîâ âäîëü ñåâåðíîé ãðàíèöû àýðîïîðòà. Êîðøóíû ëåòÿò íà âûñîòå 80 ì è âûøå ïîïåð¸ê âçëåòíî-ïîñàäî÷íûõ ïóòåé ñàìîë¸òîâ, ÷òî âåñüìà îïàñíî êàê äëÿ ñàìèõ ïòèö, òàê è äëÿ àâèàñóäîâ.

Ðèñ. 1. Ñåçîííàÿ äèíàìèêà ïëîòíîñòè íàñåëåíèÿ õèùíûõ ïòèö àýðîïîðòà «Ñòðèãèíî». Óñëîâíûå îáîçíà÷åíèÿ: ïï – ïåðâàÿ ïîëîâèíà ìåñÿöà, âï – âòîðàÿ ïîëîâèíà ìåñÿöà. Fig. 1. Seasonal dynamics of birds of prey population density in the airport “Strigino”. Legend: fh – first half of month, sf – second half of month.

37

Äðóãèå äâà ïèêà ïëîòíîñòè íàñåëåíèÿ õèùíûõ ïòèö àýðîïîðòà ïðèõîäÿòñÿ íà âðåìÿ âåñåííå-îñåííèõ ìèãðàöèé (ðèñ. 1). Òàê, â ñåíòÿáðå ïîêàçàòåëü îáùåé ïëîòíîñòè äîñòèãàåò 2,5 îñ./êì2, à â àïðåëå – 1,11 îñ./êì2 (òàáë. 1).  ñåíòÿáðå íà ïðîë¸òå íàìè âñòðå÷åíû ÿñòðåáà-ïåðåïåëÿòíèêè, à â îêòÿáðå – îáûêíîâåííûå êàíþêè.  íîÿáðå çàôèêñèðîâàíà îäèíî÷íàÿ îñîáü ìîõíîíîãîãî êàíþêà, îõîòÿùàÿñÿ â ñåâåðíîé ÷àñòè àýðîïîðòà. Âåñíîé ïèê ïëîòíîñòè íàñåëåíèÿ õèùíûõ ïòèö àýðîïîðòà ïðèõîäèòñÿ íà àïðåëü (ðèñ. 1) è îáóñëîâëåí, â îñíîâíîì, ÷àñòûìè âñòðå÷àìè áîëîòíûõ ëóíåé, ïðèëåòåâøèõ íà ãíåçäîâàíèå, è îáûêíîâåííûõ êàíþêîâ, ìèãðèðóþùèõ ñ þãà.  öåëîì æå, íåñìîòðÿ íà ïðèãîäíûå äëÿ îõîòû òåððèòîðèè, ÷èñëåííîñòü è âèäîâîå áîãàòñòâî ïåðíàòûõ õèùíèêîâ âî âðåìÿ ñåçîííûõ ìèãðàöèé íå òàê âåëèêà, êàê ìîæíî áûëî îæèäàòü. Âèäèìî, îñíîâíûå ïóòè ïðîë¸òà êàê ñîêîëîîáðàçíûõ, òàê è äðóãèõ âèäîâ ïåðåë¸òíûõ ïòèö ïðîõîäÿò íà íåñêîëüêî êèëîìåòðîâ þæíåå: âäîëü ðóñëà ð. Îêè (Íîñêîâà, Ñìèðíîâà, 2015). Íàèáîëåå áåäíî íàñåëåíèå õèùíûõ ïòèö àýðîïîðòà çèìîé. Âî âðåìÿ ó÷¸òîâ íàìè áûë çàôèêñèðîâàí òîëüêî 1 âèä: ÿñòðåá-


38

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

׸ðíûé êîðøóí (Milvus migrans). Ôîòî Ñ. Ñòðèæîâîé. Black Kite (Milvus migrans). Photo by S. Strizhova.

ïåðåïåëÿòíèê, îõîòÿùèéñÿ íà ïîëåâûõ âîðîáüåâ è äðóãèõ ìåëêèõ ïòèö, êîòîðûå â ìàññå âñòðå÷àþòñÿ íà èñêóññòâåííûõ êîðìóøêàõ ó çäàíèÿ àýðîäðîìíîé ñëóæáû. Òàêèì îáðàçîì, òåððèòîðèÿ àýðîïîðòà «Ñòðèãèíî», áëàãîäàðÿ íàëè÷èþ îáøèðíûõ ëóãîâ, áëèçîñòè ëåñíîé îïóøêè è êðóïíîãî ïîëèãîíà áûòîâûõ îòõîäîâ, îòñóòñòâèþ ñèëüíîãî áåñïîêîéñòâà ñî ñòîðîíû ÷åëîâåêà, âåñüìà ïðèâëåêàòåëüíîé äëÿ 9 âèäîâ ñîêîëîîáðàíûõ. Ýòè âèäû èñïîëüçóþò å¸ â êà÷åñòâå îõîòíè÷üèõ óãîäèé è, ðåæå, äëÿ ãíåçäîâàíèÿ. Äàííàÿ òåððèòîðèÿ ïðåäñòàâëÿåò ñîáîé áóôåðíóþ çîíó ìåæäó òèïè÷íî ãîðîäñêèì è åñòåñòâåííûì ëàíäøàôòîì è èãðàåò âàæíóþ ðîëü â óñïåøíîé ñèíàíòðîïèçàöèè õèùíûõ ïòèö. ×èñëåííîñòü ïåðíàòûõ õèùíèêîâ áîëüøóþ ÷àñòü ãîäà çäåñü íåâåëèêà (ïî ñðàâíåíèþ, íàïðèìåð, ñ ÷èñëåííîñòüþ ñîêîëîîáðàçíûõ àýðîïîðòà «ÒàãàíðîãÞæíûé»: Áàðàáàøèí è äð., 2011). Íî èìååòñÿ ÷¸òêî âûðàæåííàÿ ñåçîííàÿ äèíàìèêà ñ ïèêàìè â èþëå, àïðåëå è ñåíòÿáðå, êîãäà ïëîòíîñòü íàñåëåíèÿ ïòèö ìîæåò âîçðàñòè äî 10,3 îñ./êì2. Âåñíîé è îñåíüþ ìèãðèðóþùèå ïåðíàòûå õèùíèêè íà ðàçëè÷íîé âûñîòå åæåäíåâíî ïåðåñåêàþò âçë¸òíî-ïîñàäî÷íûå ïóòè ñàìîë¸òîâ è âåëèêà óãðîçà ñòîëêíîâåíèé ïòèö è àâèàñóäîâ. Èìåííî â ýòî âðåìÿ íåîáõîäèìà òùàòåëüíàÿ ðàçðàáîòêà ìåð ïî ïðåäîòâðàùåíèþ ãèáåëè ïòèö è ïîð÷è ñàìîë¸òîâ. Àâòîðû âûðàæàþò áëàãîäàðíîñòü äîöåíòó êàôåäðû áîòàíèêè è çîîëîãèè Íèæåãîðîäñêîãî óíèâåðñèòåòà èì. Í.È. Ëîáà÷åâñêîãî Íîñêîâîé Î.Ñ. çà ïîìîùü â ñáîðå äàííûõ. Ëèòåðàòóðà Áàðàáàøèí Ò.Î., Êîñòÿíàÿ Í.Î., Äüÿ÷åíêî Ì.Ï. Õèùíûå ïòèöû àýðîïîðòà «Òàãàíðîã-Þæíûé», Ðîññèÿ. – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2011. ¹ 22. Ñ. 191–194 [Barabashin T.O., Kostynaya N.O., Dyachenko M.P. Birds of Prey of the Taganrog Yuzhny Airport, Russia – Raptors Conservation. 2011. 22: 191–194]. URL: http://rrrcn.ru/ru/archives/12796 Äàòà îáðàùåíèÿ: 10.01.2016.

Ïåðåïåëÿòíèê (Accipiter nisus). Ôîòî Í. Êîëåñîâîé. Sparrowhawk (Accipiter nisus). Photo by N. Kolesova.

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ Ãðàáîâñêèé Ì.À. Ïåðíàòûå õèùíèêè è àâèàöèÿ. – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2008. ¹ 12. Ñ. 7–10 [Grabovskiy M.A. Raptors and Aircrafts. – Raptors Conservation. 2008. 12: 7–10]. URL: http://rrrcn.ru/ru/archives/24947 Äàòà îáðàùåíèÿ: 10.01.2016. Ìîëîäîâñêèé À.Â., Çàëîçíûõ Ä.Â. Îðíèòîëîãè÷åñêàÿ îáñòàíîâêà è áåçîïàñíîñòü ïîë¸òîâ âîçäóøíûõ ñóäîâ â ðàéîíå Ìåæäóíàðîäíîãî íèæåãîðîäñêîãî àýðîïîðòà. – Âåñòíèê ÍÍÃÓ. 1999. ¹ 1. Ñ. 39–47 [Molodovsky A.V., Zaloznykh D.V. The ornithological situation and the safety of aircraft operations near the Nizhny Novgorod International Airport. – Bulletin of the Lobachevsky State University of Nizhni Novgorod. 1999. 1: 39–47 (in Russian)]. Íîñêîâà Î.Ñ., Ñìèðíîâà Ë.Â. Äèíàìèêà îñåííèõ è âåñåííèõ ìèãðàöèé ìàññîâûõ âèäîâ ïòèö â îêðåñòíîñòÿõ Íèæåãîðîäñêîãî ìåæäóíàðîäíîãî àýðîïîðòà (ïðèãîðîä ã. Í. Íîâãîðîäà). – Ñîâðåìåííûå ïðîáëåìû çîîëîãèè ïîçâîíî÷íûõ è ïàðàçèòîëîãèè – ìàòåðèàëû VII Ìåæäóíàðîäíîé íàó÷íîé êîíôåðåíöèè, Âîðîíåæ, 2015. Ñ. 186–192 [Noskova O.S., Smirnova L.V. The dynamics of the autumn and spring migrations of mass species of birds in the vicinity of the Nizhny Novgorod International Airport (suburb of the Nizhny Novgorod). – Modern problems of Vertebrate Zoology and Parasitology – Materials of the VII International Scientific Conference, Voronezh, 2015: 186–192 (in Russian)]. Ðàâêèí Þ.Ñ. Ê ìåòîäèêå ó÷¸òà ïòèö ëåñíûõ ëàíäøàôòîâ. – Ïðèðîäà î÷àãîâîãî êëåùåâîãî ýíöåôàëèòà íà Àëòàå. Íîâîñèáèðñê: Íàóêà, 1967. Ñ. 66–75 [Ravkin Yu.S. About the count method of birds in the forest landscapes. – Nature of the focal encephalitis in the Altai. Novosibirsk, 1967: 66–75 (in Russian)]. ßêîáè Â.Ý. Áèîëîãè÷åñêèå îñíîâû ïðåäîòâðàùåíèÿ ñòîëêíîâåíèé ñàìîë¸òîâ ñ ïòèöàìè. Ì.: Íàóêà, 1974. 164 ñ. [Jacobi V.E. Biological basis to prevent aircraft collisions with birds. Moscow, 1974: 1–164 (in Russian)].


Raptor Research

Raptors Conservation 2016, 32

39

Raptors in the State Nature Reserve “Kerzhensky” After Forest Fires of 2010: Materials of Five-Year Monitoring of a Summer Bird Population ХИЩНЫЕ ПТИЦЫ В МАТЕРИАЛАХ ПЯТИЛЕТНЕГО МОНИТОРИНГА ЛЕТНИХ ОРНИТОКОМПЛЕКСОВ ГОСУДАРСТВЕННОГО БИОСФЕРНОГО ЗАПОВЕДНИКА «КЕРЖЕНСКИЙ» ПОСЛЕ ЛЕСНЫХ ПОЖАРОВ 2010 ГОДА, РОССИЯ Noskova O.S. (Lobachevsky State University of Nizhny Novgorod, Russia) Носкова О.С. (Нижегородский университет имени Н.И. Лобачевского, Нижний Новгород, Россия)

Êîíòàêò: Îëüãà Íîñêîâà Íèæåãîðîäñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò èì. Í.È. Ëîáà÷åâñêîãî 603950, Ðîññèÿ, Í.Íîâãîðîä, ïð. Ãàãàðèíà, 23 òåë.: +7902301485 noskova.o.s@gmail.com Contact: Olga Noskova Lobachevsky State University of Nizhny Novgorod Gagarina ave., 23, N.Novgorod Russia, 603950 tel.: +7902301485 noskova.o.s@gmail.com

Ðåçþìå Íà îñíîâå ìàòåðèàëîâ ïÿòèëåòíåãî ìîíèòîðèíãà ëåòíåãî íàñåëåíèÿ ïòèö çàïîâåäíèêà «Êåðæåíñêèé» ïîñëå êàòàñòðîôè÷åñêèõ ïîæàðîâ 2010 ãîäà ïðîâåä¸í àíàëèç òåððèòîðèàëüíîãî ðàñïðåäåëåíèÿ õèùíûõ ïòèö (ïðåèìóùåñòâåííî ñîêîëîîáðàçíûõ Falconiformes). Îáñëåäîâàíû îñíîâíûå ïî ïëîùàäè ìåñòîîáèòàíèÿ ñ èñïîëüçîâàíèåì ìàðøðóòíîãî ìåòîäà ó÷¸òà. Âñåãî âñòðå÷åíî 17 âèäîâ õèùíûõ ïòèö. Äëÿ êàæäîãî èç íèõ ïðåäñòàâëåíû ïîêàçàòåëè îáèëèÿ. Íàèáîëåå ÷àñòî â çàïîâåäíèêå îòìå÷àþòñÿ òåòåðåâÿòíèê (Accipiter gentilis), ïåðåïåëÿòíèê (Accipiter nisus) è îáûêíîâåííûé êàíþê (Buteo buteo), à òàêæå ÷åãëîê (Falco subbuteo). Êëþ÷åâûå ñëîâà: õèùíûå ïòèöû, çàïîâåäíèê «Êåðæåíñêèé», ïîæàðû, ãíåçäîâîé ïåðèîä, ïîñëåãíåçäîâîé ïåðèîä, îáèëèå. Ïîñòóïèëà â ðåäàêöèþ: 21.12.2015 ã. Ïðèíÿòà ê ïóáëèêàöèè: 18.02.2016 ã. Abstract On the basis of five-year monitoring data on summer bird population in the Nature Reserve “Kerzhenskiy” after the catastrophic fires of 2010, a spatial distribution of raptors was analyzed (mainly birds of prey – Falconiformes). Main types of habitats were surveyed using line transect counts. In total 17 species of raptors were observed. Abundance of each species is presented here. Northern Goshawk (Accipiter gentilis), Eurasian Sparrowhawk (Accipiter nisus), Common Buzzard (Buteo buteo) and Eurasian Hobby (Falco subbuteo) were the most common species of raptors in the Nature Reserve. Keywords: birds of prey, State Nature Biosphere Reserve “Kerzhenskiy”, forest fires, breeding period, post-breeding period, population density. Received: 21/12/2015. Accepted: 18/02/2016. DOI: 10.19074/1814-8654-2016-32-39-48

Ââåäåíèå Íà òåððèòîðèè ïðèðîäíîãî áèîñôåðíîãî çàïîâåäíèêà «Êåðæåíñêèé» èññëåäîâàíèÿ ñîñòàâà, ÷èñëåííîñòè è òåððèòîðèàëüíîãî ðàñïðåäåëåíèÿ õèùíûõ ïòèö ïðîâîäÿòñÿ óæå íà ïðîòÿæåíèè äëèòåëüíîãî âðåìåíè (Êóðî÷êèí, Êîðøóíîâ, 2002; Áàêêà è äð., 2006; Íîâèêîâà, 2011 è äð.).  àíîìàëüíî æàðêîå ëåòî 2010 ãîäà òåððèòîðèÿ çàïîâåäíèêà çíà÷èòåëüíî ïîñòðàäàëà îò ëåñíûõ ïîæàðîâ. Îãí¸ì ïîâðåæäåíî áîëåå 45 % òåððèòîðèè. Íà ïðîòÿæåíèè ñëåäóþùèõ ïÿòè ëåò (2011–2015 ãã.) çäåñü ïðîâåäåíû ó÷¸òû ëåòíåãî íàñåëåíèÿ ïòèö, ïî ðåçóëüòàòàì êîòîðûõ ïîäãîòîâëåíà äàííàÿ ñòàòüÿ. Ìåòîäû èññëåäîâàíèé Ó÷¸òû íàñåëåíèÿ ïòèö íà òåððèòîðèè Êåðæåíñêîãî çàïîâåäíèêà ïðîâåäåíû ìàðøðóòíûì ìåòîäîì áåç ôèêñèðîâàí-

Introduction The structure, number and territorial distribution of the predatory birds in the Nature Biosphere Reserve “Kerzhenskiy” were already investigated during a long period (Kurochkin, Korshunov, 2002; Bakka et al., 2006; Novikova, 2011, e.t.c.). The territory of the reserve was considerably hit by the forest fires during abnormally hot summer of 2010. More than 45 % of the territory was damaged by the fire. During the next five years (2011–2015) we studied and count summer bird population and our results are presented in this article. Methods of Surveys We used a line transect counting method without limitation of the count-stripe breadth to determine the bird population number in the Kerzhenskiy reserve (Ravkin, 1967). Based on collected data we analyzed


40

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32 íîé ïîëîñû ó÷¸òà ñ äàëüíåéøèì ïåðåñ÷¸òîì ïëîòíîñòè ïî ñðåäíåãðóïïîâûì äàëüíîñòÿì îáíàðóæåíèÿ (Ðàâêèí, 1967). Íà îñíîâå ñîáðàííîãî ìàòåðèàëà ïðîâåä¸í àíàëèç òåððèòîðèàëüíîãî ðàñïðåäåëåíèÿ õèùíûõ âèäîâ ïòèö (ïðåèìóùåñòâåííî äíåâíûõ). Ñïåöèàëüíûõ ó÷¸òîâ ñîâîîáðàçíûõ â ò¸ìíîå âðåìÿ ñóòîê íå ïðîâîäèëîñü. Âñåãî ìàðøðóòàìè ïðîéäåíî îêîëî 1620 êì, èç êîòîðûõ 420 êì ïðè ó÷¸òå ðåäêèõ âèäîâ.  õîäå ðàáîò îáñëåäîâàíû îñíîâíûå ïî ïëîùàäè òèïû ìåñòîîáèòàíèé, ðàçíûå ïî ðàñòèòåëüíîìó ñîñòàâó è ñòåïåíè ïîâðåæäåíèÿ, à òàêæå àíàëîãè÷íûå íåïîâðåæä¸ííûå ó÷àñòêè. Ñðåäè íèõ: ðàçíîâîçðàñòíûå áåð¸çîâî-ñîñíîâûå ëåñà ñ îêðàèíàìè âåðõîâûõ áîëîò è âûâàëàìè (äàëåå â òåêñòå áåð¸çîâî-ñîñíîâûå ëåñà) – ñèëüíî íàðóøåííûå (ïîñëå âåðõîâûõ ïîæàðîâ), ìàëî íàðóøåííûå (ïîñëå íèçîâûõ ïîæàðîâ), ïî ãðàíèöå îòæèãà è íåíàðóøåííûå ïîæàðàìè; íåíàðóøåííûå ïîéìåííûå ëèñòâåííî-åëîâî-ñîñíîâûå ëåñà; âåðõîâûå áîëîòà ðàçíîé ñòåïåíè îáëåñ¸ííîñòè ñ ó÷àñòêàìè ëåñà íà ãðèâàõ (äàëåå â òåêñòå âåðõîâûå áîëîòà) – íàðóøåííûå è

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ territorial distribution of raptor species (mainly diurnal raptors). A special count of the owl species during night-time wasn’t carried out in this research. The raptor population was counted on the routes of total length about of 1620 km, including special 420 km route elaborated for precise count of rare species. During this study, main types of habitats of different vegetation types with various level of damage (undamaged areas as well) were investigated. The following habitats were studied: multiple-aged birch-pine forests with skirts of high bogs and storm gaps (further in the text – birch-pine forests) with high level of damage after the crown fire, low level of damage after the ground fire, undamaged, and on the boundary of artificially induced preventive ground fires; undamaged bottomland deciduous-fir-pine forests; high bogs with forests on elevations (further in the text high bogs) – damaged and undamaged by the fire; mosaic meadows around cordons, and territory of settlement Rustay (fig. 1). Nearly all routes were investigated annu-

Ðèñ. 1. Òî÷êè ó÷¸òà ïòèö â Êåðæåíñêîì çàïîâåäíèêå. Óñëîâíûå îáîçíà÷åíèÿ: À – ãðàíèöà çàïîâåäíèêà, B – òåððèòîðèÿ, ïðîéäåííàÿ ïîæàðàìè â 2010 ã., Ñ – òåððèòîðèÿ, ïðîéäåííàÿ ïîæàðàìè â 1972 ã., áèîòîïû â òî÷êàõ ó÷¸òà: 1 – ìîçàè÷íûå ëóãà-ïåðåëåñêè, 2 – íåíàðóøåííûå âåðõîâûå áîëîòà, 3 – íåíàðóøåííûå ïîéìåííûå õâîéíî-øèðîêîëèñòâåííûå ëåñà, 4 – íåíàðóøåííûå ðàçíîâîçðàñòíûå ñîñíîâî-áåð¸çîâûå ëåñà, 5 – ðàçíîâîçðàñòíûå ñîñíîâî-áåð¸çîâûå ëåñà íà ãðàíèöå îòæèãà, 6 – ðàçíîâîçðàñòíûå ñîñíîâî-áåð¸çîâûå ëåñà ïðîéäåííûå íèçîâûìè ïîæàðàìè, 7 – ðàçíîâîçðàñòíûå ñîñíîâî-áåð¸çîâûå ëåñà ïðîéäåííûå âåðõîâûìè ïîæàðàìè, 8 – âåðõîâûå áîëîòà, íàðóøåííûå îãí¸ì, 9 – òåððèòîðèÿ ïîñ¸ëêà Ðóñòàé. Fig. 1. Bird count areas in the State Nature Reserve “Kerzhensky”. A – border of the reserve, B – areas damaged by fire in 2010, C – areas damaged by fire in 1972. Biotopes: 1 – mosaic meadows, 2 – undamaged bogs, 3 – undamaged bottomland forests, 4 – undamaged birchpine forests, 5 – birch-pine forests at the border with fires, 6 – birch-pine forests after ground fires, 7 – birch-pine forests after crown fires, 8 – bogs damaged by fire, 9 – settlement Rustay.


Raptor Research

Raptors Conservation 2016, 32

41

Ëåñ áëèç çàïîâåäíèêà «Êåðæåíñêèé» ïîñëå ïîæàðà 2010 ã. Ôîòî È. Êàðÿêèíà. Forest near the State Nature Biosphere Reserve “Kerzhenskiy” after the fire in 2010. Photo by I. Karyakin.

íåíàðóøåííûå ïîæàðàìè, ìîçàè÷íûå ëóãà-ïåðåëåñêè âîêðóã êîðäîíîâ, òåððèòîðèÿ ï. Ðóñòàé (ðèñ. 1). Ïðàêòè÷åñêè âñå ìàðøðóòû ïðîéäåíû åæåãîäíî ñ ïåðèîäè÷íîñòüþ îäèí ðàç â äâå íåäåëè – â ãíåçäîâîé (ñ 16 ìàÿ ïî 15 èþëÿ) è ïîñëåãíåçäîâîé (ñ 16 èþëÿ ïî 31 àâãóñòà) ïåðèîäû. Ìîçàè÷íûå ëóãà-ïåðåëåñêè è áåð¸çîâî-ñîñíîâûå ëåñà ïî ãðàíèöå îòæèãà îáñëåäîâàëèñü òîëüêî â 2011 è 2012 ãã., à íåíàðóøåííûå ïîæàðàìè ïîéìåííûå ëåñà è òåððèòîðèÿ ï. Ðóñòàé – ëèøü â 2014 è 2015 ãã. Íà ðàçíûõ ýòàïàõ ðàáîòû â ñáîðå ìàòåðèàëà ïðèíèìàëè ó÷àñòèå Þ.À. Ðóëåâà, Í.Å. Êîëåñîâà è Ñ.À. Áàðàíîâ (Íîñêîâà è äð., 2014; Noskova et al., 2015). Âñå ìàòåðèàëû âíåñåíû â áàíê äàííûõ ëàáîðàòîðèè çîîëîãè÷åñêîãî ìîíèòîðèíãà Èíñòèòóòà ñèñòåìàòèêè è ýêîëîãèè æèâîòíûõ ÑÎ ÐÀÍ. Ðåçóëüòàòû Çà ïÿòü ëåò ìîíèòîðèíãà â õîäå ó÷¸òîâ íà òåððèòîðèè çàïîâåäíèêà «Êåðæåíñêèé» âñòðå÷åíî âñåãî 17 âèäîâ õèùíûõ ïòèö (10 âèäîâ ñîêîëîîáðàçíûõ Falconiformes è 7 ñîâîîáðàçíûõ Strigiformes) èç 28 âèäîâ, âñòðå÷àþùèõñÿ â çàïîâåäíèêå (Îò÷¸ò…, 2015).  ãíåçäîâîé ïåðèîä èç íèõ îòìå÷åíî 9 äíåâíûõ õèùíèêîâ è 6 íî÷íûõ, à â ïîñëåãíåçäîâîé – 9 ñîêîëîîáðàçíûõ è 2 ñîâîîáðàçíûõ (áîðîäàòàÿ íåÿñûòü Strix nebulosa è âîðîáüèíûé ñû÷èê Glaucidium passerinum; òàáë. 1–3). Îáûêíîâåííûé îñîåä (Pernis apivorus) – âíåñ¸í â Ïðèëîæåíèå ê Êðàñíîé êíèãå Íèæåãîðîäñêîé îáëàñòè (2014).  ãíåçäîâîé ïåðèîä ïåðèîäè÷åñêè âñòðå÷àåòñÿ â ìàëî íàðóøåííûõ áåð¸çîâî-ñîñíîâûõ ëåñàõ è íà íàðóøåííûõ âåðõîâûõ áîëîòàõ çàïîâåäíèêà (òîëüêî â 2015 ã.) – îáèëèå 0,8–3 îñ./êì2, à â ïîñëåãíåçäîâîé òîëüêî â îòäåëüíûå ãîäû îòìå÷åí â ìàëî íàðóøåííûõ è íåíàðóøåííûõ áåð¸çîâî-

ally during the nesting season (from May 16 to July 15) and during post-nesting season (from July 16 to August 31) with a frequency once in two weeks. Mosaic meadows and birch-pine forests on the boundary of artificially induced preventive ground fires were investigated only in 2011 and 2012, and undamaged by fire bottomland forests and territory of the settlement Rustay – only in 2014 and 2015. At the different stages of the study data was collected by Yu.A. Ruleva, N.E. Kolesova and S.A. Baranov (Noskova et al., 2014; Noskova et al., 2015). All data were loaded into the database of the Zoomonitoring Laboratory of the Institute of Animal Systematic and Ecology RAS. Results During the five years of bird monitoring in the Kerzhenskiy reserve we encountered only 17 species of raptors (10 species of diurnal raptors – Falconiformes and 7 species of Owls – Strigiformes) out of 28 species occur in the region (Report …, 2015). During the nesting season, 9 species of diurnal raptors and 6 owl species were observed, and during the post-nesting – 9 species of diurnal raptors and 2 species of owls (Great Grey Owl Strix nebulosa and Pygmy Owl Glaucidium passerinum; tab. 1–3). European Honey Buzzard (Pernis apivorus) is included in the Enclosure to the Red List of the Nizhegorodsky region (2014). During the nesting season we regularly met this species in the reserve in the birchpine forest damaged by ground fire, and on the high bogs affected by fire (only in 2015). Abundance in the breeding season is estimated as 0.8–3 ind./km2. In the postnesting season this species was seen only on single years in the birch-pine forests affected by ground fire or undamaged, 0.3–1 ind./km2. On average abundance of Honey Buzzard does not exceed 0.5 ind./km2 for the whole territory of the reserve. Black Kite (Milvus migrans) was observed only twice – during the nesting season in the bottomland forests (in 2015) near the river Kerzhenets, and in the post-nesting season in the birch-pine forests affected by ground fire (in 2012) in the center of the reserve. Abundance is 0.1–0.5 ind./km2.


42

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ

Òàáë. 1. Äèíàìèêà îáèëèÿ ñîêîëîîáðàçíûõ ïðèðîäíîãî çàïîâåäíèêà «Êåðæåíñêèé» â ãíåçäîâîé ïåðèîä ïîñëå ëåñíûõ ïîæàðîâ 2010 ãîäà (ìàòåðèàëû ïÿòèëåòíåãî ìîíèòîðèíãà îðíèòîêîìïëåêñîâ; 16 ìàÿ – 15 èþëÿ; îñ./êì2/n). Table 1. The dynamics of the abundance of birds of prey in the State Nature Reserve “Kerzhensky” in the breeding season after the forest fires of 2010 (five-year monitoring of birds; 16 May – 15 July; ind. per/km2/n).

Òåòåðåâÿòíèê Accipiter gentilis

Ïåðåïåëÿòíèê Accipiter nisus

Îáûêíîâåííûé êàíþê Buteo buteo

Áîëüøîé ïîäîðëèê Aquila clanga

0

1/1

0

0

0

0

0

3/2

0

0

0

2/2

0

0

0

0

0

0

2/1

0.5/1

2011

0

0

0.1/1

1/1

2012

2/3

0

4/3

0

2013

3/3

0

0.3/1

0

2014

0

0

2/2

0

2015

1/2

0

0

2011

0

0

0

2012

0

0

2013

0

2014

0

ïîñëå âåðõîâûõ ïîæàðîâ damaged by crown fires

2012

0

2014

0

2015

×åãëîê Falco subbuteo

2012

Áîëîòíûé ëóíü Circus aeruginosus

ãðàíèöà îòæèãà on the boundary of artificially induced preventive ground fires

Ïîëåâîé ëóíü Circus cyaneus

Îáûêíîâåííûé îñîåä Pernis apivorus

׸ðíûé êîðøóí Milvus migrans

Âèä / Species

0

0

0

0

0

1/3

0

2/2

0

0

0

0.3/1

1/3

0

0

0

0

0

3/3

0

0

0

0

2/5

0

0

0

0

0.1/1

0

2/1

0

0.08/2

0

0

0.1/1

0

0

0

0

0.01/1

0

0

0

0

0.8/1

0

0

0

0

0

0

0

1/2

2/1

2/1

0

0

0

0

0

0

0.8/1

0

2/4

0

0

0

0

2015

0

0

0

0

0.5/1

0

0

0

0

Íåíàðóøåííûå ïîéìåííûå ëåñà Undamaged bottomland forests

2015

0

0.5/1

0

0

0

0

0

0

0

Ìîçàè÷íûå ëóãà-ïåðåëåñêè Mosaic meadows

2011

0

0

0.7/1

0

0

0

0

0

0

2012

0

0

0

1/1

1/1

0

0

0

0

Âåðõîâûå áîëîòà íàðóøåííûå îãí¸ì Bogs damaged by fire

2012

0

0

0

8/3

0

0

0

2/2

0.8/1

2013

0

0

0

0

0

0

1/1

0

0

2014

0

0

0

0

0

0

0

0.1/1

0.5/2

2015

0.8/1

0

0

2/1

0

0

0

0.2/1

0.005/1

2012

0

0

3/2

0

0

0

0

0

0

2013

0

0

2/1

2/1

0

0 0.8/1

0

0.5/1

2014

0

0

0

0.5/1

0.8/2

0

0

0

0

2015

0

0

0.3/1

0

0

0

0

0

0

ï. Ðóñòàé Settlement Rustay

2014

0

0

0

0.5/1

0

0

0

0

0.8/2

2015

0

0

0

0.8/1

0

0

0

0

0

 ñðåäíåì / âñåãî (n) The average / total (n)

2011

0

0

0.1/2 0.1/1

0.001/1

0

0

0

0

2012

0.3/3

0

0.6/4

0

0

0.3/2

0.3/4

2013

0.5/3

0

0.6/4 0.7/2

0.7/6

0 0.3/2

0

0.08/1

2014

0

0

0.7/5 0.1/2

0.4/7

0 0.3/1

0.3/3

0.2/6

2015

0.3/3

0.07/2

0.1/4

Ðàçíîâîçðàñòíûå áåð¸çîâî-ñîñíîâûå ëåñà Multiple-aged birch-pine forests

Ìåñòîîáèòàíèå, ãîä Habitat, year

ïîñëå íèçîâûõ ïîæàðîâ damaged by ground fires

íåíàðóøåííûå îãí¸ì undamaged by fire

Âåðõîâûå áîëîòà íåíàðóøåííûå îãí¸ì Bogs undamaged by fire

1/7

2/6

0.07/1 0.04/1 0.7/3

ñîñíîâûõ ëåñàõ – 0,3–1 îñ./êì2.  ñðåäíåì äëÿ òåððèòîðèè çàïîâåäíèêà îáèëèå íå ïðåâûøàåò 0,5 îñ./êì2. ׸ðíûé êîðøóí (Milvus migrans) îòìå÷åí äâàæäû – â ãíåçäîâîé ïåðèîä â ïîéìåííûõ ëåñàõ (â 2015 ã.) âáëèçè ð. Êåðæåíåö, à â ïîñëåãíåçäîâîé â ìàëî íàðóøåííûõ áåð¸çîâî-ñîñíîâûõ ëåñàõ (â 2012 ã.) â öåíòðå çàïîâåäíèêà. Îáèëèå 0,1–0,5 îñ./êì2.

0.1/2 0.01/1

0

Hen Harrier (Circus cyaneus) is included in the Enclosure to the Red List of the Nizhegorodsky region (2014). In some years (2012–2014) it was observed during the nesting season in the birch-pine forests damaged by ground fire and at the high bogs, both undamaged and affected by the fire. During post-nesting season this species was seen only in the birch-pine forests affected by ground fire. Abundance is 0.1–2


Raptor Research

43

Raptors Conservation 2016, 32

Òàáë. 2. Äèíàìèêà îáèëèÿ õèùíûõ ïòèö ðàçëè÷íûõ ìåñòîîáèòàíèé ïðèðîäíîãî çàïîâåäíèêà «Êåðæåíñêèé» â ïîñëåãíåçäîâîé ïåðèîä ïîñëå ëåñíûõ ïîæàðîâ 2010 ãîäà (ìàòåðèàëû ïÿòèëåòíåãî ìîíèòîðèíãà îðíèòîêîìïëåêñîâ; 16 èþëÿ – 31 àâãóñòà; îñîáåé/êì2/n). Table 2. Dynamics of abundance of diurnal raptor species in the State Nature Reserve “Kerzhensky” in the post-breeding seasons of five consecutive years after the forest fires of 2010 (five-year monitoring of birds; 16 July – 31 August; ind. per/km2/n).

Îáûêíîâåííûé îñîåä Pernis apivorus

׸ðíûé êîðøóí Milvus migrans

Òåòåðåâÿòíèê Accipiter gentilis

Ïåðåïåëÿòíèê Accipiter nisus

Îáûêíîâåííûé êàíþê Buteo buteo

Ïîëåâîé ëóíü Circus cyaneus

Áîëîòíûé ëóíü Circus aeruginosus

Äåðáíèê Falco columbarius

×åãëîê Falco subbuteo

Âèä / Species

2011

0

0

0

0

0.7/1

0

0

0

0

ãðàíèöà îòæèãà on the boundary of artificially induced preventive ground fires

2011

0

0

0

3/2

0

0

0

0

0

2012

0

0

0.7/1

8/5

2/1

0

0

0

0

ïîñëå âåðõîâûõ ïîæàðîâ damaged by crown fires

2012

0

0

4/2

2/1

0

0

0

0

0.3/2

2013

0

0

0

0.7/1

0

0

0

0

0.7/1

2014

0

0

0

0

0

0

0

0

0.2/1

2015

0

0

0

2/1

0

0

0

0

0

2011

0

0

0

1/1

0

0

0

0

0

2012

0

0.1/1

1/5

4/5

4/2

0.1/1

0

0

0.1/3

2013

1/2

0

0

0

0

0

0

2/1

0

2011

0

0

0

0.7/1

0

0

0

0

0

2012

0.3/1

0

0

2/3

4/3

0

0

0

2/1

2013

0

0

0.7/1

0.7/1

2/3

0

0

2/1

0

2014

0

0

0

2/3

0

0

0

0

0

2015

0

0

3/1

0

0

0

0

0

0

Íåíàðóøåííûå ïîéìåííûå ëåñà Undamaged bottomland forests

2013

0

0

0

0

2/1

0

0

0

2/1

Âåðõîâûå áîëîòà íàðóøåííûå îãí¸ì Bogs damaged by fire

2011

0

0

0

0

0

0

0

0

6/4

2012

0

0

0

2/2

2/2

0

0

0

0.3/1

2013

0

0

0

0

0

0

0.7/1

0

3/3

2014

0

0

0

0.2/1

0

0

0

0

3/1

2015

0

0

0.7/1

1/2

0

0

0

0

0

2011

0

0

0.7/3

0.7/1

0

0

0

0

0

2012

0

0

0.7/1

0

0

0

0

0

0

2013

0

0

0

0

2/3

0

0

0

0

ï. Ðóñòàé Settlement Rustay

2014

0

0

0

3/1

0

0

0

0

4/5

2015

0

0

0

3/2

0.2/1

0

0

0

0

 ñðåäíåì / âñåãî (n) The average / total (n)

2011

0

0

0.1/3

0.8/5

0.1/1

0

0

0

0.9/4

2012

0.05/1

0.02/1

1/9

3/16

2/8

0.02/1

0

0

0.5/7

2013

0.2/2

0

0.1/1

0.2/2

1/7

0

0.1/1

0.7/2

1/5

2014

0

0

0

0.7/5

0

0

0

0

1/7

2015

0

0

0.5/2

0.9/5

0.03/1

0

0

0

0

Ìåñòîîáèòàíèå, ãîä Habitat, year

Ðàçíîâîçðàñòíûå áåð¸çîâî-ñîñíîâûå ëåñà Multiple-aged birch-pine forests

Ìîçàè÷íûå ëóãà-ïåðåëåñêè Mosaic meadows

ïîñëå íèçîâûõ ïîæàðîâ damaged by ground fires íåíàðóøåííûå îãí¸ì undamaged by fire

Âåðõîâûå áîëîòà íåíàðóøåííûå îãí¸ì Bogs undamaged by fire

Ïîëåâîé ëóíü (Circus cyaneus) – âíåñ¸í â Ïðèëîæåíèå ê Êðàñíîé êíèãå Íèæåãîðîäñêîé îáëàñòè (2014).  îòäåëüíûå ãîäû (â 2012–2014 ãã.) âñòðå÷àåòñÿ â ãíåçäîâîé ïåðèîä â ìàëî íàðóøåííûõ áåð¸çîâî-ñîñíîâûõ ëåñàõ, íà íàðóøåííûõ è íåíàðóøåííûõ âåðõîâûõ áîëîòàõ, à â ïîñëåãíåçäîâîé òîëüêî â ìàëî íàðóøåííûõ áåð¸çîâî-ñîñíîâûõ ëåñàõ. Îáèëèå 0,1–2 îñ./êì2.  ñðåäíåì äëÿ òåððèòîðèè çàïî-

ind./km2. On average abundance of this species doesn’t exceed 0.3 ind./km2 for the whole territory of the reserve. Eurasian Marsh Harrier (Circus aeruginosus) was met regularly during the nesting season on the high bogs damaged by the fire and in the birch-pine forests affected by crown fire. In the post-nesting season this species was encountered only once at high bogs. Abundance is 0.1–2 ind./km2. On


44

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ

âåäíèêà îáèëèå íå ïðåâûøàåò 0,3 îñ./êì2. Áîëîòíûé ëóíü (Circus aeruginosus) ïåðèîäè÷åñêè âñòðå÷àåòñÿ â ãíåçäîâîé ïåðèîä íà íàðóøåííûõ âåðõîâûõ áîëîòàõ è â ñèëüíî íàðóøåííûõ áåð¸çîâî-ñîñíîâûõ ëåñàõ, à â ïîñëåãíåçäîâîé òîëüêî îäíàæäû íà âåðõîâûõ áîëîòàõ. Îáèëèå 0,1–2 îñ./êì2.  ñðåäíåì äëÿ òåððèòîðèè çàïîâåäíèêà, êàê è ó ïîëåâîãî ëóíÿ, îáèëèå íå ïðåâûøàåò 0,3 îñ./êì2. Òåòåðåâÿòíèê (Accipiter gentilis) îòìå÷åí â ãíåçäîâîé ïåðèîä ïðàêòè÷åñêè âåçäå, íà ïðîòÿæåíèè âñåãî ïåðèîäà èññëåäîâàíèé, ÷àùå – â íåíàðóøåííûõ è ìàëî íàðóøåííûõ áåð¸çîâî-ñîñíîâûõ ëåñàõ.  ïîñëåãíåçäîâîé ïåðèîä âñòðå÷àåòñÿ çàìåòíî ðåæå. Îáèëèå 0,1–4 îñ./êì2.  ñðåäíåì äëÿ òåððèòîðèè çàïîâåäíèêà îáèëèå äîõîäèò äî 1 îñ./êì2. Ïåðåïåëÿòíèê (Accipiter nisus), òàêæå êàê òåòåðåâÿòíèê, â ãíåçäîâîé ïåðèîä âñòðå÷àåòñÿ âåçäå, â ò.÷. â ï. Ðóñòàé.  ïîñëåãíåçäîâîé ïåðèîä ïî ãîäàì îòìå÷àåòñÿ

average abundance of this species doesn’t exceed 0.3 ind./km2 for the whole territory of the reserve, as well as for the Hen Harrier. Northern Goshawk (Accipiter gentilis) was observed during the nesting season almost everywhere throughout the whole period of study. Most often is was seen in the birch-pine forests affected by ground fire or undamaged. During the post-nesting season we observed this species less frequent. Abundance is 0.1–4 ind./km2. On average abundance reaches 1 ind./km2 for the reserve. Sparrowhawk (Accipiter nisus), as well as the Goshawk, occurs everywhere during the nesting season, including the settlement Rustay. During the post-nesting season we observed it more often than the Goshawk, especially in the high-damaged and undamaged birch-pine forests, and on the high bogs damaged by the fire. Abundance is 0.2–8 ind./km2. In 2012 abundance of this species reached 3 ind./km2,

Òàáë. 3. Äèíàìèêà îáèëèÿ ñîâîîáðàçíûõ ïðèðîäíîãî çàïîâåäíèêà «Êåðæåíñêèé» â ëåòíèé ïåðèîä ïîñëå ëåñíûõ ïîæàðîâ 2010 ãîäà (ìàòåðèàëû ïÿòèëåòíåãî ìîíèòîðèíãà îðíèòîêîìïëåêñîâ; îñ./êì2/n). Table 3. Dynamics of abundance of owl species in the State Nature Reserve “Kerzhensky” in the summer seasons of five consecutive years after the forest fires of 2010 (five-year monitoring of birds; ind. per/km2/n).

Áîðîäàòàÿ íåÿñûòü Strix nebulosa

Óøàñòàÿ ñîâà Asio otus

Äëèííîõâîñòàÿ íåÿñûòü Strix uralensis

Âîðîáüèíûé ñû÷ Glaucidium passerinum

0

0

0

0

0

0

Ñïëþøêà Otus scops

0.2/1

Ôèëèí Bubo bubo

Ìåñòîîáèòàíèå, ãîä Habitat, year

Ìîõíîíîãèé ñû÷ Aegolius funereus

Âèä / Species

Ðàçíîâîçðàñòíûå áåð¸çîâîñîñíîâûå ëåñà Multiple-aged birch-pine forests

ãíåçäîâîé ïåðèîä (16 ìàÿ – 15 èþëÿ) / breeding period (16 May – 15 July) ãðàíèöà îòæèãà 2011 on the boundary of artificially induced preventive ground fires ïîñëå íèçîâûõ ïîæàðîâ damaged by ground fires

2012

0

0

0

0.5/1

0.5/1

0

0

íåíàðóøåííûå îãí¸ì undamaged by fire

2013

0

0

1/1

0

0

0

0

Ìîçàè÷íûå ëóãà-ïåðåëåñêè Mosaic meadows

2011

0

0

2/1

0

0

0

0

2012

0

0

0

0

3/2

0

0

ï. Ðóñòàé Settlement Rustay

2015

0

0.8/3

0

0

0

0

0.2/1

 ñðåäíåì / âñåãî (n) The average / total (n)

2011

0.03/1

0

0.3/1

0

0

0

0

2012

0

0

0

0.07/1

0.5/3

0

0

2013

0

0

0.2/1

0

0

0

0

2015

0

0.1/3

0

0

0

0

0.03/1

ïîñëåãíåçäîâîé ïåðèîä (16 èþëÿ – 31 àâãóñòà) / post-breeding period (16 July – 31 August) Ìîçàè÷íûå ëóãà-ïåðåëåñêè Mosaic meadows

2011

0

0

0

2/2

0

0

0

Ðàçíîâîçðàñòíûå áåð¸çîâî-ñîñíîâûå ëåñà ïîñëå âåðõîâûõ ïîæàðîâ Multiple-aged birch-pine forests damaged by crown fires

2013

0

0

0

0

0

0.3/1

0

 ñðåäíåì / âñåãî (n) The average / total (n)

2011

0

0

0

0.3/2

0

0

0

2013

0

0

0

0

0

0.05/1

0


Raptor Research

Raptors Conservation 2016, 32

Êàíþê (Buteo buteo). Ôîòî À. Ëåâàøêèíà. Common Buzzard (Buteo buteo). Photo by A. Levashkin.

ðåãóëÿðíåå, îñîáåííî â íåíàðóøåííûõ è ñèëüíî íàðóøåííûõ áåð¸çîâî-ñîñíîâûõ ëåñàõ, à òàêæå íà íàðóøåííûõ âåðõîâûõ áîëîòàõ. Îáèëèå 0,2–8 îñ./êì2.  ñðåäíåì äëÿ òåððèòîðèè çàïîâåäíèêà â 2012 ã. îáèëèå äîõîäèò äî 3 îñ./êì2, íî â îñòàëüíûå ãîäû ñîñòàâëÿåò ìåíåå 1 îñ./êì2. Îáûêíîâåííûé êàíþê (Buteo buteo) â ãíåçäîâîé ïåðèîä íà ïðîòÿæåíèè âñåãî ïåðèîäà íàáëþäåíèé ðåãóëÿðíåå âñòðå÷àåòñÿ â íåíàðóøåííûõ è ìàëî íàðóøåííûõ áåð¸çîâî-ñîñíîâûõ ëåñàõ.  ïîñëåãíåçäîâîé âñòðå÷è íå åæåãîäíû. Îáèëèå 0,01–4 îñ./êì2.  ñðåäíåì äëÿ òåððèòîðèè çàïîâåäíèêà îáèëèå êàíþêà ìîæåò äîõîäèòü äî 2 îñ./êì2, íî ÷àùå ñîñòàâëÿåò ìåíåå 0,7 îñ./êì2. Áîëüøîé ïîäîðëèê (Aquila clanga) – âíåñ¸í â Êðàñíóþ Êíèãó Íèæåãîðîäñêîé îáëàñòè (êàòåãîðèÿ À), ÐÔ (êàòåãîðèè 2) è ÌÑÎÏ (êàòåãîðèÿ VU; 2014). Îòìå÷åí òîëüêî îäèí ðàç â ãíåçäîâîé ïåðèîä 2015 ã. â ìàëî íàðóøåííûõ áåð¸çîâîñîñíîâûõ ëåñàõ (â îêðåñòíîñòÿõ êîðäîíà ׸ðíîå îçåðî) – îáèëèå 0,1 îñ./êì2. ×åãëîê (Falco subbuteo) â ãíåçäîâîé ïåðèîä îòìå÷àåòñÿ ïðåèìóùåñòâåííî íà íàðóøåííûõ âåðõîâûõ áîëîòàõ – îáèëèå 0,005–1 îñ./êì2.  ïîñëåãíåçäîâîé ïåðèîä âñòðå÷è ïòèö ó÷àùàþòñÿ, ÷åãëîê ðåãóëÿðíî ïîÿâëÿåòñÿ íà îòêðûòûõ ó÷àñòêàõ â ñèëüíî íàðóøåííûõ áåð¸çîâî-ñîñíîâûõ ëåñàõ – 0,1–6 îñ./êì2.  ñðåäíåì äëÿ òåððèòîðèè çàïîâåäíèêà îáèëèå âèäà äîõîäèò äî 1 îñ./êì2 â ïîñëåãíåçäîâîé ïåðèîä. Äåðáíèê (Falco columbarius) – âíåñ¸í â Êðàñíóþ Êíèãó Íèæåãîðîäñêîé îáëàñòè (êàòåãîðèÿ À; 2014). Äâàæäû îòìå÷åí â ïîñëåãíåçäîâîé ïåðèîä 2013 ã. â ìàëî íàðóøåííûõ è íåíàðóøåííûõ áåð¸çîâî-ñîñíîâûõ ëåñàõ – îáèëèå 2 îñ./êì2 â êàæäîì ìåñòîîáèòàíèè, à â ñðåäíåì äëÿ òåððèòî-

45

but in the other years it makes less than 1 ind./km2 average. Common Buzzard (Buteo buteo) was observed mostly in the undamaged birch-pine forests or forests affected by ground fire during the nesting season throughout the all period of investigations. In the post-nesting season we observed it only on single years. Abundance is 0.01–4 ind./km2. On average abundance of Common Buzzard can reach 2 ind./km2, but more often is is less than 0.7 ind./km2 for the reserve. Greater Spotted Eagle (Aquila clanga) is included in the Red List of the Nizhegorodsky region (category A), the Red List of Russian Federation (category 2) and IUNC (category VU; 2014). It was encountered only once during the nesting season of 2015 in the birch-pine forest damaged by ground fire in the vicinity of cordon “Black lake”. Abundance is 0.1 ind./km2. Hobby (Falco subbuteo) was observed during the nesting season mainly at the high bogs damaged by the fire – the abundance is 0.005–1 ind./km2. During the postnesting season observation of this species became more frequent. Hobby falcons regularly appeared in the open landscape in the high-damaged birch-pine forests affected by crown fire – 0.1–6 ind./km2. On average, during the post-nesting season abundance of Hobby can reach 1 ind./km2 for the territory of the reserve. Merlin (Falco columbarius) is included in the Red List of the Nizhegorodsky region (category A; 2014). It was met twice during the post-nesting season of 2013 in the birch-pine forests damaged by ground fire and undamaged; abundance is 2 ind./km2 in each habitat, and on average for the territory is no more than 0.7 ind./km2. Eagle Owl (Bubo bubo) is included in the Red List of the Nizhegorodsky Region (category A) and the Red List of Russian Federation (category 2; 2014). It was observed once during the nesting season of 2011 in the birch-pine forests on the boundary of artificially induced preventive ground fires (the vicinities of cordon “Zelyoniy”) – abundance is 0.2 ind./km2. Long-eared Owl (Asio otus) was observed only once during the nesting season of 2015 in the settlement Rustay – abundance is 0.2 ind./km2. Scops Owl (Otus scops) is included in the Enclosure to the Red List of the Nizhegorodsky region (2014). We observed it during nesting season of 2015 in the settlement Rustay – abundance is 0.8 ind./km2.


46

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Ñë¸òîê áîðîäàòîé íåÿñûòè (Strix nebulosa) â Êåðæåíñêîì çàïîâåäíèêå. Ôîòî Ñ. Óðáàíàâè÷óòå. Fledgling of the Great Grey Owl (Strix nebulosa) in the State Nature Biosphere Reserve “Kerzhensky”. Photo by S. Urbanavichute.

ðèè – íå áîëåå 0,7 îñ./êì2. Ôèëèí (Bubo bubo) – âíåñ¸í â Êðàñíóþ Êíèãó Íèæåãîðîäñêîé îáëàñòè (êàòåãîðèÿ À) è ÐÔ (êàòåãîðèè 2; 2014). Îòìå÷åí îäèí ðàç â ãíåçäîâîé ïåðèîä 2011 ã. â áåð¸çîâî-ñîñíîâûõ ëåñàõ ïî ãðàíèöå îòæèãà (â îêðåñòíîñòÿõ êîðäîíà Çåë¸íûé) – îáèëèå 0,2 îñ./êì2. Óøàñòàÿ ñîâà (Asio otus) îòìå÷åíà òîëüêî â ãíåçäîâîé ïåðèîä 2015 ã. íà òåððèòîðèè ï. Ðóñòàé – îáèëèå 0,2 îñ./êì2. Ñïëþøêà (Otus scops) – âíåñåíà â Ïðèëîæåíèå ê Êðàñíîé êíèãå Íèæåãîðîäñêîé îáëàñòè (2014). Îòìå÷åíà â ãíåçäîâîé ïåðèîä 2015 ã. íà òåððèòîðèè ï. Ðóñòàé – îáèëèå 0,8 îñ./êì2. Ìîõíîíîãèé ñû÷ (Aegolius funereus) è âîðîáüèíûé ñû÷èê (Glaucidium passerinum) – âíåñåíû â Ïðèëîæåíèå ê Êðàñíîé êíèãå Íèæåãîðîäñêîé îáëàñòè (2014). Êàæäûé èç íèõ âñòðå÷åí íà òåððèòîðèè çàïîâåäíèêà äâàæäû.  2011 ã. íà ìîçàè÷íûõ ëóãàõ-ïåðåëåñêàõ (â îêðåñòíîñòÿõ êîðäîíà Çåë¸íûé) â ãíåçäîâîé ïåðèîä îòìå÷åí ìîõíîíîãèé ñû÷, à â ïîñëåãíåçäîâîé – âîðîáüèíûé. Êðîìå òîãî, â ãíåçäîâîé ïåðèîä âîðîáüèíûé ñû÷ âñòðå÷åí â ìàëî íàðóøåííûõ áåð¸çîâî-ñîñíîâûõ ëåñàõ â 2012 ã., à ìîõíîíîãèé ñû÷ – â íåíàðóøåííûõ áåð¸çîâî-ñîñíîâûõ ëåñàõ â 2013 ã. Îáèëèå ó âèäîâ ñõîäíî 1–2 îñ./êì2. Äëèííîõâîñòàÿ íåÿñûòü (Strix uralensis) îòìå÷åíà äâàæäû â ãíåçäîâîé ïåðèîä 2012 ã. – íà ìîçàè÷íûõ ëóãàõ-ïåðåëåñêàõ (â îêðåñòíîñòÿõ êîðäîíà ×åðíîðå÷üå) è â ìàëî íàðóøåííûõ áåð¸çîâî-ñîñíîâûõ ëåñàõ. Îáèëèå 0,5–3 îñ./êì2. Áîðîäàòàÿ íåÿñûòü (Strix nebulosa) – âíåñåíà â Êðàñíóþ Êíèãó Íèæåãîðîäñêîé îáëàñòè (êàòåãîðèÿ À; 2014). Îòìå÷åíà îäèí ðàç â ïîñëåãíåçäîâîé ïåðèîä 2013 ã. â ñèëüíî íàðóøåííûõ áåð¸çîâî-ñîñíîâûõ ëåñàõ – îáèëèå 0,3 îñ./êì2. Ó ñîâîîáðàçíûõ â ñðåäíåì äëÿ òåððèòîðèè çàïîâåäíèêà îáèëèå íå ïðåâûøàåò 0,5 îñ./êì2, à ó ôèëèíà, áîðîäàòîé íåÿñûòè è óøàñòîé ñîâû – ìåíåå 0,1 îñ./êì2. Îáñóæäåíèå Ìàêñèìàëüíîå ñóììàðíîå îáèëèå õèùíèêîâ îòìå÷åíî íà âòîðîé ãîä ïîñëå ïîæàðîâ (â 2012 ã.) â ãíåçäîâîé ïåðèîä â ìàëî íàðóøåííûõ áåð¸çîâî-ñîñíîâûõ ëåñàõ è íà íàðóøåííûõ ïîæàðàìè âåðõîâûõ áîëî-

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ Tengmalm’s Owl (Aegolius funereus) and Pygmy Owl (Glaucidium passerinum) are included in the Enclosure to the Red List of the Nizhegorodsky region (2014). Both species we observed twice. In 2011 at the mosaic meadows (the vicinities of cordon “Zelyoniy”) Tengmalm’s Owl was observed during the nesting season, and Pygmy Owl during the post-nesting season. Besides, Pygmy Owl was encountered during the nesting season in the birch-pine forests affected by ground fire in 2012, and Tengmalm’s Owl – in the undamaged birch-pine forest in 2013. Abundance of both species is similar 1–2 ind./km2. Ural Owl (Strix uralensis) was observed twice during the nesting season of 2012 – at the mosaic meadows (the vicinities of cordon “Chernorechye”) and in the birchpine forests damaged by ground fire. Abundance is 0.5–3 ind./km2. Great Grey Owl (Strix nebulosa) is included in the Red List of the Nizhegorodsky region (category A; 2014). We observed it only once during the post-nesting season of 2013 in the birch-pine forests damaged by crown fire – abundance is 0.3 ind./km2. Discussion The maximum abundance of raptors was noted on the second year after the fires (in 2012) during the nesting season in the birch-pine forests affected by ground fire and at the high bogs damaged by the fire, and in the post-nesting season – in the birch-pine forests on the boundary of artificially induced preventive ground fires, damaged by the ground fire and undamaged (about 10 ind./km2). However, it is only 1–2 % of the total bird population abundance. The least often raptors were observed at the undamaged high bogs, in the birch-pine forests damaged by crown fire, and in the undamaged bottomland forests. No raptors at all were found on the first summer after the fires in birch-pine forests damaged by crown fire, and at the high bogs both damaged and undamaged by the fire. In general, abundance of single species of raptors rarely exceeds 2 ind./km2. In summer, the most common raptor species in the reserve are Northern Goshawk, Eurasian Sparrowhawk and Common Buzzard. During the post-nesting season Eurasian Hobby became a forth predominant species together with the previous three. The first three species are very common and numerous within the Nizhegorodsky region. Hobby however, is not a numerous species in the region, but


Raptor Research

Raptors Conservation 2016, 32 òàõ, à â ïîñëåãíåçäîâîé – â áåð¸çîâî-ñîñíîâûõ ëåñàõ ïî ãðàíèöå îòæèãà, â ìàëî íàðóøåííûõ è íåíàðóøåííûõ (îêîëî 10 îñ./êì2). Ó÷àñòèå èõ â íàñåëåíèè ïòèö ïðè ýòîì ìîæåò ñîñòàâëÿòü 1–2 % ïî îáèëèþ, íî ÷àùå âñåãî ìåíåå 1 %. Ðåæå âñåãî õèùíûå ïòèöû âñòðå÷àþòñÿ íà íåíàðóøåííûõ âåðõîâûõ áîëîòàõ, â ñèëüíî íàðóøåííûõ áåð¸çîâî-ñîñíîâûõ è â íåíàðóøåííûõ ïîéìåííûõ ëåñàõ.  ïåðâûé ãîä ïîñëå ïîæàðîâ â ãíåçäîâîé ïåðèîä â ñèëüíî-íàðóøåííûõ áåð¸çîâî-ñîñíîâûõ ëåñàõ, íà íàðóøåííûõ è íåíàðóøåííûõ âåðõîâûõ áîëîòàõ èõ íå îòìå÷åíî ñîâñåì.  öåëîì, îáèëèå îòäåëüíûõ âèäîâ õèùíûõ ïòèö ðåäêî ïðåâûøàåò 2 îñ./êì2. Íàèáîëåå ÷àñòî íà òåððèòîðèè çàïîâåäíèêà â òå÷åíèå ëåòà îòìå÷àþòñÿ òåòåðåâÿòíèê, ïåðåïåëÿòíèê è îáûêíîâåííûé êàíþê, à â ïîñëåãíåçäîâîé ïåðèîä åù¸ è ÷åãëîê. Ïåðâûå òðè âèäà â öåëîì íàèáîëåå îáû÷íû è ìíîãî÷èñëåííû â ïðåäåëàõ Íèæåãîðîäñêîé îáëàñòè. ×åãëîê æå ìàëî÷èñëåííûé äëÿ îáëàñòè âèä, íî ïðè ýòîì îáû÷íûé íà å¸ îòäåëüíûõ ó÷àñòêàõ, íàïðèìåð, íà Êàìñêî-Áàêàëäèíñêèõ áîëîòàõ (Áàêêà, Êèñåë¸âà, 2007). Òåððèòîðèÿ Êåðæåíñêîãî çàïîâåäíèêà íåïîñðåäñòâåííî ïðåäñòàâëÿåò ñîáîé ÷àñòü ýòîãî âîäíî-áîëîòíîãî êîìïëåêñà è âõîäèò â ñîñòàâ áèîñôåðíîãî ðåçåðâàòà ÞÍÅÑÊÎ «Íèæåãîðîäñêîå Çàâîëæüå». Îñòàëüíûå âèäû ëèáî ìàëî÷èñëåííû, ëèáî ðåäêè. ׸ðíûé êîðøóí îáû÷íûé âèä äëÿ îáëàñòè, íî ïðèäåðæèâàåòñÿ ïîéìåííûõ ëåñîâ (Áàêêà, Êèñåë¸âà, 2007). Ïòèöû ÷àùå íàáëþäàþòñÿ â ïîéìå ð. Êåðæåíåö, òîãäà êàê îñíîâíàÿ ÷àñòü ó÷¸òîâ ïðîõîäèëà â öåíòðàëüíîé ÷àñòè çàïîâåäíèêà. Áîëîòíûé ëóíü òàêæå âïîëíå îáû÷åí â Íèæåãîðîäñêîé îáëàñòè, íî â Çàâîëæüå åãî ìåíüøå, ÷åì â Ïðåäâîëæüå. Ñðåäè îòìå÷åííûõ â ó÷¸òàõ ñîâîîáðàçíûõ ê ìíîãî-

47

it is common in some areas, for example, at Kamsko-Bakaldinskiy bogs (Bakka, Kiseleva, 2007). Kerzhenskiy reserve is a part of these wetlands that are included into UNESCO biosphere reserve “Nizhegorodskoye Zavolzhye”. The other raptor species are small in numbers or rare. Black Kite is a usual species for the region, but it prefers the bottomland forests of the river Kerzhenets (Bakka, Kiseleva, 2007), while the main bird counts from the present research were conducted in the central part of the reserve. Marsh Harrier is also a usual species in the Nizhegorodsky region, but it is more abundant on the right bank of river Volga (in Predvolzhye) than on the left bank (Zavolzhye) where Kerzhenskiy reserve is located. Long-Eared Owl and Ural Owl are numerous species in the region (Bakka, Kiseleva, 2007), but since no special counts of owls were carried out during this study, we observed only several individuals of these species. The analysis of nest distribution of Northern Goshawk, Common Buzzard, European Honey Buzzard, Black Kite and Greater Spotted Eagle in the reserve revealed that after the strong fires of 1972 a lack of middle- and old-age forests suitable for nesting arose and birds had to move to the bottomlands that suffered little or no damaged from the fire. Sparrowhawk on the contrary prefers to occupy young growth in the rivers interfluve (Novikova, 2011). We assume that strong fires of 2010 reinforced this tendency. Considerably high number of active nests of Goshawk, Common Buzzard and Sparrowhawk revealed in our study evidenced that this species prevailed on the territory of the reserve before the fires (Novikova, 2011). And the same species were the most numerous in our counts after the fire of 2010. However, it is difficult conduct a comparative analysis of abundance dynamics of the raptors before and after the fires of 2010 because data collection was carried out with use of a different methods and approaches. Acknowledgments The research was supported by the Russian Foundation for Basic Research (the project 11-04-97092-r_povolzhye_a), and by the administration of the State Nature Biosphere Reserve “Kerzhenskiy”.

Ïòåíåö ïåðåïåëÿòíèêà (Accipiter nisus) â ãíåçäå. Ôîòî À. Ëåâàøêèíà. Nestling of the Sparrowhawk (Accipiter nisus) in the nest. Photo by A. Levashkin.


48

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32 ÷èñëåííûì âèäàì îòíîñÿòñÿ óøàñòàÿ ñîâà è äëèííîõâîñòàÿ íåÿñûòü (Áàêêà, Êèñåë¸âà, 2007), íî ïîñêîëüêó ñïåöèàëüíûõ ó÷¸òîâ íî÷íûõ õèùíûõ ïòèö íå ïðîâîäèëîñü, âñòðå÷è èõ åäèíè÷íû. Ïî ðåçóëüòàòàì àíàëèçà ðàñïðåäåëåíèÿ ãí¸çä òåòåðåâÿòíèêà, îáûêíîâåííîãî êàíþêà, îáûêíîâåííîãî îñîåäà, ÷¸ðíîãî êîðøóíà è áîëüøîãî ïîäîðëèêà íà òåððèòîðèè çàïîâåäíèêà îòìå÷åíî, ÷òî ïîñëå ñèëüíûõ ïîæàðîâ 1972 ã. ïòèöû èñïûòûâàþò íåäîñòàòîê â ñðåäíå- è ñòàðîâîçðàñòíûõ ó÷àñòêàõ ëåñà äëÿ ãíåçäîâàíèÿ, â ñâÿçè ñ ÷åì, òÿãîòåþò ê ïîéìå, ìåíüøå ïîñòðàäàâøåé îò îãíÿ. Ïåðåïåëÿòíèê, íàïðîòèâ, ÷àùå íàñåëÿåò ìîëîäûå íàñàæäåíèÿ â ìåæäóðå÷üÿõ (Íîâèêîâà, 2011). Ìîæíî ïðåäïîëîæèòü, ÷òî êðóïíûå ïîæàðû 2010 ã. òîëüêî óñèëèëè ýòó òåíäåíöèþ. Î ïðåîáëàäàíèè òåòåðåâÿòíèêà, îáûêíîâåííîãî êàíþêà è ïåðåïåëÿòíèêà íà òåððèòîðèè çàïîâåäíèêà äî ïîæàðîâ ñâèäåòåëüñòâóåò çàìåòíî áóëüøåå ÷èñëî âûÿâëåííûõ àêòèâíûõ ãí¸çä ýòèõ âèäîâ (Íîâèêîâà, 2011). Îíè æå ïîñëå ïîæàðîâ ÷àùå âñåãî âñòðå÷àþòñÿ è â íàøèõ ó÷¸òàõ.  òî æå âðåìÿ, ïðîâåñòè îáúåêòèâíûé ñðàâíèòåëüíûé àíàëèç äèíàìèêè îáèëèÿ õèùíûõ ïòèö ñëîæíî, ïîñêîëüêó ñáîð äàííûõ äî è ïîñëå ïîæàðîâ îñóùåñòâë¸í ñ èñïîëüçîâàíèåì ðàçíûõ ìåòîäîâ è ïîäõîäîâ. Ðàáîòà ïîääåðæàíà Ðîññèéñêèì Ôîíäîì Ôóíäàìåíòàëüíûõ Èññëåäîâàíèé (ïðîåêò 11-04-97092-ð_ïîâîëæüå_à), à òàêæå íåïîñðåäñòâåííî àäìèíèñòðàöèåé ÔÃÁÓ «Ãîñóäàðñòâåííûé ïðèðîäíûé áèîñôåðíûé çàïîâåäíèê «Êåðæåíñêèé». Ëèòåðàòóðà Áàêêà Ñ.Â., Êàðÿêèí È.Â., Êèñåë¸âà Í.Þ., Íîâèêîâà Ë.Ì. Íîâûå äàííûå î ðàñïðîñòðàíåíèè è ÷èñëåííîñòè ñîâ â Íèæåãîðîäñêîé îáëàñòè. – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2006. ¹ 5. Ñ. 22–36 [Bakka S.V., Karyakin I.V., Kiseleva N.Yu., Novikova L.M. Distribution and number of owls in the N. Novgorod district. – Raptors Conservation. 2006. 5: 22–36]. URL: http:// docs.sibecocenter.ru/programs/raptors/RC05/ raptors_conservation_2006_5_pages_22_36. pdf Äàòà îáðàùåíèÿ: 20.12.2015. Áàêêà Ñ.Â., Êèñåë¸âà Í.Þ. Îðíèòîôàóíà Íèæåãîðîäñêîé îáëàñòè: äèíàìèêà, àíòðîïîãåííàÿ òðàíñôîðìàöèÿ, ïóòè ñîõðàíåíèÿ: Ìîíîãðàôèÿ. Í. Íîâãîðîä, 2007. 124 ñ. [Bakka S.V., Kiseleva N.Yu. The avifauna of the Nizhny Novgorod region: the dynamics, anthropogenic transformation, conservation: Monograph. N. Novgorod, 2007: 1–124 (in Russian)]. Êðàñíàÿ êíèãà Íèæåãîðîäñêîé îáëàñòè. Ò. 1. Æèâîòíûå. 2-å èçä. ïåðåðàá. è äîï. Í. Íîâãîðîä: ÄÅÊÎÌ, 2014. 446 ñ. [Red Data Book of the

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ Nizhny Novgorod region. Vol. 1. Animals. Second edition. N. Novgorod, 2014: 1–446 (in Russian)]. Êóðî÷êèí Ä.Â., Êîðøóíîâ Å.Í. Àííîòèðîâàííûé ñïèñîê ïòèö Êåðæåíñêîãî çàïîâåäíèêà. – Ìàòåðèàëû ïî ôàóíå Íèæåãîðîäñêîãî Çàâîëæüÿ. Òðóäû ÃÏÇ «Êåðæåíñêèé». Í. Íîâãîðîä, 2002. Ò. 2. Ñ. 31–49 [Kurochkin D.V., Korshunov E.N. An annotated list of birds of the State Nature Reserve “Kerzhensky”. – Materials on the fauna of the “Nizhegorodskoe Zavolzhie”. Proceedings of the State Nature Reserve “Kerzhensky”. N. Novgorod, 2002. Vol. 2: 31–49 (in Russian)]. Íîâèêîâà Ë.Ì. Äèôôåðåíöèàöèÿ ýêîëîãè÷åñêèõ íèø äíåâíûõ õèùíûõ ïòèö â Êåðæåíñêîì çàïîâåäíèêå, Ðîññèÿ — Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2011. ¹ 22. Ñ. 176–190 [Novikova L.M. Differentiation in Breeding Habitats of the Birds of Prey in the State Biosphere Nature Reserve “Kerzhensky”, Russia. – Raptors Conservation. 2011. 22: 176–190]. URL: http:// rrrcn.ru/ru/archives/12754 Äàòà îáðàùåíèÿ: 20.12.2015. Íîñêîâà Î.Ñ., Ðóëåâà Þ.À., Êîëåñîâà Í.Å., Êðóïêî Ì.Ñ., Áàðàíîâ Ñ.À. Ïðîñòðàíñòâåííîâðåìåííûå èçìåíåíèÿ ëåòíåãî íàñåëåíèÿ ïòèö âîäíî-áîëîòíûõ óãîäèé Íèæåãîðîäñêîãî Çàâîëæüÿ ïîñëå ïîæàðîâ ëåòà 2010 ã. (íà ïðèìåðå çàïîâåäíèêà «Êåðæåíñêèé») – Òîðôÿíèêè Çàïàäíîé Ñèáèðè è öèêë óãëåðîäà: ïðîøëîå è íàñòîÿùåå: Ìàòåðèàëû ÷åòâ¸ðòîãî Ìåæäóíàðîäíîãî ïîëåâîãî ñèìïîçèóì. Òîìñê: Èçä. Òîì. óí-òà, 2014. Ñ. 347–349 [Noskova O.S., Ruleva Yu.A., Kolesova N.E., Krupko M.S., Baranov S.A. Spatial and temporal variations of summer population of birds of wetlands of the “Nizhegorodskoe Zavolzhie” after the forest fires of the summer of 2010 (on the example of the State Nature Biosphere Reserve “Kerzhensky”). – Peat bogs of Western Siberia and the carbon cycle: Past and Present: Proceedings of the Fourth International Field Symposium. Tomsk, 2014: 347–349 (in Russian)]. Îò÷¸ò î íàó÷íî-èññëåäîâàòåëüñêîé ðàáîòå ïî äîãîâîðó ¹ ÍÎ-2 îò 17.03.2015 ã. «Àííîòèðîâàííûé ñïèñîê ïòèö Êåðæåíñêîãî çàïîâåäíèêà». Í. Íîâãîðîä, 2015. Ðóêîïèñü ÃÏÁÇ «Êåðæåíñêèé» [Report on the research work under the contract HO-2 from 03/17/2015: Annotated list of bird of the State Nature Biosphere Reserve “Kerzhensky”. N. Novgorod, 2015. Manuscript of the State Nature Biosphere Reserve “Kerzhensky” (in Russian)]. Ðàâêèí Þ.Ñ. Ê ìåòîäèêå ó÷¸òà ïòèö ëåñíûõ ëàíäøàôòîâ. – Ïðèðîäà î÷àãîâîãî êëåùåâîãî ýíöåôàëèòà íà Àëòàå. Íîâîñèáèðñê: Íàóêà, 1967. Ñ. 66–75 [Ravkin Yu.S. About the count method of birds in the forest landscapes. – Nature of the focal encephalitis in the Altai. Novosibirsk, 1967: 66–75 (in Russian)]. Noskova O., Ruleva Yu., Kolesova N., Krupko M., Baranov S. Four years’ changes of a summer bird population after a forest fire in the centre of the East European Plane (biosphere reserve “Nizhegorodskoe Zavolzhie”, Russia). – X Conference of the European Ornithologists’ Union. Spain (Extremadura, Badajoz), 2015: 448.


Raptor Research

Raptors Conservation 2016, 32

49

Nesting Preferences of the Black Kite in Forest Shelter Belts of Altai Kray, Russia ГНЕЗДОВЫЕ ПРЕДПОЧТЕНИЯ ЧЁРНОГО КОРШУНА В ЛЕСОПОЛОСАХ АЛТАЙСКОГО КРАЯ, РОССИЯ Bachtin R.F. (Shukshin Altai State Humanitarian-pedagogical University, Biysk, Russia) Бахтин Р.Ф. (Алтайский государственный гуманитарно-педагогический университет им. В.М. Шукшина, Бийск, Россия)

Êîíòàêò: Ðîìàí Áàõòèí Àëòàéñêèé ãîñóäàðñòâåííûé ãóìàíèòàðíîïåäàãîãè÷åñêèé óíèâåðñèòåò èì. Â.Ì. Øóêøèíà 659323, Ðîññèÿ, Àëòàéñêèé êðàé, ã. Áèéñê, ïåð. Öåíòðàëüíûé, 81 «Ã» òåë.: +7 905 980 31 39 al.raptors@yandex.ru Contact: Roman Bachtin Shukshin Altai State Humanitarianpedagogical University Lane Centralniy, 81 «G» Biysk, Altai Kray Russia, 659323 tel.: +7 905 980 31 39 al.raptors@yandex.ru

Ðåçþìå  ñòàòüå ïðèâîäÿòñÿ ìàòåðèàëû ïî ãíåçäîâàíèþ ÷¸ðíîãî êîðøóíà (Milvus migrans) â ëåñîïîëîñàõ íà þãî-âîñòîêå Àëòàéñêîãî êðàÿ. Ïðîòÿæ¸ííîñòü èçó÷åííûõ íàñàæäåíèé ñîñòàâèëà 50 êì. Çà ïåðèîä èññëåäîâàíèé âûÿâëåíî 72 ãíåçäîâûõ äåðåâà ýòîãî õèùíèêà. Ïðåäïî÷òåíèÿ ÷¸ðíîãî êîðøóíà â îòíîøåíèè âûáîðà ïîðîäû ãíåçäîâîãî äåðåâà, åãî îíòîãåíåòè÷åñêîãî ñîñòîÿíèÿ, òîëùèíû ñòâîëà è ìîùíîñòè äåðåâà ïðîâåðÿëàñü ñ ïîìîùüþ èíäåêñà èçáèðàòåëüíîñòè Èâëåâà-Äæåêîáñà.  ðåçóëüòàòå óñòàíîâëåíî, ÷òî íàèáîëåå ïðåäïî÷èòàåìîé ïîðîäîé äåðåâà ïðè ãíåçäîâàíèè â ëåñîïîëîñàõ ÿâëÿåòñÿ òîïîëü (Populus sp.) (èíäåêñ èçáèðàòåëüíîñòè 0,5), áåð¸çà (Betula sp.) çàíèìàåòñÿ ïðîïîðöèîíàëüíî ñâîåìó îáèëèþ (-0,02), à ñîñíà (Pinus silvestris) è êë¸í (Acer sp.) ñ ðàçíîé ñòåïåíüþ èãíîðèðóþòñÿ. Ïî îíòîãåíåòè÷åñêîìó ñîñòîÿíèþ ïðåäïî÷èòàþòñÿ ñðåäíåâîçðàñòíûå ãåíåðàòèâíûå äåðåâüÿ (0,74) è ñ íåêîé ñòåïåíüþ èçáåãàþòñÿ ñòàðûå ãåíåðàòèâíûå (-0,18).  îòíîøåíèè äèàìåòðà ñòâîëà ãíåçäîâîãî äåðåâà íàèáîëåå ïðåäïî÷òèòåëüíûìè ÿâëÿþòñÿ äåðåâüÿ ñ äèàìåòðîì 31–40 ñì (0,23). Ïðîïîðöèîíàëüíî ñâîåìó îáèëèþ èñïîëüçóþòñÿ äåðåâüÿ ñ äèàìåòðîì 21–30 ñì (-0,04). Äåðåâüÿ äðóãîé òîëùèíû ñ ðàçíîé ñòåïåíüþ èãíîðèðóþòñÿ, âïëîòü äî ïîëíîãî èçáåãàíèÿ. Íàèáîëåå ïðåäïî÷òèòåëüíûìè íà ãíåçäîâàíèè â ëåñîïîëîñàõ îêàçûâàþòñÿ äåðåâüÿ ñ èíäåêñîì ìîùíîñòè 1,6–2 (0,31). Äåðåâüÿ ñ èíäåêñîì ìîùíîñòè 1,1–1,5 è 2,1–2,5 èñïîëüçóþòñÿ ïðèìåðíî ïðîïîðöèîíàëüíî ñâîåìó îáèëèþ (-0,02 è -0,07 ñîîòâåòñòâåííî). Äåðåâüÿ ñ èíäåêñîì áîëåå 2,6 è ìåíåå 1 ïî÷òè èëè ïîëíîñòüþ èãíîðèðóþòñÿ. Êëþ÷åâûå ñëîâà: õèùíûå ïòèöû, ÷¸ðíûé êîðøóí, Milvus migrans, Àëòàéñêèé êðàé, ãíåçäîâîå äåðåâî, èíäåêñ èçáèðàòåëüíîñòè Èâëåâà-Äæåêîáñà, ëåñîïîëîñà, îíòîãåíåòè÷åñêîå ñîñòîÿíèå. Ïîñòóïèëà â ðåäàêöèþ: 15.03.2016 ã. Ïðèíÿòà ê ïóáëèêàöèè: 30.03.2016 ã. Abstract This article describes the data on breeding ecology of the Black Kite (Milvus migrans) breeding in shelter belts in south-eastern part of Altai Region. The length of the shelter belts studied in this work was 50 km. Through the period of this study a 72 nests of this species were revealed. We studied nesting preferences of Black Kites towards different wood species, ontogenetic state of trees, trunk diameter and tree strength using Ivlev-Jacobs electivity index. As a result we establish that the most preferable wood species is poplar (Populus sp.) (electivity index is 0.5), birch (Betula sp.) is used proportioned to its abundance (-0.02), and pine (Pinus silvestris) and maple (Acer sp.) are mostly ignored. Kites also prefer middle-aged generative trees (0.74) and avoid old ones (-0,18). Trees with trunk diameter 31–40 cm considered as most preferable (0,23). And trees with trunk diameter 21–30 cm is used proportioned to its abundance (-0,04). Trees with another trunk diameter are mostly ignored or completely avoided. Based on the index of tree strength (ITS) we established that Kites breeding in the shelter belts prefer trees with ITS = 1.6–2.0 (0.31), trees with ITT = 1.1–1.5 and ITT = 2.1–2.5 are used proportioned to its abundance (-0.02 and -0.07, respectively), and trees with ITT above 2.6 or below 1 are ignored. Keywords: birds of prey, Black Kite, Milvus migrans, Altai Kray, nesting tree, index selectivity Ivlev-Jacobs, the artificial forest belts, the ontogenetic condition. Received: 15/03/2016. Accepted: 30/03/2016. DOI: 10.19074/1814-8654-2016-32-49-58

Ââåäåíèå ×åëîâåê ñ äàâíèõ âðåì¸í íà÷àë òðàíñôîðìèðîâàòü åñòåñòâåííûå ïðèðîäíûå ëàíäøàôòû ïîä ñâîè õîçÿéñòâåííûå íóæäû. Èõ ñîêðàùåíèå è ïîÿâëåíèå íîâûõ àíòðîïîãåííûõ òåððèòîðèé âûíóäèëî ìíîãèå âèäû ïòèö ñîêðàòèòü ñâîþ ÷èñëåííîñòü. Îäíàêî, íåêîòîðûå òàêñîíû, ñ øèðîêèìè ýêîëîãè÷åñêèìè âîçìîæíîñòÿìè, ñìîãëè íå òîëüêî ïðèñïîñîáèòüñÿ, íî è óâåëè÷èòü ñâîè ïîïóëÿöèè.  íàñòîÿùåå âðåìÿ àãðîëàíäøàôòû ÿâëÿþòñÿ íåîòúåìëåìîé ÷àñòüþ ïðèðîäíî-àíòðîïîãåííîé ñðåäû. Ëåñîïîëîñû, êàê îáÿ-

Introduction Nowadays agricultural landscapes are essential part of anthropogenic habitat. Forest shelter belts, as an essential part of agriculture land became very common due to its soil-protecting function. Within time shelter belts were settled with a numerous species of birds of prey (Falconiformes) and owls (Strigiformes) such as Black Kite (Milvus migrans), Common Buzzard (Buteo buteo), Common Kestrel (Falco tinnunculus), LongEared Owl (Asio otus). The area under study locates in southern part of the Western Siberia in the borders


50

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ of Altai Kray region of Russia. Data was mostly collected on the territory of Biysk district situated in the south-east part of the region. In the study area, the Black Kite is the most numerous and widely spread raptor species. It breeds in every sustainable biotope – in coniferous forest along the river Biya, flood plain forests and outlier groves, shelter belts, and tree plantations in city Biysk (Bachtin et al., 2010; Vazhov, 2012). We revealed more than 200 nests of this species in the study area.

׸ðíûé êîðøóí (Milvus migrans). Ôîòî Ð. Áàõòèíà Black Kite (Milvus migrans). Photo by R. Bañhtin.

çàòåëüíàÿ åäèíèöà ñåëüõîçóãîäèé, ïîëó÷èëè øèðîêîå ðàñïðîñòðàíåíèå, ò.ê. îáëàäàþò íåîáõîäèìûì íàáîðîì ïî÷âîçàùèòíûõ ôóíêöèé. Ñ òå÷åíèåì âðåìåíè èõ îñâîèëè ñíà÷àëà âðàíîâûå ïòèöû (Corvidae), à çàòåì è ïðåäñòàâèòåëè îòðÿäîâ ñîêîëîîáðàçíûõ (Falconiformes) è ñîâîîáðàçíûõ (Strigiformes), òàêèå êàê ÷¸ðíûé êîðøóí (Milvus migrans), îáûêíîâåííûé êàíþê (Buteo buteo), îáûêíîâåííàÿ ïóñòåëüãà (Falco tinnunculus), óøàñòàÿ ñîâà (Asio otus).  ðàéîíå èññëåäîâàíèé ÷¸ðíûé êîðøóí, áåçóñëîâíî, ÿâëÿåòñÿ íàèáîëåå ìíîãî÷èñëåííûì è øèðîêî ðàñïðîñòðàí¸ííûì âèäîì ïåðíàòûõ õèùíèêîâ. Íà ãíåçäîâàíèè îí îñâîèë âñå ïîäõîäÿùèå äëÿ ýòîãî áèîòîïû – ñîñíîâûé áîð ïî ð. Áèÿ, ïîéìåííûå è êîëî÷íûå ëåñà, ëåñîïîëîñû, äðåâåñíûå íàñàæäåíèÿ â ã. Áèéñêå (Áàõòèí è äð., 2010). Íà èçó÷àåìîé òåððèòîðèè íàìè îáíàðóæåíî áîëåå 200 ãí¸çä ýòîãî õèùíèêà. Äëÿ êîðøóíîâ, îáèòàþùèõ â ðàéîíå èññëåäîâàíèé, ÿðêî âûðàæåí ïðîöåññ ñèíàíòðîïèçàöèè, ïðîÿâëÿþùèéñÿ, ïðåæäå âñåãî, â êðàéíåé íåðàâíîìåðíîñòè åãî ïðîñòðàíñòâåííîãî ðàñïðîñòðàíåíèÿ: íàáëþäàåòñÿ î÷åâèäíîå ñãóùåíèå åãî ïîïóëÿöèé áëèç íàñåë¸ííûõ ïóíêòîâ (Âàæîâ, 2012). Ýòî ïðèâîäèò ê èçìåíåíèþ êàê ïîâåäåíèÿ, ïðåæäå âñåãî êîðìîâîãî, òàê è ýêîëîãèè ãíåçäîâàíèÿ, ÷òî îáóñëîâëåíî êðàéíå íåðàâíîìåðíûì ðàñïðåäåëåíèåì ïèùåâûõ îáúåêòîâ â àíòðîïîãåííûõ ëàíäøàôòàõ. Õàðàêòåðèñòèêà ðàéîíà èññëåäîâàíèé Òåððèòîðèÿ èññëåäîâàíèÿ ðàñïîëîæåíà íà þãå Çàïàäíîé Ñèáèðè â ïðåäåëàõ Àëòàéñêîãî êðàÿ. Çíà÷èòåëüíàÿ ÷àñòü ìàòåðèàëà áûëà ñîáðàíà íà òåððèòîðèè Áèéñêîãî ðàéîíà, íàõîäÿùåãîñÿ â þãî-âîñòî÷íîé ÷àñòè ðåãèîíà è çàíèìàþùåãî ïëîùàäü 2173 êì2. Ñîâðåìåííûé ðåëüåô Áèéñêîãî ðàéîíà îáÿçàí, ãëàâíûì îáðàçîì, äîëèíå ð. Áèÿ, ðàçäåëÿþùåé äâå êðóïíûå ìîðôîñòðóêòóðû – Áèå-×óìûøñêóþ âîçâûøåííîñòü íà ñåâåðå è Ïðåäàëòàéñêóþ ðàâíèíó íà þãå.

Materials and methods The study was conducted during the field seasons of 2014–2015, in the spring and autumn – the leafless time of the year in region, which facilitate nest searching. During the study 50 km of shelter belts were surveyed and 72 nests of Black Kites were revealed (fig. 1). Most of nests were located in the shelter belts consists of only one genus of trees – Populus. The data on nesting preferences of the Black Kite was processed using method of M.C. Romanov (Romanov, 2001; 2005). During the survey of breeding territories of the species, a spatial structure of forest stand 20 m around the nesting tree was studied, and parameters of the nesting tree were compared with those of 4 neighboring trees belonging to the canopy layer (Romanov, 2001; 2005). For description of parameters of trees we used a scale of ontogenetic state of plants (Diagnosis …, 1989). The index of tree strength (ITS) reflecting the strength of the tree and the level of development of its canopy was calculated as a ratio of trunk diameter on 1.3 m height (in cm) to the total height of the tree (in m) (Romanov, 2001). To assess the preferences of the Black Kite according to different parameters of nesting and adjacent trees we used Ivlev-Jacobs electivity index (I-J Index). Results The distance between nests of neighboring pairs of Black Kites (n=43) breeding in shelter belts makes in average 538±54.1 m (min 180 m, max 1429 m). More than the half of them (n=44, 61.6 %) located on poplars, 14 nests (19.4 %) – on birches (Betula sp.), 6 (8.3 %) – on maples (Acer sp.), 4 (5.6 %) on pines (Pinus silvestris), 2 (2.8 %) on apple-trees (Malus sp.) and 2 (2.8 %) on elmes (Ulmus parvifolia). To establish preferences of Black Kite towards different tree species in mixed shelter belts


Raptor Research

Ëåñîïîëîñà – òèïè÷íûé ãíåçäîâîé áèîòîï ÷¸ðíîãî êîðøóíà (Milvus migrans) â Àëòàéñêîì êðàå. Ôîòî Ð. Áàõòèíà. The artificial forest shelter belt is a typical nesting habitat of the Black Kite (Milvus migrans) in the Altai Kray. Photo by R. Bachtin.

Raptors Conservation 2016, 32 Àáñîëþòíàÿ âûñîòà Áèå-×óìûøñêîé âîçâûøåííîñòè â ïðåäåëàõ èçó÷àåìîé òåððèòîðèè ñîñòàâëÿåò 390 ì íàä óð. ì. (ã. Ïëîñêàÿ). Çäåñü õàðàêòåðíû øèðîêèå óâàëû âûñîòîé äî 50 ì, ðàçäåë¸ííûå ëîãàìè ñ ïîëîãèìè ñêëîíàìè è ïëîñêèì äíîì (Áàêëàíîâà, 2008). Ðåëüåô ìåæäóðå÷üÿ ðåê Áèÿ è Êàòóíü â ïðåäåëàõ Áèéñêîãî ðàéîíà, â îáùåì, ðàâíèííûé, ïåðåõîäÿùèé â õîëìèñòî-óâàëèñòûé íà âîñòîêå – â ìåñòå êîíòàêòà ñ Ñåâåðî-Âîñòî÷íûìè ïðåäãîðüÿìè Àëòàéñêîé ãîðíîé ñòðàíû. Ïðèðîäíî-êëèìàòè÷åñêèå îñîáåííîñòè ðàéîíà èññëåäîâàíèé îáóñëîâëåíû ãåîãðàôè÷åñêèì ïîëîæåíèåì èçó÷àåìîé òåððèòîðèè â öåíòðå Åâðîàçèàòñêîãî ìàòåðèêà â çîíå êîíòèíåíòàëüíîãî êëèìàòà óìåðåííûõ øèðîò. Ñðåäíÿÿ òåìïåðàòóðà âîçäóõà â ÿíâàðå -23,3°Ñ, àáñîëþòíûé ìèíèìóì -54°Ñ. Ñðåäíÿÿ òåìïåðàòóðà èþëÿ +19,2°Ñ, ñðåäíÿÿ ìàêñèìàëüíàÿ òåìïåðàòóðà +25,9°Ñ, àáñîëþòíûé ìàêñèìóì +41°Ñ, ìèíèìóì +2°Ñ. Ãîäîâîå êîëè÷åñòâî îñàäêîâ ñîñòàâëÿåò 450–500 ìì (Áàêëàíîâà, 2008). Ìàòåðèàë è ìåòîäû èññëåäîâàíèé Èññëåäîâàíèÿ ïðîâåäåíû â ïîëåâûå ñåçîíû 2014–2015 ãã. â ïðåäåëàõ Áèéñêîãî ðàéîíà Àëòàéñêîãî êðàÿ. Íà èçó÷àåìîé òåððèòîðèè ÷¸ðíûé êîðøóí øèðå äðóãèõ âèäîâ õèùíûõ ïòèö îñâîèë ïîëåçàùèòíûå ëåñîïîëîñû. Ïîëåâûå ðàáîòû ïðîâîäèëèñü â âåñåííåå è îñåííåå âðåìÿ, êîãäà

51

we calculated Ivlev-Jacobs electivity index (I-J Index) (number of nesting trees – 31, number of neighboring trees – 124). Analysis revealed that the poplar is the most attractive tree genus for Black Kite’s nesting in mixed shelter belts (I-J Index = 0.5), birches are used proportioned to its abundance (-0.02), and pines and maples are ignored (fig. 2). The height of nesting trees used by Black Kites in shelter belts varied from 7 to 32 meters, making in average 19.9±0.66 ì (n=72). The height of nest location varied from 5 to 20 meters, making in average 10.0±0.37 m (n=72). We found positive correlation between height of a tree and height of nest location on the tree (r=0.056) (fig. 3). According to the scale of ontogenetic state of plants (Diagnosis…, 1989), all kind of trees pass several age-related conditions during ontogenesis – from seedling to generative and to senile states. Generative state of a tree, in turn, divides on the following states: young generative, middle-aged generative and old-generative. In the study area we revealed 45 middle-aged generative nesting trees and 27 old generative nesting trees, making in total 72 nesting trees (table 1). Analysis of preferences of Kites breeding in shelter belts towards trees in different ontogenetic state was also based on comparison of nesting trees (n=72) and neighboring trees (n=288). Result indicates that Black Kites prefer middle-aged generative trees and partly avoid old generative trees (I-J Indexes are 0.74 and -0.18, respectively), and completely avoid young generative trees (table 1). It is reckoned that diameter of a trunk of nesting trees is bigger then of surrounding stand (Romanov, 2001). In our study, diameter of trunks 1.3 m above the ground was 45.8±1.68 cm (n=72) for nesting trees (min = 13 cm; max = 81 cm), and 37.7±0.70 cm (n=288) for neighboring trees (min = 14 cm; max = 77 cm), that proofs the unmentioned statement. Statistical significance of differences in trunk diameter was established by means of Student’s t-test (p<0.01). To establish preferences of Black Kite towards trunk diameter of the nesting tree we calculated I-J Index (fig. 5). Trees under study were conventionally divided on 7 classes according to its trunk diameter. Despite the mean value of trunk diameter of nesting trees makes 45.8 cm (see above), analysis showed that Kites prefer to breed on trees with a trunk diameter from 31 to 40 cm (I-J


52

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32 äðåâåñíàÿ ðàñòèòåëüíîñòü ëèøåíà ëèñòâû, ÷òî ñóùåñòâåííî ïîâûñèëî ïðîäóêòèâíîñòü ðàáîòû ïðè ïîèñêå ãí¸çä. Ïðè ýòîì íàáëþäàòåëè äâèãàëèñü íà àâòîìîáèëå, ëèáî ïåøêîì âäîëü ëåñîïîëîñ, à âñå îáíàðóæåííûå ãí¸çäà êîðøóíà ôèêñèðîâàëèñü ñ ïîìîùüþ GPS-íàâèãàòîðîâ äëÿ ïîñëåäóþùåé ñòàòèñòè÷åñêîé îáðàáîòêè. Çà ïåðèîä èçûñêàíèé èçó÷åíî 50 êì ëåñîïîëîñ è âûÿâëåíî 72 ãíåçäà ýòîãî õèùíèêà (ðèñ. 1), ÷àùå â íàñàæäåíèÿõ, ñîñòîÿùèõ èç îäíîãî ëåñîîáðàçóþùåãî âèäà – òîïîëÿ (Populus sp). Âèäîâàÿ ïðèíàäëåæíîñòü ãíåçäîâîé ïîñòðîéêè îïðåäåëÿëàñü âèçóàëüíî ïî ïðÿìûì è êîñâåííûì ïðèçíàêàì – õàðàêòåð ãíåçäîâîé ïîñòðîéêè, íàëè÷èå àíòðîïîãåííîãî ìàòåðèàëà (â ãíåçäå, îêîëî íåãî, ïîä íèì), íàëè÷èå õàðàêòåðíûõ îñòàòêîâ ïèùè è ïîãàäîê, ïåðüåâ è äð., ëèáî ïðèñóòñòâèå âçðîñëûõ ïòèö ó çàíÿòîãî èìè ãíåçäà. Ïðèíàäëåæíîñòü ãí¸çä ê òîìó èëè èíîìó ãíåçäîâîìó ó÷àñòêó îïðåäåëÿëàñü ïóò¸ì èõ ïîñåùåíèÿ â ãíåçäîâîå âðåìÿ. Çà îñíîâó îáðàáîòêè ìàòåðèàëà ïî ãíåçäîâûì ïðåäïî÷òåíèÿì ÷¸ðíîãî êîðøóíà áûëà âçÿòà ìåòîäèêà Ì.Ñ. Ðîìàíîâà (Ðîìàíîâ, 2001; 2005). Ïðè îáñëåäîâàíèè ãíåçäîâûõ ó÷àñòêîâ èçó÷àëàñü ïðîñòðàíñòâåííàÿ ñòðóêòóðà äðåâîñòîÿ â ðàäèóñå 20 ì îò ãíåçäîâîãî äåðåâà (ïîäñ÷èòûâàëîñü êîëè÷åñòâî äåðåâüåâ êàæäîãî âèäà). Ïðè èçó÷åíèè ãíåçäîâûõ äåðåâüåâ êîðøóíà èõ ïàðàìåòðû ñðàâíèâàëèñü ñ ïàðàìåòðàìè ÷åòûð¸õ áëèæàéøèõ äåðåâüåâ, âõîäÿùèõ â ïåðâûé ÿðóñ äðåâîñòîÿ. Äëÿ ýòîãî ïðîñòðàíñòâî âîêðóã ãíåçäîâîãî äåðåâà äåëèëîñü íà ÷åòûðå ðàâíûõ ñåêòîðà, îðèåíòèðîâàííûõ ïî ñòîðîíàì ñâåòà, è â êàæäîì

Ðèñ. 1. Âûÿâëåííûå ãí¸çäà ÷¸ðíîãî êîðøóíà (Milvus migrans) â ëåñîïîëîñàõ â Áèéñêîì ðàéîíå Àëòàéñêîãî êðàÿ. Fig. 1. Known nests of the Black Kite (Milvus migrans) in forest shelter belts in Biysk district of Altai Kray.

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ Index = 0.23). Trees with a trunk diameter from 21 to 30 cm are used proportioned to their abundance (I-J Index = -0.04). And trees with another trunk diameter are mostly ignored. During this study we also examined the index of tree strength (Ip = D1,3/H) and its impact on Black Kite’s nesting preferences. ITS of nesting trees was 1.2–5.0, mean 2.4±0.08 (n=72), and ITS of neighboring trees – 0.6– 5.0, mean 2.0±0.04 (n=288). The prevalence of nesting trees on neighboring ones by the ITS was also shown by other researchers (Romanov, 2001; Novikova, 2009). Student’s t-test confirmed statistical significance of differences between ITS of nesting and neighboring trees (p<0.01). Calculation of I-J Index for ITS of nesting trees revealed that the most preferable for breeding trees in a shelter belt are the ones with ITS vary from 1.6-2 (I-J Index = 0.31) (fig.7). Trees with ITS 1.1–1.5 and 2.1–2.5 are used proportioned to their abundance (I-J Index = -0.02 and I-J Index = -0.07, respectively). And finally, trees with ITS below 1 or above 2.6 are mostly ignored by the Black Kites. Conclusion Forest shelter belts are essential part of the landscape in the study area. Nowadays, raptors including Black Kites actively use them as breeding biotope. Several factors can influence the choice of Kites towards the tree which they would prefer to use as a nest support. The main factors are the size of a tree and its ontogenetic condition. We established that in mixed shelter belts Black Kites prefer to nest on poplars (Ivlev-Jacobs


Raptor Research

Raptors Conservation 2016, 32

53

Ãí¸çäà ÷¸ðíîãî êîðøóíà (Milvus migrans) â ëåñîïîëîñàõ. Ôîòî Ð. Áàõòèíà. Nests of Black Kites (Milvus migrans) in artificial shelter belts. Photos by R. Bachtin.

èç íèõ ïðîèçâîäèëèñü ïðîìåðû áëèæàéøåãî ê ãíåçäîâîìó ñîñåäíåãî äåðåâà (Ðîìàíîâ, 2001; 2005). Äëÿ îïèñàíèÿ ãíåçäîâûõ è áëèæàéøèõ ê íèì äåðåâüåâ èñïîëüçîâàëàñü øêàëà îíòîãåíåòè÷åñêèõ ñîñòîÿíèé ðàñòåíèé (Äèàãíîçû…, 1989).  êà÷åñòâå ïîêàçàòåëÿ ìîùíîñòè äåðåâüåâ è ðàçâèòîñòè èõ êðîíû ïðèìåíÿëñÿ èíäåêñ ìîùíîñòè – îòíîøåíèå äèàìåòðà ñòâîëà íà âûñîòå 1,3 ì, âûðàæåííîãî â ñàíòèìåòðàõ, ê âûñîòå äåðåâà â ìåòðàõ (Ip=D1,3/H). (Ðîìàíîâ, 2001). Ïðè îïèñàíèè ãíåçäîâûõ äåðåâüåâ àíàëèçèðîâàëèñü èõ ðàçìåðû, âûñîòà äî ãíåçäà, ðàñïîëîæåíèå ãíåçäà îòíîñèòåëüíî êðîíû è õàðàêòåð åãî ðàçìåùåíèÿ íà äåðåâå. Äëÿ îöåíêè èçáèðàòåëüíîñòè ÷¸ðíîãî êîðøóíà â îòíîøåíèè ðàçëè÷íûõ ïàðàìåòðîâ ãíåçäîâûõ è ñîñåäíèõ äåðåâüåâ èñïîëüçîâàëñÿ èíäåêñ èçáèðàòåëüíîñòè Èâëåâà-Äæåêîáñà. Èíäåêñ îñíîâàí íà ñðàâíåíèè äîëè ðåñóðñà â ñïåêòðå èñïîëüçóåìûõ æèâîòíûì ðåñóðñîâ è äîëè ýòîãî æå ðåñóðñà â îêðóæàþùåé ñðåäå (Ðîìàíîâ, 2001; 2005). Ñòàòèñòè÷åñêàÿ îáðàáîòêà äàííûõ ïðîâîäèëàñü ñ ïîìîùüþ ïðîãðàìì Microsoft Office Excel 2010 è Statistica 6.0.

electivity index is 0.5). Concerning ontogenetic conditions Black Kites mostly select middle-aged generative trees (Ivlev-Jacobs electivity index is 0.74). The most preferable trunk diameter is 31–40 cm (Ivlev-Jacobs electivity index is 0.23) and the index of tree strength is 1.6–2 (Ivlev-Jacobs electivity index is 0.31). This results are not always concordant with the ones obtained by the simple data averaging, meaning that usage of Ivlev-Jacobs electivity index is a reasonable method for studying habitat sources and their distribution between animals. We also revealed a positive correlation between the height of the nesting tree and the height of nest location (r=0.556), and also between trunk diameter of the nesting tree and the height of nest location (r=0.370). A minor negative correlation was established between the height of nest location and the index of tree strength (r=-0.128). Apparently, in other breeding habitats, such as coniferous forest, flood plain forests and outlier groves preferences of the Black Kite in relation to nesting trees could be different from those we observed in a population breeding in the shelter belts.


54

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ Ðèñ. 2. Èçáèðàòåëüíîñòü ÷¸ðíîãî êîðøóíà (Milvus migrans) â îòíîøåíèè âèäà ãíåçäîâîãî äåðåâà ïðè ðàçìíîæåíèè â ñìåøàííûõ ëåñîïîëîñàõ. Fig. 2. Selectivity of the Black Kite (Milvus migrans) breeding in shelter belts towards different tree species of nesting trees.

Ðåçóëüòàòû è èõ îáñóæäåíèå Ðàññòîÿíèå ìåæäó ãí¸çäàìè ðàçíûõ ïàð ÷¸ðíîãî êîðøóíà (n=43) íà ñîñåäíèõ ãíåçäîâûõ ó÷àñòêàõ â ëåñîïîëîñàõ ñîñòàâèëî îò 180 äî 1429 ì, â ñðåäíåì 538±54,1 ì. Áîëåå ïîëîâèíû ãí¸çä êîðøóíà – 44 (61,1 %) ðàñïîëàãàëèñü íà òîïîëÿõ, 14 ãíåçä (19,4 %) íàõîäèëèñü íà áåð¸çàõ (Betula sp.), 6 (8,3 %) – íà êë¸íàõ (Acer sp.), 4 (5,6 %) – íà ñîñíàõ (Pinus silvestris), 2 (2,8 %) – íà ÿáëîíÿõ (Malus sp.) è 2 (2,8 %) – íà âÿçàõ (Ulmus parvifolia). Äëÿ âûÿâëåíèÿ ïðåäïî÷òåíèé ýòîãî õèùíèêà ïðè âûáîðå ïîðîäû äåðåâà íà ãíåçäîâàíèè â ñìåøàííûõ ëåñîïîëîñàõ áûë èñïîëüçîâàí èíäåêñ èçáèðàòåëüíîñòè Èâëåâà-Äæåêîáñà è ïîñòðîåí ãðàôèê çàâèñèìîñòè èíäåêñà îò ïîðîäû äåðåâà (ðèñ. 2) (êîëè÷åñòâî ãíåçäîâûõ äåðåâüåâ – 31, êîëè÷åñòâî ñîñåäíèõ äåðåâüåâ – 124). Èç ðàñ÷¸òîâ áûëè èçúÿòû ãí¸çäà ðàñïîëîæåííûå íà ÿáëîíÿõ è âÿçàõ, ò.ê. êîðøóí çàíèìàë è äîñòðàèâàë çäåñü ñòàðûå ïîñòðîéêè

âðàíîâûõ ïòèö (Corvidae), à ñàìè äåðåâüÿ ýòèõ âèäîâ â ëåñîïîëîñàõ åäèíè÷íû. Àíàëèç èíäåêñà èçáèðàòåëüíîñòè (ðèñ. 2) ïîêàçûâàåò, ÷òî íàèáîëåå ïðèâëåêàòåëüíûìè íà ãíåçäîâàíèè â ñìåøàííûõ ëåñîïîëîñàõ ÿâëÿþòñÿ òîïîëÿ (èíäåêñ Èâëåâà-Äæåêîáñà 0,5), áåð¸çû çàíèìàþòñÿ ïðîïîðöèîíàëüíî ñâîåìó îáèëèþ (-0,02), à ñîñíû è êë¸íû ñ ðàçíîé ñòåïåíüþ èãíîðèðóþòñÿ. Âûñîòà ãíåçäîâûõ äåðåâüåâ, êîòîðûå ÷¸ðíûé êîðøóí èñïîëüçóåò â êà÷åñòâå ñóáñòðàòà äëÿ óñòðîéñòâà ãí¸çä â ëåñîïîëîñàõ, âàðüèðîâàëà îò 7 äî 32 ì, â ñðåäíåì ñîñòàâëÿÿ 19,9±0,66 ì (n=72); âûñîòà ðàñïîëîæåíèÿ ãí¸çä – îò 5 äî 20, â ñðåäíåì 10,0±0,37 ì (n=72). Äëÿ âûÿâëåíèÿ ñâÿçè âûñîòû ãíåçäîâûõ äåðåâüåâ è âûñîòû ðàçìåùåíèÿ íà íèõ ãíåçäîâûõ ïîñòðîåê áûë ïðîâåä¸í êîððåëÿöèîííûé àíàëèç (ðèñ. 3). Ðåçóëüòàòû àíàëèçà ïîêàçàëè ïîëîæèòåëüíóþ êîððåëÿöèþ èçó÷àåìûõ ïàðàìåòðîâ (r=0,556), à ïðèìåíåíèå t-êðèòåðèÿ Ñòüþäåíòà ïîêàçàëî ñòàòèñòè÷åñêóþ äîñòîâåðíîñòü ðàçëè÷èé ìåæäó âûáîðêàìè (p<0,01). Ñëåäîâàòåëüíî, ÷åì âûøå ãíåçäîâîå äåðåâî, òåì âûøå ðàçìåùàåòñÿ íà í¸ì ãíåçäîâàÿ ïîñòðîéêà. Îòíîñèòåëüíî êðîíû äåðåâà, ãí¸çäà êîðøóíà ðàñïîëàãàëèñü ÷åòûðüìÿ ñïîñîáàìè: â íèæíåé, ñðåäíåé è âåðõíåé ÷àñòÿõ êðîíû, à òàêæå ïîä êðîíîé (ðèñ. 4). Ïî õàðàêòåðó ðàñïîëîæåíèÿ íà äåðåâå ãíåçäîâûå ïîñòðîéêè óñòðàèâàëèñü: â ðàçâèëêå ñòâîëà, â îñíîâàíèè áîêîâûõ ñó÷üåâ ïåðâîãî ïîðÿäêà, íà íàêëîíåííîì ñòâîëå, íà âåòâè â óäàëåíèè îò ñòâîëà è íà ñëîìå ñòâîëà (ðèñ. 4). Êàê èçâåñòíî, ïî îáùåïðèíÿòîìó ìíåíèþ (Ðîìàíîâ, 2001; Ãàëóøèí, 1971; Èâàíîâñêèé, 1985; Øåïåëü, 1992), áîëüøèíñòâî âèäîâ õèùíûõ ïòèö, îáèòàþùèõ â ëåñàõ, ïðåäïî÷èòàþò ãíåçäèòüñÿ íà íàè-

Ðèñ. 3. Ñâÿçü âûñîòû ãíåçäîâûõ äåðåâüåâ ñ âûñîòîé ðàñïîëîæåíèÿ íà íèõ ãí¸çä. Fig. 3. Relation between the height of nesting trees and the height of nest location.


Raptor Research

Raptors Conservation 2016, 32

Ðèñ. 4. Âàðèàíòû ðàçìåùåíèÿ ãí¸çä ÷¸ðíûì êîðøóíîì îòíîñèòåëüíî êðîíû (ââåðõó) è õàðàêòåð ðàñïîëîæåíèÿ ãí¸çä íà äåðåâå (âíèçó). Fig. 4. Different types of Black Kite’s nest location on the nesting tree: relative to the canopy (above) and overall position on the tree (below).

áîëåå ñòàðûõ äåðåâüÿõ. Íî, îäíàêî, íåêîòîðûå àâòîðû (Ðîìàíîâ, 2001) ñâÿçûâàþò ýòî íå ñòîëüêî ñ âîçðàñòîì äåðåâà, ñêîëüêî ñ åãî îíòîãåíåòè÷åñêèì ñîñòîÿíèåì. Ñîãëàñíî øêàëå îíòîãåíåòè÷åñêèõ ñîñòîÿíèé (Äèàãíîçû…, 1989) âñå âèäû äåðåâüåâ ïðîõîäÿò â ñâî¸ì ðàçâèòèè íåñêîëüêî ïîñëåäîâàòåëüíûõ ôàç èëè âîçðàñòíûõ ñîñòîÒàáë. 1. Îíòîãåíåòè÷åñêîå ñîñòîÿíèå ãíåçäîâûõ äåðåâüåâ ÷¸ðíîãî êîðøóíà (Milvus migrans) è áëèæàéøèõ ê íèì ÷åòûð¸õ äåðåâüåâ (â %). Table 1. Ontogenetic state of nesting trees used by the Black Kite (Milvus migrans) and neighboring trees (in %).

Ñîñòîÿíèå äåðåâà Tree condition Ìîëîäîå ãåíåðàòèâíîå Young generative Ñðåäíåâîçðàñòíîå ãåíåðàòèâíîå Middle-aged generative Ñòàðîå ãåíåðàòèâíîå Old generative

Ãíåçäîâûå äåðåâüÿ Nesting trees (n=72) –

Ñîñåäíèå ñ ãíåçäîâûìè äåðåâüÿ Neighboring trees (n=288) 3.8

62.5

76.4

37.5

19.8

55

ÿíèé – îò ïðîðîñòêà äî ñòàðîãî ãåíåðàòèâíîãî è ñåíèëüíîãî. Ãåíåðàòèâíûé ïåðèîä äåðåâüåâ, â ñâîþ î÷åðåäü, ðàçäåëÿåòñÿ íà ñëåäóþùèå îíòîãåíåòè÷åñêèå ñîñòîÿíèÿ: ìîëîäûå ãåíåðàòèâíûå, ñðåäíåâîçðàñòíûå ãåíåðàòèâíûå è ñòàðûå ãåíåðàòèâíûå äåðåâüÿ.  ðàéîíå èññëåäîâàíèé âûÿâëåíî 72 ãíåçäîâûõ äåðåâà, èç íèõ ñðåäíåâîçðàñòíûìè ãåíåðàòèâíûìè îêàçàëèñü 45 è ñòàðûìè ãåíåðàòèâíûìè 27 (òàáë. 1). Îíòîãåíåòè÷åñêîå ñîñòîÿíèå ñîñåäíèõ ñ ãíåçäîâûìè äåðåâüåâ ïðåäñòàâëåíî â òàáëèöå 1. Àíàëèç èçáèðàòåëüíîñòè ÷¸ðíîãî êîðøóíà, ãíåçäÿùåãîñÿ â ëåñîïîëîñàõ, â îòíîøåíèè îíòîãåíåòè÷åñêîãî ñîñòîÿíèÿ äåðåâüåâ ïðîâîäèëñÿ íà îñíîâå ñðàâíåíèÿ ãíåçäîâûõ äåðåâüåâ (n=72) è áëèæàéøèõ ê íèì (n=288). Ïîëó÷åííûå ðåçóëüòàòû ãîâîðÿò î ïðåäïî÷òèòåëüíîé èçáèðàòåëüíîñòè ñðåäíåâîçðàñòíûõ ãåíåðàòèâíûõ, è íåêîé ñòåïåíè èçáåãàíèÿ ñòàðûõ ãåíåðàòèâíûõ äåðåâüåâ (çíà÷åíèÿ èíäåêñà Èâëåâà-Äæåêîáñà 0,74 è -0,18, ñîîòâåòñòâåííî), ïðè ïîëíîì èçáåãàíèè ìîëîäûõ ãåíåðàòèâíûõ äåðåâüåâ (òàáë. 1). Âåðîÿòíî, ïðåäïî÷òåíèå ÷¸ðíûì êîðøóíîì ñðåäíåâîçðàñòíûõ, à íå ñòàðûõ äåðåâüåâ â ëåñîïîëîñàõ îáúÿñíÿåòñÿ òåì, ÷òî áîëüøèíñòâî èç íèõ ïðåäñòàâëåíû òîïîëåì, êîòîðûé ñ âîçðàñòîì ñòàíîâèòñÿ áîëåå õðóïêèì, à àðõèòåêòîíèêà êðîíû, âåðîÿòíî, ìåíåå óäîáíîé äëÿ óñòðîéñòâà ãíåçäà. Ïðè ýòîì ãíåçäîâûå ïîñòðîéêè ýòîò õèùíèê ðàçìåùàë â ñðåäíåì íà îäèíàêîâîé âûñîòå: ñòàðûå ãåíåðàòèâíûå äåðåâüÿ –10,3±0,58 ì (n=27); ñðåäíèå ãåíåðàòèâíûå äåðåâüÿ – 10,0±0,48 (n=45). Ñðàâíåíèå äàííûõ âûáîðîê ñ ïîìîùüþ êðèòåðèåâ äîñòîâåðíîñòè ïîäòâåðäèëî îòñóòñòâèå çíà÷èìûõ ðàçëè÷èé. Ñ÷èòàåòñÿ, ÷òî êàê ïðàâèëî, äèàìåòð ñòâîëîâ ãíåçäîâûõ äåðåâüåâ áîëüøå, ÷åì ó îêðóæàþùåãî äðåâîñòîÿ (Ðîìàíîâ, 2001). Äèàìåòð ñòîëîâ ãíåçäîâûõ äåðåâüåâ (íà óðîâíå 1,3 ì) ÷¸ðíîãî êîðøóíà â ëåñîïîëîñàõ ñîñòàâëÿåò 13–81, â ñðåäíåì 45,8±1,68 ñì (n=72), äèàìåòð ñòâîëîâ ñîñåäíèõ ê ãíåçäîâûì äåðåâüåâ – 14–77, â ñðåäíåì 37,7±0,70 ñì (n=288), ÷òî ïîäòâåðæäàåò óêàçàííîå óòâåðæäåíèå. Êðîìå òîãî, ñòàòèñòè÷åñêóþ äîñòîâåðíîñòü ðàçëè÷èé äèàìåòðîâ ãíåçäîâûõ è ñîñåäíèõ äåðåâüåâ ïîäòâåðæäàåò è t-êðèòåðèÿ Ñòüþäåíòà (p<0,01). Äëÿ âûÿâëåíèÿ ïðåäïî÷òåíèé ÷¸ðíîãî êîðøóíà â îòíîøåíèè äèàìåòðà ñòâîëà ãíåçäîâîãî äåðåâà áûë ïðèìåí¸í èíäåêñ èçáèðàòåëüíîñòè Èâëåâà-Äæåêîáñà è ïîñòðîåí ãðàôèê çàâèñèìîñòè èíäåêñà îò


56

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Ðèñ. 5. Èçáèðàòåëüíîñòü ÷¸ðíîãî êîðøóíà â îòíîøåíèè äèàìåòðà ãíåçäîâûõ äåðåâüåâ ïðè ãíåçäîâàíèè â ëåñîïîëîñàõ. Fig. 5. Preferences of the Black Kite breeding in shelter belts in relation to a different trunk diameter of nesting trees.

Ðèñ. 6. Ñâÿçü âûñîòû ðàñïîëîæåíèÿ ãí¸çä è äèàìåòðà ãíåçäîâûõ äåðåâüåâ. Fig. 6. Relation between the height of nest location and diameter of nesting trees.

Ðèñ. 7. Èçáèðàòåëüíîñòü ÷¸ðíîãî êîðøóíà â îòíîøåíèè ìîùíîñòè ãíåçäîâûõ äåðåâüåâ ïðè ãíåçäîâàíèè â ëåñîïîëîñàõ. Fig. 7. Preferences of the Black Kite breeding in shelter belts in relation to the index of tree strength.

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ äèàìåòðà (ðèñ. 5). Äèàìåòðû äåðåâüåâ ïðè ýòîì áûëè óñëîâíî ðàçäåëåíû íà 7 ðàíãîâ. Èç ãðàôèêà âèäíî, ÷òî íåñìîòðÿ íà ñðåäíèé äèàìåòð ñòâîëîâ ãíåçäîâûõ äåðåâüåâ – 45,8 ñì, êîðøóíîì ïðåäïî÷èòàþòñÿ äåðåâüÿ òîëùèíîé 31–40 ñì (èíäåêñ èçáèðàòåëüíîñòè ðàâåí 0,23). Ïðèìåðíî ïðîïîðöèîíàëüíî ñâîåìó îáèëèþ ýòèì õèùíèêîì èñïîëüçóþòñÿ äåðåâüÿ ñ äèàìåòðîì 21–30 ñì (-0,04). Äåðåâüÿ äðóãîé òîëùèíû ñ ðàçíîé ñòåïåíüþ èãíîðèðóþòñÿ, âïëîòü äî ïîëíîãî èçáåãàíèÿ.  ðàñ÷¸ò äàííûõ äëÿ ãðàôèêà íå âîøëî åäèíñòâåííîå ãíåçäîâîå äåðåâî ñ äèàìåòðîì 81 ñì, ò.ê. ïî ñîñåäñòâó ñ íèì òàêèõ êðóïíûõ äåðåâüåâ íå îêàçàëîñü. Íåêîòîðàÿ ïîëîæèòåëüíàÿ êîððåëÿöèÿ (r=0,370) âûÿâëåíà òàêæå ìåæäó äèàìåòðîì ñòâîëà ãíåçäîâîãî äåðåâà è âûñîòîé ðàçìåùåíèÿ ãíåçäà (ðèñ. 6). Èíäåêñ ìîùíîñòè äëÿ ãíåçäîâûõ äåðåâüåâ ñîñòàâèë 1,2–5,0, â ñðåäíåì 2,4±0,08 (n=72), äëÿ ñîñåäíèõ äåðåâüåâ – 0,6–5,0, â ñðåäíåì 2,0±0,04 (n=288). Ïðåîáëàäàíèå èíäåêñà ìîùíîñòè ãíåçäîâûõ äåðåâüåâ ïî ñðàâíåíèþ ñ ñîñåäíèìè ó õèùíûõ ïòèö ïîäòâåðæäàåòñÿ èññëåäîâàíèÿìè è äðóãèõ àâòîðîâ (Ðîìàíîâ, 2001; Íîâèêîâà, 2009). Ïàðàìåòðè÷åñêèé t-êðèòåðèé Ñòüþäåíòà ïîäòâåðäèë ñòàòèñòè÷åñêóþ äîñòîâåðíîñòü ðàçëè÷èé ìåæäó èíäåêñàìè ìîùíîñòè ãíåçäîâûõ è ñîñåäíèõ äåðåâüåâ (p<0,01). Ïðèìåíåíèå èíäåêñà èçáèðàòåëüíîñòè Èâëåâà-Äæåêîáñà â îòíîøåíèè ìîùíîñòè äåðåâüåâ (ðèñ. 7) ïîêàçàëî, ÷òî íàèáîëåå ïðåäïî÷òèòåëüíûìè íà ãíåçäîâàíèè â ëåñîïîëîñàõ îêàçûâàþòñÿ äåðåâüÿ ñ èíäåêñîì ìîùíîñòè 1,6–2 (0,31). Äåðåâüÿ ñ èíäåêñîì 1,1–1,5 è 2,1–2,5 èñïîëüçóþòñÿ íà ãíåçäîâàíèè ïðèìåðíî ïðîïîðöèîíàëüíî ñâîåìó îáèëèþ (-0,02 è -0,07 ñîîòâåòñòâåííî). Äåðåâüÿ ñ èíäåêñîì áîëåå 2,6 è ìåíåå 1 ïî÷òè èëè ïîëíîñòüþ èãíîðèðóþòñÿ. Èíäåêñû ìîùíîñòè îêîëî 4 è áîëåå, êàê ïðàâèëî, îòíîñÿòñÿ ê êë¸íàì, íà êîòîðûõ êîðøóíû òîæå ãíåçäÿòñÿ, íî â êà÷åñòâå ñóáñòðàòà äëÿ ãíåçäà ýòè äåðåâüÿ èñïîëüçóþòñÿ ðåäêî. Íåáîëüøàÿ îòðèöàòåëüíàÿ êîððåëÿöèÿ (r=-0,128) óñòàíîâëåíà ìåæäó âûñîòîé ðàñïîëîæåíèÿ ãíåçäîâîé ïîñòðîéêè è èíäåêñîì ìîùíîñòè ãíåçäîâîãî äåðåâà (ðèñ. 8), ò.å. ÷åì âûøå ðàçìåùåíî ãíåçäî, òåì ìåíüøå èíäåêñ. Êðîìå òîãî, ñðåäíèå âûñîòû ãíåçäîâûõ äåðåâüåâ â çàâèñèìîñòè îò èõ èíäåêñîâ ìîùíîñòè ïðàêòè÷åñêè îäèíàêîâû, ÷òî îáúÿñíÿòñÿ, î÷åâèäíî, ñõîæèìè


Raptor Research

Raptors Conservation 2016, 32

57

3,1–3,5 (n=8) – 18,6 ì. Ñëåäîâàòåëüíî, ïðè âåñüìà ñõîæåì ãíåçäîâîì ñóáñòðàòå â ëåñîïîëîñàõ, ÷¸ðíûé êîðøóí âûáèðàåò äåðåâüÿ ÷óòü áîëåå «ñòðîéíûå» è óñòðàèâàåò ãí¸çäà íà íèõ íåìíîãî âûøå.

Ðèñ. 8. Ñâÿçü âûñîòû ðàñïîëîæåíèÿ ãí¸çä è èíäåêñà ìîùíîñòè ãíåçäîâûõ äåðåâüåâ. Fig. 8. Relation between the height of nest location and the index of tree strength.

óñëîâèÿìè ðîñòà â ëåñîïîëîñàõ íà èçó÷àåìîé òåððèòîðèè. Ïðè èíäåêñå 1,1–1,5 ñðåäíÿÿ âûñîòà äåðåâüåâ (n=4) – 20,5 ì, ïðè èíäåêñå 1,6–2,0 (n=23) – 20,7 ì, ïðè èíäåêñå 2,1–2,5 (n=21) – 21 ì, ïðè èíäåêñå 2,6–3,0 (n=11) – 20,2 ì, ïðè èíäåêñå Ïòåíöû ÷¸ðíîãî êîðøóíà (Milvus migrans) â ãí¸çäàõ â ëåñîïîëîñàõ. Ôîòî Ð. Áàõòèíà. Nestlings of the Black Kites (Milvus migrans) in the nests in artificial shelter belts. Photos by R. Bachtin.

Çàêëþ÷åíèå  ðàéîíå èññëåäîâàíèé ïîëåçàùèòíûå ëåñîïîëîñû ÿâëÿþòñÿ íåîòúåìëåìîé ÷àñòüþ îêðóæàþùåãî ëàíäøàôòà.  íàñòîÿùåå âðåìÿ õèùíûå ïòèöû, â òîì ÷èñëå ÷¸ðíûé êîðøóí, àêòèâíî èñïîëüçóþò èõ â êà÷åñòâå ãíåçäîâûõ áèîòîïîâ. Íà âûáîð äåðåâüåâ, èñïîëüçóåìûõ êîðøóíîì â êà÷åñòâå ñóáñòðàòà äëÿ óñòðîéñòâà ãí¸çä, âëèÿåò ðÿä ôàêòîðîâ, îñíîâíûìè èç êîòîðûõ âûñòóïàþò ðàçìåðû è îíòîãåíåòè÷åñêîå ñîñòîÿíèå äåðåâà. Óñòàíîâëåíî, ÷òî ïðè ãíåçäîâàíèè â ñìåøàííûõ ëåñîïîëîñàõ íàèáîëåå ïðåäïî÷òèòåëüíîé ïîðîäîé ÿâëÿåòñÿ òîïîëü (èíäåêñ èçáèðàòåëüíîñòè Èâëåâà-Äæåêîáñà ðàâåí 0,5). Ïî îíòîãåíåòè÷åñêîìó ñîñòîÿíèþ äåðåâüåâ âûáèðàþòñÿ ñðåäíåâîçðàñòíûå ãåíåðàòèâíûå


58

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ ׸ðíûé êîðøóí. Ôîòî Ð. Áàõòèíà Black Kite. Photo by R. Bañhtin.

(èíäåêñ 0,74). Íàèáîëåå ïðåäïî÷òèòåëüíûé äèàìåòð ñòâîëîâ ãíåçäîâûõ äåðåâüåâ ñîñòàâëÿåò 31–40 ñì (èíäåêñ 0,23), à èõ èíäåêñ ìîùíîñòè 1,6–2 (èíäåêñ 0,31). Êðîìå òîãî, âûÿâëåíà ïîëîæèòåëüíàÿ êîððåëÿöèÿ ìåæäó âûñîòîé ãíåçäîâîãî äåðåâà è âûñîòîé ðàçìåùåíèÿ íà í¸ì ãíåçäà (r=0,556), à òàêæå ìåæäó äèàìåòðîì ñòâîëà ãíåçäîâîãî äåðåâà è âûñîòîé ðàçìåùåíèÿ ãíåçäà (r=0,370). Íåáîëüøàÿ îòðèöàòåëüíàÿ êîððåëÿöèÿ (r=-0,128) óñòàíîâëåíà ìåæäó âûñîòîé ðàñïîëîæåíèÿ ãíåçäîâîé ïîñòðîéêè è èíäåêñîì ìîùíîñòè ãíåçäîâîãî äåðåâà. Ïîëó÷åííûå íàìè äàííûå íå âñåãäà ñîãëàñóþòñÿ ñ ïðîñòûì óñðåäíåíèåì èçó÷àåìûõ ïàðàìåòðîâ, ÷òî ïîäòâåðæäàåò îïðàâäàííîñòü ïðèìåíåíèÿ èíäåêñà èçáèðàòåëüíîñòè ïðè èçó÷åíèè ðåñóðñîâ è èõ äîëè, èñïîëüçóåìûõ æèâîòíûìè â ïðîöåññå æèçíåäåÿòåëüíîñòè. Î÷åâèäíî, â äðóãèõ ãíåçäîâûõ áèîòîïàõ â ðàéîíå èññëåäîâàíèé, òàêèõ êàê ñîñíîâûé áîð, ïîéìåííûå ëåñà è êîëêè, ïðåäïî÷òåíèÿ ÷¸ðíîãî êîðøóíà ïðè âûáîðå ãíåçäîâîãî äåðåâà áóäóò ðàçëè÷àòüñÿ. Ëèòåðàòóðà Áàêëàíîâà Ñ.Ë. Ãåîãðàôèÿ Àëòàéñêîãî êðàÿ. Óðîêè êðàåâåäåíèÿ. Ó÷åáíî-ìåòîäè÷åñêîå ïîñîáèå. Áèéñê: Èçäàòåëüñêèé äîì «Áèÿ», 2008. 288 ñ. [Baklanova S.L. Geography of the Altai Kray. Lessons of local lore. Educational handbook. Biysk, 2008: 1–288 (in Russian)]. Áàõòèí Ð.Ô., Âàæîâ Ñ.Â., Ìàêàðîâ À.Â. Ýêîëîãèÿ ñèíàíòðîïíîé ïîïóëÿöèè ÷¸ðíîãî êîðøóíà â îêðåñòíîñòÿõ Áèéñêà, Àëòàéñêèé êðàé, Ðîññèÿ. – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2010. ¹ 20. Ñ. 68–83 [Bachtin R.F., Vazhov S.V., Makarov A.V. Ecology of Synanthropic Populations of the Black Kite in the Vicinities of Biysk,

Altai Kray, Russia. – Raptors Conservation. 2010. 20: 68–83]. URL: http://rrrcn.ru/archives/19240 Äàòà îáðàùåíèÿ: 15.03.2016. Âàæîâ Ñ.Â. Ýêîëîãèÿ è ðàñïðîñòðàíåíèå ñîêîëîîáðàçíûõ è ñîâîîáðàçíûõ â ïðåäãîðüÿõ Àëòàÿ. Àâòîðåôåðàò äèññ. êàíä. áèîë. íàóê. Áàðíàóë, 2012. 22 ñ. [Vazhov S.V. Ecology and distribution of birds of prey and owl in the foothills of the Altai. Abstract of thesis. Barnaul, 2012: 1–22 (in Russian)]. Ãàëóøèí Â.Ì. ×èñëåííîñòü è òåððèòîðèàëüíîå ðàñïðåäåëåíèå õèùíûõ ïòèö Åâðîïåéñêîãî öåíòðà ÑÑÑÐ. – Òðóäû Îêñêîãî çàïîâåäíèêà. Ì., 1971. Âûï. 8. Ñ. 5–132. [Galushin V.M. Population size and spatial distribution of birds of prey of the European Center of the USSR. – Proceedings of the Okskiy State Nature Reserve. Moscow, 1971. Vol. 8: 5–132 (in Russian)]. Äèàãíîçû è êëþ÷è îíòîãåíåòè÷åñêèõ ñîñòîÿíèé äåðåâüåâ. Ì: ÌÃÏÈ, 1989. 40 ñ. [Diagnosis and keys ontogenetic state of trees. Moscow, 1989: 1–40 (in Russian)]. Èâàíîâñêèé Â.Â. Ðåäêèå õèùíûå ïòèöû Áåëîðóññêîãî ïîîçåðüÿ è ïóòè èõ îõðàíû. Äèññ. êàíä. áèîë. íàóê. Ì., 1985. 250 ñ. [Ivanovsky V.V. Rare birds of prey of the Belorussian Poozerie and the ways of their protection. Thesis. Moscow, 1985: 1–250 (in Russian)]. Íîâèêîâà Ë.Ì. ×èñëåííîñòü è ðàñïðåäåëåíèå êàíþêà â Êåðæåíñêîì çàïîâåäíèêå, Ðîññèÿ. – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2009. ¹ 16. Ñ. 139–150 [Novikova L.M. Number and Distribution of the Common Buzzard in the Kerzhenskiy State Nature Reserve, Russia. – Raptors Conservation. 2009. 16: 139–150]. URL: http:// rrrcn.ru/ru/archives/19509 Äàòà îáðàùåíèÿ: 15.03.2016. Ðîìàíîâ Ì.Ñ. Òîïè÷åñêèå ñâÿçè ëåñíûõ õèùíûõ ïòèö â ìîçàèêå ðàñòèòåëüíîãî ïîêðîâà. Äèññ. êàíä. áèîë. íàóê. Ì.: ÌÏÃÓ, 2001. 225 ñ. [Romanov M.S. Topical bonds of forest birds of prey in mosaic of vegetable cover. Thesis. Moscow, 2001: 1–225 (in Russian)]. Ðîìàíîâ Ì.Ñ. Õèùíûå ïòèöû è ÷¸ðíûé àèñò â ðàñòèòåëüíîì ïîêðîâå Íåðóññî-äåñíÿíñêîãî Ïîëåñüÿ. – Èçó÷åíèå è îõðàíà áèîëîãè÷åñêîãî ðàçíîîáðàçèÿ Áðÿíñêîé îáëàñòè. Ìàòåðèàëû ïî âåäåíèþ Êðàñíîé êíèãè Áðÿíñêîé îáëàñòè. Âûï. 1. Òðóá÷åâñê, 2005. Ñ. 190–210 [Romanov M.S. Birds of prey and black stork in the vegetation cover of the Nerusso-Desna Polesie. – Study and Protection of the biological diversity of the Bryansk region. Materials for the Red Data Book of the Bryansk region. Vol. 1. Trubchevsk, 2005: 190–210 (in Russian)]. Øåïåëü À.È. Õèùíûå ïòèöû è ñîâû Ïåðìñêîãî Ïðèêàìüÿ. Èðêóòñê, 1992. 296 ñ. [Shepel A.I. Birds of prey and owls of the Permskoe Prikamye (Perm region). Irkutsk, 1992: 1–296 (in Russian)].


Raptor Research

Raptors Conservation 2016, 32

59

The Problem of a Low Nest Occupancy of the White-Bellied Sea Eagle – a Special Case for This Species Conservation ИЗУЧЕНИЕ ПРОБЛЕМЫ НИЗКОЙ ЗАНЯТОСТИ ГНЁЗД БЕЛОБРЮХОГО ОРЛАНА – ВАЖНАЯ ЗАДАЧА ДЛЯ ПЛАНИРОВАНИЯ ОХРАНЫ ЭТОГО ВИДА Khaleghizadeh A. (School of Biological Sciences, University Sains Malaysia, Pulau Pinang, Malaysia; Agricultural Zoology Research Department, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization, Tehran, Iran) Халегизадэ А. (Биологическая школа при Научном университете Малайзии, Пинанг, Малайзия; Кафедра сельскохозяйственной зоологии Иранского научноисследовательского института защиты растений, сельскохозяйственных исследований, образования и развития, Тегеран, Иран)

Contact: Abolghasem Khaleghizadeh School of Biological Sciences, University Sains Malaysia USM 11800, Pulau Pinang, Malaysia akhaleghizadeh@ gmail.com

Ðåçþìå  îñíîâó ýòîãî èññëåäîâàíèÿ ëåãëè ðåçóëüòàòû ìîíèòîðèíãà ãí¸çä áåëîáðþõîãî îðëàíà (Hialiaeetus leucogaster), ïðîâîäèìîãî ìíîé êàæäûå 2 íåäåëè ñ ñåíòÿáðÿ 2012 ïî ñåíòÿáðü 2013 ãîäîâ. Çà âðåìÿ èññëåäîâàíèÿ áûëè ó÷òåíû 40 âçðîñëûõ îðëàíîâ è 4 ïòåíöà. Ñåìüäåñÿò ïÿòü ãí¸çä, îïèñàííûå â ýòîé ñòàòüå, ïîäåëåíû íà ïÿòü êàòåãîðèé: íåçàíÿòûå (63 %), âåðîÿòíî íåçàíÿòûå (12 %), âåðîÿòíî çàíÿòûå (20 %), çàíÿòûå (4 %) è àêòèâíûå ãí¸çäà (1 %). Âûëåò ïòåíöîâ áûë çàôèêñèðîâàí ëèøü íà îäíîì ãíåçäå, è îòñþäà âîçíèêàåò ïðîáëåìà òî÷íîãî óñòàíîâëåíèÿ ñòàòóñà çàíÿòîñòè ãí¸çä, êîòîðàÿ îáñóæäàåòñÿ â ýòîé ñòàòüå. Êëþ÷åâûå ñëîâà: õèùíûå ïòèöû, áåëîáðþõèé îðëàí, Hialiaeetus leucogaster, çàíÿòîå ãíåçäî, àêòèâíîå ãíåçäî, Ìàëàéçèÿ. Ïîñòóïèëà â ðåäàêöèþ: 21.02.2016 ã. Ïðèíÿòà ê ïóáëèêàöèè: 20.03.2016 ã. Abstract In the present study, I monitored nests of the White-bellied Sea Eagle Hialiaeetus leucogaster from September 2012 to September 2013 every two weeks. Maximum 40 adults and 4 juveniles were counted during this study. The 75 nests present here are categorized in five groups: Not occupied (63 %), occupied with low potentiality (12 %), with medium potentiality (20 %), reserved (4 %), and active nest (1 %). Successful breeding was observed only in one nest that raised the problem of nest occupancy and this problem is discussed in this article. Keywords: birds of prey, White-Bellied Sea Eagle, Hialiaeetus leucogaster, occupied nest, active nest, Malaysia. Received: 21/02/2016. Accepted: 20/03/2016. DOI: 10.19074/1814-8654-2016-32-59-66

Ââåäåíèå Áåëîáðþõèé îðëàí (Hialiaeetus leucogaster) – ðåçèäåíòíûé âèä, àðåàë îáèòàíèÿ êîòîðîãî ïðîñòèðàåòñÿ îò Èíäèè äî Àâñòðàëèè, ïðîõîäÿ ÷åðåç âñþ þãî-âîñòî÷íóþ Àçèþ (BirdLife International, 2014). Áåëîáðþõèé îðëàí íàñåëÿåò ïðèáðåæíûå çîíû (Robson, 2002) è ãíåçäèòñÿ íà îñòðîâàõ (Wells, 1999) è áîëîòèñòûõ íèçìåííîñòÿõ (Robson, 2002). Ãíåçäîâûå ïîñòðîéêè ïðåäïî÷òèòåëüíåå âñåãî ðàñïîëàãàåò íà âûñîêèõ äåðåâüÿõ (Wells, 1999).  Ìàëàéçèè, îäíèì èç õîðîøî èçâåñòíûõ ìåñò îáèòàíèÿ ýòîãî âèäà ÿâëÿåòñÿ Íàöèîíàëüíûé Ïàðê Ïèíàíã (ÍÏÏ), ðàñïîëîæåííûé íà îäíîèì¸ííîì îñòðîâå.  ïðèáðåæíîé çîíå òîãî ïàðêà áûëè îáíàðóæåíû 75 ãí¸çä ýòîãî âèäà. Ñðåäíåå ðàññòîÿíèå ìåæäó ñîñåäíèìè ãí¸çäàìè ñîñòàâëÿåò 143,4 ì, à äëÿ çàíÿòûõ ãí¸çä îíî óâåëè-

Introduction The White-Bellied Sea Eagle Hialiaeetus leucogaster is a resident species occurring from India through Southeast Asia to Australia (BirdLife International, 2014). It inhabits coastal areas (Robson, 2002) and breeds on islands (Wells, 1999) and lowlands (Robson, 2002). The major preference for nesting at all sites is for big trees (Wells, 1999). In Malaysia, one of the well-known habitats of this species is Penang National Park (hereafter PNP) on Penang Island. A total of 75 nests were found in coastal areas of PNP. On average, the nearest neighbour distance for all nest trees was 143.4 m and for occupied nests was 663.6±377.3 (n=7) m apart in the PNP, representing the densest nest spacing for the White-Bellied Sea Eagle compared with the previous studies (Khaleghizadeh and Anuar, 2014).


60

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32 ÷èâàåòñÿ äî 663,6±377,3 ì (n=7) (óæå çà ïðåäåëàìè ïàðêà), ÷òî äà¸ò áîëåå âûñîêóþ ïëîòíîñòü ãíåçäîâîé ãðóïïèðîâêè áåëîáðþõîãî îðëàíà, ïî ñðàâíåíèþ ñ ïðåäûäóùèìè èññëåäîâàíèÿìè (Khaleghizadeh, Anuar, 2014).  ïðåäûäóùåì èññëåäîâàíèè áûëè îïèñàíû íþàíñû ïîäñ÷¸òà áåëîáðþõèõ îðëàíîâ, ïîâåäåíèå ïòèö, è îñîáåííîñòè çàíÿòîñòè ãí¸çä.  ÷àñòíîñòè, áûëà èññëåäîâàíà çàíÿòîñòü ãíåçäîâûõ ïîñòðîåê áåëîáðþõîãî îðëàíà â ãíåçäîâîì àðåàëå ýòîãî âèäà. Âî âðåìÿ ýòîãî èññëåäîâàíèÿ áûëî îáíàðóæåíî, ÷òî â äîáàâîê ê îòíîñèòåëüíî ìàëîìó ðàññòîÿíèþ ìåæäó ñîñåäíèìè ãí¸çäàìè îðëàíîâ (Khaleghizadeh, Anuar, 2014), â ÍÏÏ ñóùåñòâóåò ïðîáëåìà î÷åíü íèçêîé çàíÿòîñòè ãí¸çä, êîòîðàÿ íå áûëà îïèñàíà â ïðåäûäóùèõ èññëåäîâàíèÿõ, êàñàþùèõñÿ ýòîãî âèäà. Äàííàÿ ñòàòüÿ ïîäíèìàåò âîïðîñû, êàñàþùèõñÿ àáîíèðîâàíèÿ ãí¸çä áåëîáðþõèì îðëàíîì, à òàêæå ðàññòîÿíèÿ ìåæäó ãí¸çäàìè ýòîãî ñïåöèàëèçèðîâàííîãî õèùíèêà ïîáåðåæèé. Êðàòêàÿ èíôîðìàöèÿ, ïðåäñòàâëåííàÿ çäåñü äîëæíà ïîêàçàòüñÿ èíòåðåñíîé òåì, êòî èçó÷àåò áèîòîïû ÍÏÏ, ãäå ýòîò âèä ÿâëÿåòñÿ äîìèíàíòíûì. Ìåòîäû Ïîëåâûå èññëåäîâàíèÿ ïðîâîäèëèñü ñ ñåíòÿáðÿ 2012 ïî ñåíòÿáðü 2013 ãîäà. Îáñëåäîâàíèÿ ïðîâîäèëèñü ñ ëîäêè äâàæäû â ìåñÿö (îäíî – â ïåðâîé ïîëîâèíå ìåñÿöà, è âòîðîå – âî âòîðîé ïîëîâèíå ìåñÿöà) ñ 10:00 äî 16:00 (Dennis et al., 2011). Íàáëþäåíèÿ âåëèñü â ïðèáðåæíîé çîíå ÍÏÏ, ñåâåðî-çàïàäíàÿ Ìàëàéçèÿ. Ïàðê ðàñïîëàãàåòñÿ â îêðåñòíîñòÿõ òî÷êè 5°27N, 100°11E è ïîêðûâàåò ïëîùàäü îêîëî 2562,9 ãà, âêëþ÷àÿ 1181,9 ãà ñóøè, çàíÿòîé â îñíîâíîì äèïòåðîêàðïîâûìè ëåñàìè, ïîêðûâàþùèìè ïðèáðåæíûå õîëìû, ïðèáðåæíûìè ìàíãðîâûìè çàðîñëÿìè, ïåñ÷àíûìè ïëÿæàìè è ãàëå÷íûì ïîáåðåæüåì, à òàêæå 1381,0 ãà àêâàòîðèè (Department of Wildlife and National Parks, 2012). Îñíîâíàÿ òåððèòîðèÿ ïàðêà áûëà îñìîòðåíà ñ ëîäêè ââèäó çíà÷èòåëüíîé êðóòèçíû ïðèáðåæíîãî ëàíäøàôòà. Îáñëåäîâàíèÿ ïðîâîäèëèñü êîìàíäîé èç äâóõ íàáëþäàòåëåé. Ãí¸çäà áåëîáðþõîãî îðëàíà îïðåäåëÿëèñü ïî èõ áîëüøèì ðàçìåðàì (áîëåå 100 ñì øèðèíîé), ïðèñóòñòâèþ âçðîñëûõ è ìîëîäûõ îðëàíîâ, è îòñóòñòâèþ ïîáëèçîñòè èíûõ êðóïíûõ ïåðíàòûõ õèùíèêîâ. Íàáëþäåíèÿ âñåõ õèùíèêîâ òùàòåëüíî ôèêñèðîâàëèñü. Ðàñïîëîæå-

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ

Áåëîáðþõèé îðëàí (Hialiaeetus leucogaster). Ôîòî Î. Áåëÿëîâà. White-bellied Sea Eagle (Hialiaeetus leucogaster). Photo by O. Belyalov.

In the present research, I present details of counting White-Bellied Sea Eagles, recording behaviour of all individuals and categorised type of nest occupation. I studied, in particular, nest occupancy of the WhiteBellied Sea Eagle in a breeding area of this species. During this study, I found that in addition to low nest spacing of this species in PNP (Khaleghizadeh and Anuar, 2014), this park offers a special problem of nest occupation unlike previous studies of this species. This paper offers several questions regarding nest occupation and nest spacing of a specialist coastal raptor, the White-Bellied Sea Eagle. The brief information present here seems to be of some interest for those who are studying the PNP breeding habitat where this species is a dominant raptor. Methods Field studies were conducted from September 2012 to September 2013. Twice monthly surveys (one in the first and another in the second half of each month) were undertaken by boat between 10:00 and 16:00 (Dennis et al., 2011). Field observations were made in coastal areas of the Penang National Park, northwestern Malaysia. The park lies at 5°27N, 100°11E and covers an area of approximately 2,562.9 ha, comprising 1,181.9 ha of land, primarily coastal hill dipterocarp forest, coastal mangrove forests, sandy beaches and rocky shores, and 1,381.0 ha of sea areas (Department of Wildlife and National Parks, 2012). Because of the steepness of the terrain in coastal areas, significant parts of the park were covered by boat. Surveys were con-


Raptor Research

Raptors Conservation 2016, 32 íèå ãí¸çä îïðåäåëÿëîñü ïî GPS (Garmin GPS 60) è íàíîñèëîñü íà êàðòó ñ ïîìîùüþ ArcGIS 9.3 GIS. Íà êàðòå ãí¸çäà áûëè ïðîíóìåðîâàíû. ×èñëî âçðîñëûõ è ìîëîäûõ îðëàíîâ, âêëþ÷àÿ êàê ñèäÿùèõ íà ãíåçäå, òàê è íàõîäÿùèõñÿ ðÿäîì, ïîäñ÷èòûâàëîñü êàæäûé ðàç âî âðåìÿ îáñëåäîâàíèÿ òåððèòîðèè, ò. å. äâàæäû â ìåñÿö. Êàæäîå íàéäåííîå ãíåçäî õàðàêòåðèçîâàëîñü ïî åãî ñòàòóñó çàíÿòîñòè, îñíîâûâàÿñü íà ïðèçíàêàõ çàíÿòîñòè ãíåçäà â ïåðèîä èññëåäîâàíèÿ, è ïîïàäàëî â îäíó èç ïÿòè ãðóïï: íåçàíÿòîå, âåðîÿòíî íåçàíÿòîå, âåðîÿòíî çàíÿòîå, çàíÿòîå è àêòèâíîå ãíåçäî. Òàêæå âî âðåìÿ ïîëåâûõ èññëåäîâàíèé îòìå÷àëñÿ õàðàêòåð àêòèâíîñòè êàæäîãî âñòðå÷åííîãî èíäèâèäà, ïîäåë¸ííûé íà ñëåäóþùèå êàòåãîðèè: ñèäèò íà ïðèñàäå, ïàðèò, ëåòèò, îõîòèòñÿ, êîðìèòñÿ íà ïðèñàäå, ïîåäàåò ïàäàëü, ÷èñòèò îïåðåíèå, âîêàëèçèðóåò, ñèäèò íà ãíåçäå. Ðåçóëüòàòû Çà âðåìÿ ïðîâåäåíèÿ èññëåäîâàíèÿ áûëè âñòðå÷åíû 40 âçðîñëûõ è 4 ìîëîäûõ áåëîáðþõèõ îðëàíà (òàáë. 1). Ïðîâîäèìûå äâàæäû â ìåñÿö ïîëåâûå èññëåäîâàíèÿ, ïîêàçàëè, ÷òî ñðåäè 75 ãí¸çä, 9 ãí¸çä çàíÿòû ñ íèçêîé âåðîÿòíîñòüþ (âçðîñëûå ïòèöû âñòðå÷àëèñü îêîëî ãíåçäà èëè íà âåòâÿõ äåðåâà, íà êîòîðîì ðàñïîëîæåíî ãíåçäî), 15 – ñî ñðåäíåé âåðîÿòíîñòüþ (ìèíèìóì 1–2 ðàçà âçðîñëóþ ïòèöó âèäåëè ñèäÿùåé â ãíåçäå), 3 ãíåçäà – ñ âûñîêîé âåðîÿòíîñòüþ (âçðîñëûå ïòèöû áûëè âñòðå÷åíû ñèäÿùèìè íà ãíåçäå ìèíèìóì òðè ðàçà) (ðèñ. 1, 2). Ïðèìå÷àòåëüíî, ÷òî òîëüêî îäíî ãíåçäî áûëî àêòèâíûì – íà í¸ì óñïåøíî âûâåëèñü äâà ñë¸òêà çà ïåðèîä ñ ìàðòà ïî àïðåëü 2013 ãîäà (òàáë. 1, ðèñ. 3). Îñòàâ-

61

ducted by a team of two observers. Nests of the White-Bellied Sea Eagle were identified by their huge size (c. 100 cm in width), the presence of adults and juveniles, and lack of any other large raptor species in the vicinity. Observations of all raptors were also recorded. Nest locations were determined by a handheld GPS (Garmin GPS 60) and mapped within ArcGIS 9.3 GIS. Nests were numbered on the map. The number of adult and juvenile WhiteBellied Sea Eagles present, in particular individuals sit at nest or nearby were counted during the twice monthly surveys. The status of the occupation of nests was primarily categorised into five groups based on signs of nest occupation during the study period: never occupied, occupied with low potentiality, occupied with medium potentiality, reserved, and active nest. Also, behavioural event of each individual (divided in perching, soaring, flying, hunting, eating at perch, scavenging, preening, calling, and sit at nest) was recorded during these field surveys. Results During the study period, a maximum number of 40 adult and 4 juvenile WhiteBellied Sea Eagles was observed (table 1). Bimonthly field observations revealed that among 75 nests, 9 nests were occupied with low potentiality (adults present around the nest or on branches of the nest trees), 15 nests were occupied with medium potentiality (at least one or two times adults were sat at nest), 3 nests were reserved with high potentially (adults were sat at nest at least three times) (fig. 1, 2). The remarkable point was that only one nest was actually active with two fledglings raised successfully during March and April 2013 (table 1, fig. 3). The remaining 47 nests (63 %) were never occupied (no sign of occupation) (fig. 2). Recording behavioural events of all individuals during the study period showed that perching was the predominant behaviour of the White-Bellied Sea Eagles (57.5 % of all behavioural events). Soaring and flying were the respective important behaviours

Ðèñ. 1. Ðàñïðåäåëåíèå ãí¸çä áåëîáðþõèõ îðëàíîâ (Hialiaeetus leucogaster) â Íàöèîíàëüíîì ïàðêå Ïèíàíã. Fig. 1. Distribution nests of the White-Bellied Sea Eagle (Hialiaeetus leucogaster) in the Penang National Park.


62

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ

øèåñÿ 47 ãí¸çä (63 %) íå èìåëè íèêàêèõ ïðèçíàêîâ çàíÿòîñòè (ðèñ. 2). Ïîëåâûå çàïèñè î õàðàêòåðå àêòèâíîñòè âñåõ âñòðå÷åííûõ íàìè èíäèâèäîâ ïîêàçàëè, ÷òî îòäûõ íà ïðèñàäå ÿâëÿåòñÿ ïðåîáëàäàþùèì òèïîì àêòèâíîñòè ó áåëî-

(32.5 % of all behavioural events). Other behaviours with the minority were hunting, eating at perch, scavenging, preening and calling all with less than 1.0 % (table 2). Finally, the important behaviour showed by adult White-Bellied Sea Eagles was sitting

Òàáë. 1. ×èñëî áåëîáðþõèõ îðëàíîâ (Hialiaeetus leucogaster), ãí¸çä ñî âçðîñëûìè ïòèöàìè, ïòåíöàìè, à òàêæå äðóãèå õèùíèêè, âñòðå÷åííûå ñ ñåíòÿáðÿ 2012 ïî ñåíòÿáðü 2013. Áóêâà À ñîîòâåòñòâóåò ïåðâîé ïîëîâèíå ìåñÿöà,  – âòîðîé ïîëîâèíå ìåñÿöà. Table 1. Number of White-Bellied Sea Eagles (Hialiaeetus leucogaster), nests with adults, nestling and other raptors during Sep. 2012–Sep. 2013. The letter A denotes the first half and B denotes the second half of each month.

Times Ïåðèîä Sep. 2012

Number of Number of adults juveniles ×èñëî ×èñëî âçðîñëûõ ìîëîäûõ 35 2

Number of nests Number of Total with adults sat on nests with number of its branches sitting adults Number of WBSEs ×èñëî ãí¸çä ñî ×èñëî ãí¸çä nests with Îáùåå âçðîñëûìè ïòè- ñ ñèäÿùèìè nestling ÷èñëî öàìè, ñèäÿùèìè íà íèõ ×èñëî áåëîáðþõèõ íà âåòâÿõ ãíåçäî- âçðîñëûìè ãí¸çä ñ îðëàíîâ âîãî äåðåâà ïòèöàìè ïòåíöàìè 37 0 1 0

Oct. 2012A

28

2

30

0

0

0

Oct. 2012B Nov. 2012A Nov. 2012B Dec. 2012A Dec. 2012B Jan. 2013A Jan. 2013B Feb. 2013A Feb. 2013B

37 33 22 25 17 20 23 33

1 1 0 0 0 0 0 0

38 34 22 25 17 20 23 33

2 3 1 1 0 1 2 0 1

2 3 0 0 2 1 3 3 4

0 0 0 0 0 0 0 0 0

Mar. 2013A Mar. 2013B

25 22

1 2

26 24

1 0

6 5

1 1

Apr. 2013A Apr. 2013B

30 32

2 2

32 34

3 0

1 0

1 1

May 2013A

27

1

28

4

1

0

May 2013B Jun. 2013A Jun. 2013B Jul. 2013A Jul. 2013B

30 25 32 27

4 3 2 0

34 28 34 27

4 3 3 2

0 1 0 1

0 0 0 0

Aug. 2013A Aug. 2013B

27 26

0 2

27 28

1 4

0 0

0 0

Sep. 2013A

40

1

41

1

0

0

Other raptors Ïðî÷èå õèùíûå ïòèöû 1 Serpent Eagle Õîõëàòûé çìååÿä 1 Brahminy Kite Áðàìèíñêèé êîðøóí 0 0 0 0 0 0 0 0 1 Brahminy Kite Áðàìèíñêèé êîðøóí 0 1 Brahminy Kite Áðàìèíñêèé êîðøóí 0 1 Brahminy Kite Áðàìèíñêèé êîðøóí 1 Brahminy Kite Áðàìèíñêèé êîðøóí 0 0 0 1 Brahminy Kite Áðàìèíñêèé êîðøóí 0 1 Serpent Eagle Õîõëàòûé çìååÿä 1 Serpent Eagle Õîõëàòûé çìååÿä


Raptor Research

Raptors Conservation 2016, 32

63

Ðèñ. 2. Äîëÿ ãí¸çä ñ ðàçíûìè òèïàìè àáîíèðîâàíèÿ áåëîáðþõèìè îðëàíàìè â Íàöèîíàëüíîì ïàðêå Ïèíàíã, íà îñíîâàíèè äàííûõ, ïîëó÷åííûõ â õîäå ïîëåâûõ èññëåäîâàíèé, ïðîâîäèìûõ äâàæäû â ìåñÿö ñ ñåíòÿáðÿ 2012 ïî ñåíòÿáðü 2013 ãã. Fig. 2. Percentage of five types of nest occupation of the White-Bellied Sea Eagle at Penang National Park based of twice per month field surveys during Sep. 2012 – Sep. 2013.

at nest (6.6 % of behavioural events of all adults) (table 2).

áðþõèõ îðëàíîâ (57,5 % îò îáùåãî ÷èñëà). Ïàðåíèå è àêòèâíûé ïîë¸ò òàêæå íàáëþäàëèñü îòíîñèòåëüíî ÷àñòî (32,5 % îò îáùåãî ÷èñëà). Îñòàâøèåñÿ âàðèàíòû ïîâåäåíèÿ, òàêèå êàê îõîòà, êîðì¸æêà íà ïðèñàäå, ïîåäàíèå ïàäàëè, ÷èñòêà îïåðåíèÿ è âîêàëèçàöèÿ çàíèìàëè ìåíåå 1 % (òàáë. 2). È íàêîíåö, âàæíûì òèïîì àêòèâíîñòè ó âçðîñëûõ ïòèö áûëî íàñèæèâàíèå íà ãíåçäå (6,6 % îò îáùåãî ÷èñëà ó âçðîñëûõ ïòèö) (òàáë. 2). Îáñóæäåíèå Çàíÿòîñòü ãí¸çä (âêëþ÷àÿ îäíî àêòèâíîå ãíåçäî è òðè ãíåçäà ñ âûñîêîé âåðîÿòíîñòüþ èõ àáîíèðîâàíèÿ ïòèöàìè), èç îáùåãî ÷èñëà â 75 ãíåçä, ñîñòàâèëà 5,3 %, ÷òî îêàçàëîñü íèæå, ÷åì â Òàñìàíèè, ãäå èç 80 ãí¸çä, ðàñïîëîæåííûõ íà 40 ãíåçäîâûõ ó÷àñòêàõ, 31 ó÷àñòîê îêàçàëñÿ çàíÿò (77,5 %) è â 30 ãí¸çäàõ áûëî ðàçìíîæåíèå (34,5 %) (Thurstans, 2009). Äàæå åñëè ðàññìî-

Discussion The proportion of nest occupancy (included one active nest and 3 reserved nests) for all 75 nests was 5.3 %, which is much lower than the proportion in Tasmania, where out of 80 nests represented 40 nesting territory, 31 territories (77.5 %) were occupied and 30 nests (37.5 %) were active (Thurstans, 2009). Even if we calculate active and reserved nests together with those we considered as occupied with medium potentiality, we would get only 25 % of nests occupied (18 nests out of 75) (fig. 2). Thurstans (2009) used the same method for nest counting from the seacoast. In a similar species – the Wedge-Tailed Eagle (Aquila audax), only nine nests out of 40 were active (22.5 %) in western New South Wales (Silva and Croft, 2007). Also, in a helicopter survey, 8 active nests and 59 inactive nests of the White-Bellied Sea Eagle (11.9 %) were found in New South Wales from 1995 to 1999 (Sharp et al., 2001). Therefore, the rate of the nest occupation in Penang is lower than the previous studies of the White-Bellied Sea Eagle in an-

Òàáë. 2. Òèïû àêòèâíîñòè áåëîáðþõîãî îðëàíà è äîëÿ êàæäîãî èç íèõ â Íàöèîíàëüíîì ïàðêå Ïåíàíã. Table 2. Total behavioural events and the percentage of each behaviour of the White-bellied Sea Eagle at Penang National Park.

Behaviours / Ïîâåäåíèå Perching (in tree) / Íà ïðèñàäå (íà äåðåâå) Soaring / Ïàðèò Flying / Ëåòèò Hunting / Îõîòèòñÿ Eating at perch / Êîðìèòñÿ íà ïðèñàäå Scavenging / Ïîåäàåò ïàäàëü Preening / ×èñòèò îïåðåíèå Calling / Âîêàëèçèðóåò On nest / Íà ãíåçäå TOTAL / ÂÑÅÃÎ

Adult Âçðîñëûé 362 144 58 6 3 3 3 41 620

Numbers / Êîëè÷åñòâî Juvenile Total Ìîëîäîé Âñåãî 10 372 144 8 66 6 3 2 2 3 3 7 48 27 647

Events / Íàáëþäåíèÿ Percentage (%) / Äîëÿ (%) Adult Juvenile Total Âçðîñëûé Ìîëîäîé Âñåãî 58.39 37.04 57.49 23.23 22.26 9.35 29.63 10.20 0.96 0.92 0.48 0.46 7.41 0.31 0.48 0.46 0.48 0.46 6.61 25.93 7.42 100.00 100.00 100.00


64

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Ðèñ. 2. Âèä íà àêòèâíîå ãíåçäî áåëîáðþõîãî îðëàíà â Íàöèîíàëüíîì ïàðêå Ïèíàíã, îïèñàííîå â äàííîì èññëåäîâàíèè. Fig. 2. A view of the White-Bellied Sea Eagle’s active nest of the present study at Penang National Park.

òðèì ÷èñëî àêòèâíûõ è àáîíèðóåìûõ ïòèöàìè ãí¸çä âìåñòå ñ çàíÿòûìè ñî ñðåäíåé âåðîÿòíîñòüþ, òî ïîëó÷èì âñ¸ ðàâíî ëèøü 18 çàíÿòûõ ãí¸çä èç 75 îñìîòðåííûõ, ÷òî ñîñòàâëÿåò 25 % (ðèñ. 2). Ìåòîäèêà ïîäñ÷¸òà â ðàáîòå Ñ.Ä. Òóðñòàíñ (Thurstans, 2009) ÿâëÿëàñü àíàëîãè÷íîé íàøåé – ïîäñ÷åò ãí¸çä â ïðèáðåæíîé çîíå ïðîâîäèëñÿ ñ âîäû. Ó ïîõîæåãî âèäà – êëèíîõâîñòîãî îðëà (Aquila audax), èç 40 ãí¸çä, ðàñïîëîæåííûõ íà çàïàäå Íîâîãî Þæíîãî Óýëüñà (Àâñòðàëèÿ), â äåâÿòè íàáëþäàëîñü ðàçìíîæåíèå (22,5 %) (Silva, Croft, 2007). Òàêæå, âî âðåìÿ èññëåäîâàíèÿ ñ âåðòîë¸òà, â Íîâîì Þæíîì Óýëüñå ñ 1995 ïî 1999 ãîäû áûëè îáíàðóæåíû 8 àêòèâíûõ ãí¸çä áåëîáðþõîãî îðëàíà (11,9 %) è 59 ãí¸çä áåç ïðèçíàêîâ ðàçìíîæåíèÿ (íå àêòèâíûõ) (Sharp et al., 2001). Òàêèì îáðàçîì, ïðîöåíò çàíÿòîñòè ãí¸çäà áåëîáðþõîãî îðëàíà â ÍÏÏ îêàçûâàåòñÿ íèæå, ÷åì â áîëåå ðàííèõ èññëåäîâàíèÿõ íà äðóãèõ òåððèòîðèÿõ. Êîðøóíû è îðëû ìîãóò èìåòü àëüòåðíàòèâíûå ãí¸çäà íà ñâîèõ ãíåçäîâûõ ó÷àñòêàõ, ÷òî ïîçâîëÿåò èì èñïîëüçîâàòü ãí¸çäà ïîî÷åð¸äíî â ðàçíûå ãîäû (Emison, Bilney, 1982; Katdare, Mone, 2013).  ÷àñòíîñòè, Â. Êàòäàðå è Ð. Ìîíý (Katdare, Mone, 2013) îáíàðóæèëè, ÷òî ãíåçäî ìîæåò áûòü àêòèâíûì â îäèí ãîä, íî íåàêòèâíî â ñëåäóþùåì ãîäó, è íàîáîðîò. Îäíî è òî æå ãíåçäî ìîæåò áûòü èñïîëüçîâàíî îðëàìè â òå÷åíèå äëèòåëüíîãî ïåðèîäà.  Êàíáåððå (Àâñòðàëèÿ), èç 26 àêòèâíûõ ãí¸çä êëèíîõâîñòîãî îðëà, íàéäåííûõ â 1964 ãîäó, 22 âñ¸ åù¸ áûëè àêòèâíû â 2002–2003, ïîñëå ÷åòûð¸õ äåñÿòèëåòèé (Fuentes et al., 2007). Ñëåäîâàòåëüíî, ó÷èòûâàÿ èñïîëüçîâàíèå îðëàíàìè ñâîèõ ãí¸çä â òå÷åíèå äëèòåëüíîãî ïåðèîäà, êîëè÷åñòâî àêòèâíûõ ãí¸çä ìîæåò ìåíÿòüñÿ èç ãîäà â ãîä â ñîîòâåòñòâèè ñ ýêîëîãè÷åñêèìè èçìåíåíèÿìè â êîíêðåòíîé

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ other areas. Kites and eagles can have alternative nests in their territories; so they can choose different nests from year to year (Emison and Bilney, 1982; Katdare and Mone, 2013). As it was observed in 2013 by Katdare and Mone, a nest could be active during the breeding season, but inactive in the following years, and vice versa. Eagles may use theirs nests for a long period. In Canberra, among 26 active nests of Wedge-Tailed Eagles found in 1964, 22 were still active in 2002–2003 after four decades (Fuentes et al., 2007). Therefore, the number of active nests may change from year to year according to changes in the ecosystem. Here, however, due to lack of monitoring data, we do not know if the population of the White-Bellied Sea Eagle is decreasing or increasing. It is possible that very low rate of active nest could be due to a bad environmental conditions during the study period. However as PNP lies in the tropics region, its weather condition is similar throughout the year as well as vegetation and food resources available for this species. In this way, environmental conditions in the tropics region are very different from the temperate region. For instance, we cannot expect major environmental changes here caused by the seasonal variations in different years. In addition, preliminary observations of the study area didn’t reveal a higher number of active nests in the preceding years. Therefore, the low rate of active nest must be related to some other factors which are unknown at the moment. Thurstans (2009) revealed a shortage of nests in Tasmania, and suggested conservation measures to save potential nesting habitat where replacement nests can be constructed. However, it seems that it is not the case for the PNP. Long-term monitoring surveys are essential for understanding trends in the current population of Whitebellied Sea Eagle in PNP and its prosperity. The present findings suggest that several considerations should be taken into account while conducting studies based on counting of breeding pairs of raptors. Firstly, there might be problem of defining active and occupied nests by various researchers. An active or occupied nest should be defined clearly by the mention of some evidences, i.e. incubation attempts, egg-laying, pairing, nest-building or nest-repairing, or successful rearing of nestlings. Secondly, adult White-Bellied Sea Eagle observed near the nests with medium potentiality and re-


Raptor Research

Raptors Conservation 2016, 32 ýêîñèñòåìå. Òåì íå ìåíåå, ìû íå çíàåì, óìåíüøàåòñÿ èëè óâåëè÷èâàåòñÿ íàñåëåíèå áåëîáðþõîãî îðëàíà â ÏÍÏ èç-çà îòñóòñòâèÿ äàííûõ ìîíèòîðèíãà. Ìîæíî ïðåäïîëîæèòü, ÷òî î÷åíü ìàëîå ÷èñëî àêòèâíûõ ãí¸çä ìîæåò áûòü ñâÿçàíî ñ î÷åíü ïëîõèìè óñëîâèÿìè îêðóæàþùåé ñðåäû òîëüêî â ãîä èññëåäîâàíèÿ. Îäíàêî, ÏÍÏ ëåæèò â òðîïè÷åñêîé çîíå è ïîãîäà çäåñü îäèíàêîâà íà ïðîòÿæåíèè âñåãî ãîäà, êàê ñîáñòâåííî íà ïðîòÿæåíèè âñåãî ãîäà äîñòóïíû ãíåçäîâûå äåðåâüÿ è ïèùåâûå ðåñóðñû â ìåñòàõ îáèòàíèÿ âèäà. Òàêèì îáðàçîì, óñëîâèÿ îêðóæàþùåé ñðåäû â òðîïèêàõ ñèëüíî îòëè÷àþòñÿ îò óìåðåííîãî ðåãèîíà. Çíà÷èò, ìû íå ìîæåì îæèäàòü çäåñü ñåðü¸çíûõ èçìåíåíèÿ óñëîâèé îáèòàíèÿ ïî ïðè÷èíå ñåçîííûõ âàðèàöèé â ðàçíûå ãîäû. Êðîìå òîãî, â õîäå ïðåäâàðèòåëüíûõ èññëåäîâàíèé òàêæå íå áûëî îáíàðóæåíî áîëüøåãî ÷èñëà àêòèâíûõ ãí¸çäà. Òàêèì îáðàçîì, íèçêîå ÷èñëî àêòèâíûõ ãí¸çä äîëæíî áûòü ñâÿçàíî ñ íåêîòîðûìè äðóãèìè ôàêòîðàìè, êîòîðûå íåèçâåñòíû íà äàííûé ìîìåíò. Ñ.Ä. Òóðñòàíñ (Thurstans, 2009) îáíàðóæèë, ÷òî â Òàñìàíèè ñóùåñòâóåò íåõâàòêà ãí¸çä è âûäâèíóë ïðåäïîëîæåíèå î íåîáõîäèìîñòè âçÿòèÿ ïîä îõðàíó ïîòåíöèàëüíûõ ãíåçäîâûõ ìåñòîîáèòàíèé, ãäå àëüòåðíàòèâíûå ãí¸çäà ìîãóò áûòü ïîñòðîåíû âçàìåí óòðà÷åííûõ. Íî òî, ÷òî ìû íàáëþäàåì â ÍÏÏ, ñóäÿ ïî âñåìó, íå ÿâëÿåòñÿ àíàëîãè÷íûì ñëó÷àåì. Êàê áû òî íè áûëî, äîëãîâðåìåííûå ìîíèòîðèíãîâûå èññëåäîâàíèÿ íåîáõîäèìû äëÿ ïîíèìàíèÿ òåíäåíöèé â ñóùåñòâóþùåé íûíå ïîïóëÿöèè áåëîáðþõèõ îðëàíîâ â ÍÏÏ è îáåñïå÷åíèÿ å¸ áëàãîïîëó÷èÿ. Ïðåäñòàâëåííûå ðåçóëüòàòû óêàçûâàþò íà òî, ÷òî ïðè ïðîâåäåíèè èññëåäîâàíèé, îñíîâàííûõ íà ïîäñ÷¸òå ãíåçäÿùèõñÿ ïàð õèùíûõ ïòèö, íåîáõîäèìî ïðèíèìàòü âî âíèìàíèå ñëåäóþùèå ñîîáðàæåíèÿ. Âî-ïåðâûõ, ìîæåò âîçíèêíóòü ïðîáëåìà îïðåäåëåíèÿ ðàçëè÷íûìè èññëåäîâàòåëÿìè òîãî, àêòèâíî ãíåçäî èëè íåò, è çàíÿòî ëè îíî âîîáùå, èëè íåò. Àêòèâíîå èëè çàíÿòîå ãíåçäî äîëæíî áûòü îïðåäåëåíî î÷åíü ÷¸òêî ñ óïîìèíàíèåì êîíêðåòíûõ ïðèçíàêîâ, òàêèõ êàê ïîïûòêè íàñèæèâàíèÿ, îòêëàäêà ÿèö, ñïàðèâàíèå, ïîäíîâëåíèå èëè ïîñòðîéêà ãíåçäà, à òàêæå âûëóïëåíèå, âûêàðìëèâàíèå è óñïåøíûé âûëåò ñë¸òêîâ. Âî-âòîðûõ, ïòèöû, àáîíèðóþùèå ãí¸çäà â ÏÍÏ, íî íå ðàçìíîæàþùèåñÿ (ò.å. ãí¸çäà èç êàòåãîðèé «èìåþùèå íèçêóþ è ñðåäíþþ âåðîÿòíîñòü çàíÿòîñòè») î÷åâèäíî, èìåëè íàìåðåíèÿ çàãíåçäèòüñÿ, íî ñòîëêíóëèñü ñ êàêèìè-òî îãðàíè÷åíèÿìè. Òàêèì îáðà-

65

served nests obviously tended to breed, but faced some limitations that prevented them from breeding. Therefore, despite big number of nests presented in PNP and regular observations of adults sitting on the nest, these White-Bellied Sea Eagles ceased their breeding attempts. We consider this fact as an alarming message for the raptors conservation. Thirdly, the low nest spacing in the PNP population of the White-Bellied Sea Eagle is in a sharp contrast with those observed in another countries (Khaleghizadeh and Anuar, 2014), and is backed by low rate of nest occupancy. The link between nest spacing and nest occupation of sea eagles is not currently known. In addition to the aforementioned considerations, looking at nest spacing and nest occupation rates, several other questions arose concerning conservation of the current population of the White-Bellied Sea Eagle in PNP. Can the current population of White-Bellied Sea Eagle in PNP survive under the circumstances when only one nest out of 75 is active? Is the current population really the maximum number of the dominant raptor, White-Bellied Sea Eagle, in PNP? It seems that despite we found no sign of food competition during the study period, there might be shortage of food resources and foraging areas around the PNP. Does really exist any shortage of food resources around the PNP? How big is the size of the home range of foraging and breeding birds around the PNP? Thus, there are many questions that should to be responded through future studies in the densest breeding habitat of the White-Bellied Sea Eagle with low productivity where its conditions are completely different from the breeding habitats of this species in other sites. Acknowledgements I am thankful for the financial and logistic support provided by the School of Biological Sciences and RU-Research Grant (815075), University Sains Malaysia. My special thanks go to Dr Shahrul Anuar for his advice, and Mr Abu Hassan Rahman who helped during the field surveys. References Birdlife International. IUCN Red List for birds. 2014. URL: http://www.birdlife.org Date accessed: 26/01/2014. Dennis T.E., Detmar S.A., Brooks A.V., Dennis H.M. Distribution and status of WhiteBellied Sea-Eagle, Haliaeetus leucogaster, and Eastern Osprey, Pandion cristatus, populations in South Australia. – South Austral-


66

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32 çîì, íå ñìîòðÿ íà ìíîãî÷èñëåííîñòü ãí¸çä è ïåðèîäè÷åñêèå íàáëþäåíèÿ âçðîñëûõ ïòèö ñèäÿùèõ íà íèõ, ýòè ïòèöû îñòàâèëè ïîïûòêè ðàçìíîæåíèÿ. Ìû ïîëàãàåì, ÷òî ýòî ìîæåò îêàçàòüñÿ òðåâîæíûì ñèãíàëîì äëÿ ñîîáùåñòâà, îõðàíÿþùåãî ïåðíàòûõ õèùíèêîâ. Â-òðåòüèõ, íåáîëüøîå ðàññòîÿíèå ìåæäó ãí¸çäàìè áåëîáðþõîãî îðëàíà â ïðåäåëàõ ÍÏÏ ðåçêî êîíòðàñòèðóåò ñ òåì, ÷òî íàáëþäàåòñÿ â ìåñòàõ ãíåçäîâàíèÿ îðëàíà â äðóãèõ ñòðàíàõ (Khaleghizadeh, Anuar, 2014), è, êðîìå òîãî, ñî÷åòàåòñÿ ñ íèçêèì óðîâíåì çàíÿòîñòè ãí¸çä. Ñâÿçü ìåæäó ðàññòîÿíèåì ìåæäó ãí¸çäàìè è çàíÿòîñòüþ ýòèõ ãí¸çä äî ñèõ ïîð îñòà¸òñÿ íåèçó÷åííîé.  äîïîëíåíèå ê âûøåóïîìÿíóòûì çàêëþ÷åíèÿì, ïîñëå ðàññìîòðåíèÿ ïðîáëåìû ðàññòîÿíèÿ ìåæäó ãí¸çäàìè è óðîâíÿ èõ çàíÿòîñòè, âîçíèêàåò íåñêîëüêî íîâûõ âîïðîñîâ, ñâÿçàííûõ ñ îõðàíîé ñóùåñòâóþùåé ïîïóëÿöèè áåëîáðþõîãî îðëàíà â ÍÏÏ. Ìîæåò ëèøü îäíî àêòèâíîå ãíåçäî ïîçâîëèòü ñîõðàíèòü èìåþùóþñÿ ïîïóëÿöèþ áåëîáðþõîãî îðëàíà â ÍÏÏ? Ñîäåðæèò ëè íûíåøíÿÿ ïîïóëÿöèÿ ìàêñèìàëüíî âîçìîæíîå ÷èñëî îñîáåé äîìèíàíòíîãî õèùíèêà — áåëîáðþõîãî îðëàíà â ÍÏÏ? Âåðîÿòíî, ÷òî, íåñìîòðÿ íà òî, ÷òî íèêàêèõ ïðèçíàêîâ áîðüáû çà ïèùó ìåæäó îðëàíàìè çà âðåìÿ èññëåäîâàíèÿ íå íàáëþäàëîñü, íåäîñòàòîê äîáû÷è è îãðàíè÷åííîñòü îõîòíè÷üèõ òåððèòîðèé â îêðåñòíîñòÿõ ÍÏÏ èìååò ìåñòî áûòü. Ñóùåñòâóåò ëè ïðîáëåìà ëèìèòèðîâàííîñòè îõîòíè÷üèõ ðåñóðñîâ äëÿ îðëàíà â ÍÏÏ íà ñàìîì äåëå? Êàêîãî ðàçìåðà îõîòíè÷üè è ãíåçäîâûå ó÷àñòêè ó ïòèö â îêðåñòíîñòÿõ ÍÏÏ? Èòàê, èìåþòñÿ ìíîãî÷èñëåííûå âîïðîñû, êîòîðûå äîëæíû ïîëó÷èòü îòâåòû â ïðîöåññå ïðîâåäåíèÿ áóäóùèõ èññëåäîâàíèé â íàèáîëåå ïëîòíîé ãíåçäîâîé ãðóïïèðîâêå áåëîáðþõèõ îðëàíîâ ñ î÷åíü íèçêèì ðåïðîäóêòèâíûì óñïåõîì, ãäå óñëîâèÿ ðàçèòåëüíî îòëè÷àþòñÿ îò òåõ, â êîòîðûõ ýòîò âèä ãíåçäèòñÿ íà äðóãèõ òåððèòîðèÿõ. Áëàãîäàðíîñòè ß áëàãîäàðåí çà ôèíàíñîâóþ è ëîãèñòè÷åñêóþ ïîääåðæêó, îêàçàííóþ ìíå Øêîëîé áèîëîãè÷åñêèõ íàóê è Èññëåäîâàòåëüñêèì ãðàíòîì RU (815075), Íàó÷íîìó óíèâåðñèòåòó Ìàëàéçèè. Îòäåëüíî õî÷ó ïîáëàãîäàðèòü äîêòîðà Øàõðóàëà Àíóàðà (Shahrul Anuar) çà åãî ñîâåòû è Àáó Õàñàíà Ðàõìàíà (Mr Abu Hassan Rahman) ïîìîãàâøåãî ìíå âî âðåìÿ ïîëåâûõ èññëåäîâàíèé.

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ ian Ornithologist. 2011. 37(1): 1–16. URL: http://www.naturalresources.sa.gov.au/ files/72fb45ef-fe34-43b7-b9c9-a2610110aafc/ Distribution_and_status_of_White-bellied_SeaEagle_Haliaeetus_leucogaster_and_Eastern_Osprey_Pandion_cristatus_populations_in_ Date accessed: 20/02/2016. Department of Wildlife and National Parks. Penang National Park. Department of Wildlife and National Parks (DWNP) Peninsular Malaysia, 2012: 1–21. Emison W.B., Bilney R.J. Nesting habitat and nest site characteristics of the White-Bellied Sea-Eagle in the Gippsland Lakes Region of Victoria, Australia. – Raptor Research, 1982. 16(2): 54–58. URL: https://sora.unm.edu/sites/default/ files/journals/jrr/v016n02/p00054-p00058.pdf Date accessed: 20/02/2016. Fuentes E., Olsen J., Rose A.B. Diet, occupancy and breeding performance of WedgeTailed Eagles Aquila audax near Canberra, Australia 2002–2003: Four decades after leopold and wolfe. – Corella. 2007. 31(3–4): 65–72. URL: https://www.researchgate.net/ publication/237703619_Diet_occupancy_and_ breeding_performance_of_wedge-tailed_eagles_Aquila_audax_near_Canberra_Australia_2002-2003_Four_decades_after_leopold_ and_wolfe Date accessed: 20/02/2016. Katdare V., Mone R. White-Bellied Sea EagleRatnagiri district. Sahyadri nisarga mitra. 2013. URL: http://www.snmcpn.in/ratnagiri.html Date accessed: 20/02/2016. Khaleghizadeh A., Anuar S. Breeding landscape and nest spacing of two coastal raptors (Accipitriformes: White-Bellied Sea Eagle Haliaeetus leucogaster and Brahminy Kite Haliastur indus) in Peninsular Malaysia. – Italian Journal of Zoology. 2014. 81(3): 431–439. DOI: 10.1080/11250003.2014.940004 Sharp A., Norton M., Marks A. Breeding activity, nest site selection and nest spacing of WedgeTailed Eagles (Aquila audax) in western New South Wales. – Emu. 2001. 101(4): 323–328. Robson G. A Field Guide to the Birds of SouthEast Asia. New Holland Publishers UK, 2002: 1–544. Silva L.M., Croft D.B. Nest-site selection, diet and parental care of the Wedge-Tailed Eagle Aquila audax in Western New South Wales. – Corella. 2007. 31(2): 23–31. URL: https://www. researchgate.net/publication/235973758_Nestsite_selection_diet_and_parental_care_of_ the_Wedge-tailed_Eagle_Aquila_audax_in_ Western_New_South_Wales Date accessed: 20/02/2016. Thurstans S.D. A survey of White-Bellied SeaEagle Haliaeetus leucogaster nests in Tasmania in 2003. – Corella. 2009. 33(3): 66–70. Wells D.R. The Birds of the Thai-Malay Peninsula, Covering Burma and Thailand South of the Eleventh Parallel, Peninsular Malaysia and Singapore. Vol. One: Non-passerines. Academic Press San Diego, CA, 1999: 1–684.


Raptor Research

Raptors Conservation 2016, 32

67

Articles on the Results of the Steppe Eagle Study and Conservation Programme of the Russian Raptor Research and Conservation Network СТАТЬИ ПО РЕЗУЛЬТАТАМ ПРОГРАММЫ ИЗУЧЕНИЯ И ОХРАНЫ СТЕПНОГО ОРЛА РОССИЙСКОЙ СЕТИ ИЗУЧЕНИЯ И ОХРАНЫ ПЕРНАТЫХ ХИЩНИКОВ Population Structure of the Steppe Eagle Range and Preliminary Data on the Population Genetic Diversity and Status of Subspecies ПОПУЛЯЦИОННАЯ СТРУКТУРА АРЕАЛА СТЕПНОГО ОРЛА И ПРЕДВАРИТЕЛЬНЫЕ ДАННЫЕ ПО ГЕНЕТИЧЕСКОМУ РАЗНООБРАЗИЮ ЕГО ПОПУЛЯЦИЙ И СТАТУСУ ПОДВИДОВ Karyakin I.V. (Center of Field Studies, N. Novgorod, Russia) Zinevich L.S., Schepetov D.M., Sorokina S.Yu. (Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia) Карякин И.В. (Центр полевых исследований, Н. Новгород, Россия) Зиневич Л.С., Щепетов Д.М., Сорокина С.Ю. (ФГБУН Институт биологии развития им. Н.К. Кольцова РАН, Москва, Россия)

Êîíòàêò: Èãîðü Êàðÿêèí Öåíòð ïîëåâûõ èññëåäîâàíèé 603109, Ðîññèÿ Íèæíèé Íîâãîðîä, óë. Íèæåãîðîäñêàÿ, 3–29 òåë.: +7 831 433 38 47 ikar_research@mail.ru Ëþäìèëà Çèíåâè÷ ÔÃÁÓÍ Èíñòèòóò áèîëîãèè ðàçâèòèÿ èì. Í.Ê. Êîëüöîâà ÐÀÍ 119334, Ðîññèÿ, Ìîñêâà óë. Âàâèëîâà, 26 òåë.: +7 499 135 33 22, ôàêñ: +7 499 135 80 12 lzinevich@gmail.com Äìèòðèé Ùåïåòîâ ÔÃÁÓÍ Èíñòèòóò áèîëîãèè ðàçâèòèÿ èì. Í.Ê. Êîëüöîâà ÐÀÍ denlior@gmail.com Ñâåòëàíà Ñîðîêèíà ÔÃÁÓÍ Èíñòèòóò áèîëîãèè ðàçâèòèÿ èì. Í.Ê. Êîëüöîâà ÐÀÍ svetlana_ibr@mail.ru

Ðåçþìå  ñâåòå òîãî, ÷òî ñòåïíîé îð¸ë (Aquila nipalensis) îôèöèàëüíî ïðèçíàí óãðîæàåìûì âèäîì, àêòóàëüíî èçó÷åíèå åãî ïîïóëÿöèîííîé ñòðóêòóðû äëÿ ïëàíèðîâàíèÿ ïðèðîäîîõðàííûõ ìåðîïðèÿòèé.  ðàìêàõ äàííîé ðàáîòû ñäåëàí ÃÈÑ-àíàëèç ðàñïðåäåëåíèÿ ðåàëüíûõ è ïîòåíöèàëüíûõ ãíåçäîâûõ ó÷àñòêîâ ñòåïíîãî îðëà, íà îñíîâàíèè êîòîðîãî âûäåëåíî 19 ïîïóëÿöèîííûõ ãðóïïèðîâîê ýòîãî âèäà ïëîùàäü êîòîðûõ âàðüèðóåò îò 592 êì2 (Òóðàíñêàÿ) äî 419866 êì2 (Çàïàäíîêàçàõñòàíñêàÿ). ×èñëåííîñòü ãíåçäÿùèõñÿ ñòåïíûõ îðëîâ â ýòèõ ãðóïïèðîâêàõ âàðüèðóåò îò 10 äî 12000 ãíåçäÿùèõñÿ ïàð. Ìàêñèìàëüíûé ðåñóðñ âèäà ñîñðåäîòî÷åí â Çàïàäíîêàçàõñòàíñêîé ïîïóëÿöèè, à âåñü çàïàäíûé àíêëàâ ïîïóëÿöèîííûõ ãðóïïèðîâîê íåêîãäà öåëüíîé ïîïóëÿöèè – ýòî áîëåå 40 % îò âñåé ÷èñëåííîñòè ìèðîâîé ïîïóëÿöèè âèäà. Ñàìûå äðåâíèå ãàïëîòèïû, âûäåëåííûå íà îñíîâå àíàëèçà ïîëèìîðôíîãî ðåãèîíà D-ïåòëè ìèòîõîíäðèàëüíîé ÄÍÊ, âûÿâëåíû â êàëìûöêîé è çàïàäíîêàçàõñòàíñêîé ïîïóëÿöèÿõ, â ýòèõ æå ïîïóëÿöèÿõ âûÿâëåíî ìàêñèìàëüíîå ðàçíîîáðàçèå ãàïëîòèïîâ. Ãåíåòè÷åñêîå ðàçíîîáðàçèå ñòåïíîãî îðëà ïàäàåò ïî ìåðå ïðîäâèæåíèÿ íà âîñòîê – ìèíèìàëüíîå êîëè÷åñòâî ãàïëîòèïîâ, ïðè÷¸ì áîëåå ìîëîäûõ, õàðàêòåðíî äëÿ ïîïóëÿöèè ñòåïíîãî îðëà â Äàóðèè. Àíàëèç ðàñïðåäåëåíèÿ ïòèö ñ ðàçíûìè ìîðôîëîãè÷åñêèìè ïðèçíàêàìè è ãàïëîòèïîâ ìèòîõîíäðèàëüíîé ÄÍÊ â ïîïóëÿöèÿõ ñòåïíîãî îðëà íà ïðîñòðàíñòâå åãî ãíåçäîâîãî àðåàëà, ñâèäåòåëüñòâóþò î òîì, ÷òî âèä ìîíîòèïè÷åí, è íåò îñíîâàíèé äåëèòü åãî íà äâà ïîäâèäà. Êëþ÷åâûå ñëîâà: ïåðíàòûå õèùíèêè, õèùíûå ïòèöû, ñòåïíîé îð¸ë, Aquila nipalensis, ïîïóëÿöèè, ãíåçäîâîé àðåàë, çîîãåîãðàôèÿ, ãåíåòè÷åñêîå ðàçíîîáðàçèå. Ïîñòóïèëà â ðåäàêöèþ: 10.03.2016 ã. Ïðèíÿòà ê ïóáëèêàöèè: 30.03.2016 ã. Abstract Steppe Eagle (Aquila nipalensis) is recognized as endangered species, therefore the study of its population structure is relevant for planning the environmental protection measures. As a part of this work GIS-analysis of the distribution of actual and potential nesting sites of the Steppe Eagle has been made, on the basis of which it was allocated 19 population groupings of this species area of which varies from 592 km2 (Turanskaya) to 419,866 km2 (Western Kazakhstan). The abundance of nesting Steppe Eagles in these groupings is ranged from 10 to 12,000 nesting pairs. Maximum species resource is concentrated in the West-Kazakhstan population, and the entire western enclave of population groupings at one time of the whole population are more than 40 % of the total number of the world population of this species. The most ancient haplotypes, allocated on the basis of the analysis in the polymorphic region of mitochondrial DNA D-loop were found in the Kalmyk and West-Kazakhstan populations, in these populations the maximum haplotype diversity was developed. Genetic diversity of the Steppe Eagle decreases as we move to the east – the minimum number of haplotypes, and more young, is typical for the Steppe Eagle population in Dauria. Analysis of the birds distribution with different morphological characteristics and haplotypes of mitochondrial DNA in populations of Steppe Eagle on the area of its nesting area suggests that the species is of monotypicality, and there is no reason to divide it into two subspecies. Keywords: raptors, birds of prey, Steppe Eagle, Aquila nipalensis, populations, subspecies, zoogeography, genetic diversity. Received: 10/03/2016. Accepted: 30/03/2016. DOI: 10.19074/1814-8654-2016-32-67-88


68

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Contact: Igor Karyakin Center of Field Studies Nizhegorodskaya str., 3–29 Nizhniy Novgorod Russia, 603109 tel.: +7 831 433 38 47 ikar_research@mail.ru Ludmila Zinevich Koltzov Institute of Developmental Biology of Russian Academy of Sciences Vavilova str., 26 Moscow, Russia, 119334 tel.: +7 499 135 33 22, fax: +7 499 135 80 12 lzinevich@gmail.com Dmitriy Schepetov Koltzov Institute of Developmental Biology of Russian Academy of Sciences denlior@gmail.com Svetlana Sorokina Koltzov Institute of Developmental Biology of Russian Academy of Sciences svetlana_ibr@mail.ru

Ðèñ. 1. Àðåàë ñòåïíîãî îðëà (Aquila nipalensis): A – îáëàñòü áûëîãî ãíåçäîâàíèÿ, ãäå â íàñòîÿùåå âðåìÿ âèä èñ÷åç â êà÷åñòâå ãíåçäÿùåãîñÿ, B – ñîâðåìåííûé ãíåçäîâîé àðåàë, Ñ – îáëàñòü ëåòíèõ êî÷¸âîê è ðåãóëÿðíûõ âñòðå÷ íà ìèãðàöèÿõ, D – îáëàñòü çèìîâîê. Fig. 1. Range of the Steppe Eagle (Aquila nipalensis): A – former breeding range, which has been abandoned by the species to breed, B – modern breeding range, Ñ – area of summer movements and regular records during migrations, D – wintering grounds.

Ââåäåíèå Äî íåäàâíåãî âðåìåíè ñòåïíîé îð¸ë (Aquila nipalensis) áûë ñàìûì ìàññîâûì âèäîì îðëîâ Ñåâåðíîé Åâðàçèè è íàñåëÿë îáøèðíûå çîíû ñòåïåé è ïîëóïóñòûíü, èãðàÿ ðîëü îäíîãî èç îñíîâíûõ õèùíèêîâ â ñòåïíûõ ýêîñèñòåìàõ. Ýòîò âèä â ïåðèîä îñâîåíèÿ öåëèíû ïåðåæèë ìàñøòàáíîå èçìåíåíèå ãíåçäîïðèãîäíûõ ìåñòîîáèòàíèé â ñòåïíîì áèîìå, â ðåçóëüòàòå ÷åãî çàïàäíàÿ ãðàíèöà åãî ãíåçäîâîãî àðåàëà îòêàòèëàñü íà âîñòîê íà ñîòíè êèëîìåòðîâ (ðèñ. 1), íî ïðè ýòîì ñòåïíîé îð¸ë äî ïîñëåäíåãî âðåìåíè ñîõðàíÿë äîñòàòî÷íî âûñîêóþ ÷èñëåííîñòü ïîïóëÿöèé â ïîëóïóñòûíÿõ è ñòåïíûõ ìåëêîñîïî÷íèêàõ. Îäíàêî, â êîíöå ÕÕ – íà÷àëå ÕÕI ñòîëåòèé ÷èñëåííîñòü ñòåïíîãî îðëà ñòàëà âíîâü ñòðåìèòåëüíî ñîêðàùàòüñÿ â ðåçóëüòàòå íåïîñðåäñòâåííîé ãèáåëè ïòèö ïî ïðè÷èíå ïîðàæåíèÿ ýëåêòðîòîêîì íà ËÝÏ, îòñòðåëà íà ïóòÿõ ìèãðàöèè è îòðàâëåíèÿ íà ìåñòàõ çèìîâîê, ÷òî ïîñëóæèëî ïîâîäîì äëÿ âíåñåíèÿ âèäà â 2015 ã. â ñïèñîê êðèòè÷åñêè óãðîæàåìûõ â Åâðîïå è â Êðàñíûé ëèñò ÌÑÎÏ â êà÷åñòâå èñ÷åçàþùåãî (Ashpole et al., 2014; Butchart et al., 2015; BirdLife International, 2015; Êàðÿêèí, 2015).  ñâåòå ýòîãî ñòàíîâèòñÿ àêòóàëüíûì âûÿñíåíèå ãðàíèö è ñòàòóñà îòäåëüíûõ ïîïóëÿöèé ñòåïíîãî îðëà è èõ ãåíåòè÷åñêîãî ðàçíîîáðàçèÿ,

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ Introduction Until recently, Steppe Eagle (Aquila nipalensis) was the most widespread species of eagles in the North Eurasia and it inhabited the vast areas of steppes and semi-deserts, playing the role of one of the top predators in the steppe ecosystems. In 2015, the species was listed as threatened in Europe and in IUCN Red List as endangered (Ashpole et al., 2014; Butchart et al., 2015; BirdLife International, 2015; Karyakin, 2015). In this light, it becomes relevant the identification of boundaries and status of individual populations of the Steppe Eagle, and their genetic diversity. The issue of the status of Steppe Eagle subspecies is also relevant. Most taxonomists admit two subspecies of Steppe Eagle – western Aquila nipalensis orientalis and eastern Aquila nipalensis nipalensis (Dementiev, 1951; Stepanyan, 1990). However, recent studies have shown that intraspecific changes in Steppe Eagle are clinal, on this basis it is offered to merge nipalensis and orientalis subspecies (Clark, 2005). The aim of this article is to: – identify Steppe Eagle population groupings geographically by GIS methods, – conduct a preliminary study of the genetic diversity in Steppe Eagle northern populations on the D-loop sequences of the


Raptor Research

Raptors Conservation 2016, 32 îñîáåííî â òðàíñãðàíè÷íîé çîíå Ðîññèè è Êàçàõñòàíà, ãäå ïðîäîëæàåòñÿ ñîêðàùåíèå ÷èñëåííîñòè êðóïíûõ ïîïóëÿöèé âèäà. Ïðåäïîëàãàåòñÿ, ÷òî ãíåçäîâûå ãðóïïèðîâêè ñòåïíîãî îðëà, ñîñðåäîòî÷åííûå â ðîññèéñêîé ÷àñòè àðåàëà, çà èñêëþ÷åíèåì êàëìûöêîé è àëòàå-ñàÿíñêèõ, ïîääåðæèâàþòñÿ çà ñ÷¸ò ïðèòîêà ñâîáîäíûõ îñîáåé èç ïîïóëÿöèîííûõ ÿäåð â Êàçàõñòàíå è Ìîíãîëèè, è áëàãîïîëó÷èå âèäà íà ñåâåðå ãíåçäîâîãî àðåàëà çàâèñèò îò ñèòóàöèè â öåíòðàõ ïîïóëÿöèé, ëåæàùèõ þæíåå Ðîññèè (Êàðÿêèí è äð., 2013). Òàêæå àêòóàëåí âîïðîñ î ñòàòóñå ïîäâèäîâ ñòåïíîãî îðëà. Áîëüøèíñòâîì ñèñòåìàòèêîâ, â òîì ÷èñëå ðîññèéñêîé øêîëîé, ïðèçíàþòñÿ äâà ïîäâèäà ñòåïíîãî îðëà – çàïàäíûé Aquila nipalensis orientalis è âîñòî÷íûé Aquila nipalensis nipalensis (Äåìåíòüåâ, 1951; Ñòåïàíÿí, 1990). Îäíàêî, íåäàâíèå èññëåäîâàíèÿ ïîêàçàëè, ÷òî âíóòðèâèäîâûå èçìåíåíèÿ ó ñòåïíîãî îðëà êëèíàëüíû, íà îñíîâàíèè ÷åãî ïîäâèäû nipalensis è orientalis ïðåäëàãàåòñÿ îáúåäèíèòü (Clark, 2005). Öåëü äàííîé ñòàòüè: – âûäåëèòü ïîïóëÿöèîííûå ãðóïïèðîâêè ñòåïíîãî îðëà ïî ãåîãðàôè÷åñêîìó ïðèíöèïó ÃÈÑ-ìåòîäàìè, – ïðîâåñòè ïðåäâàðèòåëüíîå èññëåäîâàíèå ãåíåòè÷åñêîãî ðàçíîîáðàçèÿ ñåâåðíûõ ïîïóëÿöèé ñòåïíîãî îðëà ïî ïîñëåäîâàòåëüíîñòè D-ïåòëè ìèòîõîíäðèàëüíîãî ãåíîìà, – ñîáðàòü ñâåäåíèÿ êàñàòåëüíî ñòàòóñà ïîäâèäîâ è îáúåêòèâíîñòè èõ âûäåëåíèÿ. Ìåòîäû èññëåäîâàíèé Îáëàñòü âîçìîæíîãî ãíåçäîâàíèÿ ñòåïíîãî îðëà â Òóðöèè, Ðîññèè, Êàçàõñòàíå è Ìîíãîëèè (áîëåå 80 % ïðåäïîëàãàåìîãî ãíåçäîâîãî àðåàëà âèäà) îáñëåäîâàëàñü ñ 1999 ïî 2015 ãã. â ðàìêàõ ïðîãðàìì Öåíòðà ïîëåâûõ èññëåäîâàíèé è Ñèáýêîöåíòðà, â ðàìêàõ ïðîãðàììû Ðîññèéñêîé ñåòè èçó÷åíèÿ è îõðàíû ïåðíàòûõ õèùíèêîâ ïî èçó÷åíèþ è îõðàíå ñòåïíîãî îðëà è ïðîåêòà «Îðëû Ðîññèè» ïðè ïîääåðæêå Ðóññêîãî ãåîãðàôè÷åñêîãî îáùåñòâà, ïðîåêòîâ ÏÐÎÎÍ/ÃÝÔ/Ìèíïðèðîäû ÐÔ «Ñîõðàíåíèå áèîðàçíîîáðàçèÿ Àëòàå-Ñàÿíñêîãî ýêîðåãèîíà» è «Ñîâåðøåíñòâîâàíèå ñèñòåìû è ìåõàíèçìîâ óïðàâëåíèÿ ÎÎÏÒ â ñòåïíîì áèîìå Ðîññèè», ôîíäîâ Ðóôôîðäà, Âèäåíà è ÃÃÔ, Îáùåñòâà îõðàíû ïòèö Âåíãðèè (MME/BirdLife Hungary), à òàêæå â ðàìêàõ ïðîãðàììû ïî èíâåíòàðèçàöèè êëþ÷åâûõ îðíèòîëîãè÷åñêèõ òåððèòîðèé ìåæäóíàðîäíîãî çíà÷åíèÿ â Êàçàõ-

69

Ñòåïíîé îð¸ë (Aquila nipalensis). Ôîòî È. Êàðÿêèíà. Steppe Eagle (Aquila nipalensis). Photo by I. Karyakin.

mitochondrial genome, – gather information about the status of subspecies and objectivity of their selection. Methods of study The area of possible Steppe Eagle nesting in Turkey, Russia, Kazakhstan and Mongolia (over 80 % of the supposed species nesting area) was examined from 1999 to 2015. As a result of studies such data have been collected, according to which it is possible to determine the spatial structure of the Steppe Eagle nesting area, and the number of its populations (Vazhov et al., 2010a; 2010b; 2013; Karyakin, 2006; 2008; 2015; Karyakin, Novikova, 2006; Karyakin, Pazhenkov, 2008; Karyakin et al., 2005; 2006; 2007; 2008; 2011; 2012; 2013; Medzhidov et al., 2011; Nikolenko, Karyakin, 2013; Smelansky et al., 2006; 2008). Identifying the nesting areas and record keeping of the number of breeding Steppe Eagles was conducted in accordance with the techniques (Karyakin, 2012). All Steppe Eagles registrations were added into the GIS database. Over the 12-year study period 1469 nesting sites of Steppe Eagles have been mapped (fig. 2). In addition to data collected by researchers in the framework of the above-mentioned projects, some literature data have been brought to the analysis (MaMing, Zhao, 2013; Muzaev, Erdenov, 2013; Pimenov, 2013; Gubin, 2015). On the basis of accounting data of 2008– 2015 in GIS (ArcView 3x) on the landscape map in accordance with the procedure of constructing the scheme of potential nesting sites (Karyakin, 2010) we have obtained a network, which includes 41697 hexagons. The system of Steppe Eagle population groupings is made by the method of


70

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32 ñòàíå ïðè ïîääåðæêå ÀÑÁÊ.  ðåçóëüòàòå èññëåäîâàíèé áûëè ñîáðàíû äàííûå, ïî êîòîðûì âîçìîæíî îïðåäåëåíèå ïðîñòðàíñòâåííîé ñòðóêòóðû ãíåçäîâîãî àðåàëà ñòåïíîãî îðëà è ÷èñëåííîñòü åãî ïîïóëÿöèé (Âàæîâ è äð., 2010à; 2010á; 2013; Êàðÿêèí, 2006; 2008; 2015; Êàðÿêèí, Íîâèêîâà, 2006; Êàðÿêèí, Ïàæåíêîâ, 2008; Êàðÿêèí è äð., 2005; 2006; 2007; 2008; 2011; 2012; 2013; Ìåäæèäîâ è äð., 2011; Íèêîëåíêî, Êàðÿêèí, 2013; Ñìåëÿíñêèé è äð., 2006; 2008). Âûÿâëåíèå ãíåçäîâûõ ó÷àñòêîâ è ó÷¸ò ÷èñëåííîñòè ðàçìíîæàþùèõñÿ ñòåïíûõ îðëîâ â¸ëñÿ â ñîîòâåòñòâèè ñ ìåòîäèêîé, ðàçðàáîòàííîé â ðàìêàõ ïðîåêòà ÏÐÎÎÍ/ ÃÝÔ/Ìèíïðèðîäû ÐÔ «Ñîâåðøåíñòâîâàíèå ñèñòåìû è ìåõàíèçìîâ óïðàâëåíèÿ ÎÎÏÒ â ñòåïíîì áèîìå Ðîññèè» (Êàðÿêèí, 2012). Âñå ðåãèñòðàöèè ñòåïíûõ îðëîâ âíîñèëèñü â áàçó äàííûõ ÃÈÑ. Çà 12-ëåòíèé ïåðèîä èññëåäîâàíèé çàêàðòèðîâàíî 1469 ãíåçäîâûõ ó÷àñòêîâ ñòåïíûõ îðëîâ (ðèñ. 2). Ïîìèìî äàííûõ, ñîáðàííûõ èññëåäîâàòåëÿìè â ðàìêàõ âûøåóêàçàííûõ ïðîåêòîâ, ê àíàëèçó ïðèâëå÷åíû íåêîòîðûå ëèòåðàòóðíûå ñâåäåíèÿ (ÌàÌèí, Æàî, 2013; Ìóçàåâ, Ýðäåíîâ, 2013; Ïèìåíîâ, 2013; Ãóáèí, 2015). Íà îñíîâå ó÷¸òíûõ äàííûõ 2008–2015 ãã. â ñðåäå ÃÈÑ (ArcView 3x) ïî ëàíäøàôòíîé êàðòå äëÿ êîíòóðà ãíåçäîïðèãîäíûõ ìåñòîîáèòàíèé ñòåïíîãî îðëà, â ñîîòâåòñòâèè ñ ìåòîäèêîé ïîñòðîåíèÿ ñõåìû ïîòåíöèàëüíûõ

Ðèñ. 2. Ãíåçäîâûå ó÷àñòêè è âñòðå÷è ñòåïíûõ îðëîâ â ãíåçäîâîé ïåðèîä (A), âûÿâëåííûå â 2004–2015 ãã. Óñëîâíûå îáîçíà÷åíèÿ:  – ãðàíèöû ñòðàí, Ñ – ãðàíèöà ãíåçäîâîãî àðåàëà âèäà. Fig. 2. Breeding territories and records of Steppe Eagles during breeding season (A), discovered in 2004– 2015. Labels:  – state borders, Ñ – border of the species breeding range.

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ spatial analysis of hexagons networks (clustering step – 30 km, minimum of 3 nesting sites in cluster). Population groupings were mapped out, if the gaps between polygons made on hexagons, exceeded clustering step. Such groups were mapped out, which included at least 3 real and 10 potential nesting sites. As a material for genetic analysis there were used molted feathers of Steppe Eagle, collected on nests during the breeding season in expeditions of 2008–2015. DNA for analysis was extracted from the mesenchymal pulp (Horvath et al., 2005) using a commercial Diatome DNA Prep 100 kit (Russia) according to the manufacturer’s protocol. Polymerase chain reaction was performed using a ScreenMix HS kit (Evrogen, Russia) and an amplifier VeritiFast (Applied Biosystems, USA) using our own specific primers. Sanger sequenation was performed using BigDye 3.1 reagents in the ABI 3500 device (Applied Biosystems, USA). Primer designing and processing of sequenation results was performed using Lasergene software package (DNASTAR, USA). The search of polymorphic sites and analysis of haplotypes network was performed using software packages Mega 5.2 (MEGA, USA) and Network 5.0 (Fluxus Engineering, Clare, UK) (Zinevich et al., in press). As a result of work specific primers were designed allowing fully sequencing the sequence of control region A. nipalen-


Raptor Research

Raptors Conservation 2016, 32 ãíåçäîâûõ ó÷àñòêîâ (Êàðÿêèí, 2010) ïîëó÷åíà ñåòêà, âêëþ÷àþùàÿ 41697 ãåêñàãîíîâ. Ñèñòåìà ïîïóëÿöèîííûõ ãðóïïèðîâîê ñòåïíîãî îðëà ïîñòðîåíà ìåòîäîì ïðîñòðàíñòâåííîãî àíàëèçà ñåòè ãåêñàãîíîâ, ñîîòâåòñòâóþùèõ ðåàëüíûì è ïîòåíöèàëüíûì ãíåçäîâûì ó÷àñòêàì ñòåïíîãî îðëà (øàã êëàñòåðèçàöèè – 30 êì, ìèíèìóì 3 ãíåçäîâûõ ó÷àñòêà â êëàñòåðå). Ïîïóëÿöèîííûå ãðóïïèðîâêàìè âûäåëÿëè, åñëè ðàçðûâû ìåæäó ïîëèãîíàìè, ïîñòðîåííûìè ïî ãåêñàãîíàì ðåàëüíûõ è ïîòåíöèàëüíûõ ãíåçäîâûõ ó÷àñòêîâ ñòåïíîãî îðëà, ïðåâûøàëè øàã êëàñòåðèçàöèè. Âûäåëÿëè ãðóïïèðîâêè, âêëþ÷àþùèå ìèíèìóì 3 ðåàëüíûõ è 10 ïîòåíöèàëüíûõ ãíåçäîâûõ ó÷àñòêîâ.  êà÷åñòâå ìàòåðèàëà äëÿ ãåíåòè÷åñêîãî àíàëèçà áûëè èñïîëüçîâàíû ëèííûå ïåðüÿ ñòåïíîãî îðëà, ñîáðàííûå íà ãí¸çäàõ â ïåðèîä ðàçìíîæåíèÿ â õîäå ýêñïåäèöèé 2008–2015 ãã. ÄÍÊ äëÿ àíàëèçà ýêñòðàãèðîâàëè èç ìåçåíõèìíîé ïóëüïû (Horvath et al., 2005) ñ ïîìîùüþ êîììåð÷åñêîãî íàáîðà ðåàêòèâîâ Diatome DNA Prep 100 (Ðîññèÿ) ñîãëàñíî ïðîòîêîëó ïðîèçâîäèòåëÿ. Ïîëèìåðàçíóþ öåïíóþ ðåàêöèþ ïðîâîäèëè ñ ïîìîùüþ íàáîðà ScreenMix-HS (Åâðîãåí, Ðîññèÿ) è àìïëèôèêàòîðà VeritiFast (Applied Biosystems, ÑØÀ) ñ èñïîëüçîâàíèåì ñêîíñòðóèðîâàííûõ íàìè ñïåöèôè÷åñêèõ ïðàéìåðîâ. Ñåêâåíèðîâàíèå ïî Ñýíãåðó ïðîâîäèëè ñ ïîìîùüþ ðåàêòèâîâ BigDye 3.1 íà ïðèáîðå ABI 3500 (Applied Biosystems, ÑØÀ). Ïîäáîð ñïåöèôè÷åñêèõ ïðàéìåðîâ è îáðàáîòêó ðåçóëüòàòîâ ñåêâåíèðîâàíèÿ ïðîâîäèëè ñ ïîìîùüþ ïðîãðàììíîãî ïàêåòà Lasergene (DNASTAR, ÑØÀ). Ïîèñê ïîëèìîðôíûõ ñàéòîâ è ðàñ÷åò ñåòè ãàïëîòèïîâ ïðîâîäèëè ñ ïîìîùüþ ïðîãðàììíûõ ïàêåòîâ Mega 5.2 (MEGA, ÑØÀ) è Network 5.0 (Fluxus Engineering, Clare, Âåëèêîáðèòàíèÿ) (Çèíåâè÷ è äð., â ïå÷àòè).  ðåçóëüòàòå ðàáîòû áûëè ñêîíñòðóèðîâàíû ñïåöèôè÷åñêèå ïðàéìåðû, ïîçâîëÿþùèå ïîëíîñòüþ ñåêâåíèðîâàòü ïîñëåäîâàòåëüíîñòü êîíòðîëüíîãî ðåãèîíà A. nipalensis è A. heliaca: for (5’-3’): GCCCTCGAAAATAAAATGC, CCCCCGGGCTAAATCCATGCC, GACCATTCTTTCCCCCTACAC, ACTCGGGTGGTTCTCTACTGTTGG, ATCTGGCTATGGCGTGTCC, CATTCGTCGAAAGCACTGGAGTTC.

19 20

http://rrrcn.ru/en/ringing http://rrrcn.ru/en/birdwatching/web-gis

71

Êîëëåêöèîííûå ëèííûå ïåðüÿ ñòåïíîãî îðëà. Êðóãîì îáâåäåíî ìåñòî çàáîðà ãåíåòè÷åñêîãî ìàòåðèàëà èç î÷èíà ïåðà. Ôîòî Ë. Çèíåâè÷. Sampling of moulted feathers of the Steppe Eagle. The place of sampling is circled. Photo by L. Zinevich.

sis and A. heliaca: for (5’-3’): GCCCTCGAAAATAAAATGC, CCCCCGGGCTAAATCCATGCC, GACCATTCTTT-CCCCCTACAC, ACTCGGGTGGTTCTCTACTGTTGG, ATCTGGCTATGGCGTGTCC, CATTCGTCGAAAGCACTGGAGTTC; rev (5’-3’): CCGCGATTAAGAGGCAGAA, GTCCCACAAGCATTCACTA, AGGTTGTTTGGGATGATTTTGTG, GTGGGGCGATTCGGGCAGTTTAG, GGGGTGTCTTTGTGGCTCGGTTGG. The specificity of the offered primers was tested on 30 DNA samples of A. nipalensis and 1 control DNA sample A. heliaca, isolated from molted feathers. The complete nucleotide sequence of the control region (D-loop) in steppe eagle mitochondrial genome was determined. According to the analysis results of 28 DNA samples obtained from molted Steppe Eagle feathers, it was found that the total D-loop length – 1162 bp. Determined polymorphic region is in the area of 250–450 bp from D-loop start and contains six single nucleotide sites, deletions or indels are not observed (Zinevich et al., in press). To understand how much bird populations belonging to subspecies orientalis and nipalensis are mixed, we have analyzed the information on birds migration based on the data obtained from the Raptor Ringing Center of the Russian Raptor Research and Conservation Network19. We have also conducted an analysis of the distribution of dark and pale birds, and birds of different size groups in the populations orientalis and nipalensis according to Web GIS “Faunistics”20 and Data Base of the Center of Field Studies.


72

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32 Rev (5’-3’): CCGCGATTAAGAGGCAGAA, GTCCCACAAGCATTCACTA, AGGTTGTTTGGGATGATTTTGTG, GTGGGGCGATTCGGGCAGTTTAG, GGGGTGTCTTTGTGGCTCGGTTGG. Ñïåöèôè÷íîñòü ïðåäëàãàåìûõ ïðàéìåðîâ áûëà ïðîâåðåíà íà 30 îáðàçöàõ ÄÍÊ A. nipalensis è 1 êîíòðîëüíîì îáðàçöå ÄÍÊ A. heliaca, âûäåëåííûõ èç ëèííûõ ïåðüåâ. Áûëà óñòàíîâëåíà ïîëíàÿ íóêëåîòèäíàÿ ïîñëåäîâàòåëüíîñòü êîíòðîëüíîãî ðåãèîíà (D-ïåòëè) ìèòîõîíäðèàëüíîãî ãåíîìà ñòåïíîãî îðëà. Ïî ðåçóëüòàòàì àíàëèçà 28 îáðàçöîâ ÄÍÊ, ïîëó÷åííûõ èç ëèííûõ ïåðüåâ ñòåïíîãî îðëà, áûëî óñòàíîâëåíî, ÷òî ïîëíàÿ äëèíà D-ïåòëè – 1162 bp. Îáíàðóæåííûé ïîëèìîðôíûé ðåãèîí ðàñïîëîæåí â îáëàñòè 250–450 bp îò íà÷àëà D-ïåòëè è ñîäåðæèò 6 îäíîíóêëåîòèäíûõ ïîëèìîðôíûõ ñàéòîâ, äåëåöèé èëè âñòàâîê íå íàáëþäàåòñÿ (Çèíåâè÷ è äð., â ïå÷àòè). Äëÿ ïîíèìàíèÿ òîãî, íàñêîëüêî ñèëüíî ïåðåìåøèâàþòñÿ ïòèöû èç ïîïóëÿöèé, îòíîñÿùèõñÿ ê ïîäâèäàì orientalis è nipalensis, ïðîàíàëèçèðîâàíà èíôîðìàöèÿ î ìèãðàöèè ïòèö íà îñíîâå äàííûõ Öåíòðà êîëüöåâàíèÿ õèùíûõ ïòèö Ðîññèéñêîé ñåòè èçó÷åíèÿ è îõðàíû ïåðíàòûõ õèùíèêîâ21. Òàêæå ïðîâåä¸í àíàëèç ðàñïðåäåëåíèÿ ò¸ìíûõ è ñâåòëûõ ïòèö, è ïòèö ðàçíûõ ðàçìåðíûõ ãðóïï â ïîïóëÿöèÿõ orientalis è nipalensis ïî äàííûì âåá-ÃÈÑ «Ôàóíèñòèêà»22 è áàçû äàííûõ Öåíòðà ïîëåâûõ èññëåäîâàíèé23. Èçìåðåíèÿ ïòåíöîâ è âçðîñëûõ ïòèö ïðîâîäèëèñü â ñîîòâåòñòâèè ñ Ìåòîäè÷åñêèìè ðåêîìåíäàöèÿìè… (Êàðÿêèí, 2004). Èçìåðÿëèñü ïîëíîñòüþ îïåð¸ííûå ïòåíöû çà 5–15 äíåé äî âûëåòà âî âðåìÿ èõ ìå÷åíèÿ è âçðîñëûå ïòèöû, äîñòîâåðíî ïîãèáøèå íà ëèíèÿõ ýëåêòðîïåðåäà÷è èëè ïî èíûì ïðè÷èíàì íà ñâîèõ ãíåçäîâûõ ó÷àñòêàõ, ëèáî ìóçåéíûå ýêçåìïëÿðû, äëÿ êîòîðûõ óñòàíîâëåíî ãíåçäîâàíèå â òî÷êàõ èõ êîëëåêòèðîâàíèÿ. Âñåãî ïðîìåðåíî 856 ïòåíöîâ è 150 âçðîñëûõ ïòèö. Ðåçóëüòàòû è èõ îáñóæäåíèå Ðàñïðîñòðàíåíèå ñòåïíîãî îðëà íà ãíåçäîâàíèè Ñïëîøíîé ãíåçäîâîé àðåàë ñòåïíîãî îðëà â íàñòîÿùåå âðåìÿ ïðîòÿíóëñÿ îò çàïàäà Êàëìûêèè äî Äàóðèè è îõâàòûâàåò ñòåïíóþ çîíó Ðîññèè (âêëþ÷àÿ ñòåïíûå êîòëîâèíû Þæíîé Ñèáèðè) è ñòåïíóþ è ïîëóïóñòûííóþ çîíû Êàçàõñòàíà, Ìîíãî-

21 22 23

http://rrrcn.ru/ru/ringing http://rrrcn.ru/birdwatching/web-gis http://rrrcn.ru/monitoring/4

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ Measurements of fledglings and adult birds were conducted in accordance with the Methodological recommendations… (Karyakin, 2004). We measured fledglings for 5–15 days prior to their fly during their labeling and adult birds, which were conclusively died on power lines or other reasons at their nesting sites or museum specimens, for which nesting was found at sites of their collecting. It total 856 fledglings and 150 adult birds were measured. Results and their discussion Spread of Steppe Eagle in nesting Continuous breeding ground of Steppe Eagle currently is spread from the west of Kalmykia to Dauria and it covers steppe zone of Russia (including steppe basins of southern Siberia) and steppe and semidesert areas of Kazakhstan, Mongolia and China (fig. 2). The area of the breeding ground with isolates is 5 million km2. Zonal isolates, confined to steppe and foreststeppe basins, separated by mountain-taiga forests, but lying in the vicinity of the continuous areal of the species, are known in the Southern Siberia (Minusinsk Basin, the forest-steppe Baikal Lakeside). Nesting isolates sufficiently remote from the continuous areal, are located in Turkey (Kirwan, 2008; our data) and Central China (Mamin, Zhao, 2013). Isolate in Turkey is 900 km away from the continuous breeding ground of species (from the nearest nesting areas of Steppe Eagle in Caspian Sea region), isolate in China – 400 km (from the nearest nesting areas of species in the Gobi-Altai). Analysis of the population structure of the Steppe Eagle breeding ground Analysis of the distribution of potential Steppe Eagle nesting areas allows selecting within the breeding ground of this species 5 zones with a high density and underdispersion (fig. 3). Network clustering of potential Steppe Eagle nesting sites allows selecting 19 population groupings of this species (fig. 4), which identified the gaps in the range structure, defined as the absence of habitats available to nests (taiga zone in Siberia or Volga river floodplain in the European part of Russia, and so on. n.), and the absence of Steppe Eagle on nesting in habitats available to nests (middle reaches of Emba, western cliff of Ustyurt, etc.). The area of population


Raptor Research

Raptors Conservation 2016, 32 ëèè è Êèòàÿ (ðèñ. 2). Ïëîùàäü ãíåçäîâîãî àðåàëà ñ èçîëÿòàìè ñîñòàâëÿåò 5 ìëí. êì2. Çîíàëüíûå èçîëÿòû, ïðèóðî÷åííûå ê ñòåïíûì è ëåñîñòåïíûì êîòëîâèíàì, ðàçäåëåííûì ãîðíî-òà¸æíûìè ëåñàìè, íî ëåæàùèå â íåïîñðåäñòâåííîé áëèçîñòè îò ñïëîøíîãî àðåàëà âèäà, èçâåñòíû â Þæíîé Ñèáèðè (Ìèíóñèíñêàÿ êîòëîâèíà, Ëåñîñòåïíîå Ïðèáàéêàëüå). Ãíåçäîâûå èçîëÿòû, äîñòàòî÷íî óäàë¸ííûå îò ñïëîøíîãî àðåàëà, ëîêàëèçîâàíû â Òóðöèè (Kirwan, 2008; íàøè äàííûå) è â Öåíòðàëüíîì Êèòàå (ÌàÌèí, Æàî, 2013). Èçîëÿò â Òóðöèè óäàë¸í íà 900 êì îò ñïëîøíîãî ãíåçäîâîãî àðåàëà âèäà (îò áëèæàéøèõ ìåñò ãíåçäîâàíèÿ ñòåïíîãî îðëà â Ïðèêàñïèè), èçîëÿò â Êèòàå – íà 400 êì (îò áëèæàéøèõ ìåñò ãíåçäîâàíèÿ âèäà â Ãîáèéñêîì Àëòàå).

Ðèñ. 3. Êàðòà ïëîòíîñòè ðàñïðåäåëåíèÿ ïîòåíöèàëüíûõ ãíåçäîâûõ ó÷àñòêîâ ñòåïíîãî îðëà. Óñëîâíûå îáîçíà÷åíèÿ: 1 – êîíòóð ãíåçäîâîãî àðåàëà, 2 – îáëàñòü óñòàíîâëåííîãî ãíåçäîâàíèÿ, ïîëó÷åííàÿ ïóò¸ì ïîñòðîåíèÿ áóôåðíîé çîíû âîêðóã ðåàëüíûõ ãíåçäîâûõ ó÷àñòêîâ, 3 – ãðàíèöû ñòðàí, B – ïëîòíîñòü ðàñïðåäåëåíèÿ ïîòåíöèàëüíûõ ãíåçäîâûõ ó÷àñòêîâ ñòåïíîãî îðëà. Fig. 3. Density of the Steppe Eagle’s potential breeding territory distribution. Labels: 1 – outline of the breeding range, 2 – area of the proved breeding, calculated by constructing the buffer zone around the actual breeding territories, 3 – state borders, B – density of the Steppe Eagle’s potential breeding territory distribution.

Àíàëèç ïîïóëÿöèîííîé ñòðóêòóðû ãíåçäîâîãî àðåàëà ñòåïíîãî îðëà Àíàëèç ðàñïðåäåëåíèÿ ïîòåíöèàëüíûõ ãíåçäîâûõ ó÷àñòêîâ ñòåïíîãî îðëà ïîçâîëÿåò âûäåëèòü â ïðåäåëàõ ãíåçäîâîãî àðåàëà ýòîãî âèäà 5 çîí ñ âûñîêîé ïëîòíîñòüþ è ðàâíîìåðíûì ðàñïðåäåëåíèåì (ðèñ. 3). Îñîáåííî âûäåëÿåòñÿ çàïàäíûé àíêëàâ ãðóïïèðîâîê (Êàëìûêèÿ, Âîëæñêî-Óðàëüñêîå ìåæäóðå÷üå è Çàïàäíûé Êàçàõñòàí), â êîòîðûõ íà äîâîëüíî áîëüøîé ïëîùàäè ñòåïíîé îð¸ë ãíåçäèòñÿ ñ âûñîêîé ïëîòíîñòüþ. Êëàñòåðèçàöèÿ ñåòè ïîòåíöèàëüíûõ ãíåçäîâûõ ó÷àñòêîâ ñòåïíîãî îðëà ïîçâîëÿåò âûäåëèòü 19 ïîïóëÿöèîííûõ ãðóïïèðîâîê

73

groupings varies from 592 km2 (Turanskaya) to 419,866 km2 (Western Kazakhstan). The number of nesting Steppe Eagles in these groupings is ranged from 10 to 12,000 breeding pairs. Maximum in population is Western Kazakhstan grouping, where there are 12,000 breeding pairs of Steppe Eagle (fig. 4 – G6). It is likelihood that the Central Mongolian and Dauria population groupings are a single large population, as there are odd bits of information on the findings of Steppe Eagles breeding pairs in the buffer zone between the selected groupings (Barashkova, 2009; Stubbe et al., 2010, also refer to fig. 5). The current population of the world Steppe Eagle population, taking into account the negative trend of the last decades in Russia and Kazakhstan, is estimated at 26.0–36.7 thousand of breeding pairs (Karyakin, 2015). In this case there are no objective current evidence from Mongolia, where the population of Steppe Eagle may vary in the range of 1.5–2.0 thousand pairs (by: Bold, Boldbaatar, 1999) up to 6–18 thousand pairs (from: Karyakin, 2013). Building a network of potential Steppe Eagle nesting sites on the basis of accounting data allows allocating 41697 sites within the contour of the breeding ground. For examining territories in Kalmykia, Western Kazakhstan and the Altai-Sayan region, the number of actual identified sites were less than the number of potential sites by


74

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ

Ðèñ. 4. Êàðòà ïîïóëÿöèîííûõ ãðóïïèðîâîê ñòåïíîãî îðëà. Óñëîâíûå îáîçíà÷åíèÿ: 1a – êîíòóð ãíåçäîâîãî àðåàëà, 1b – ïîïóëÿöèîííûå ãðóïïèðîâêè (G1 – òóðåöêàÿ, G2 – êàëìûöêàÿ, G3 – âîëæñêî-óðàëüñêàÿ, G4 – ñûðòîâàÿ, G5 – áóçà÷èíñêàÿ, G6 – çàïàäíîêàçàõñòàíñêàÿ, G7 – öåíòðàëüíîêàçàõñòàíñêàÿ, G8 – ïðèáàëõàøñêàÿ, G9 – çàèëèéñêàÿ, G10 – âîñòî÷íîêàçàõñòàíñêàÿ, G11 – óñòü-êàíñêàÿ, G12 – öåíòðàëüíîàëòàéñêàÿ, G13 – ìèíóñèíñêàÿ, G14 – òóðàíñêàÿ, G15 – òóâèíñêàÿ, G16 – çàïàäíîìîíãîëüñêàÿ, G17 – öåíòðàëüíîìîíãîëüñêàÿ, G18 – äàóðñêàÿ, G19 – êèòàéñêàÿ), 2 – îáëàñòü óñòàíîâëåííîãî ãíåçäîâàíèÿ, ïîëó÷åííàÿ ïóò¸ì ïîñòðîåíèÿ áóôåðíîé çîíû âîêðóã ðåàëüíûõ ãíåçäîâûõ ó÷àñòêîâ, 3 – ãðàíèöû ñòðàí, B – ïëîòíîñòü ðàñïðåäåëåíèÿ ïîòåíöèàëüíûõ ãíåçäîâûõ ó÷àñòêîâ ñòåïíîãî îðëà. Êîäû ïîïóëÿöèîííûõ ãðóïïèðîâîê ñîîòâåòñòâóþ òàêîâûì â òàáë. 1. Fig. 4. Distribution of the Steppe Eagle populations. (G1 – Turkish, G2 – Kalmyk, G3 – Volga-Ural, G4 – Syrt, G5 – Buzachinskiy, G6 – Western Kazakhstan, G7 – Central Kazakhstan, G8 – Balkhash, G9 – Trans-Ili, G10 – East Kazakhstan, G11 – Ust-Kan, G12 – Central Altai, G13 – Minusinsk, G14 – Turan, the G15 – Tyva, G16 – West Mongolia, G17 – Central Mongolia, G18 – Dahurian, G19 – Chinese), 2 – area of the proved breeding, calculated by constructing the buffer zone around the actual breeding territories, 3 – state borders, B – density of the Steppe Eagle’s potential breeding territory distribution. Codes of populations are similar to those in Table. 1.

ýòîãî âèäà (ðèñ. 4), äëÿ êîòîðûõ îïðåäåëåíû ðàçðûâû â ñòðóêòóðå àðåàëà, îïðåäåëÿåìûå êàê îòñóòñòâèåì ãíåçäîïðèãîäíûõ áèîòîïîâ (ïîÿñ òàéãè â Ñèáèðè èëè ïîéìà ðåêè Âîëãà â Åâðîïåéñêîé ÷àñòè Ðîññèè, è ò.ï.), òàê è îòñóòñòâèåì ñòåïíîãî îðëà íà ãíåçäîâàíèè â ãíåçäîïðèãîäíûõ áèîòîïàõ (ñðåäíåå òå÷åíèå ð. Ýìáà, çàïàäíûé ÷èíê Óñòþðòà è ò.ï.). Ïëîùàäü ïîïóëÿöèîííûõ ãðóïïèðîâîê âàðüèðóåò îò 592 êì2 (Òóðàíñêàÿ) äî 419866 êì2 (Çàïàäíîêàçàõñòàíñêàÿ). ×èñëåííîñòü ãíåçäÿùèõñÿ ñòåïíûõ îðëîâ â ýòèõ ãðóïïèðîâêàõ âàðüèðóåò îò 10 äî 12000 ãíåçäÿùèõñÿ ïàð. Ìàêñèìàëüíîé ïî ÷èñëåííîñòè ÿâëÿåòñÿ çàïàäíîêàçàõñòàíñêàÿ ïîïóëÿöèîííàÿ ãðóïïèðîâêà, ãäå ñîñðåäîòî÷åíî 12000 ãíåçäÿùèõñÿ ïàð ñòåïíûõ îðëîâ (ðèñ. 4 – G6). Ñòîèò îòìåòèòü, ÷òî â êîíöå 90-õ ãã. ÕÕ ñòîëåòèÿ çàïàäíûé àíêëàâ ïîïóëÿöèîííûõ

10.3–15.1 %, on average (n=9) 12.7±1.54 %. On this basis, we define the world population of Steppe Eagle for the purposes of this study at average of 36.4 thousand pairs (35.4–37.4 thous. pairs). In Mongolia, as a result of building a network of potential nesting sites of Steppe Eagle it was allocated 8.7 thousand of sites, and the abundance, with inaccuracy on the control areas, is defined of 7.7 thousand pairs at average. The estimate of abundance for all allocated population groupings of Steppe Eagle is given in table. 1. If we take the population estimates as truth, made by the analysis results of the Steppe Eagle potential sites distribution, we can state that currently third part of the gene pool is concentrated on the fifth part of the breeding range. The entire western


Raptor Research

Raptors Conservation 2016, 32 ãðóïïèðîâîê ïðåäñòàâëÿë ñîáîé åäèíîå öåëîå è ðàçðûâû ìåæäó íûíå âûäåëåííûìè ãðóïïèðîâêàìè – ðåçóëüòàò äåãðàäàöèè ïîïóëÿöèè. Åñòü âåðîÿòíîñòü, ÷òî Öåíòðàëüíîìîíãîëüñêàÿ è Äàóðñêàÿ ïîïóëÿöèîííûå ãðóïïèðîâêè ÿâëÿþò ñîáîé åäèíóþ êðóïíóþ ïîïóëÿöèþ, òàê êàê èìåþòñÿ ðàçðîçíåííûå ñâåäåíèÿ î íàõîäêàõ ãíåçäÿùèõñÿ ïàð ñòåïíûõ îðëîâ â áóôåðíîé çîíå ìåæäó âûäåëåííûìè ãðóïïèðîâêàìè (Áàðàøêîâà, 2009; Stubbe et al., 2010, ñì. òàêæå ðèñ. 5). Ñîâðåìåííàÿ ÷èñëåííîñòü ìèðîâîé ïîïóëÿöèè ñòåïíîãî îðëà, ó÷èòûâàþùàÿ íåãàòèâíûé òðåíä ïîñëåäíèõ äåñÿòèëåòèé â Ðîññèè è Êàçàõñòàíå, îöåíèâàåòñÿ â 26,0–36,7 òûñ. ãíåçäÿùèõñÿ ïàð (Êàðÿêèí, 2015). Ïðè ýòîì îòñóòñòâóþò îáúåêòèâíûå ñîâðåìåííûå äàííûå èç Ìîíãîëèè, â êî-

Ðèñ. 5. Íàõîäêè ãí¸çä ñòåïíîãî îðëà â Ìîíãîëèè, ïî: Stubbe et al., 2010 – ââåðõó; âûÿâëåííûå â 2001–2002 ãã. íà ïëîùàäêå â Öåíòðàëüíîé Ìîíãîëèè, íà îñíîâå êîòîðîé ïîñòðîåíà ñõåìà ïîòåíöèàëüíûõ ãíåçäîâûõ ó÷àñòêîâ ñòåïíîãî îðëà äëÿ òåððèòîðèè Ìîíãîëèè – âíèçó. Fig. 5. Found nests of the Steppe Eagle in Mongolia, according to Stubbe et al., 2010 – upper; found in 2001–2002 in the study plot in Central Mongolia, which was the base for developing the scheme of potential breeding territories of the Steppe Eagle in Mongolia – the bottom.

75

enclave of population groupings of at one time whole population is more than 40 % of the total world population of the species. Kazakhstan Steppe Eagle populations have 70 % according to various estimates (according to the estimates obtained in this study) to 84.47 % (based on the lowest estimate of species abundance in Mongolia of: Bold, Boldbaatar, 1999). Analysis of the subspecies structure in steppe eagle breeding range Western Steppe Eagle Aquila nipalensis orientalis Cabanis, 1854 (J. Ornith., 2. c. 369, Sarepta). Syn.: Aquila mogilnik Gmelin, 1770, Aquila pallasii C.L. Brehm, 1855; Aquila glitschi Severtzov, 1875 (nomen nudum). According to Stepanian (1990) is light and small race: wing length of males is 515–560 (535 mm), females – 550–605 (575 mm). Eastern Steppe Eagle Aquila nipalensis nipalensis Hodgson, 1833 (Asiatic Researches, 18, pt 2, p. 13, Nepal). Syn.: Aquila amurensis Swinhoe, 1871. According to Stepanian (1990) is large dark race: wing length of males is 565–610 (585 mm), females – 600–645 (625 mm). Despite the fact that Hartert (1913) believed that the Western Steppe Eagle cannot be definitely distinguished from the Eastern, however, he treated orientalis as a subspecies and presented measurement data, thereby demonstrating that orientalis is less than nipalensis at average. According to Stepanian (1990) a smaller form – A. n. orientalis, wintering in Africa and the Middle East, nests to the west of the Altai (starting from the bottom of the Altai Mountains). According to the above estimates of the abundance the share of this sub-species is about 70 % of the total world population. In the Altai and further to the east A. n. nipalensis nests, wintering from Pakistan to Thailand, which accounts for 30 % of the total world population. It should be noted that the contribution of populations belonging to orientalis, into the global resource of species is shown in a period of population decline in western and southern populations in Kazakhstan, while the Steppe Eagle populations referred to nipalensis, appear to be more stable. If we consider the period up to the end of the 90ies., i.e., before the Russian Caspian populations (Kalmykia and vicinity) and Kazakhstan lost about 40,000 pairs in total (see Karyakin, 2015), we can assume that the share of A. n. orientalis accounted for about


76

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ

òîðîé ÷èñëåííîñòü ñòåïíîãî îðëà ìîæåò èçìåíÿòüñÿ â äèàïàçîíå îò 1,5–2,0 òûñ. ïàð (ïî: Bold, Boldbaatar, 1999) äî 6–18 òûñ. ïàð (èç: Êàðÿêèí, 2013). Ìèíèìàëüíàÿ îöåíêà ÷èñëåííîñòè ó÷èòûâàåòñÿ â âûøåïðèâåäåííîé îöåíêå ÷èñëåííîñòè ìèðîâîé ïîïóëÿöèè âèäà, à ìàêñèìàëüíàÿ îöåíêà îñíîâàíà íà ¸ìêîñòè ìåñòîîáèòàíèé, âåðõíèé ïðåäåë êîòîðîé, ÿâëÿåòñÿ ìàêñèìàëüíî âîçìîæíîé ÷èñëåííîñòüþ. Ïîñòðîåíèå ñåòè ïîòåíöèàëüíûõ ãíåçäîâûõ ó÷àñòêîâ ñòåïíîãî îðëà íà îñíîâå ó÷¸òíûõ äàííûõ ïîçâîëÿåò âûäåëèòü âíóòðè êîíòóðà ãíåçäîâîãî àðåàëà 41697 ó÷àñòêîâ. Äëÿ Ìîíãîëèè ñåòü ïîñòðîåíà ïî äàííûì ñ åäèíñòâåííîé ïëîùàäêè (ñì. ðèñ. 5) è îòêîððåêòèðîâàíà ïî ó÷¸òíûì äàííûì, ïîëó÷åííûì íà ñîïðåäåëüíûõ òåððèòîðèÿõ Ðîññèè â Àëòàå-Ñàÿíñêîì ðåãèîíå, Áóðÿòèè è Äàóðèè, ïîýòîìó å¸ ïîãðåø-

87 %, while the share of A. n. nipalensis – about 13 %. Considering the fact that Steppe Eagle is a distant migrant and nests in isolated steppe depresions in the entire area of southern Siberia, the existing natural conditions do not create barriers that aggravate the exchange of species. In light of this enormous disproportion in the direction of A. n. orientalis in the area of the species looks very strange. Spreading the birds that refer to different subspecies in their sizing characteristics is shown in fig. 6 and table. 2. Steppe Eagles, which can be referred according to the size to nipalensis, begin to register in the West Kazakhstan population. According to collected information the share of fledglings of nipalensis size class in West Kazakhstan population grouping is 6.44 %, and the share of adult birds – 15.22 %. In the East

Òàáë. 1. Ïëîùàäü ïîïóëÿöèîííûõ ãðóïïèðîâîê ñòåïíîãî îðëà (Aquila nipalensis) è îöåíêà ÷èñëåííîñòè ãíåçäÿùèõñÿ ïàð. Êîäû ïîïóëÿöèîííûõ ãðóïïèðîâîê ñîîòâåòñòâóþò òàêîâûì íà ðèñ. 4. Table 1. Square of the Steppe Eagle (Aquila nipalensis) populations and the assessment of breeding pair numbers. Codes of populations are similar to those in Fig. 4.

Íàçâàíèå ïîïóëÿöèîííîé ãðóïïèðîâêè ID Name of the population G1 Òóðåöêàÿ / Turkish G2 Êàëìûöêàÿ / Kalmyk G3 Âîëæñêî-óðàëüñêàÿ (ñòåïíàÿ ÷àñòü ìåæäóðå÷üÿ Âîëãè è Óðàëà íà þã äî óðäèíñêèõ ïåñêîâ) Volga-Urals (steppe part between the Volga and Ural rivers to the south to the Urda sands) G4 Ñûðòîâàÿ (Îáùèé Ñûðò) Syrt (Steppe upland “Obschiy Syrt”) G5 Áóçà÷èíñêàÿ (ï-îâ Áóçà÷è) / Buzachi (Buzachi Peninsula) G6 Çàïàäíîêàçàõñòàíñêàÿ (Óñòþðò, Øàãûðàé, Ýìáà, Ìóãîäæàðû, Îðü) / Western Kazakhstan (Usturt Plateau, Emba river basin, Mugodzhary mountains, Or river basin) G7 Öåíòðàëüíîêàçàõñòàíñêàÿ / Central Kazakhstan G8 Ïðèáàëõàøñêàÿ / Balkhash Lake region G9 Çàèëèéñêàÿ / Trans Ili G10 Âîñòî÷íîêàçàõñòàíñêàÿ / Eastern Kazakhstan G11 Óñòü-Êàíñêàÿ / Ust-Kan depression G12 Öåíòðàëüíîàëòàéñêàÿ / Central Altai mountains G13 Çàïàäíîìîíãîëüñêàÿ / Western Mongolia G14 Ìèíóñèíñêàÿ / Minusinsk G15 Òóðàíñêàÿ / Turan G16 Òóâèíñêàÿ / Tuva G17 Öåíòðàëüíîìîíãîëüñêàÿ / Central Mongolia G18 Äàóðñêàÿ / Dahuria G19 Êèòàéñêàÿ / Chinese ÂÑÅÃÎ / TOTAL

Ïëîùàäü (êì2) Äîëÿ (%) Area (km2) Share (%) 13944 0.71 45897 2.32 69472 3.51

Ñðåäíÿÿ îöåíêà ÷èñëåííîñòè (ïàð) Average estimate population Äîëÿ (%) numbers (pairs) Share (%) 10 0.03 350 0.96 2600 7.14

19429

0.98

40

0.11

7955 419867

0.40 21.24

10 12000

0.03 32.98

191666 9808 4971 188080 3730 3210 372283 15680 592 19449 410736 153896 26054 104038

9.70 0.50 0.25 9.51 0.19 0.16 18.83 0.79 0.03 0.98 20.78 7.79 1.32 100

3000 30 10 9000 60 10 3000 150 10 100 4000 2000 10 36390

8.24 0.08 0.03 24.73 0.16 0.03 8.24 0.41 0.03 0.27 10.99 5.50 0.03 100


Raptor Research

Raptors Conservation 2016, 32 íîñòü ìîæåò áûòü âûñîêîé. Äëÿ êîíòðîëüíûõ òåððèòîðèé â Êàëìûêèè, Çàïàäíîì Êàçàõñòàíå è Àëòàå-Ñàÿíñêîì ðåãèîíå, ÷èñëî ðåàëüíî âûÿâëåííûõ ó÷àñòêîâ áûëî ìåíüøå ÷èñëà ïîòåíöèàëüíûõ ó÷àñòêîâ íà 10,3– 15,1 %, â ñðåäíåì íà (n=9) 12,7±1,54 %. Èñõîäÿ èç ýòîãî ìû îïðåäåëÿåì ìèðîâóþ ÷èñëåííîñòü ñòåïíîãî îðëà äëÿ öåëåé äàííîãî èññëåäîâàíèÿ â ñðåäíåì â 36,4 òûñ. ïàð (35,4–37,4 òûñ. ïàð).  Ìîíãîëèè â ðåçóëüòàòå ïîñòðîåíèÿ ñåòè ïîòåíöèàëüíûõ ãíåçäîâûõ ó÷àñòêîâ ñòåïíîãî îðëà âûäåëåíî 8,7 òûñ. ó÷àñòêîâ, à ÷èñëåííîñòü, ñ ó÷¸òîì ïîãðåøíîñòè, óñòàíîâëåííîé íà êîíòðîëüíûõ òåððèòîðèÿõ, îïðåäåëåíà â ñðåäíåì â 7,7 òûñ. ïàð. Îöåíêà ÷èñëåííîñòè äëÿ âñåõ âûäåëåííûõ ïîïóëÿöèîííûõ ãðóïïèðîâîê ñòåïíîãî îðëà äàíà â òàáë. 1. Åñëè ïðèíÿòü âåðíîñòü îöåíîê ÷èñëåííîñòè, ñäåëàííûõ ïî ðåçóëüòàòàì àíàëèçà ðàñïðåäåëåíèÿ ïîòåíöèàëüíûõ ó÷àñòêîâ ñòåïíîãî îðëà, ìîæíî êîíñòàòèðîâàòü òîò ôàêò, ÷òî â íàñòîÿùåå âðåìÿ íà ïÿòîé ÷àñòè ãíåçäîâîãî àðåàëà âèäà ñîñðåäîòî÷åíî òðåòü åãî ãåíîôîíäà. Âåñü çàïàäíûé àíêëàâ ïîïóëÿöèîííûõ ãðóïïèðîâîê íåêîãäà öåëüíîé ïîïóëÿöèè – ýòî áîëåå 40 % îò âñåé ÷èñëåííîñòè ìèðîâîé ïîïóëÿöèè âèäà. Íà êàçàõñòàíñêèå ïîïóëÿöèè ñòåïíûõ îðëîâ ïðèõîäèòñÿ ïî ðàçíûì îöåíêàì îò 70 % (ïî îöåíêå, ïîëó÷åííîé â ðàìêàõ äàííîãî èññëåäîâàíèÿ) äî 84,47 % (èñõîäÿ èç ìèíèìàëüíîé îöåíêè ÷èñëåííîñòè âèäà â Ìîíãîëèè ïî: Bold, Boldbaatar, 1999). Àíàëèç ïîäâèäîâîé ñòðóêòóðû ãíåçäîâîãî àðåàëà ñòåïíîãî îðëà Çàïàäíûé ñòåïíîé îð¸ë Aquila nipalensis orientalis Cabanis, 1854 (J. Ornith., 2. c. 369, Ñàðåïòà). Ñèí.: Aquila mogilnik Gmelin, 1770, Aquila pallasii C.L. Brehm, 1855; Aquila glitschi Severtzov, 1875 (nomen nudum). Ïî Ë.Ñ. Ñòåïàíÿíó (1990) ñâåòëàÿ è ìåëêàÿ ðàñà: äëèíà êðûëà ñàìöîâ 515–560 (535 ìì), ñàìîê – 550–605 (575 ìì). Âîñòî÷íûé ñòåïíîé îð¸ë Aquila nipalensis nipalensis Hodgson, 1833 (Asiatic Researches, 18, pt 2, c. 13, Íåïàë). Ñèí.: Aquila amurensis Swinhoe, 1871. Ïî Ë.Ñ. Ñòåïàíÿíó (1990) ò¸ìíàÿ è êðóïíàÿ ðàñà: äëèíà êðûëà ñàìöîâ 565–610 (585 ìì), ñàìîê – 600–645 (625 ìì). Íåñìîòðÿ íà òî, ÷òî Ý. Õàðòåðò (Hartert, 1913) ñ÷èòàë, ÷òî çàïàäíîãî ñòåïíîãî îðëà íåëüçÿ äîñòîâåðíî îòëè÷èòü îò âîñòî÷íîãî, òåì íå ìåíåå, òðàêòîâàë orientalis êàê ïîäâèä è ïðåäñòàâèë äàííûå èçìåðåíèé, òåì

77

Ïîëóâçðîñëûé ñòåïíîé îð¸ë, ëèíÿþùèé âî âçðîñëûé íàðÿä. Ôîòî È. Êàðÿêèíà. Moulted subadult Steppe Eagle. Photo by I. Karyakin.

Kazakhstan population grouping of large birds of nipalensis size class are both among fledglings, and adult birds and account for a half. In the Altai-Sayan region almost all 100 % of birds refer to nipalensis, but to the east and southeast of the Altai-Sayan region the birds of small size, close to orientalis, begin to appear. Interestingly that almost all of the registrations of large birds of nipalensis size class in orientalis areal in Kazakhstan and the Orenburg region of Russia are connected with the mountain groups – Mugodzhary, Southern Ural, quartzite kettle backs of Or’ basin, granite massifs of Ulutau and south and east Kazakh Upland. As if there is the dispersion of birds here from the eastern mountain populations and they take biotopes for nesting habitats, similar to those where they were born. As a support to the hypothesis of the wide dispersion of young birds from the eastern populations to the western, and vice versa, we can consider the information on returns of ringed birds (fig. 7). More recently it was considered unlikely that the Eastern Steppe Eagles winter in Africa (Clark, 2005), but in light of recent returns of rings from the Altai birds, their wintering in Africa no longer looks unlikely. In winter of 2014 thanks to returns of Steppe Eagles from Iran he line was drawn under the issue of migration of the Eastern Steppe Eagle A. n. nipalensis on AfricanEurasian migratory path (Karyakin et al, 2015a;. 2015b). In autumn of 2015 it was managed to get information about meetings in Pakistani-Indian wintering of Western Steppe Eagle A. n. orientalis from the western part of the areal.


78

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ

Âàðèàíòû îêðàñêè âåðõà òåëà þâåíèëüíûõ ñòåïíûõ îðëîâ ñ ñèëüíî ðàçâèòûìè (A) è óìåðåííî ðàçâèòûìè îõðèñòûìè ïÿòíàìè (B–F): A – Êàëìÿêèÿ, B – Çàïàäíûé Êàçàõñòàí, C, D – Àëòàé, E, F – Äàóðèÿ. Ôîòî È. Êàðÿêèíà è À. Ìàöûíû. Variants of painting the upper part of the body juvenile Steppe Eagles with strongly developed (A) and moderately developed (B–F) ocher spots: A – Kalmykia, B – Western Kazakhstan, C, D – Altai, E, F – Dahuria. Photos by I. Karyakin and A. Matsina.

ñàìûì ïðîäåìîíñòðèðîâàâ, ÷òî orientalis â ñðåäíåì ìåíüøå, ÷åì nipalensis. Ïî Ë.Ñ. Ñòåïàíÿíó (1990) áîëåå ìåëêàÿ ôîðìà – A. n. orientalis, çèìóþùàÿ â Àôðèêå è íà Áëèæíåì Âîñòîêå, ãíåçäèòñÿ ê çàïàäó îò Àëòàÿ (íà÷èíàÿ ñ ïîäíîæèÿ Àëòàéñêèõ ãîð). Ïî âûøåïðèâåäåííûì îöåíêàì ÷èñëåííîñòè íà äîëþ ýòîãî ïîäâèäà ïðèõîäèòñÿ îêîëî 70 % îò îáùåé ÷èñëåííîñòè ìèðîâîé ïîïóëÿöèè. Íà Àëòàå è äàëåå íà âîñòîê ãíåçäèòñÿ A. n. nipalensis, çèìóþùèé îò Ïàêèñòàíà äî Òàèëàíäà, íà äîëþ êîòîðîãî ïðèõîäèòñÿ 30 % îò îáùåé ÷èñëåííîñòè ìèðîâîé ïîïóëÿöèè. Ñëåäóåò çàìåòèòü, ÷òî âêëàä ïîïóëÿöèé, îòíîñÿùèõñÿ ê orientalis, â îáùåìèðîâîé ðåñóðñ âèäà ïðèâåä¸í íà ïåðèîä ïàäåíèÿ ÷èñëåííîñòè â çàïàäíûõ è þæíûõ ïîïóëÿöèÿõ â Êàçàõñòàíå, â òî âðåìÿ êàê ïîïóëÿöèè ñòåïíîãî îðëà, îòíîñèìûå ê nipalensis, âûãëÿäÿò áîëåå ñòàáèëüíûìè. Åñëè ðàññìàòðèâàòü ïåðèîä äî êîíöà 90-õ ãã., ò.å. äî òîãî, êàê ïðèêàñïèéñêèå ïîïóëÿöèè Ðîññèè (Êàëìûêèÿ è îêðåñòíîñòè) è Êàçàõñòàíà â

Facts of mixing the birds from eastern and western populations on wintering as well as registration of large birds, close to nipalensis in mountain and bald mountain massifs of the western part of the species range, clinal resizing in the plain part of the area from Kalmykia to East Kazakhstan mountains with a broad area of their overlap already in East Kazakhstan population nominally referred to orientalis, only confirm the offer of Clark (Clark, 2005) about Steppe Eagle monotypicality. Analysis of the distribution of mitochondrial DNA haplotypes in populations of Steppe Eagle (see below) only confirms the hypothesis that the Steppe Eagle is a monotypic species, the only geographical variation of which is clinal difference in size (the size increases from west to east). Preliminary assessment of the haplotypes spread in different populations of the Steppe Eagle For a preliminary assessment of the distribution of mitochondrial DNA haplo-


Raptor Research

Raptors Conservation 2016, 32 ñóììå ïîòåðÿëè îêîëî 40 000 ïàð (ñì. Êàðÿêèí, 2015), ìîæíî ïðåäïîëîæèòü, ÷òî íà äîëþ A. n. orientalis ïðèõîäèëîñü îêîëî 87 %, à íà äîëþ A. n. nipalensis – îêîëî 13 %. Ó÷èòûâàÿ òî, ÷òî ñòåïíîé îð¸ë ÿâëÿåòñÿ äàëüíèì ìèãðàíòîì è ãíåçäèòñÿ â èçîëèðîâàííûõ ñòåïíûõ êîòëîâèíàõ íà âñ¸ì ïðîñòðàíñòâå Þæíîé Ñèáèðè, ñóùåñòâóþùèå ïðèðîäíûå óñëîâèÿ íå ñîçäàþò áàðüåðîâ, çàòðóäíÿþùèõ îáìåí îñîáÿìè.  ñâåòå ýòîãî êîëîññàëüíàÿ äèñïðîïîðöèÿ â ñòîðîíó A. n. orientalis â àðåàëå âèäà âûãëÿäèò êðàéíå ñòðàííîé. Èçó÷åíèå ãíåçäîâîé áèîëîãèè ïîêàçàëî, ÷òî ïòåíöû ñòåïíûõ îðëîâ èç çàïàäíûõ ïîïóëÿöèé, îòíîñèìûõ ê orientalis áîëåå áûñòðî ðàçâèâàþòñÿ, îñîáåííî íà ýòàïå íà÷àëà îïåðåíèÿ, è óæå ê 60-äíåâíîìó âîçðàñòó ñïîñîáíû ê ïîë¸òó, â òî âðåìÿ, êàê ñðîêè ðàçâèòèÿ ïòåíöîâ èç Àëòàå-Ñàÿíñêîãî ðåãèîíà, îòíîñèìûõ ê nipalensis, áîëåå ïðîäîëæèòåëüíû â ñðåäíåì íà 7 äíåé. Îäíàêî ÿâëÿåòñÿ ëè ýòà õàðàêòåðèñòèêà ïîäâèäîâîé? Ñêîðåå âñåãî, ðàçâèòèå çàâèñèò îò óñëîâèé è ïèòàíèÿ. Ãîðíûå ïîïóëÿöèè ñòåïíîãî îðëà, â îòëè÷èå îò ñâîèõ ðàâíèííûõ ñîáðàòüåâ, æèâóùèõ â áîëåå ìÿãêîì êëèìàòå è ïèòàþùèõñÿ áîëåå ìåëêèìè è áîëåå ìàññîâûìè îáúåêòàìè ïèòàíèÿ, îáèòàþò â ñóðîâûõ óñëîâèÿõ ñ ÷àñòûìè ëåòíèìè ñíåãîïàäàìè è âûíóæäåíû, îõîòèòüñÿ íà áîëåå êðóïíóþ äîáû÷ó, íå îáðàçóþùóþ ïëîòíûõ êîíöåíòðàöèé. Ïîñêîëüêó àíàëèç ðàçâèòèÿ ïòåíöîâ èç ðàâíèííûõ è ãîðíûõ ãíåçäîâûõ ãðóïïèðîâîê âíóòðè îäíîé ïîïóëÿöèè íå ïðîâîäèëîñü, âîïðîñ îñòà¸òñÿ îòêðûòûì. Íàçåìíûé, íàñêàëüíûé è äðåâåñíûé ñòåðåîòèïû ãíåçäîâàíèÿ õàðàêòåðíû äëÿ âñåõ ïîïóëÿöèé, çà èñêëþ÷åíèåì òåõ, ãäå ïîïðîñòó îòñóòñòâóåò òðåáóþùèéñÿ ñóáñòðàò. Äðåâåñíîãíåçäÿùèåñÿ, êàê è íàçåìíîãíåçäÿùèåñÿ ãðóïïèðîâêè ñòåïíîãî îðëà íå ÿâëÿþòñÿ ïîäâèäîñïåöèôè÷åñêèìè è ðàññåÿíû ïî âñåìó àðåàëó îò Òóðöèè è Êàëìûêèè äî Áóðÿòèè è Öåíòðàëüíîé Ìîíãîëèè. Ëèøü â Äàóðèè íå óäàëîñü âûÿâèòü ãí¸çäà ñòåïíîãî îðëà, óñòðîåííûå íà äåðåâüÿõ, ÷òî âîçìîæíî ñâÿçàíî ñ ñèëüíåéøåé äåãðàäàöèåé ïîïóëÿöèè è ñîõðàíåíèåì ëèøü íàçåìíîãî è íàñêàëüíîãî ñòåðåîòèïîâ ãíåçäîâàíèÿ, êàê íàèáîëåå ïðîäóöèðóåìûõ â äàííîé ïîïóëÿöèè. Íà÷èíàÿ ñ îïèñàíèÿ Ý. Õàðòåðòà (Hartert, 1913) âñå ïîñëåäóþùèå ñèñòåìàòèêè êîíñòàòèðîâàëè ôàêò, ÷òî nipalensis òåìíåå, ÷åì orientalis, íå ïðèâîäÿ íèêàêèõ óáåäèòåëüíûõ äîêàçàòåëüñòâ. Âîïðåêè óñòîÿâøåìóñÿ ìíåíèþ, â âîñòî÷íîé ÷àñòè àðå-

79

types samples of 23 Steppe Eagles from 6 population groupings were collected: Kalmyk and the Volga-Urals – 5 samples, West Kazakhstan – 7 samples, the AltaiSayan (Minusinsk and Western Mongolia) – 7 samples, Dahurian – 4 samples. As the analysis result of D-loop sequences of these 23 species 7 different haplotypes have been allocated. Two of them coincide in the region 293–297 bp with prior for Steppe Eagle haplotypes (AJ781270.1 è AJ781269.1), information about which is available in the gene bank, and the third previously described gaplotip on this site of polymorphism in our sample were not meet even once. The distances between the detected haplotypes are shown in fig. 8. Distribution of detected haplotypes in different population groupings of Steppe Eagle, indicating the number of samples are shown in fig. 9. It can be seen that the most ancient of the found haplotypes is in the extreme western point of the range of this species (except isolate in Turkey) – in Kalmykia. Haplotype F runs through all population groupings from Kalmykia to Dauria, taking from 29 to 67 % in the sample. Haplotype C is recorded in samples from West Kazakhstan to Dahurian population groupings with a share of 13 to 42 %. The greatest diversity of haplotypes is observed in the population groupings of Kalmykia and Kazakhstan. We can expect that in these populations, along with the Volga-Urals, the main species gene pool is concentrated. As we move to the east across the steppe eagle habitat its population and genetic diversity decreases. In particular, in our sample for Altai-Sayan populations there were revealed three haplotypes, despite the fact that the sample is comparable with that of West Kazakhstan population, while only 2 haplotype are detected for Daurian. Even preliminary results show the expected pattern of maximum diversity in the Western populations enclave, where the main resource of the species is concentrated and the presence only of “young” haplotypes in the eastern populations. Conclusion The focus of Steppe Eagle population, probably throughout the whole Holocoen, was in the Caspian Sea macro-region (PreCaucasian region, semi-deserts and steppes of the Caspian Sea region, the whole steppe


80

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ

Âàðèàíòû îêðàñêè âåðõà òåëà þâåíèëüíûõ ñòåïíûõ îðëîâ â Êàëìûêèè. Ôîòî À. Ìàöûíû. Variants of painting the upper part of the body juvenile Steppe Eagles in Kalmykia. Photos by A. Matsina.

àëà âèäà, äîëÿ ñâåòëûõ ïòèö âî âçðîñëîì íàðÿäå çíà÷èòåëüíî áîëüøå, ÷åì ò¸ìíûõ è ñðàâíèìà ñ òàêîâûìè ïîêàçàòåëÿìè äëÿ çàïàäíîé ÷àñòè àðåàëà. Ïðîñòðàíñòâåííûé àíàëèç ðåãèñòðàöèé ïòèö, ðàíæèðîâàííûõ ïî ãðàäàöèÿì òîíà îïåðåíèÿ, íå ïîçâîëÿåò âûâåñòè çàêîíîìåðíîñòåé. Ò¸ìíàÿ âàðèàöèÿ îêðàñêè ñ ÿðêèì óçêèì çàòûëî÷íûì ïÿòíîì ðåãèñòðèðóåòñÿ â 23 % ñëó÷àåâ è ðàçìàçàíà ïî àðåàëó âèäà ñ íåáîëüøîé êîíöåíòðàöèåé â Àëòàå-Ñàÿíñêîé ãîðíîé îáëàñòè. Ñóùåñòâåííî îñëîæíÿåò ñèòóàöèþ òî, ÷òî â íàñòîÿùåå âðåìÿ â 50 % ðàçìíîæàþùèõñÿ ïàð ïðèñóòñòâóþò ïòèöû â âîçðàñòå äî 6 ëåò, êîòîðûå èìåþò áîëåå ñâåòëóþ îêðàñêó êðîþùèõ. Ïîñëå èñ÷åçíîâåíèÿ â 4-ëåòíåì âîçðàñòå «þâåíèëüíîé ïîëîñû» ïî íèçó êðûëà, ýòèõ ïòèö ñòàíîâèòñÿ ñëîæíî îòëè÷èòü îò 6-ëåòíèõ, õîòÿ èõ òîí îêðàñêè â öåëîì ñâåòëåå. Íà ýòî îáðàòèë âíèìàíèå Âèëüÿì Êëàðê (Clark, 2005): «ñòåïíûå îðëû â 4 íàðÿäå (ò.å. ïîñëåäíåì ïåðåä âçðîñëûì íàðÿäîì) õîðîøî îòëè-

part of the Volga basin, Volga and Ural interfluve area, Cis-Urals, Mugodzhary, steppes and semi-deserts to the east including Turgay, to the north – to the Southern Urals, to the south – to the Ustyurt). Herefrom, apparently, species spread to the east and, probably, not so long ago in evolutionary terms stepped over the mountainous areas of western part of Central Asia. Hence there is obsolescence of ancient haplotypes as we move to the east, across the Steppe Eagle populations and increase in sizes due to the adaptation to a more continental and cold climate and reclaim of larger preys. Concentration of the bulk of species (and genetic diversity) in the area of the Caspian Sea region of Steppe Eagle allows considering this area a certain reserve, important for the conservation of species as a whole. Here best efforts should be made for species protection, neutralization of negative factors and the conservation of large massifs of habitat, unstrained by human activity.


Raptor Research

Raptors Conservation 2016, 32 ÷àþòñÿ îò áîëåå ðàííèõ èììàòóðíûõ è ÷åì-òî íàïîìèíàþò âçðîñëûõ, íî îò÷åòëèâî ñâåòëåå, îáû÷íî íå èìåþò ñâåòëûõ ïÿòåí íà çàòûëêå, ó íèõ ñâåòëûå ó÷àñòêè íà êðîþùèõ ïîäõâîñòüÿ è îñòàþòñÿ íåñêîëüêî èììàòóðíûõ âòîðîñòåïåííûõ ìàõîâûõ áåç øèðîêèõ êîíöåâûõ ïîëîñ (Clark, 1996; 1999); âîçìîæíî, ÷òî ïðåäûäóùèå èññëåäîâàòåëè ïóòàëè òàêèõ ïòèö ñî âçðîñëûìè è, âîçìîæíî, ÷òî íåêîòîðûå îáðàçöû, ïî êîòîðûì Äæ. Êàáàíèñ (Cabanis, 1854) äåëàë îïèñàíèå A. orientalis áûëè äåéñòâèòåëüíî îðëàìè â 4 íàðÿäå, à íå âçðîñëûìè». Ïî ìíåíèþ Â. Êëàðêà (Clark, 2005) èçó÷èâøåãî áîëåå 3000 îáðàçöîâ èç ìíîæåñòâà ìóçååâ, âêëþ÷àÿ áîëåå 100 âçðîñëûõ îñîáåé, ïîëóâçðîñëûå ñòåïíûå îðëû â ïåðâûõ òðåõ íàðÿäàõ äåìîíñòðèðóþò öâåòîâûå ðàçëè÷èÿ â îêðàñêå íèçà, íî ýòî âûçâàíî èíäèâèäóàëüíûìè ðàçëè÷èÿìè, à íå ãåîãðàôè÷åñêèìè. Ñëåäîâàòåëüíî, âàðèàöèè îêðàñêè íå ñïåöèôè÷íû äëÿ çàïàäíîé è âîñòî÷íîé ôîðì ñòåïíîãî îðëà. Ìû ïðåäïîëàãàëè, ÷òî, êàê â ñëó÷àå ñ ïîäîðëèêàìè (A. clanga, A. pomarina), â ïîïóëÿöèÿõ ñòåïíîãî îðëà ìîæåò èìåòü ìåñòî ãåîãðàôè÷åñêàÿ âàðèàöèÿ îêðàñêè þâåíèëüíûõ ïòèö, âûðàæàþùàÿñÿ â ðàçìåðàõ îõðèñòûõ ïÿòåí âåðõà êðûëà è ïîÿñíèöû, à òàêæå â ðàçìåðàõ ðûæåãî ïÿòíà íà çàòûëêå, îäíàêî àíàëèç ïîêàçàë, ÷òî ìàêñèìàëüíûå âàðèàöèè ýòèõ ïðèçíàêîâ ñîñðåäîòî÷åíû â Êàëìûêèè. Óæå âîñòî÷íåå Âîëãè, âñòðå÷àåòñÿ ñòàáèëüíî ëèøü òðè âà-

Ðèñ. 6. Ðåãèñòðàöèè ñòåïíûõ îðëîâ èäåíòèôèöèðóåìûõ ïî ðàçìåðàì (äëèíà êðûëà, äèàìåòð öåâêè) êàê A. n. nipalensis â ðàçíûõ ïîïóëÿöèÿõ. Fig. 6. Registrations of Steppe Eagles identified according to sizes (length of wing and diameter of tarsus) as A. n. nipalensis in different populations.

81

ðèàíòà ðàçâèòèÿ îõðèñòûõ ïÿòåí íà âåðõå êðûëà è ïîÿñíèöå, âîçíèêàþùèå â áëèçêèõ ïðîïîðöèÿõ âî âñåõ ïîïóëÿöèÿõ äî Äàóðèè âêëþ÷èòåëüíî. Áîëåå îïðåäåë¸ííûì âûãëÿäèò ðàñïðåäåëåíèå ïòèö, îòíîñèìûõ ê ðàçíûì ïîäâèäàì ïî ñâîèì ðàçìåðíûì õàðàêòåðèñòèêàì (ðèñ. 6, òàáë. 2). Ñòåïíûå îðëû, êîòîðûõ ìîæíî îòíåñòè ïî ðàçìåðó ê nipalensis, íà÷èíàþò ðåãèñòðèðîâàòüñÿ óæå â Çàïàäíîêàçàõñòàíñêîé ïîïóëÿöèè, à âîçìîæíî è çàïàäíåå, òàê êàê åñòü ñâåäåíèÿ î ìå÷åíèè «áåðêóòèíûìè» êîëüöàìè (Dinner=25,5 ìì) ïîëíîñòüþ îïåð¸ííûõ ìîëîäûõ ñàìîê çà íåñêîëüêî äíåé äî âûëåòà èç ãíåçäà â Âîëãîãðàäñêîé îáëàñòè (Â.Í. Ïèìåíîâ, ëè÷íîå ñîîáùåíèå). Ïî ñîáðàííûì ñâåäåíèÿì äîëÿ ïòåíöîâ ðàçìåðíîãî êëàññà nipalensis â Çàïàäíîêàçàõñòàíñêîé ïîïóëÿöèîííîé ãðóïïèðîâêå ñîñòàâëÿåò 6,44 %, à äîëÿ âçðîñëûõ ïòèö – 15,22 %.  Öåíòðàëüíîêàçàõñòàíñêîé ïîïóëÿöèîííîé ãðóïïèðîâêå äîëÿ ïòåíöîâ ðàçìåðíîãî êëàññà nipalensis âîçðàñòàåò äî 8,82 %, íî äîëÿ âçðîñëûõ ïòèö ïàäàåò, äî 3,45 %, íî óæå â Âîòî÷íîêàçàõñòàíñêîé ïîïóëÿöèîííîé ãðóïïèðîâêå êðóïíûå ïòèöû ðàçìåðíîãî êëàññà nipalensis êàê ñðåäè ïòåíöîâ, òàê è ñðåäè âçðîñëûõ ñîñòàâëÿþò ïîëîâèíó.  ÀëòàåÑàÿíñêîì ðåãèîíå ôàêòè÷åñêè âñå 100 % ïòèö îòíîñÿòñÿ ê nipalensis, íî ê âîñòîêó è þãî-âîñòîêó îò Àëòàå-Ñàÿíñêîãî ðåãèîíà íà÷èíàþò ïîÿâëÿòüñÿ ïòèöû ìåëêèõ ðàçìåðîâ, áëèçêèõ ê orientalis, õîòÿ, âïðî÷åì,


82

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ

Òàáë. 2. Ðåãèñòðàöèè ñòåïíûõ îðëîâ èäåíòèôèöèðóåìûõ ïî ðàçìåðàì (äëèíà êðûëà, äèàìåòð öåâêè) êàê A. n. nipalensis â ðàçíûõ ïîïóëÿöèÿõ. Table 2. Registrations of Steppe Eagles identified according to sizes (length of wing and diameter of tarsus) as A. n. nipalensis in different populations.

Íàçâàíèå ïîïóëÿöèîííîé ãðóïïèðîâêè Name of the population Êàëìûöêàÿ è Âîëæñêî-Óðàëüñêàÿ Kalmyk and Volga-Urals Çàïàäíîêàçàõñòàíñêàÿ / Western Kazakhstan Öåíòðàëüíîêàçàõñòàíñêàÿ / Central Kazakhstan Âîñòî÷íîêàçàõñòàíñêàÿ / Eastern Kazakhstan Àëòàå-Ñàÿíñêèå ïîïóëÿöèè (Óñòü-Êàíñêàÿ, Öåíòðàëüíîàëòàéñêàÿ, Ìèíóñèíñêàÿ, Òóâèíñêàÿ, Çàïàäíîìîíãîëüñêàÿ) Alnai-Sayan populations (Ust-Kan depression, Central Altai mountains, Minusinsk, Tuva, Western Mongolia) Öåíòðàëüíîìîíãîëüñêàÿ / Central Mongolia Äàóðñêàÿ / Dahuria ÂÑÅÃÎ / TOTAL

Âñå All 177

Ïòåíöû / Nestlings Äîëÿ (%) ~ nipalensis Share (%) 0 0

25 26

http://demo.nextgis.ru/birdreport/report/3528 http://demo.nextgis.ru/birdreport/report/3802 http://demo.nextgis.ru/birdreport/report/3505

Âçðîñëûå ïòèöû / Adults Äîëÿ (%) ~ nipalensis Share (%) 0 0

357 34 39 225

23 3 20 221

6.44 8.82 51.28 98.22

46 29 11 10

7 1 6 10

15.22 3.45 54.55 100.00

20 4 856

16 3 286

80.00 75.00 33.41

10 5 150

7 4 35

70.00 80.00 23.33

âûáîðêà äëÿ äàííûõ ïîïóëÿöèé ñëèøêîì ìàëà, ÷òîáû äåëàòü êàêèå-òî ñåðü¸çíûå çàêëþ÷åíèÿ. Èíòåðåñíî òî, ÷òî ôàêòè÷åñêè âñå ðåãèñòðàöèè êðóïíûõ ïòèö ðàçìåðíîãî êëàññà nipalensis â àðåàëå orientalis â Êàçàõñòàíå è íà òåððèòîðèè Îðåíáóðãñêîé îáëàñòè Ðîññèè ñâÿçàíû ñ ãîðíûìè ãðóïïàìè – Ìóãîäæàðû, Þæíûé Óðàë, êâàðöèòîâûå ãðÿäû áàññåéíà Îðè, ãðàíèòíûå ìàññèâû Óëóòàó è þãà è âîñòîêà Êàçàõñêîãî ìåëêîñîïî÷íèêà. Êàê áóäòî èìåííî ñþäà ïðîèñõîäèò äèñïåðñèÿ ïòèö èç âîñòî÷íûõ ãîðíûõ ïîïóëÿöèé è îíè çàíèìàþò äëÿ ãíåçäîâàíèÿ áèîòîïû, áëèçêèå òåì, â êîòîðûõ ïîÿâèëèñü íà ñâåò. Ê ñîæàëåíèþ ïîêà íå ïîÿâèòñÿ ñåðü¸çíûõ äàííûõ ïî ñïóòíèêîâîìó ïðîñëåæèâàíèþ äåñÿòêîâ îðëîâ, ýòî ïðåäïîëîæåíèå òàê è îñòàíåòñÿ ïðåäïîëîæåíèåì.  êà÷åñòâå íåêîòîðîé ïîääåðæêè ãèïîòåçû î øèðîêîé äèñïåðñèè ìîëîäûõ ïòèö èç âîñòî÷íûõ ïîïóëÿöèé â çàïàäíûå è íàîáîðîò, ìîæíî ñ÷èòàòü èíôîðìàöèþ î âîçâðàòàõ îêîëüöîâàííûõ ïòèö (ðèñ. 7). Åù¸ íåäàâíî ñ÷èòàëîñü ìàëîâåðîÿòíûì, ÷òî âîñòî÷íûå ñòåïíûå îðëû çèìóþò â Àôðèêå (Clark, 2005), îäíàêî â ñâåòå ïîñëåäíèõ âîçâðàòîâ êîëåö îò àëòàéñêèõ ïòèö, èõ çèìîâêà â Àôðèêå óæå íå âûãëÿäèò ìàëîâåðîÿòíîé. Çèìîé 2014 ã. áëàãîäàðÿ âîçâðàòàì ñòåïíûõ îðëîâ èç Èðàíà áûëà ïîñòàâëåíà òî÷êà â âîïðîñå î ìèãðàöèè âîñòî÷íîãî ñòåïíî24

Âñå All 39

ãî îðëà A. n. nipalensis ïî Àôðî-Åâðàçèéñêîìó ìèãðàöèîííîìó ïóòè (Êàðÿêèí è äð., 2015à; 2015b): – ñòåïíîé îð¸ë, îêîëüöîâàííûé 25 èþëÿ 2014 ã. íà ãíåçäå AN63-1 â Êîø-Àãà÷ñêîì ðàéîíå Ðåñïóáëèêè Àëòàé â îòðîãàõ Òàëäóàèðà ê ñåâåðî-âîñòîêó îò Òàøàíòû è ê çàïàäó îò îç. Êèíäèêòû-Êóëü24 áûë íàéäåí ì¸ðòâûì 22 íîÿáðÿ 2014 ã. â Èðàíå îêîëî Áàðäàñêàíà25. Äèñòàíöèÿ – 3013 êì, àçèìóò – 249 ãðàäóñîâ, ïðîäîëæèòåëüíîñòü – 121 äåíü ñ ìîìåíòà êîëüöåâàíèÿ. – ñòåïíîé îð¸ë, îêîëüöîâàííûé 14 èþëÿ 2014 ã. íà ãíåçäå AN-RA52-1 â ÊîøÀãà÷ñêîì ðàéîíå Ðåñïóáëèêè Àëòàé íà Ñàéëþãåìå ê çàïàäó îò Òàøàíòû26 (àíêåòà êîëüöåâàíèÿ) áûë îòëîâëåí 7 äåêàáðÿ

Ïòåíöû ñòåïíîãî îðëà, ðàçìåðû êîòîðûõ õàðàêòåðíû äëÿ nipalensis ssp., áûëè ïîìå÷åíû «áåðêóòèíûìè» êîëüöàìè â Îðåíáóðãñêîé îáëàñòè (â ãíåçäîâîì àðåàëå orientalis ssp.). Ôîòî È. Êàðÿêèíà. Nestlings of the Steppe Eagle with sizes that are specific for nipalensis ssp. were tagged with large rings in the Orenburg region (in breeding range from orientalis ssp.). Photo by I. Karyakin.


Raptor Research

Ðèñ. 7. Ñõåìû âîçâðàòà êîëåö îò ñòåïíûõ îðëîâ, ïîëó÷åííûå â ðàìêàõ ïðîãðàììû Öåíòðà êîëüöåâàíèÿ õèùíûõ ïòèö Ðîññèéñêîé ñåòè èçó÷åíèÿ è îõðàíû ïåðíàòûõ õèùíèêîâ: ñõåìà âîçâðàòîâ àëòàéñêèõ ïòèö èç Èðàíà â 2014 ã. – ââåðõó, ñõåìà âîçâðàòà îðåíáóðãñêîé ïòèöû èç Ïàêèñòàíà â 2015 ã. – â öåíòðå, âñå âîçâðàòû çà 2012–2015 ãã. – âíèçó. Fig. 7. Schemes of the Steppe Eagle ring recoveries obtained within the programme of the Raptor Ringing Center of the RRRCN: scheme of recoveries of Altai birds from Iran in 2014 – upper, scheme of recovery of Orenburg bird from Pakistan in 2015 – center, all the recoveries for 2012–2015 – bottom.

27 28 29

http://demo.nextgis.ru/birdreport/report/3801 http://demo.nextgis.ru/birdreport/report/3908 http://demo.nextgis.ru/birdreport/report/3909

Raptors Conservation 2016, 32

83

2014 ã. â Èðàíå ê þãó îò Äåððåãåçà – ýòî ïàðà äåñÿòêîâ êèëîìåòðîâ îò ãðàíèöû ñ Òóðêìåíèñòàíîì27. Ïòèöà ïîïàëà â ðåàáèëèòàöèîííûé öåíòð, ïîñëå ÷åãî áûëà âûïóùåíà â ïðèðîäó. Äèñòàíöèÿ – 2758 êì, àçèìóò – 251,5 ãðàäóñîâ, ïðîäîëæèòåëüíîñòü – 147 äíåé ñ ìîìåíòà êîëüöåâàíèÿ. Îñåíüþ 2015 ã. óäàëîñü ïîëó÷èòü ñâåäåíèÿ î âñòðå÷àõ íà ïàêèñòàíî-èíäèéñêèõ çèìîâêàõ çàïàäíîãî ñòåïíîãî îðëà A. n. orientalis èç çàïàäíîé ÷àñòè àðåàëà: – ñòåïíîé îð¸ë, îêîëüöîâàííûé 3 èþëÿ 2015 ã. â Îðåíáóðãñêîé îáëàñòè28 áûë ïîéìàí â Êàêàð Õóðàñàí Òåøèë â ðàéîíå Êèëëà-Ñàéôóëëà â ïðîâèíöèè Áåëóäæèñòàí â Ïàêèñòàíå 26 ñåíòÿáðÿ 2015 ã.29 Äèñòàíöèÿ – 2276 êì, àçèìóò – 160,4 ãðàäóñà, ïðîäîëæèòåëüíîñòü 86 äíåé ñ ìîìåíòà êîëüöåâàíèÿ.  ñâåòå ýòîãî, íå èñêëþ÷åíî, ÷òî íåêîòîðûå ìîëîäûå ñòåïíûå îðëû èç âîñòî÷íûõ ïîïóëÿöèé, äîñòèãàþùèå ïîëîâîé çðåëîñòè, ìèãðèðóþò ñ çèìîâîê íå â íàòàëüíóþ îáëàñòü, à â çàïàäíóþ ÷àñòü àðåàëà âèäà, êàê ñîáñòâåííî è çàïàäíûå ñòåïíûå îðëû â âîñòî÷íûå îáëàñòè. Êàê ïîêàçûâàþò ðåçóëüòàòû ïðîñëåæèâàíèÿ ñ ïîìîùüþ GSM/ GPS è Argos/GPS ïåðåäàò÷èêîâ ìîëîäûõ ìîãèëüíèêîâ, íà âòîðîé ãîä îðëû ìîãóò ñóùåñòâåííî ìåíÿòü êàê ñòðàòåãèþ ìèãðàöèè, òàê è îáëàñòü çèìîâêè è ëåòíåãî ïðåáûâàíèÿ (Èçó÷åíèå…, 2016). Ôàêòû ïåðåìåøèâàíèÿ ïòèö èç âîñòî÷íûõ è çàïàäíûõ ïîïóëÿöèé íà çèìîâêàõ, à òàêæå ðåãèñòðàöèè êðóïíûõ ïòèö, áëèçêèõ ê nipalensis â ãîðíûõ è ìåëêîñîïî÷íûõ ìàññèâàõ çàïàäíîé ÷àñòè àðåàëà âèäà, êëèíàëüíîå èçìåíåíèå ðàçìåðîâ â ðàâíèííîé ÷àñòè íà ïðîñòðàíñòâå îò Êàëìûêèè äî ãîð Âîñòî÷íîãî Êàçàõñòàíà ñ øèðîêîé çîíîé èõ ïåðåêðûâàíèÿ óæå â Âîñòî÷íîêàçàõñòàíñêîé ïîïóëÿöèè, íîìèíàëüíî îòíîñèâøåéñÿ ê orientalis, ëèøü ïîäòâåðæäàþò ïðåäëîæåíèå Â. Êëàðêà (Clark, 2005) î ìîíîòèïíè÷íîñòè ñòåïíîãî îðëà. Àíàëèç ðàñïðåäåëåíèÿ ãàïëîòèïîâ ìèòîõîíäðèàëüíîé ÄÍÊ â ïîïóëÿöèÿõ ñòåïíîãî îðëà (ñì. íèæå) ëèøü ïîäòâåðæäàåò ïðåäïîëîæåíèå î òîì, ÷òî ñòåïíîé îð¸ë ÿâëÿåòñÿ ìîíîòèïè÷íûì âèäîì, åäèíñòâåííàÿ ãåîãðàôè÷åñêàÿ âàðèàöèÿ êîòîðîãî – êëèíàëüíîå îòëè÷èå â ðàçìåðå (ðàçìåð óâåëè÷èâàåòñÿ ñ çàïàäà íà âîñòîê). Ïðåäâàðèòåëüíàÿ îöåíêà ðàñïðîñòðàíåíèÿ ãàïëîòèïîâ â ðàçëè÷íûõ ïîïóëÿöèÿõ ñòåïíîãî îðëà Äëÿ ïðåäâàðèòåëüíîé îöåíêè ðàñïðåäåëåíèÿ ãàïëîòèïîâ ìèòîõîíäðèàëüíîé ÄÍÊ áûëè ñîáðàíû îáðàçöû îò 23 ñòåïíûõ


84

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Ðèñ. 8. Ìåäèàííàÿ ñåòü ãàïëîòèïîâ D-ïåòëè ðîäà Aquila. Ïîñòðîåíà ìåòîäîì Median Joining. CH – çàìåíû, ROOT – áåðêóò (Aquila chrysaetos), HELIAC – îð¸ë-ìîãèëüíèê (Aquila heliaca), A-H –ãàïëîòèïû ñòåïíîãî îðëà. Fig. 8. Median-joining haplotype network for D-loop of Aquila. CH –replacements, ROOT – Golden Eagle (Aquila chrysaetos), HELIAC – Imperial Eagle (Aquila heliaca), A-H – Steppe Eagle haplotypes.

30 31 32

îðëîâ èç 6 ïîïóëÿöèîííûõ ãðóïïèðîâîê: êàëìûöêîé è âîëæñêî-óðàëüñêîé – 5 îáðàçöîâ, çàïàäíîêàçàõñòàíñêîé – 7 îáðàçöîâ, àëòàå-ñàÿíñêèõ (ìèíóñèíñêîé è çàïàäíîìîíãîëüñêîé) – 7 îáðàçöîâ, äàóðñêîé – 4 îáðàçöà.  ðåçóëüòàòå àíàëèçà ïîñëåäîâàòåëüíîñòåé D-ïåòëè ýòèõ 23 îñîáåé áûëî âûäåëåíî 7 ðàçëè÷íûõ ãàïëîòèïîâ. Èç íèõ äâà ñîâïàäàþò ïî ðåãèîíó 293–297 bp ñ ðàíåå èçâåñòíûìè äëÿ ñòåïíîãî îðëà ãàïëîòèïàìè (AJ781270.130 è AJ781269.131), èíôîðìàöèÿ î êîòîðûõ èìååòñÿ â ãåíáàíêå, à òðåòèé ðàíåå îïèñàííûé ãàïëîòèï32 ïî äàííîìó ñàéòó ïîëèìîðôèçìà â íàøåé âûáîðêå íå âñòðåòèëñÿ íè ðàçó. Ðàññòîÿíèÿ ìåæäó îáíàðóæåííûìè íàìè ãàïëîòèïàìè ïîêàçàíû íà ðèñ. 8. Ðàñïðîñòðàíåíèå âûÿâëåííûõ ãàïëîòèïîâ â ðàçëè÷íûõ ïîïóëÿöèîííûõ ãðóïïèðîâêàõ ñòåïíîãî îðëà ñ óêàçàíèåì êîëè÷åñòâà îáðàçöîâ ïðèâåäåíû íà ðèñ. 9. Ìîæíî âèäåòü, ÷òî íàèáîëåå äðåâíèé èç îáíàðóæåííûõ íàìè ãàïëîòèïîâ âñòðå÷àåòñÿ â êðàéíåé çàïàäíîé òî÷êå àðåàëà âèäà (åñëè íå ñ÷èòàòü èçîëÿòà â Òóðöèè) – â Êàëìûêèè. Ãàïëîòèï F – ïðîõîäèò ÷åðåç âñå ïîïóëÿöèîííûå ãðóïïèðîâêè îò Êàëìûêèè äî Äàóðèè, çàíèìàÿ îò 29 äî 67 % â âûáîðêå. Ãàïëîòèï Ñ ðåãèñòðèðóåòñÿ â âûáîðêàõ îò çàïàäíîêàçàõñòàíñêîé äî äàóðñêîé ïîïóëÿöèîííûõ ãðóïïèðîâîê ñ äîëåé îò 13 äî 42 %. Íàèáîëüøåå ðàçíîîáðàçèå ãàïëîòèïîâ íàáëþäàåòñÿ â ïîïóëÿöèîííûõ ãðóïïèðîâêàõ Êàëìûêèè è Êàçàõñòàíà. Ìîæíî îæèäàòü, ÷òî èìåííî â ýòèõ ïîïóëÿöèÿõ íàðÿäó ñ Âîëæñêî-Óðàëüñêîé, ñîñðåäîòî÷åí îñíîâíîé ãåíîôîíä âèäà. Ïî ìåðå ïðîæâèæåíèÿ íà âîñòîê ÷åðåç àðåàë ñòåïíîãî îðëà ïàäàåò åãî ÷èñëåííîñòü è ãåíåòè÷åñêîå ðàçíîîáðàçèå.  ÷àñòíîñòè â íàøåé âûáîðêå äëÿ Àëòàå-Ñà-

http://www.ncbi.nlm.nih.gov/nuccore/AJ781270.1 http://www.ncbi.nlm.nih.gov/nuccore/AJ781269.1 http://www.ncbi.nlm.nih.gov/nuccore/AJ781268.1

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ ÿíñêèõ ïîïóëÿöèé âûÿâëåíî âñåãî 3 ãàïëîòèïà, íåñìîòðÿ íà òî, ÷òî âûáîðêà ñðàâíèìà ñ òàêîâîé äëÿ Çàïàäíîêàçàõñòàíñêîé ïîïóëÿöèè, à äëÿ Äàóðñêîé âûÿâëåíî âñåãî 2 ãàïëîòèïà. Âåðîÿòíî, ýòî íåäîñòàòîê âûáîðêè è äëÿ äåòàëüíîãî èññëåäîâàíèÿ ïîïóëÿöèîííî-ãåíåòè÷åñêîé ñòðóêòóðû âèäà íåîáõîäèìî ïðîàíàëèçèðîâàòü áîëüøåå êîëè÷åñòâî îáðàçöîâ äëÿ êàæäîé ïîïóëÿöèîííîé ãðóïïèðîâêè, ïîñêîëüêó ðàçíîîáðàçèå ãàïëîòèïîâ î÷åâèäíî ìîæåò áûòü íàìíîãî áîëåå çíà÷èòåëüíûì. Òåì íå ìåíåå, äàæå ïðåäâàðèòåëüíûé ðåçóëüòàò ïîêàçûâàåò îæèäàåìóþ êàðòèíó ìàêñèìàëüíîãî ðàçíîîáðàçèÿ â àíêëàâå çàïàäíûõ ïîïóëÿöèé, ãäå ñîñðåäîòî÷åí îñíîâíîé ðåñóðñ âèäà è ïðèñóòñòâèå òîëüêî «ìîëîäûõ» ãàïëîòèïîâ â âîñòî÷íûõ ïîïóëÿöèÿõ. Çàêëþ÷åíèå Î÷àã ÷èñëåííîñòè ñòåïíîãî îðëà, âåðîÿòíî íà ïðîòÿæåíèè âñåãî Ãîëîöåíà, íàõîäèëñÿ â Ïðèêàñïèéñêîì ìàêðî-ðåãèîíå (Ïðåäêàâêàçüå, ïîëóïóñòûíè è ñòåïè Ïðèêàñïèÿ, âñÿ ñòåïíàÿ ÷àñòü áàññåéíà Âîëãè, Âîëæñêî-Óðàëüñêîãî ìåæäóðå÷üÿ, Ïðèóðàëüÿ, Ìóãîäæàðû, ñòåïè è ïîëóïóñòûíè íà âîñòîê äî Òóðãàÿ âêëþ÷èòåëüíî, íà ñåâåð – äî Þæíîãî Óðàëà, íà þã – äî Óñòþðòà). Îòñþäà, ïî-âèäèìîìó, âèä ðàñïðîñòðàíèëñÿ íà âîñòîê è, âåðîÿòíî, íå òàê äàâíî â ýâîëþöèîííîì ïëàíå ïåðåøàãíóë ÷åðåç ãîðíûå ðàéîíû çàïàäà Öåíòðàëüíîé Àçèè. Îòñþäà è ïîñòåïåííîå èñ÷åçíîâåíèå äðåâíèõ ãàïëîòèïîâ ïî ìåðå ïðîäâèæåíèÿ íà âîñòîê, ÷åðåç ïîïóëÿöèè ñòåïíîãî îðëà è óâåëè÷åíèå ðàçìåðîâ â ñâÿçè ñ àäàïòàöèåé ê áîëåå êîíòèíåíòàëüíîìó è õîëîäíîìó êëèìàòó è îñâîåíèåì áîëåå êðóïíîé äîáû÷è. Ñîñðåäîòî÷åíèå îñíîâíîé ìàññû îñîáåé (è ãåíåòè÷åñêîãî ðàçíîîáðàçèÿ) â Ïðèêàñïèéñêîé ÷àñòè àðåàëà ñòåïíîãî îðëà ïîçâîëÿåò ñ÷èòàòü ýòó òåððèòîðèþ íåêèì ðåçåðâàòîì, âàæíûì äëÿ ñîõðàíåíèÿ âèäà â öåëîì. Èìåííî çäåñü äîëæíû áûòü ïðèëîæåíû ìàêñèìàëüíûå óñèëèÿ ïî îõðàíå âèäà, íåéòðàëèçàöèè íåãàòèâíûõ ôàêòîðîâ è ñîõðàíåíèþ êðóïíûõ ìàññèâîâ ìåñòîîáèòàíèé, íåíàðóøåííûõ äåÿòåëüíîñòüþ ÷åëîâåêà.  òî æå âðåìÿ ïîñëåäíèå äåñÿòèëåòèÿ èìåííî çäåñü ðàçâîðà÷èâàþòñÿ ìàñøòàáíûå ïðîåêòû ïî íåôòå- è ãàçîäîáû÷å, ÷òî óæå íàíåñëî îãðîìíûé âðåä ïîïóëÿöèÿì ñòåïíîãî îðëà, ïðè÷¸ì íå çàãðÿçíåíèåì îêðóæàþùåé ñðåäû, à ðàçâè-


Raptor Research

Raptors Conservation 2016, 32 òèåì èíôðàñòðóêòóðû ïòèöåîïàñíûõ ËÝÏ, ÿâëÿþùåé «êîðèäîðû ñìåðòè» ÷åðåç ìåñòà îáèòàíèÿ âèäà â ýòîì ðåãèîíå. Àíàëèç ðàñïðåäåëåíèÿ ïòèö ñ ðàçíûìè ìîðôîëîãè÷åñêèìè ïðèçíàêàìè è àíàëèç ðàñïðåäåëåíèÿ ãàïëîòèïîâ ìèòîõîíäðèàëüíîé ÄÍÊ â ïîïóëÿöèÿõ ñòåïíîãî îðëà íà ïðîñòðàíñòâå åãî ãíåçäîâîãî àðåàëà, ñâèäåòåëüñòâóþò î òîì, ÷òî âèä ìîíîòèïè÷åí, è íåò îñíîâàíèé äåëèòü åãî íà äâà ïîäâèäà. Òåì íå ìåíåå, ëîêàëèçàöèÿ íà ãíåçäîâàíèè êðóïíûõ ïòèö â ãîðíûõ ãðóïïàõ è ìåëêîñîïî÷íèêàõ ñòåïíîé çîíû Êàçàõñòàíà ñðåäè ìàññû ïòèö áîëåå ìåëêèõ ðàçìåðîâ, íàñåëÿþùèõ ïðèëåãàþùèå ðàâíèíû, òðåáóåò äàëüíåéøåãî èçó÷åíèÿ. Êàê è òðåáóåò èçó÷åíèÿ ðàçíèöà â ñðîêàõ ðàçâèòèÿ ïòåíöîâ îðëîâ èç ðàâíèííûõ è ãîðíûõ ïîïóëÿöèé. Äëÿ ïîëó÷åíèÿ áîëåå äåòàëüíîé èíôîðìàöèè ïî ãåíåòè÷åñêîìó ðàçíîîáðàçèþ ïîïóëÿöèé ñòåïíîãî îðëà àêòóàëåí ñáîð è àíàëèç ìàòåðèàëîâ èç âñåõ ïîïóëÿöèé,

85

îñîáåííî èç þæíûõ èçîëÿòîâ, â êîòîðûõ îðëû íàõîäÿòñÿ ïîä óãðîçîé èñ÷åçíîâåíèÿ. Àêòóàëüíî òàêæå âûÿñíèòü ãåíåòè÷åñêèå ïîòåðè âèäà, äëÿ ÷åãî èìååò ñìûñë ïðîàíàëèçèðîâàòü ïîñëåäîâàòåëüíîñòü D-ïåòëè ìèòîõîíäðèàëüíîãî ãåíîìà ïî êîëëåêöèîííûì ìàòåðèàëàì, ñîáðàííûì èç âûìåðøèõ ïîïóëÿöèé ñòåïíîãî îðëà îò Ðóìûíèè äî Þãî-Âîñòî÷íîé Óêðàèíû. Áëàãîäàðíîñòè Àâòîðû áëàãîäàðÿò À. Áàðàøêîâó, Ð. Áàõòèíà, Ð. Áåêìàíñóðîâà, À. Âàãèíà, Ñ. Âàæîâà, À. Êîâàëåíêî, Í. Êîëåñîâó, Ì. Êîðîëüêîâà, Ð. Ëàïøèíà, À. Ìàêàðîâà, À. Ìàöûíó, Ý. Íèêîëåíêî, Î. Ñìàãèíó, È. Ñìåëÿíñêîãî, À. Ñåì¸íîâà, ó÷àñòâîâàâøèõ â ýêñïåäèöèÿõ, â êîòîðûõ ñîáèðàëàñü èíôîðìàöèÿ î ñòåïíîì îðëå. Îñîáàÿ áëàãîäàðíîñòü ðóêîâîäñòâó Ïðèðîäîîõðàíèòåëüíîé êîìèññèè Ðóññêîãî ãåîãðàôè÷åñêîãî îáùåñòâà, ïîääåðæàâøåé ïðîåêò «Îðëû Ðîññèè», â ðàì-

Ðèñ. 9. Êàðòà ïîïóëÿöèîííûõ ãðóïïèðîâîê ñòåïíîãî îðëà è ðàçíîîáðàçèÿ ãàïëîòèïîâ â íèõ ïî äàííûì ñ 24 òî÷åê. Ëåãåíäà: SB – òî÷êè ñáîðà ìàòåðèàëîâ (ëèííûå ïåðüÿ ñ 23 ãí¸çä è ñ 1 ïîãèáøåé íà ãíåçäîâîì ó÷àñòêå ïòèöû), BG – ïîïóëÿöèîííûå ãðóïïèðîâêè, BR – ãíåçäîâîé àðåàë, MR – îáëàñòü ëåòíèõ êî÷¸âîê, WR – îáëàñòü çèìîâîê (ñòðåëêàìè ïîêàçàíû îñíîâíûå ïóòè ìèãðàöèè ñòåïíûõ îðëîâ), CB – ãðàíèöû ñòðàí. Íà äèàãðàììàõ ïîêàçàíà ïðåäñòàâëåííîñòü ãàïëîòèïîâ A–H â ðàçíûõ ïîïóëÿöèîííûõ ãðóïïèðîâêàõ ñòåïíîãî îðëà. Fig. 9. The Steppe Eagle populations and diversity of their haplotypes according to data from 24 points. Labels: SB – points of sampling (moulted feathers from 23 nests and from 1 dead bird found in it’s nesting area), BG – populations, BR – breeding range, MR – area of summer movements, WR – wintering grounds (arrows indicate the main migrating routes of the Steppe Eagle), CB – state borders. Diagrams show representation of haplotypes A–H in different Steppe Eagle populations.


86

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32 êàõ êîòîðîãî áûëà ñîáðàíà áîëüøàÿ èíôîðìàöèÿ î ñòåïíîì îðëå, à òàêæå ðóêîâîäñòâó ïðîåêòîâ ÏÐÎÎÍ/ÃÝÔ/Ìèíïðèðîäû ÐÔ «Ñîõðàíåíèå áèîðàçíîîáðàçèÿ Àëòàå-Ñàÿíñêîãî ýêîðåãèîíà» è «Ñîâåðøåíñòâîâàíèå ñèñòåìû è ìåõàíèçìîâ óïðàâëåíèÿ ÎÎÏÒ â ñòåïíîì áèîìå Ðîññèè», áåç ôèíàíñèðîâàíèÿ êîòîðûõ íå ñîñòîÿëîñü áû áîëüøèíñòâî öåëåâûõ ýêñïåäèöèé ïî èçó÷åíèþ ñòåïíîãî îðëà. Òàêæå õî÷åòñÿ ïîáëàãîäàðèòü Èðàíñêèé è Ðîññèéñêèé öåíòðû êîëüöåâàíèÿ, à òàêæå Dr. Abdulwadood Kakar (Ïàêèñòàí), ñîîáùèâøèõ î âîçâðàòàõ îêîëüöîâàííûõ íàìè ñòåïíûõ îðëîâ â 2014 è 2015 ãã. Ëèòåðàòóðà Áàðàøêîâà À.Í. Âñòðå÷è õèùíûõ ïòèö è ñîâ â Âîñòî÷íîé Ìîíãîëèè. – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2009. ¹ 16. Ñ. 180–183 [Barashkova A.N. Records of Birds of Prey and Owl in Eastern Mongolia. – Raptors Conservation. 2009. 16: 180–183.]. URL: http://rrrcn.ru/ru/archives/19536 Äàòà îáðàùåíèÿ: 10.03.2016. Âàæîâ Ñ.Â., Áàõòèí Ð.Ô., Áàðàøêîâà À.Í., Ñìåëÿíñêèé È.Ý. Ê èçó÷åíèþ ñòåïíîãî îðëà â Àëòàéñêîì êðàå, Ðîññèÿ. – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2013. ¹ 27. Ñ. 162–171 [Vazhov S.V., Bachtin R.F., Barashkova A.N., Smelansky I.E. On the Study of the Steppe Eagle in the Altai Kray, Russia. – Raptors Conservation. 2013. 27: 162– 171.]. URL: http://rrrcn.ru/ru/archives/21177 Äàòà îáðàùåíèÿ: 10.03.2016. Âàæîâ Ñ.Â., Áàõòèí Ð.Ô., Ìàêàðîâ À.Â. Ðåçóëüòàòû ìîíèòîðèíãà ãíåçäîâûõ ãðóïïèðîâîê êðóïíûõ ïåðíàòûõ õèùíèêîâ â ïðåäãîðüÿõ è íèçêîãîðüÿõ Àëòàÿ â 2010 ãîäó, Àëòàéñêèé êðàé, Ðîññèÿ. – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2010a. ¹ 19. Ñ. 186–199 [Vazhov S.V., Bachtin R.F., Makarov A.V. Monitoring Results of Raptor Breeding Groups in the Foothills and Low Mountains of Altai in 2010, Altai Kray, Russia. – Raptors Conservation. 2010a. 19: 186–199]. URL: http://rrrcn.ru/ru/archives/19343 Äàòà îáðàùåíèÿ: 10.03.2016. Âàæîâ Ñ.Â., Áàõòèí Ð.Ô., Ìàêàðîâ À.Â., Êàðÿêèí È.Â., Ìèòðîôàíîâ Î.Á. Ðåçóëüòàòû ìîíèòîðèíãà ãíåçäîâûõ ãðóïïèðîâîê êðóïíûõ ïåðíàòûõ õèùíèêîâ â Ðåñïóáëèêå Àëòàé â 2010 ãîäó, Ðîññèÿ. – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2010. ¹ 20b. Ñ. 54–67 [Vazhov S.V., Bachtin R.F., Makarov A.V., Karyakin I.V., Mitrofanov O.B. Monitoring Results of Raptor Breeding Groups in the Republic of Altai in 2010, Russia. – Raptors Conservation. 2010b. 20: 54–67]. URL: http://rrrcn.ru/ru/archives/19237 Äàòà îáðàùåíèÿ: 10.03.2016. Ãóáèí Á.Ì. Ïòèöû ïóñòûíü Êàçàõñòàíà. Àëìàòû, 2015. 394 ñ. [Gubin B.M. Birds of deserts of Kazakhstan. Almaty, 2015: 1–394. (in Russian)]. Äåìåíòüåâ Ã.Ï. Îòðÿä õèùíûå ïòèöû: Accipitres èëè Falconiformes. – Ïòèöû Ñîâåòñêîãî Ñîþçà. Ò. 1. Ì.: Ñîâ. Íàóêà, 1951. Ñ. 70– 341. [Dementiev G.P. Birds of prey: Accipitres or Falconiformes. – Birds of the Soviet Union. Vol. 1. Moscow, 1951: 70–341(in Russian)]. URL: http://rrrcn.ru/ru/archives/14389 Äàòà îáðàùåíèÿ: 10.03.2016.

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ Çèíåâè÷ Ë.Ñ., Ùåïåòîâ Ä.Ì., Ñîðîêèíà Ñ.Þ., Êàðÿêèí È.Â. Ãåíåòè÷åñêîå ðàçíîîáðàçèå ïîïóëÿöèé ñòåïíîãî îðëà â óñëîâèÿõ áûñòðîãî ñîêðàùåíèÿ ÷èñëåííîñòè âèäà. – Ìàòåðèàëû VII Ìåæäóíàðîäíîé êîíôåðåíöèè ïî èçó÷åíèþ è îõðàíå õèùíûõ ïòèö Ñåâåðíîé Åâðàçèè. Ñî÷è, 2016 (â ïå÷àòè) [Zinevich L.S., Schepetov D.M., Sorokina S.Yu., Karyakin I.V. Genetic diversity of rapidly vanishing steppe eagle populations. – Proceedings of the VII International Conference on Birds of Prey and Owls of Northern Eurasia. Sochi, 2016 (in press).]. Èçó÷åíèå ìèãðàöèé îðëîâ â Þæíîé Ñèáèðè â 2014–2016 ãîäàõ. – Ðîññèéñêàÿ ñåòü èçó÷åíèÿ è îõðàíû ïåðíàòûõ õèùíèêîâ. 2016. URL: http://rrrcn.ru/migration/eagles2014 Äàòà îáðàùåíèÿ: 10.03.2016. Êàðÿêèí È.Â. Ïåðíàòûå õèùíèêè (ìåòîäè÷åñêèå ðåêîìåíäàöèè ïî èçó÷åíèþ ñîêîëîîáðàçíûõ è ñîâîîáðàçíûõ). Íèæíèé Íîâãîðîä, 2004. 351 ñ. [Karyakin I.V. Raptors (methods on the study of birds of prey and owls). Nizhny Novgorod, 2004: 1–351. (in Russian)]. URL: http://rrrcn.ru/ru/archives/11151 Äàòà îáðàùåíèÿ: 10.03.2016. Êàðÿêèí È.Â. Êðèçèñ ïîïóëÿöèé ñòåïíîãî îðëà â Òóâå. – Ñòåïíîé Áþëëåòåíü. 2006. ¹ 20. Ñ. 61–64 [Karyakin I.V. The crisis of the Steppe Eagle populations in Tuva. – Steppe Bulletin. 2006. 20: 61–64. (in Russian)]. URL: http://savesteppe.org/ru/archives/2640 Äàòà îáðàùåíèÿ: 10.03.2016. Êàðÿêèí È.Â. Äèíàìèêà ÷èñëåííîñòè ñòåïíîãî îðëà â Ñàìàðñêîé îáëàñòè. – Ýêîëîãîãåîãðàôè÷åñêèå èññëåäîâàíèÿ â Ñðåäíåì Ïîâîëæüå: Ìàòåðèàëû íàó÷íî-ïðàêòè÷åñêîé êîíôåðåíöèè ïî èçó÷åíèþ è ãåîãðàôèè Ñðåäíåãî Ïîâîëæüÿ. Êàçàíü, 2008. Ñ. 143–147 [Karyakin I.V. Trends of the Steppe Eagle population in the Samara region. – Ecological and geographical research in the Middle Volga: Proceedings of scientifically-practical conference on the study of geography of the Middle Volga. Kazan, 2008: 143–147 (in Russian)]. Êàðÿêèí È.Â. Î âîçìîæíîñòÿõ ÃÈÑ â îöåíêå ÷èñëåííîñòè è ïðîãíîçèðîâàíèè ðàçìåùåíèÿ ãíåçäÿùèõñÿ õèùíûõ ïòèö: àïðîáàöèÿ ìåòîäèê íà ïðèìåðå àíàëèçà ïðîñòðàíñòâåííîãî ðàñïðåäåëåíèÿ ìîãèëüíèêà è áåðêóòà â Âîëãî-Óðàëüñêîì ðåãèîíå, Ðîññèÿ. – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2010. ¹ 19. Ñ. 97–135 [Karyakin I.V. Using GIS-Software for Estimation of Number and Forecasting the Distribution of Breeding Raptors: Approbation of Methods for Examples of Analysis of Distribution of the Imperial Eagle and Golden Eagle in the Volga-Ural Region, Russia. — Raptors Conservation. 2010. 19: 97–135]. URL: http://rrrcn.ru/ru/archives/19332 Äàòà îáðàùåíèÿ: 10.03.2016. Êàðÿêèí È.Â. Ìåòîäè÷åñêèå ðåêîìåíäàöèè ïî îðãàíèçàöèè ìîíèòîðèíãà ïîïóëÿöèé ñòåïíîãî îðëà â Ðîññèè è Êàçàõñòàíå. Íîâîñèáèðñê: Àêàäåìè÷åñêîå èçäàòåëüñòâî «Ãåî», 2012. 89 ñ. [Karyakin I.V. Methods on the organization of monitoring of the Steppe Eagle populations in Russia and Kazakhstan. Novosibirsk, 2012: 1–89. (in Russian)]. URL: http://rrrcn.ru/ru/archives/12822 Äàòà îáðàùåíèÿ: 10.03.2016.


Raptor Research

Raptors Conservation 2016, 32 Êàðÿêèí È.Â. Îáçîð ñîâðåìåííîãî ñòàòóñà ñòåïíîãî îðëà â ìèðå è â Ðîññèè. – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2013. ¹ 26. Ñ. 22–43 [Karyakin I.V. Review of the Modern Population Status of the Steppe Eagle in the World and in Russia. – Raptors Conservation. 2013. 26: 22– 43.]. URL: http://rrrcn.ru/archives/19580 Äàòà îáðàùåíèÿ: 10.03.2016. Êàðÿêèí È.Â. Ïîâûøåí ãëîáàëüíûé ïðèðîäîîõðàííûé ñòàòóñ ñòåïíîãî îðëà. — Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2015. ¹ 30. Ñ. 21–30. DOI: 10.19074/1814-8654-2015-30-21-30 [Karyakin I.V. The Steppe Eagle Global Conservation Status Was Raised. – Raptors Conservation. 2015. 30: 21–30. DOI: 10.19074/1814-8654-2015-3021-30]. URL: http://rrrcn.ru/ru/archives/25956 Äàòà îáðàùåíèÿ: 10.03.2016. Êàðÿêèí È.Â., Áåêìàíñóðîâ Ð.Õ., Áàáóøêèí Ì.Â., Âàæîâ Ñ.Â., Áàõòèí Ð.Ô., Íèêîëåíêî Ý.Ã., Øíàéäåð Å.Ï., Ïèìåíîâ Â.Í. Ðåçóëüòàòû ðàáîòû Öåíòðà êîëüöåâàíèÿ õèùíûõ ïòèö Ðîññèéñêîé ñåòè èçó÷åíèÿ è îõðàíû ïåðíàòûõ õèùíèêîâ â 2014 ãîäó. – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2015a. ¹ 30. Ñ. 31–61. DOI: 10.19074/1814-86542015-30-31-61 [Karyakin I.V., Bekmansurov R.H., Babushkin M.V., Vazhov S.V., Bachtin R.F., Nikolenko E.G., Shnayder E.P., Pimenov V.N. Results of work of the Raptor Ringing Center of the Russian Raptor Research and Conservation Network in 2014. – Raptors Conservation. 2015a. 30: 31–61. DOI: 10.19074/1814-8654-2015-30-3161]. URL: http://rrrcn.ru/ru/archives/25960 Äàòà îáðàùåíèÿ: 10.03.2016. Êàðÿêèí È., Áåêìàíñóðîâ Ð., Çèíåâè÷ Ë. Ïîëó÷åíû äîêàçàòåëüñòâà ïðèñóòñòâèÿ ñòåïíûõ îðëîâ ðàçíûõ ïîäâèäîâ íà îäíèõ è òåõ æå çèìîâêàõ. – Ðîññèéñêàÿ ñåòü èçó÷åíèÿ è îõðàíû ïåðíàòûõ õèùíèêîâ. 2015b. [Karyakin I., Bekmansurov R., Zinevich L. Obtained evidence of the presence of the Steppe Eagles different subspecies on the same wintering places. – Russian Raptor Research and Conservation Network. 2015b]. URL: http://rrrcn.ru/ru/archives/24806 Äàòà îáðàùåíèÿ: 10.03.2016. Êàðÿêèí È.Â., Êîâàëåíêî À.Â., Áàðàáàøèí Ò.Î., Êîðåïîâ Ì.Â. Êðóïíûå õèùíûå ïòèöû áàññåéíà Ñàðûñó. – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2008. ¹ 13. Ñ. 48–87 [Karyakin I.V., Kovalenko A.V., Barabashin T.O., Korepov M.V. The Large Birds of Prey of the Sarysu River Basin. – Raptors Conservation. 2008. 13: 48–87]. URL: http://docs.sibecocenter.ru/programs/raptors/RC13/RC_13_2008_ Karyakin_48_87.pdf Äàòà îáðàùåíèÿ: 10.03.2016. Êàðÿêèí È.Â., Êîâàëåíêî À.Â., Áàðàøêîâà À.Í. Ìîíèòîðèíã ãíåçäîâûõ ãðóïïèðîâîê ñòåïíîãî îðëà â òðàíñãðàíè÷íîé çîíå Ðîññèè è Êàçàõñòàíà â 2012 ãîäó. – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2013. ¹ 26. Ñ. 61–83. [Karyakin I.V., Kovalenko A.V., Barashkova A.N. Monitoring of the Steppe Eagle Populations in the TransBorder Zone of Russia and Kazakhstan in 2012. – Raptors Conservation. 2013. 26: 61–83]. URL: http://rrrcn.ru/ru/archives/19591 Äàòà îáðàùåíèÿ: 10.03.2016. Êàðÿêèí È.Â., Êîâàëåíêî À.Â., Ëåâèí À.Ñ., Ïàæåíêîâ À.Ñ. Îðëû Àðàëî-Êàñïèéñêîãî ðåãèîíà, Êàçàõñòàí. – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2011. ¹ 22. C. 92–152 [Karyakin I.V., Ko-

87

valenko A.V., Levin A.S., Pazhenkov A.S. Eagles of the Aral-Caspian Region, Kazakhstan – Raptors Conservation. 2011. 22: 92–152.]. URL: http:// rrrcn.ru/ru/archives/12738 Äàòà îáðàùåíèÿ: 10.03.2016. Êàðÿêèí È.Â., Íèêîëåíêî Ý.Ã., Áàðàøêîâà À.Í. Êðóïíûå ïåðíàòûå õèùíèêè ñòåïíûõ êîòëîâèí Áàéêàëüñêîãî ðåãèîíà, Ðîññèÿ. – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2006. ¹ 7. C. 21–45 [Karyakin I.V., Nikolenko E.G., Barashkova A.N. Large birds of prey of steppe depressions in the Baikal region, Russia. – Raptors Conservation. 2006. 7: 21–45]. URL: http://docs.sibecocenter. ru/programs/raptors/RC07/raptors_conservation_2006_7_pages_21_45.pdf Äàòà îáðàùåíèÿ: 10.03.2016. Êàðÿêèí È.Â., Íèêîëåíêî Ý.Ã., Áàðàøêîâà À.Í. Îðëû Äàóðèè, Ðîññèÿ. – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2012. ¹ 25. Ñ. 97–114 [Karyakin I.V., Nikolenko E.G., Barashkova A.N. The Eagles in Dauria, Russia. – Raptors Conservation. 2012. 25: 97–114.]. URL: http://rrrcn.ru/ru/archives/19116 Äàòà îáðàùåíèÿ: 10.03.2016. Êàðÿêèí È.Â., Íîâèêîâà Ë.Ì. Ñòåïíîé îð¸ë è èíôðàñòðóêòóðà ËÝÏ â Çàïàäíîì Êàçàõñòàíå. Åñòü ëè ïåðñïåêòèâà ñîñóùåñòâîâàíèÿ? – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2006. ¹ 6. Ñ. 48–57 [Karyakin I.V., Novikova L.M. The Steppe Eagle and power lines in Western Kazakhstan. Is coexistence have any chance? – Raptors Conservation. 2006. 6: 48–57]. URL: http://docs.sibecocenter. ru/programs/raptors/RC06/raptors_conservation_2006_6_pages_48_57.pdf Äàòà îáðàùåíèÿ: 10.03.2016. Êàðÿêèí È.Â., Ïàæåíêîâ À.Ñ. Õèùíûå ïòèöû Ñàìàðñêîé îáëàñòè. Êíèãà-ôîòîàëüáîì. Ñàìàðà, 2008. 66 ñ. [Karyakin I.V., Pazhenkov A.S. Raptors of the Samara region. Books-photoalbum. Samara, 2008: 1–66]. URL: http://rrrcn.ru/ ru/archives/4507 Äàòà îáðàùåíèÿ: 10.03.2016. Êàðÿêèí È.Â., Ïàæåíêîâ À.Ñ., Êîâàëåíêî À.Â., Êîðæåâ Ä.À., Íîâèêîâà Ë.Ì. Êðóïíûå ïåðíàòûå õèùíèêè Ìóãîäæàð, Êàçàõñòàí. – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2007. ¹ 8. C. 53–65 [Karyakin I.V., Pazhenkov A.S., Kovalenko A.V., Korzhev D.A., Novikova L.M. Large raptors in the Mugdzhary Mountains, Kazakhstan. – Raptors Conservation. 2007. 8: 53–65]. URL: http:// docs.sibecocenter.ru/programs/raptors/RC08/ raptors_conservation_2007_8_pages_53_65. pdf Äàòà îáðàùåíèÿ: 10.03.2016. Êàðÿêèí È.Â., Ñìåëÿíñêèé È.Ý., Áàêêà Ñ.Â., Ãðàáîâñêèé Ì.À., Ðûáåíêî À.Â., Åãîðîâà À.B. Êðóïíûå ïåðíàòûå õèùíèêè Àëòàéñêîãî êðàÿ. – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2005. ¹3. Ñ. 28–51 [Karyakin I.V., Smelansky I.E., Bakka S.V., Grabovsky M.A., Rybenko A.V., Egorova A.V. The Raptors in the Altai Kray. – Raptors Conservation. 2005. 3: 28–51]. URL: http://docs. sibecocenter.ru/programs/raptors/RC03/raptors_conservation_2005_3_pages_28_51.pdf Äàòà îáðàùåíèÿ: 10.03.2016. ÌàÌèí Ð., Æàî K. Ðàñïðîñòðàíåíèå è ýêîëîãèÿ ñòåïíîãî îðëà â Êèòàå. – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2013. ¹ 27. Ñ. 172–179. [MaMing R., Zhao X.Ì. Distribution Patterns and Ecology of the Steppe Eagle in China. – Raptors Conservation. 2013. 27: 172–179.] URL: http://


88

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32 rrrcn.ru/ru/archives/21186 Äàòà îáðàùåíèÿ: 10.03.2016. Ìåäæèäîâ Ð.À., Ìóçàåâ Â.Ì., Áàäìàåâ Â.Á. Î ñîñòîÿíèè ïîïóëÿöèè ñòåïíîãî îðëà â Êàëìûêèè. – Ñòåïíîé áþëëåòåíü. 2011. ¹ 32. Ñ. 33–37 [Medzhidov R.A., Muzaev V.M., Badmaev V.B. On the state of the Steppe Eagle population in Kalmykia. – Steppe Bulletin. 2011. 32: 33–37.]. URL: http://savesteppe.org/ru/archives/6215 Äàòà îáðàùåíèÿ: 10.03.2016. Ìóçàåâ Â.Ì., Ýðäíåíîâ Ã.È. Ìàòåðèàëû ïî ÷èñëåííîñòè è áèîëîãèè ðàçìíîæåíèÿ ñòåïíîãî îðëà (Aquila nipalensis) íà ñåâåðî-âîñòîêå Êàëìûêèè. – Îðëû Ïàëåàðêòèêè: èçó÷åíèå è îõðàíà – òåçèñû ìåæäóíàðîäíîé íàó÷íî-ïðàêòè÷åñêîé êîíôåðåíöèè, Åëàáóãà (Òàòàðñòàí, Ðîññèÿ), 20– 23 ñåíòÿáðÿ 2013 ã. / ðåä. À.À. Êàþìîâ, È.Â. Êàðÿêèí, Ý.Ã. Íèêîëåíêî, Å.Ï. Øíàéäåð. – Åëàáóãà, 2013. C. 40. [Muzaev V.M., Erdnenov G.I. Materials on the Numbers and Breeding Biology of the Steppe Eagle Aquila nipalensis in the NorthEast of Kalmykia. – Eagles of Palearctic: Study and Conservation – Abstracts of the International Scientific and Practical Conference, Elabuga, Tatarstan Republic, Russia, 20–23 September 2013 / Eds. A.A. Kayumov, I.V. Karyakin, E.G. Nikolenko, E.P. Shnayder. Elabuga, 2013: 40]. URL: http://rrrcn.ru/ru/archives/19978 Äàòà îáðàùåíèÿ: 10.03.2016. Íèêîëåíêî Ý.Ã., Êàðÿêèí È.Â. Îðëû ÀëòàåÑàÿíñêîãî ðåãèîíà: ðàñïðîñòðàíåíèå, ÷èñëåííîñòü, óãðîçû, òåíäåíöèè. – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2013. ¹ 27. Ñ. 221–234 [Nikolenko E.G., Karyakin I.V. Eagles in the Altai-Sayan Region: Distribution, Numbers, Threats, and Trends. – Raptors Conservation. 2013. 27: 221– 234]. URL: http://rrrcn.ru/ru/archives/21221 Äàòà îáðàùåíèÿ: 10.03.2016. Ïèìåíîâ Â.Í. Ñòåïíîé îð¸ë (Aquila nipalensis) â ïîëóïóñòûííîì Çàâîëæüå. – Îðëû Ïàëåàðêòèêè: èçó÷åíèå è îõðàíà – òåçèñû ìåæäóíàðîäíîé íàó÷íî-ïðàêòè÷åñêîé êîíôåðåíöèè, Åëàáóãà (Òàòàðñòàí, Ðîññèÿ), 20–23 ñåíòÿáðÿ 2013 ã. / ðåä. À.À. Êàþìîâ, È.Â. Êàðÿêèí, Ý.Ã. Íèêîëåíêî, Å.Ï. Øíàéäåð. – Åëàáóãà, 2013.C. 39. [Pimenov V.N. The Steppe Eagle Aquila nipalensis in Semi-Arid Trans-Volga Region. – Eagles of Palearctic: Study and Conservation – Abstracts of the International Scientific and Practical Conference, Elabuga, Tatarstan Republic, Russia, 20–23 September 2013 / Eds. A.A. Kayumov, I.V. Karyakin, E.G. Nikolenko, E.P. Shnayder. Elabuga, 2013: 39]. URL: http:// rrrcn.ru/ru/archives/19978 Äàòà îáðàùåíèÿ: 10.03.2016. Ñìåëÿíñêèé È.Ý., Áàðàøêîâà À.Í., Òîìèëåíêî À.À., Áåð¸çîâèêîâ Í.Í. Ïåðíàòûå õèùíèêè ïðåäãîðèé Êàëáèíñêîãî Àëòàÿ, Êàçàõñòàí. – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2006. ¹ 7. Ñ. 46–55. [Smelansky I.E., Barashkova A.N., Tomilenko A.A., Berezovikov N.N. Raptors of the foothills of Kalbinsky Altai, Kazakhstan. – Raptors Conservation 2006, 7: 46–55]. URL: http://docs. sibecocenter.ru/programs/raptors/RC07/raptors_conservation_2006_7_pages_46_55.pdf Äàòà îáðàùåíèÿ: 10.03.2016. Ñìåëÿíñêèé È.Ý., Áàðàøêîâà À.Í., Òîìèëåíêî À.À., Ðûæêîâ Ä.Â., Àêåíòüåâ À.Ã. Íå-

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ êîòîðûå íàõîäêè ïåðíàòûõ õèùíèêîâ â ñòåïÿõ Âîñòî÷íîãî Êàçàõñòàíà â 2007 ã. – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2008. ¹ 12. Ñ. 69–78. [Smelansky I.E., Barashkova A.N., Tomilenko A.A., Ryzhkov D.V., Akentiev A.G. Several Raptors Records in the Steppes of East Kazakhstan in 2007. – Raptors Conservation 2008, 12: 69– 78]. URL: http://rrrcn.ru/ru/archives/24974 Äàòà îáðàùåíèÿ: 10.03.2016. Ñòåïàíÿí Ë.Ñ. Êîíñïåêò îðíèòîëîãè÷åñêîé ôàóíû ÑÑÑÐ. Ìîñêâà «Íàóêà», 1990. 727 ñ. [Stepanyan L.S. Conspectus of the ornithological fauna of the USSR. Moscow, 1990: 727 (in Russian)]. Ashpole, J., Burfield, I., Ieronymidou, C., Pople, R., Wheatley, H. & Wright, L. Aquila nipalensis – Hodgson, 1833. – BirdLife International. 2014. URL: http://www.birdlife.org/ datazone/userfiles/file/Species/erlob/summarypdfs/22696038_aquila_nipalensis.pdf Date accessed: 10/03/2016. Bold A., Boldbaatar Sh. Steppe Eagle Aquila nipalensis. – Scientific Proceedings of the National University of Mongolia. Biology. 1999. 9 (146). P. 103–122. (in Mongolian). Butchart, S., Ekstrom, J., Harding, M., Khwaja, N., Symes, A., Ashpole, J, Wright, L, Pople, R., Burfield, I., Ieronymidou, C. & Wheatley, H. Steppe Eagle Aquila nipalensis. – BirdLife International. 2015. URL: http://www.birdlife.org/ datazone/species/factsheet/22696038 Date accessed: 10/03/2016. BirdLife International. European Red List of Birds. Luxemburg: Office for Official Publications of the European Communities. 2015. DOI: 10.2779/975810 URL: http://www.birdlife.org/ sites/default/files/attachments/RedList%20-%20 BirdLife%20publication%20WEB.pdf Date accessed: 10/03/2016. Cabanis J. Footnote. – Journal Orn. 1854. 2: 369. Clark W.S. Ageing Steppe Eagles. – Birding World. 1996. 9: 269–274. Clark W.S. A field guide to the raptors of Europe, North Africa, and the Middle East. Oxford Univ. Press, 1999. Clark W.S. Steppe Eagle Aquila nipalensis is monotypic. – Bulletin of the British Ornithologists’ Club. 2005. 125 (2): 149–153. URL: http://www.globalraptors.org/grin/researchers/uploads/155/semono.pdf Date accessed: 10/03/2016. Hartert E. Die Vogel der palaarktischen Fauna. Bd. 2. Friedlander und Sohn, Berlin, 1913. (Rep.) Horvath M.B., Martinez-Cruz B., Negro J.J., Kalmar L., Godoy J.A. An overlooked DNA source for non-invasive genetic analysis in birds. – Journal of Avian Biology. 2005. 36 (1): 84–88. Kirwan G.M., Boyla K.A., Castell P., Demirci B., Ozen M., Welch H., Marlow T. The Birds of Turkey. London, 2008: 1–512. Stubbe M., Stubbe A., Batsajchan N., Gombobaatar S., Stenzel T., von Wehrden H., Boldbaatar Sh., Nyambayar B., Samjaa R., Ceveenmjadag N., Bold A. Grid mapping and breeding ecology of raptors in Mongolia. – Exploration into the Biological Resources of Mongolia. 2010. 11: 23–175.


Raptor Research

Raptors Conservation 2016, 32

89

Results of the Monitoring of the Steppe Eagle Population in Trans-Baikal Territory (Zabaikalsky Kray) in 2015, Russia РЕЗУЛЬТАТЫ МОНИТОРИНГА ПОПУЛЯЦИИ СТЕПНОГО ОРЛА В ЗАБАЙКАЛЬСКОМ КРАЕ В 2015 Г., РОССИЯ Barashkova A.N. (Sibecocenter LLC, Novosibirsk, Russia) Goroshko O.A. (Daursky State Biosphere Nature Reserve, Institute of Natural Resources, Ecology and Cryology of Siberian Branch of Russian Academy of Sciences, Chita, Russia) Smelansky I.E. (Sibecocenter LLC, Novosibirsk, Russia) Барашкова А.Н. (Сибэкоцентр, Новосибирск, Россия) Горошко О.А. (Государственный природный биосферный заповедник «Даурский», Институт природных ресурсов, экологии и криологии СО РАН, Чита, Россия) Смелянский И.Э. (Сибэкоцентр, Новосибирск, Россия)

Êîíòàêò: Àííà Áàðàøêîâà ÎÎÎ «Ñèáýêîöåíòð», 630090, Ðîññèÿ, Íîâîñèáèðñê, à/ÿ 547 yazula@yandex.ru Îëåã Ãîðîøêî Äàóðñêèé çàïîâåäíèê, 674480, Ðîññèÿ, Çàáàéêàëüñêèé êðàé, ñ. Íèæíèé Öàñó÷åé, à/ÿ 66 òåë.: +7 3022 314531 +7 914 508 42 31 oleggoroshko@mail.ru Èëüÿ Ñìåëÿíñêèé ÎÎÎ «Ñèáýêîöåíòð», 630090, Ðîññèÿ, Íîâîñèáèðñê, à/ÿ 547 oppia@yandex.ru Contact: Anna Barashkova Sibecocenter LLC P.O. Box 547, Novosibirsk, Russia, 630090 yazula@yandex.ru Oleg Goroshko Daursky State Biosphere Nature Reserve P.O. Box 66, Nizhny Tsasuchey, Zabaikalsky Kray, Russia, 674480 tel.: +7 3022 314531 +7 914 508 42 31 oleggoroshko@mail.ru Ilya Smelansky Sibecocenter LLC P.O. Box 547, Novosibirsk, Russia, 630090 oppia@yandex.ru

Ðåçþìå  èþëå–àâãóñòå 2015 ã. ïðîâåäåíî îáñëåäîâàíèå ãíåçäîâîé ãðóïïèðîâêè ñòåïíîãî îðëà (Aquila nipalensis) â ñòåïíîé ÷àñòè Çàáàéêàëüñêîãî êðàÿ (â Äàóðèè). Ðàáîòà âåëàñü íà 13 ïëîùàäêàõ â 10 ðàéîíàõ êðàÿ, â òîì ÷èñëå íà 11 ïëîùàäêàõ ïîâòîðíî (ïîñëå ïåðâè÷íîãî â 2010 ã.). Âñåãî ïî ðåçóëüòàòàì ðàáîò 2010 è 2015 ãã. â ðåãèîíå óäàëîñü ëîêàëèçîâàòü 57 ãíåçäîâûõ ó÷àñòêîâ ñòåïíûõ îðëîâ, íà êîòîðûõ îñìîòðåíî 95 ãíåçäîâûõ ïîñòðîåê, åù¸ 24 ïîòåíöèàëüíûõ ãíåçäîâûõ ó÷àñòêà ëîêàëèçîâàíû ïî âñòðå÷àì ïòèö.  2015 ã. îáñëåäîâàíî ïîâòîðíî 35 ðàíåå âûÿâëåííûõ ãíåçäîâûõ ó÷àñòêîâ è ïðîñëåæåíà èõ ñóäüáà; âíîâü âûÿâëåíî òàêæå 35 ó÷àñòêîâ; ó÷òåíî 27 ïòåíöîâ è ñë¸òêîâ â 19 ãí¸çäàõ.  2010 ã. ñîñòîÿíèå ïîïóëÿöèè ñòåïíîãî îðëà â Äàóðèè îöåíèâàëîñü êàê êðàéíå íåáëàãîïîëó÷íîå.  2015 ã. îñíîâíûå ïîïóëÿöèîííûå õàðàêòåðèñòèêè ñóùåñòâåííî íå èçìåíèëèñü, õîòÿ îáúåì âûáîðêè áûë â ïîëòîðà ðàçà áîëüøå, ÷åì â 2010. Çà ïðîøåäøèå ïÿòü ëåò ôàêòè÷åñêàÿ ñðåäíÿÿ ïëîòíîñòü ãíåçäîâàíèÿ ñòåïíîãî îðëà â ðåãèîíå ñëàáî âûðîñëà è îñòà¸òñÿ îêîëî 1 ïàðû/100 êì2, ñðåäíÿÿ äèñòàíöèÿ ìåæäó áëèæàéøèìè àêòèâíûìè ãí¸çäàìè çíà÷èòåëüíî âûøå îáû÷íîé äëÿ âèäà. Áîëåå ïîëîâèíû âñåõ ïîòåíöèàëüíî äîñòóïíûõ äëÿ ïòèö ó÷àñòêîâ â ãíåçäîïðèãîäíûõ áèîòîïàõ îñòàþòñÿ íåçàíÿòûìè, ïðè÷åì äîëÿ íåçàíÿòûõ ó÷àñòêîâ îò âñåé âûáîðêè ïðàêòè÷åñêè íå èçìåíèëàñü. Ïðîäóêòèâíîñòü óñïåøíûõ ãí¸çä îñòà¸òñÿ íèçêîé – â ñðåäíåì 1,4±0,5 ïòåíöîâ íà 1 óñïåøíîå ãíåçäî. Ñîõðàíÿþòñÿ íåãàòèâíûå ôàêòîðû, â ÷àñòíîñòè ïòèöåîïàñíûå ËÝÏ è ïîæàðû. Òîëüêî çà îäèí 2015 ã. áîëåå 40 % âñåõ ó÷àñòêîâ çàòðîíóòî ïîæàðàìè; íà 17 % ïðîâåðåííûõ èçâåñòíûõ ãíåçäîâûõ ó÷àñòêîâ ãí¸çäà óíè÷òîæåíû îãí¸ì; âñåãî âûÿâëåíî íå ìåíåå 15 ïîëíîñòüþ ñãîðåâøèõ ãíåçäîâûõ ïîñòðîåê. Òåì íå ìåíåå, îòìå÷àþòñÿ òàêæå ïîëîæèòåëüíûå òåíäåíöèè: ðîñò ÷èñëåííîñòè ïîïóëÿöèè ïî÷òè íà 30 % (îò 152 äî 219 ïàð), óâåëè÷åíèå óñïåøíîñòè ãíåçäîâàíèÿ íà 24 %, óâåëè÷åíèå ýôôåêòèâíîñòè ðàçìíîæåíèÿ ïî÷òè âäâîå – ñ 0,55 äî 0,93, óâåëè÷åíèå äîëè óñïåøíûõ ïàð îò ïîòåíöèàëüíîé ÷èñëåííîñòè ãíåçäîâîé ãðóïïèðîâêè ñ 22 % äî îêîëî 32 %, äîëÿ ìîëîäûõ ïòèö (ìëàäøå 4–5 ëåò) â ðàçìíîæàþùèõñÿ ïàðàõ ñîêðàòèëàñü ïî÷òè âäâîå – ñ 76 äî 35 %, ÷òî ãîâîðèò î ñíèæåíèè ñìåðòíîñòè âçðîñëûõ îðëîâ. Êëþ÷åâûå ñëîâà: ïåðíàòûå õèùíèêè, õèùíûå ïòèöû, ñòåïíîé îðåë, Aquila nipalensis, ìîíèòîðèíã, Äàóðèÿ, Çàáàéêàëüñêèé êðàé. Ïîñòóïèëà â ðåäàêöèþ: 18.03.2016 ã. Ïðèíÿòà ê ïóáëèêàöèè: 20.04.2016 ã. Abstract Survey was carried out in July–August 2015 in steppe areas of Russian part of Dauria (Trans-Baikal Territory, or Zabaikalsky Krai) in the frames of monitoring the population of the Steppe Eagle (Aquila nipalensis). Research was conducted at 13 study sites in 10 administrative districts of the region, including 11 study sites which were surveyed repeatedly (after first survey in 2010). A total of 57 nesting territories with 95 nests were identified in 2010 and 2015 together. Additionally adult birds were recorded in 24 points but nests were not found. In 2015 we checked 35 of 40 nesting territories that were identified in 2010 while other 35 nesting territories (including 17 ones with nest structures) are localized for the first time. A total of 27 nestlings and fledglings (1.4±0.5 nestlings and fledglings produced per successful nest) in 19 nests were recorded during the 2015 survey. In 2010, the status of Steppe Eagle in Dauria was assessed as extremely unfavorable. The main population characteristics had not essentially changed to 2015. Actual average nesting density slightly increased but still is close to 1 pair per 100 km2. An average distance between neighbor active nests in Dauria is unexpectedly long as comparing with such figures in other regions of the Steppe Eagle nesting. More than a half of potentially available nesting territories remain unoccupied, and the share of unoccupied nesting territories almost did not change. The productivity of successful nests (average brood size) remains low – on average 1.4±0.5 fledglings and nestlings per successful nest in 2015. The negative factors such as power lines that are dangerous for birds and steppe wild fires are still acting. More than 40 % of all the nesting territories were affected by fires in 2015; the nest structures were completely burnt at 17% of the known nesting territories visited in 2015. Meanwhile the following positive trends can be noted: the population number increased more than by 30 % (estimating 219 vs. 152 breeding pairs); breeding efficiency increased by 24 %; the breeding efficiency was 0.93 fledglings per 1 breeding pair in 2015 vs. 0.55 in 2010, which represents a 60 % increase; the share of successful pairs of potential population size increased from 20 % to 32 %; the share of subadults (under the age of 4–5 years) in the breeding pairs was reduced almost twofold – from 76 to 35 % what means the mortality of adults significantly reduced. Keywords: raptors, birds of prey, Steppe Eagle, Aquila nipalensis, monitoring, Dauria, Trans-Baikal Territory. Received: 18/03/2016. Accepted: 20/04/2016. DOI: 10.19074/1814-8654-2016-32-89-111


90

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32 Ââåäåíèå Ñòåïíîé îð¸ë (Aquila nipalensis) – íàèáîëåå òèïè÷íûé è õàðàêòåðíûé êðóïíûé ïåðíàòûé õèùíèê ñòåïíûõ ýêîñèñòåì. Èñòîðè÷åñêè íåäàâíî îáøèðíûé àðåàë ñòåïíîãî îðëà ïî÷òè òî÷íî ñîâïàäàë ñ îáëàñòüþ ðàñïðîñòðàíåíèÿ ñòåïåé â Åâðàçèè (ïîìèìî ñîáñòâåííî ñòåïíîé ïðèðîäíîé çîíû, âêëþ÷àÿ â íå¸ è ïîëóïóñòûíþ, ýòî òàêæå ñòåïíîé ïîÿñ ãîðíûõ ñèñòåì Þæíîé Ïàëåàðêòèêè).  ñèëó ýêîëîãè÷åñêèõ îñîáåííîñòåé ýòîãî ïåðíàòîãî õèùíèêà ñîñòîÿíèå åãî ãíåçäîâûõ ãðóïïèðîâîê ìîæåò õîðîøî èíäèöèðîâàòü ñîñòîÿíèå ñòåïíûõ ýêîñèñòåì (Êàðÿêèí, 2012; 2013).  Ðîññèè ñòåïíîé îð¸ë ÿâëÿåòñÿ ðåäêèì è óÿçâèìûì âèäîì, âíåñ¸í â ñïèñêè Êðàñíîé êíèãè Ðîññèè è âñåõ ñóáúåêòîâ ÐÔ â ïðåäåëàõ ðîññèéñêîé ÷àñòè ñâîåãî àðåàëà. Åù¸ íåäàâíî ýòîò îð¸ë áûë îáû÷íûì è ìàññîâûì êðóïíûì ïåðíàòûì õèùíèêîì ñòåïåé Êàçàõñòàíà è Ìîíãîëèè, íî ñåé÷àñ îòìå÷àåòñÿ óõóäøåíèå ñîñòîÿíèÿ âèäà ïî âñåìó àðåàëó (Êàðÿêèí, 2013; 2015a; 2015b).  Êðàñíîì ñïèñêå ÌÑÎÏ ñòåïíîé îð¸ë ñ 2015 ã. îöåíèâàåòñÿ êàê âèä, ãëîáàëüíî íàõîäÿùèéñÿ ïîä óãðîçîé (Endangered) (Êàðÿêèí, 2015a; 2015b; BirdLife International, 2015). Çàïàäíàÿ ãðàíèöà àðåàëà ñòåïíîãî îðëà â ïîñëåäíèå äåñÿòèëåòèÿ îòñòóïèëà äàëåêî ê âîñòîêó, â íàñòîÿùåå âðåìÿ âèä ïðàêòè÷åñêè ïåðåñòàë ãíåçäèòüñÿ â Åâðîïå çà ïðåäåëàìè Ðîññèè (Êàðÿêèí, 2013). Âîñòî÷íàÿ ãðàíèöà àðåàëà îñòà¸òñÿ ïîêà íåèçìåííîé, ïðèìåðíî ñîâïàäàÿ ñ âîñòî÷íîé ãðàíèöåé ñòåïíîé îáëàñòè Åâðàçèè. Îäíàêî äèíàìèêà ïîïóëÿöèè ñòåïíîãî îðëà íà âîñòî÷íîì êðàþ àðåàëà ñâèäåòåëüñòâóåò î íåáëàãîïîëó÷íîì ñîñòîÿíèè âèäà. Íàèáîëåå ñåâåðî-âîñòî÷íàÿ êîìïàêòíàÿ ãíåçäîâàÿ ãðóïïèðîâêà â àðåàëå ñòåïíîãî îðëà íàõîäèòñÿ â Äàóðèè (Êàðÿêèí è äð., 2012). Äàóðèÿ – îáøèðíûé ñòåïíîé ðåãèîí â Þãî-Âîñòî÷íîì Çàáàéêàëüå è èñòîêàõ Àìóðà, ðàçäåë¸ííûé ìåæäó Ðîññèåé, Ìîíãîëèåé è Êèòàåì.  Ðîññèè áîëüøàÿ ÷àñòü Äàóðèè íàõîäèòñÿ â ïðåäåëàõ Çàáàéêàëüñêîãî êðàÿ (ñóùåñòâåííî ìåíüøàÿ – â Ðåñïóáëèêå Áóðÿòèÿ). Ñòåïíîé îð¸ë áûë îáû÷åí â äàóðñêèõ ñòåïÿõ äî ñåðåäèíû 1950-õ ãã., âïîñëåäñòâèè åãî ÷èñëåííîñòü ðåçêî ñîêðàòèëàñü (Ãîðîøêî, 2012).  1943–1944 ãã. â Áîðçèíñêîì ðàéîíå íà 1250 êì2 áûëî íàéäåíî 30 ãí¸çä, ò.å. ïëîòíîñòü ãíåçäîâàíèÿ ñîñòàâèëà 2,4 ãíåçäîâûõ ó÷àñòêà /100 êì2 (Ïåøêîâ, 1976; Êàðäàø è äð., 1983; Ãîðîøêî, 2012). Îäíàêî óæå ïî íàáëþäåíè-

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ

Ñòåïíîé îð¸ë (Aquila nipalensis). Ôîòî Î. Ãîðîøêî. Steppe Eagle (Aquila nipalensis). Photo by Oleg Goroshko.

Introduction Steppe Eagle (Aquila nipalensis) is the most typical large raptor of steppe ecosystems. Not long ago, the Steppe Eagle was common in the steppes of Eurasia (Kazakhstan and Mongolia specifically) but now its status causes the anxiety. The global range of the Steppe Eagle has rapidly decreased, especially in its western part. The population dynamics in the eastern part of the range is also negative. In 2015 the Steppe Eagle was assessed as Endangered in the IUCN Red List and Critically Endangered in the European Red List (Karyakin, 2015à; 2015b; BirdLife International, 2015). In Russia the species is listed for a long time in the national Red Data Book and the regional Red Data Books of all the regions within the bounds of its range. The most north-eastern breeding population of the Steppe Eagle is located in Dauria (Karyakin et al., 2012), a vast steppe grassland divided between Russia, Mongolia, and China. The Steppe Eagle was a common raptor in the region before mid-1950s when agricultural development was intensified and the eagle number crucially decreased (Goroshko, 2012). In 1970–1980s the Steppe Eagle was assessed as a rare species in Dauria (Vasilchenko, 1986). Recently the species is strongly influenced with dramatic changes of both climate and land use in the


Raptor Research

Raptors Conservation 2016, 32 ÿì 1979–1985 ãã. À.À. Âàñèëü÷åíêî (1986) ñ÷èòàë ýòîò âèä î÷åíü ðåäêèì â Þãî-Âîñòî÷íîì Çàáàéêàëüå è ïîëàãàë, ÷òî åãî îáùàÿ ÷èñëåííîñòü çäåñü íå ïðåâûøàåò 10 ãíåçäÿùèõñÿ ïàð. Ñïåöèàëüíûå ó÷¸òû ñòåïíîãî îðëà âûïîëíÿëèñü â ñòåïíîé ÷àñòè Çàáàéêàëüñêîãî êðàÿ â 2010 ã. Ïî èòîãàì ó÷¸òîâ åãî ÷èñëåííîñòü áûëà îöåíåíà â 105–198 ãíåçäÿùèõñÿ ïàð, â ñðåäíåì 144 ïàðû (Êàðÿêèí è äð., 2012). Ïîõîæèå îöåíêè ÷èñëåííîñòè (100–160 ãíåçäÿùèõñÿ ïàð) ïî ñîñòîÿíèþ íà 2009–2011 ãã. áûëè ïîëó÷åíû ïóò¸ì àíàëèçà ðåçóëüòàòîâ ó÷¸òîâ 2010 ã. è äàííûõ îáñëåäîâàíèÿ è ó÷¸òà ïòèö íà äðóãèõ òåððèòîðèÿõ, íå îõâà÷åííûõ ðàáîòàìè 2010 ã. (Ãîðîøêî, 2012). Óñïåøíîñòü ãíåçäîâàíèÿ â 2010 ã. áûëà íèçêîé – 32,14 %. Ïðåäïîëàãàåòñÿ, ÷òî íåçàäîëãî äî èññëåäîâàíèÿ ïîïóëÿöèÿ çäåñü èñïûòàëà ñèëüíîå ñîêðàùåíèå (Êàðÿêèí è äð., 2012). Ïðè÷èíû ñîêðàùåíèÿ ÷èñëåííîñòè ìîãóò áûòü ñâÿçàíû êàê ñ ëîêàëüíûìè íåãàòèâíûìè ôàêòîðàìè, òàê è ñ êàêèìè-òî ôàêòîðàìè, äåéñòâóþùèìè íà ìèãðàöèîííîì ïóòè è ìåñòàõ çèìîâêè (Êàðÿêèí è äð., 2012). Ïî ëèòåðàòóðíûì äàííûì, äî 1960-õ ãã. îñíîâó ïèòàíèÿ ñòåïíûõ îðëîâ â Äàóðèè ñîñòàâëÿëè òàðáàãàíû (Marmota sibirica) (Ïåøêîâ, 1976; Äîáðîíðàâîâ, 1949). Ðåçêîå ïàäåíèå ÷èñëåííîñòè îðëîâ ïðîèçîøëî â 1950–1960-õ ãã. è ñîâïàëî ñ ìàñøòàáíûìè ðàáîòàìè â ðåãèîíå ïî èñòðåáëåíèþ òàðáàãàíîâ ïðîòèâî÷óìíîé ñëóæáîé (Ãîðîøêî, 2012). Çíà÷èòåëüíîå ïàäåíèå ÷èñëåííîñòè îðëîâ âî âòîðîé ïîëîâèíå 2000-õ ãã. ìîæåò îáúÿñíÿòüñÿ èíòåíñèâíûì èñòðåáëåíèåì íåìíîãî÷èñëåííûõ ñîõðàíèâøèõñÿ êîëîíèé òàðáàãàíîâ áðàêîíüåðàìè. Ïðåæäå âñåãî, ýòî êàñàåòñÿ Àãèíñêîé ñòåïè, ãäå òàðáàãàíû áûëè óíè÷òîæåíû ïî÷òè ïîëíîñòüþ, çà ÷åì ïîñëåäîâàëî ïî÷òè ïîëíîå èñ÷åçíîâåíèå îðëîâ.  öåëîì, áîëüøàÿ ÷àñòü òåððèòîðèè îáèòàíèÿ ñòåïíîãî îðëà â Äàóðèè äî 1990-õ ãã. àêòèâíî èñïîëüçîâàëàñü äëÿ âûïàñà ñêîòà (ïàñòáèùíàÿ íàãðóçêà ïîâñåìåñòíî ïðåâûøàëà ìàêñèìàëüíî äîïóñòèìóþ) è â çíà÷èòåëüíîé ìåðå áûëà ðàñïàõàíà.  áîëüøèõ îáú¸ìàõ ïðèìåíÿëèñü ðîäåíòèöèäû – íå òîëüêî íà ïîëÿõ, íî è â ñòåïíûõ ìàññèâàõ (ñ öåëüþ êîíòðîëÿ ÷èñëåííîñòè òàðáàãàíà è äðóãèõ ãðûçóíîâ).  ïîñëåäíèå äåñÿòèëåòèÿ ðîëü ýòèõ âîçäåéñòâèé çíà÷èòåëüíî ñíèçèëàñü. Ïîãîëîâüå ñêîòà ñîêðàòèëîñü: îâåö ïî÷òè â 7 ðàç, ÊÐÑ â 2 ðàçà (Ãîñêîìñòàò…, 2001; Ðîññòàò, 2015). Ðîäåíòèöèäû ïî÷òè ïåðåñòàëè èñïîëüçîâàòüñÿ. Áîëåå 85 % ïàøíè, èìåâøåéñÿ â ðåãèîíå, áûëî

91

region, and facing specific threats here. Declining prey population number, electrocution on middle-voltage power lines (that are numerous in Dauria), and steppe fires that became more severe last decades are referred as the most important local threats. More threats come from migration routes and wintering grounds. First thorough study of the Steppe Eagle population in Trans-Baikal Territory was conducted in 2010. Birds were recorded in 11 from 15 study sites. The second study in the frames of such monitoring was carried out in July–August 2015. Methods and materials The study sites where Steppe Eagles were found in 2010 were surveyed again in the period July 8 – August 14, 2015. The foothills of Nerchinsky, Borschovochny and Kukulbei ridges, Klichkinsky and Argunsky ridges, and the Torei lakes depression were included. Additionally we observed the territory of the Dzeren’s Valley Federal Sanctuary (thus the study sites in the massifs of Tsaghan-Ola and Odjitui mountains were enlarged), the south-western part of the Oldondinsky Wildlife Refuge, and planned Duldurginsky Wildlife Refuge. The site in Argunsky ridge was also enlarged. Besides that Steppe Eagles were counted on the way between the study sites (table 1, fig. 1). Totally 1615 km were passed in 13 study sites and the area of 2457 km2 surveyed. Binoculars (8–16 zoom) and telescopes (25–100 zoom) were used to survey. Photo cameras (up to 42 zoom) were used for records confirmation. All the records were fixed with GPS. The data obtained was entered and analyzed in GIS (web-GIS Faunistics, RRRCN, Russia; ArcView 3.2.a, ArcGIS 9.3, ESRI, CA, USA). Results and Discussion Detection and status of nesting territories Total 57 nesting territories were identified and 95 nest structures were visited during the 2010 and 2015 field seasons taken together. Additionally adult birds were recorded in 24 points, but nests not found (table 2). In 2015 we checked 35 of 40 nesting territories that were discovered in 2010 while 17 nesting territories with nest structures were localized for the first time. In total, 71 nesting territories were visited in 2015. It included: 19 nesting territories where successful nests were found, 10 nesting territories where nesting failed, 7 nesting territories where adults were recorded close


92

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ

Òèïè÷íûå ãíåçäîâûå áèîòîïû è âàðèàíòû ðàñïîëîæåíèÿ ãí¸çä ñòåïíîãî îðëà â Çàáàéêàëüñêîì êðàå: A – ïðåäãîðüÿ Áîðùîâî÷íîãî õðåáòà, B – Íåð÷èíñêèé õðåáåò (íà ïåðåäíåì ïëàíå ãíåçäî ñòåïíîãî îðëà), Ñ – Êëè÷êèíñêèé õðåáåò, D – Àðãóíñêèé õðåáåò, ìàññèâ ãîðû Àáîãàéòóé, E, F – æèëûå ãí¸çäà â Òîðåéñêîé êîòëîâèíå, íà ñêàëüíîì âûõîäå ñðåäè íèçêîãî êóñòàðíèêà (E) è íà çåìëå â ñòåïè (F). Ôîòî À. Áàðàøêîâîé è È. Ñìåëÿíñêîãî. Typical nesting habitats of the Steppe Eagle in the Zabaikalsky Kray: A – foothills of the Borschovochny Ridge, B – Nerchinsky Ridge (the nest of the Steppe Eagle on foreground), C – Klichkinsky Ridge, D – Argunsky ridge, the Abogaitui Hills, E, F – living nest on the rock outcrop amid the low steppe shrubs and living nest on the ground in steppe grassland in the Torey Lake Depression. Photos by A. Barashkova and I. Smelansky.

çàáðîøåíî â çàëåæü (Çàáàéêàëüñêèé êðàé çàíèìàåò âòîðîå ìåñòî â ñòðàíå ïî ñòåïåíè ñîêðàùåíèÿ ïîñåâíûõ ïëîùàäåé â ïåðèîä 1990–2012 ãã.). Íà çàëåæàõ, â îñíîâíîì, ñòàëè âîññòàíàâëèâàòüñÿ ñòåïíûå ýêîñèñòåìû è çà ñ÷¸ò ýòîãî ïëîùàäü ïîòåíöèàëüíî èñïîëüçóåìûõ ñòåïíûì îðëîì áèîòîïîâ âûðîñëà ïðèìåðíî íà ÷åòâåðòü (çàëåæè ñîñòàâëÿþò ñåé÷àñ â ðåãèîíå îêîëî 26 % îò ïëîùàäè ïàñòáèù) (Ñìåëÿíñêèé, 2012). Îäíàêî äðóãèå óãðîçû ñîõðàíÿþòñÿ èëè äàæå óñèëèâàþòñÿ. Îñíîâíûå èç íèõ: ãóñòàÿ ñåòü ïòèöåîïàñíûõ ËÝÏ, èñêëþ÷èòåëüíî îáøèðíûå è ÷àñòûå ñòåïíûå ïîæàðû è ðåçêîå ñîêðàùåíèå êîðìîâîé áàçû ñòåïíîãî îðëà (âåðîÿòíî, ñòàâøåå ñëåäñòâèåì íå òîëüêî áðàêîíüåðñòâà, íî è ïðåêðàùåíèÿ âûïàñà íà áîëüøîé ÷àñòè ñòåïíûõ òåððèòîðèé) (Ãîðîøêî, 2011; 2012; Êàðÿêèí è äð., 2012). Êðàåâîå ïîëîæåíèå â àðåàëå è âûÿâëåííûå íåãàòèâíûå òåíäåíöèè äèíàìèêè ïîïóëÿöèè, ïðèíèìàÿ âî âíèìàíèå ñóùåñòâîâàíèå â ðåãèîíå íåñîìíåííûõ àíòðîïîãåííûõ óãðîç è èçâåñòíûé òðåíä íà îòîäâèãàíèå çàïàäíîé ãðàíèöû àðåàëà, îïðåäåëÿþò îñîáóþ âàæíîñòü ñëåæåíèÿ

to unoccupied nests, 16 nesting territories with abandoned nest structures (unoccupied for a year or more long), and 19 nesting territories were identified hypothetically based on the adult records only. Among 16 nesting territories with abandoned nests we found 5 ones where the nest structures were completely burnt in steppe fires and 2 ones renovating by Upland Buzzards. The percentage of nesting territories with successful nests (nestlings or fledglings recorded) in 2015 was almost the same as in 2010: 26.8 % vs. 23.4 % correspondingly. The percentage of the nesting territories with failed nests essentially decreased: 23.4 % in 2010 vs. 14.1 % in 2015. In general the percentage of active nesting territories (with or without breeding, successful or failed) was almost the same in both years: 53.2 % in 2010 vs. 50.7 % in 2015. Need to say the 2015 sampling size was 1.5 times as much as 2010. The fate of nesting territories Total 35 nesting territories were surveyed repeatedly in 2010 and 2015 (table 3). In


Raptor Research

Raptors Conservation 2016, 32 çà ñîñòîÿíèåì ãíåçäîâîé ãðóïïèðîâêè íà âîñòî÷íîé ãðàíèöå àðåàëà ñòåïíîãî îðëà, â Äàóðèè.  ïåðèîä ñ 8 èþëÿ ïî 11 àâãóñòà 2010 ã. â ñòåïíîé ÷àñòè Çàáàéêàëüñêîãî êðàÿ áûëî îñìîòðåíî 15 ó÷¸òíûõ ïëîùàäîê â ìåñòàõ ïîòåíöèàëüíîãî îáèòàíèÿ ñòåïíîãî îðëà. Èç íèõ âèä îáíàðóæåí íà 11 ïëîùàäêàõ. Íà îñíîâàíèè ó÷¸òíûõ äàííûõ, ïîëó÷åííûõ íà ýòèõ ïëîùàäêàõ, ñäåëàíû îöåíêè ÷èñëåííîñòè è îñíîâíûõ ïîïóëÿöèîííûõ õàðàêòåðèñòèê, ïðèâåä¸ííûå âûøå (Êàðÿêèí è äð., 2012). Ïëîùàäêè äàëåå ìîãóò èñïîëüçîâàòüñÿ äëÿ ìîíèòîðèíãà èçìåíåíèé, ïðîèñõîäÿùèõ â ãíåçäîâîé ãðóïïèðîâêå. Ïåðâîå ïîñëå ïåðâè÷íîãî ó÷¸òà ïîâòîðíîå îáñëåäîâàíèå â ðàìêàõ òàêîãî ìîíèòîðèíãà ïðîâåäåíî â èþëå–àâãóñòå 2015 ã. Ìàòåðèàë è ìåòîäèêà  ïåðèîä ñ 8 èþëÿ ïî 14 àâãóñòà 2015 ã. â ñòåïíîé ÷àñòè Çàáàéêàëüñêîãî êðàÿ áûëè ïîâòîðíî îáñëåäîâàíû âñå ïëîùàäêè, íà êîòîðûõ â 2010 ã. îòìå÷åíû ñòåïíûå îðëû. Îñìîòðåííûå ïëîùàäêè ðàñïîëîæåíû â áàññåéíàõ ðåê Îíîí è Àðãóíü è áåññòî÷íîì áàññåéíå Òîðåéñêèõ îçåð. Îíè ðàçìåùàþòñÿ â ïðåäãîðüÿõ Áîðùîâî÷íîãî è Íåð÷èíñêîãî õðåáòîâ, õð. Êóêóëüáåé, íà Êëè÷êèíñêîì è Àðãóíñêîì õðåáòàõ è â Òîðåéñêîé êîòëîâèíå. Ïî õàðàêòåðó ðåëüåôà âñå ïëîùàäêè ïðåäñòàâëÿþò ñîáîé ñòåïíûå ìåëêîñîïî÷íèêè è íèçêîãîðüÿ, ðàñ÷ëåí¸ííûå ðå÷íûìè äîëèíàìè è ïàäÿìè ëèáî ñî÷åòàþùèåñÿ ñ îç¸ðíûìè ðàâíèíàìè. Íà âñåõ ïëîùàäêàõ ïðåîáëàäàåò ñòåïíàÿ ðàñòèòåëüíîñòü ñ áîëüøèì èëè ìåíüøèì ó÷àñòèåì õàðàêòåðíûõ äëÿ Äàóðèè êóñòàðíèêîâûõ ñîîáùåñòâ – õàðãàíàòîâ. ×àñòü ïëîùàäîê ïîëíîñòüþ áåçëåñíà, íà ÷àñòè ïðåäñòàâëåíû ñâåòëîõâîéíûå è áåð¸çîâûå ëåñà, çàíèìàþùèå íåáîëüøèå ïëîùàäè â äîëèíàõ è ëîãàõ, ðåæå ïî ðîâíûì ñîïî÷íûì ñêëîíàì òåíåâûõ ýêñïîçèöèé. Ïîäðîáíàÿ õàðàêòåðèñòèêà ðàéîíà ðàáîò äàíà ðàíåå (Êàðÿêèí è äð., 2012). Ðàáîòà ïðîâîäèëàñü äâóìÿ ãðóïïàìè, ðàáîòàâøèìè ïîñëåäîâàòåëüíî è ïîñåùàâøèìè êàæäàÿ ñâîé íàáîð ïëîùàäîê. ×àñòè÷íî ýòè íàáîðû ïåðåêðûâàëèñü. Ïîäðîáíî îáñëåäîâàíû òå ïëîùàäêè, íà êîòîðûõ â 2010 ã. áûëè îòìå÷åíû âñòðå÷è ñòåïíîãî îðëà (òàáë. 1, ðèñ. 1). Äîïîëíèòåëüíî îáñëåäîâàíû òåððèòîðèÿ çàêàçíèêà «Äîëèíà äçåðåíà» (â ÷àñòíîñòè ðàñøèðåíà ïëîùàäêà íà âåðøèíàõ Öàãàí-Îëî è Îäæèòóé), þãîçàïàäíàÿ ÷àñòü çàêàçíèêà «Îëäîíäèíñêèé», òåððèòîðèÿ ïðîåêòèðóåìîãî çàêàçíèêà «Äóëüäóðãèíñêèé», ðàñøèðåíà òåððèòîðèÿ

93

2010 nestlings or fledglings were found on 31.4 % of these, failed nesting on 28.6%, abandoned nest structures on 37.1 % (also adults were recorded close to the abandoned nests in 3 cases), only adult records on 2.9 %. The majority of nesting territories has changed its status after 5 years (table 3). However a success rate remains without changes, 31.4 % (n=11 successful nests), even though only one third of the successful nesting territories has kept this status since 2010. Among 2010’ failed nests (n=10) only 2 repeat this fate in 2015; 3 nesting territories became successful and others had no breeding this year (while birds were recorded on the territories in 2015). Among 13 nesting territories where no active nests were recorded in 2010 we found 3 successful nests (and one more was occupied by the Upland Buzzard) in 2015 and other 7 nests disappeared (were burnt in wild fires). In total, an occupancy rate was 68.6 % (n=24 occupied nesting territories) in 2010 vs. 60.0 % (n=21 occupied nesting territories) in 2015. Among 10 active nesting territories (successful and not) that were keeping its status since 2010 to 2015 only 2 pairs have still used the same nest structure. In other cases the birds have used some other nest structure situated usually closer than 1 km (0.1–0.84 km), only once the distance between old and new nests was 3.4 km. Nesting territories newly found in 2015 There were 35 nesting territories that found for the first time in 2015 (table 2). It included: 8 successful nesting territories (where nestlings or fledglings were recorded), 6 failed nesting territories, 3 abandoned nests (one of them burnt), and 18 nesting territories that were identified basing on the adults sightings only. Broods and breeding effectiveness A total of 27 nestlings and fledglings (1.4±0.5 nestlings and fledglings produced per successful nest) in 19 nests were recorded during the 2015 breeding season, which represents a 2.25 time increase in the total number of nestlings and fledglings recorded in 2010 (12 nestlings and fledglings in 9 nests, 1.3±0.5 nestlings and fledglings per successful nest). Breeding effectiveness was estimated as a number of nestlings and fledglings per pair starting to breed (successful and failed together). The breeding effectiveness was 0.93 in 2015 vs. 0.55 in 2010, which represents 60 % increase.


94

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ

Òàáë. 1. Õàðàêòåðèñòèêà ó÷¸òíûõ ïëîùàäîê 2015 ã. Òàêæå ïðèâåäåíà îñìîòðåííàÿ ïëîùàäü ïëîùàäîê 2010 ãîäà. Table 1. Characteristics of survey plots in Dauria in 2015 (with surveyed area of 2010 reassessed).

Ïëîùàäêà Survey plot Îñíîâíûå ïëîùàäêè ¹ Main survey plots 1 Äîëèíà ð. Õèëà ñ ïðèòîêàìè è îç. Íîæèé Khila river valley and Nozhiy lake 2 Ïðåäãîðüå Áîðùîâî÷íîãî õð.: ìåëêîñîïî÷íèê ìåæäó ïàäüþ Ãàøóí è ð. Çóòêóëåé (ïîñ. Ñóäóíòóé è Çóòêóëåé) Foothills of Borschovochny ridge (Suduntui and Zutkulei villages) 3 Ïðåäãîðüå Áîðùîâî÷íîãî õð.: ëåâîáåðåæüå ð. Îíîí ìåæäó ïàäüþ Êóæåðòàé è ð. Áîë. Äæèïêîøà Foothills of Borschovochny ridge (left banks of Onon river) 4 Õàðàãàíàøñêèé õð. Kharaganash ridge 5

6

Íåð÷èíñêèé õð.: ïàäè Áàðóí-Çàñóëàí è ×óìûðàñòóé Nerchinsky ridge: Barun-Zasulan and Chumyrastui Êëè÷êèíñêèé õð.: ìåæäó ïîñ. Êðàñíûé Âåëèêàí è Ñîêòóé-Ìèëîçàí Klichkinsky ridge

Ðàéîí District Àãèíñêèé Aginsky Àãèíñêèé, Äóëüäóðãèíñêèé Aginsky, Duldurginsky Äóëüäóðãèíñêèé, Àêøèíñêèé Duldurginsky, Akshinsky Àãèíñêèé, Ìîãîéòóéñêèé Aginsky, Mogoituisky Áîðçèíñêèé Borzinsky

Êðàñíîêàìåíñêèé, Çàáàéêàëüñêèé Krasnokamensky, Zabaikalsky Êðàñíîêàìåíñêèé, Çàáàéêàëüñêèé Krasnokamensky, Zabaikalsky Çàáàéêàëüñêèé Zabaikalsky

Ïðîòÿæ¸ííîñòü àâòîìîáèëüíîãî ìàðøðóòà â 2015 ã., êì Distance of automobile route in 2015, km 93

Îñìîòðåííàÿ ïëîùàäü, êì2 Ïåðèîä Surveyed area, km2 îáñëåäîâàíèÿ â 2015 ã. Surveyed pe2015 2010 riod in 2015 215.6 184.5 25–27.07.2015

99

157.0

176.3 27–28.07.2015

171

300.2

328.6 28–31.07.2015

40

68.1

79

162.3

248.6 04–05.08.2015

129

205.5

239.7 06–08.08.2015

89

157.2

59.3 08–10.08.2015

100.4

02.08.2015

7

Àðãóíñêèé õð.: ìåæäó ãðÿäîé Ãûðèòóé è ïàäüþ Áóðãàñòàé Argunsky ridge

8

Òîðåéñêàÿ êîòëîâèíà: ñîïêà Öàãàí-Îëà è 208 135.8 66.6 08.07, 18.07 è îêðåñòíîñòè (çàêàçíèê «Äîëèíà äçåðåíà») 10.08.2015 Torei lakes depression: Tsaghan-Ola Mnt. Òîðåéñêàÿ êîòëîâèíà: ñîïêà Îäæèòóé è Çàáàéêàëüñêèé 341 303.3 281.8 08.07, îêðåñòíîñòè (çàêàçíèê «Äîëèíà äçåðåíà») Zabaikalsky 17–18.07 è Torei lakes depression: Odjitui Mnt. 11.08.2015 Îíîíñêèé 213 420.7 342.0 11.07, Òîðåéñêàÿ êîòëîâèíà: ìåëêîñîïî÷íèê ê Ononsky 16–17.07. è ñåâåðó îò îç. Çóí-Òîðåé 11.08.2015 Torei lakes depression: hills on north banks of Zun-Torei lake Îíîíñêèé 77,5 238.5 182.2 05.08.2015 Ïðàâîáåðåæüå Îíîíà: ìåëêîñîïî÷íèê â Ononsky áàññåéíå ð. Äóðóëãóéêà Right banks of Onon river in Durulguika river basin Äîïîëíèòåëüíûå ïëîùàäêè / Additional survey plots Áîðçèíñêèé 34 73 Íåò 03–04.08.2015 Ìåëêîñîïî÷íèê â ìåæäóðå÷üå Áîðçè Borzinsky No è Áûðêè – ïðåäãîðüÿ õð. Êóêóëüáåé (Îëäîíäèíñêèé çàêàçíèê) Hills between Borzya and Byrka rivers 42 76.2 Íåò 27–28.07.2015 Ìåëêîñîïî÷íèê â ïðåäãîðüÿõ Áîðùîâî÷íîãî Äóëüäóðãèíñêèé Duldurginsky No õð. ìåæäó ð. Çóòêóëåé è ïàäüþ Êóæåðòàé Foothills of Borschovochny ridge between Zutkulei river and Kuzhertai Âñåãî / Total 1615 2457.1 2266.3

9

10

11

12

13


Raptor Research

Raptors Conservation 2016, 32

95

Ðèñ. 1. Ðàñïîëîæåíèå ó÷¸òíûõ ïëîùàäîê è ðåãèñòðàöèè ñòåïíîãî îðëà (Aquila nipalensis): â 2010 ãîäó – A, â 2015 ãîäó – B. Fig. 1. Survey plots and records of Steppe Eagle (Aquila nipalensis): in 2010 – A, in 2015 – B.

îáñëåäîâàíèÿ íà Àðãóíñêîì õðåáòå. Òàêæå îðëû ðåãèñòðèðîâàëèñü íà àâòîìàðøðóòå ìåæäó ïëîùàäêàìè. Ïðîòÿæ¸ííîñòü àâòîìîáèëüíîãî ìàðøðóòà îïðåäåëÿëè ïî êàðòå â ñðåäå ÃÈÑ. Òàì æå îöåíèâàëè îñìîòðåííóþ ïëîùàäü. Îíà îïðåäåëÿëàñü â îñíîâíîì êàê ïëîùàäü ïîëîñû âäîëü ìàðøðóòà øèðèíîé 1,5 êì â îáå ñòîðîíû îò åãî ëèíèè.  ñëó÷àå ïîïàäàíèÿ â ýòó ïîëîñó âîçâûøåííîñòåé, ñîêðàùàþùèõ îáçîð, ãðàíè-

Recording adults and data on birds age Near 50 adults were recorded during 2015 survey (26 close to nests, others no related with nests). Only 17 birds were assessed for their age. We distinguished only two categories: subadults (up to 4–5 years) and adults (5+ years). Thus 8 birds (ca. 38 %) were ubadults and 13 were adults (ca. 62 %). In 2010, this ratio was inverse – 76 % vs. 24 % (n=37 – Karyakin et al., 2012).


96

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32 öà ïîëîñû îáðåçàëàñü ïî ñîîòâåòñòâóþùåìó óðîâíþ ðåëüåôà. Äîïîëíèòåëüíî â îñìîòðåííóþ ïëîùàäü âêëþ÷àëè êðóãè ðàäèóñîì 4 êì âîêðóã ïîñåù¸ííûõ ãí¸çä è äðóãèõ òî÷åê äåòàëüíîãî îñìîòðà ìåñòíîñòè â îïòèêó, íî òàêæå îáðåçàåìûå ïî ðåëüåôó, îãðàíè÷èâàþùåìó îáçîð.  ñëó÷àå ïîâòîðíîãî ïðîåçäà ïî îäíîìó ìàðøðóòó ñîîòâåòñòâóþùàÿ ïëîùàäü ñ÷èòàëàñü òîëüêî îäèí ðàç, íî ïðîòÿæ¸ííîñòü ìàðøðóòà ñ÷èòàëè ïî ðåàëüíîìó êèëîìåòðàæó.  öåëîì, ïðîéäåííûé íà ïëîùàäêàõ (áåç ó÷¸òà ïåðååçäîâ ìåæäó íèìè) àâòîìîáèëüíûé ìàðøðóò ñîñòàâèë 1615 êì. Ñîîòâåòñòâóþùàÿ åìó ñóììàðíàÿ ïëîùàäü îáñëåäîâàíèÿ îöåíåíà â 2457,1 êì2 (â 2010 ã. – 2266,3 êì2). Ìåòîäèêà îáñëåäîâàíèÿ ïëîùàäîê áûëà àíàëîãè÷íà ïðèìåíÿâøåéñÿ â 2010 ã. (Êàðÿêèí è äð., 2012). Òåððèòîðèþ îáúåçæàëè íà àâòîìîáèëå, ïî âîçìîæíîñòè ñëåäóÿ ìàðøðóòó 2010 ãîäà. Ãí¸çäà, îòìå÷åííûå â 2010 ã., ïðîâåðÿëèñü öåëåíàïðàâëåííî ïî èçâåñòíûì òî÷êàì. Ïî ìàðøðóòó îñóùåñòâëÿëè ðåãóëÿðíûé îñìîòð ìåñòíîñòè ïðè ïîìîùè îïòèêè, èíîãäà ñ êîðîòêèìè áîêîâûìè îòõîäàìè îò îñíîâíîãî ìàðøðóòà. Ðåãèñòðèðîâàëè âñòðå÷è ïòèö, ãí¸çäà (íåçàâèñèìî îò èõ ñîñòîÿíèÿ) è ïðèñàäû. Ãí¸çäà ïî âîçìîæíîñòè îñìàòðèâàëèñü âáëèçè, ðåæå – èçäàëè ïðè ïîìîùè îïòèêè è ôîòîãðàôèðîâàíèÿ ñ áîëüøèì ïðèáëèæåíèåì. Ó÷èòûâàëèñü âñå çàìå÷åííûå îðëû, íåçàâèñèìî îò òîãî, íà êàêîì ðàññòîÿíèè îíè íàõîäèëèñü îò ìàðøðóòà. Ãåîãðàôè÷åñêèå êîîðäèíàòû ìåñòîíàõîæäåíèÿ ãí¸çä è ïðèñàä, òî÷åê íàáëþäåíèÿ îðëîâ ôèêñèðîâàëè ñ ïîìîùüþ GPS-íàâèãàòîðà.  2 ìåñòàõ ïðîâîäè-

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ Nesting density Average distance between neighbor active nests (successful, failed, and occupied nests) was calculated as 8.217±1.529 km (5.940–10.120 km; n=11) within the study sites in 2015. In 2010 the average distance was not calculated in the same manner but the average distance between all neighbor nests (not only active ones) was 6.61.±3.93 êì (2.16–17.84 km, n=29; Karyakin et al., 2012). No doubt the average distance between neighbor active nests ought to be greater than the figure. Thus the average distance between neighbor active nests in Dauria is unexpectedly long as comparing with such figures in other regions of the Steppe Eagle breeding. Commonly an average distance falls within the range 2–3 km (Karyakin et al., 2007; Vazhov et al., 2011; Vazhov et al., 2013). We distinguish an actual nesting density and potential nesting density. Actual nesting density is a number of active nesting territories per 100 km2 while a potential nesting density is a total number of all (active and not active) nesting territories per 100 km2. The actual nesting density for the averaged plot is calculated as an average from the nesting densities for all study plots. Densities of both types are given in the Table 4. The actual nesting density for the averaged plot is estimated as 1.12±0.7 in 2015 and 1.26±1.31 in 2010. Excluding study sites where no active nesting territories were found we recalculate the actual nesting density for the averaged plot as 1.33±0.54 nesting territories per 100 km2 in 2015 (with maximum in the Argunsky ridge, 1.91 nesting territories per 100 km2, and minimum in the Khila river valley, 0.46 nesting territories per 100 km2). More than a half of study plots were characterized by the actual nesting density 0.9–1.5 active nesting territories per 100 km2. The 2010 figure was slightly lesser, 1.26±1.31 nesting territories per 100 km2 (difference is not significant). Extremely high actual nesting density in the Argunsky ridge camouflages that the density in all other study sites falls in the range of 0.5–1.0 active nesting territories per 100 km2. Excluding the outlier

Ãíåçäî ñòåïíîãî îðëà ñ íåóäà÷íîé ïîïûòêîé ðàçìíîæåíèÿ. Ôîòî È. Ñìåëÿíñêîãî. Unsuccessful nest of the Steppe Eagle. Photo by I. Smelansky.


Raptor Research

Raptors Conservation 2016, 32

97

Ïòåíåö ñòåïíîãî îðëà â ãíåçäå. Ôîòî À. Áàðàøêîâîé. Nestling of the Steppe Eagle in the nest. Photo by A. Barashkova.

study site the actual nesting density in 2015 became almost 30 % greater than in 2010. On average the actual nesting density comprises about a half from the potential nesting density: 46.8 % in 2010 and 49.4 % in 2015.

ëè ïîèñê ïîãèáøèõ ïòèö ïîä ïòèöåîïàñíûìè ËÝÏ – âñåãî îñìîòðåíî 5,4 êì ëèíèé. Ïî âîçìîæíîñòè îñóùåñòâëÿëàñü ôîòîôèêñàöèÿ âñåõ ðåãèñòðèðóåìûõ îáúåêòîâ è âñòðå÷åííûõ ïòèö.  êà÷åñòâå îïòè÷åñêèõ ïðèáîðîâ èñïîëüçîâàëè áèíîêëè 8–16× è çðèòåëüíûå òðóáû 25–100×, äëÿ ôîòîôèêñàöèè èñïîëüçîâàëè ôîòîêàìåðû ñ îïòè÷åñêèì óâåëè÷åíèåì îáúåêòèâà äî 42×. Ãåîãðàôè÷åñêè ïðèâÿçàííûå äàííûå áûëè íàíåñåíû íà êàðòó â ñðåäå ÃÈÑ (ArcView 3.2a, ArcGIS 9.3, ESRI, CA, USA). Íà îñíîâàíèè ïîëó÷åííîé êàðòû âûïîëíåí àíàëèç âçàèìíîãî ðàñïîëîæåíèÿ îáúåêòîâ (ãí¸çä, ïðèñàä è âñòðå÷ ïòèö), à òàêæå àíàëèç èõ ñîîòíîøåíèÿ ñ àíàëîãè÷íûìè îáúåêòàìè 2010 ãîäà. Ìåòîäèêà îáðàáîòêè ïåðâè÷íûõ äàííûõ òàêæå â îñíîâíîì ñîâïàäàåò ñ ïðèìåíÿâøåéñÿ äëÿ ìàòåðèàëîâ 2010 ãîäà (Êàðÿêèí è äð., 2012). Äëÿ ðàñ÷¸òà ïëîòíîñòè ãíåçäîâàíèÿ è ñâÿçàííûõ ñ íåé ïîêàçàòåëåé (ñðåäíåé äèñòàíöèè ìåæäó àêòèâíûìè ãí¸çäàìè) èñïîëüçîâàëè ïîíÿòèå «àêòèâíîå ãíåçäî», ïîä êîòîðûì ïîíèìàëè âñå ãí¸çäà, â êîòîðûõ â òåêóùåì ãîäó áûëà ïîïûòêà ãíåçäîâàíèÿ – íåçàâèñèìî îò òîãî, óñïåøíî îíà çàâåðøèëàñü èëè íåóñïåøíî. Ñîîòâåòñòâåííî, àêòèâíûì ãíåçäîâûì ó÷àñòêîì ìû íàçûâàåì ãíåçäîâîé ó÷àñòîê, íà êîòîðîì èìååòñÿ àêòèâíîå ãíåçäî. Êàê ïðàâèëî, àêòèâíîå ãíåçäî íà ó÷àñòêå òîëüêî îäíî (èñêëþ÷åíèÿ ñëó÷àþòñÿ, íî â ãîä èññëåäîâàíèÿ èõ íå áûëî). Ðåçóëüòàòû è îáñóæäåíèå Ñóììàðíûå ïîêàçàòåëè âûÿâëåíèÿ è ñòàòóñà ãíåçäîâûõ ó÷àñòêîâ Âñåãî ïî ðåçóëüòàòàì ðàáîò 2010 è 2015 ãã. â ðåãèîíå óäàëîñü ëîêàëèçîâàòü 57 ãíåçäîâûõ ó÷àñòêîâ ñòåïíûõ îðëîâ ñ ãí¸çäàìè.  öåëîì, îñìîòðåíî 95 ãíåçäîâûõ ïîñòðî-

Estimating the population number The area of steppe hills, which are habitats preferred by the Steppe Eagle to nest in Russian Dauria, was estimated as 17240 km2 (Karyakin et al., 2012). Basing on the 2010 estimation of the potential nesting density we can estimate the carrying capacity for the Steppe Eagle population as 345 pairs. Taking into account the limits of confidence interval as ±25 % we can estimate the carrying capacity range as 187–504 pairs (based on the 2010 data). The actual population number was estimated as 152 (114–180) pairs based on the actual nesting density. Basing on the unbiased study plots area we can re-estimate the carrying capacity for 2015 as 447 (335–559) pairs while the actual population number is 219 (164–274) nesting pairs. Thus the actually breeding birds comprised in average ca. 44 % of the carrying capacity in 2010 and ca. 49 % in 2015. We can estimate also the actual number of successful breeding pairs if use actual density of successful nesting territories instead all active ones. Making this we have got the figure of 76 successful breeding pairs for 2010 (20 % of the carrying capacity) and approximately 143 successful breeding pairs for 2015 (ca. 30 % of the carrying capacity). Influence of negative factors Main attention was given to influence of steppe wild fires and electrocution on power lines. Totally 31 nesting territories (about 42.5 %) were exposed by fires in 2015 (mainly in April, more rare in summer) including 25 nesting territories with 32 nests. At least 15 nest structures visited in 2015 were burnt. Broods were found in the nests at 9 burnt nesting territories. Among them breeding was failed on 4 (the clutch or chicks died, attempts to build new nest structure failed). Completely burnt nest structures were re-


98

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ Ðèñ. 2. Âñå ãíåçäîâûå ó÷àñòêè ñòåïíîãî îðëà (äîñòîâåðíûå è ïðåäïîëîæèòåëüíûå), âûÿâëåííûå â Çàáàéêàëüñêîì êðàå â 2010 è 2015 ãã.: 2010 – ó÷àñòêè âûÿâëåííûå â 2010, íî êîòîðûå â 2015 ã. íå ïîñåùàëèñü, 2015 – ó÷àñòêè âûÿâëåííûå â 2015 ã., 2010–2015 – ó÷àñòêè, ïîñåùàâøèåñÿ â îáà ãîäà. Fig. 2. All breeding territories (BT) of the Steppe Eagle (reliable and proposed) detected in Trans-Baikal Territory in 2010 and 2015 years: 2010 – BT identified in 2010, which have not been visited in 2015, 2015 – BT identified in 2015, 2010-2015 – BT visited in both years.

åê. Äîïîëíèòåëüíî, â 24 òî÷êàõ îòìå÷åíû âçðîñëûå ïòèöû â ãíåçäîâîì áèîòîïå, íî ãí¸çäà íå íàéäåíû (ðèñ. 2). Ñâåäåíèÿ îá ó÷àñòêàõ, âûÿâëåííûõ â 2010 è 2015 ãã., ïðåäñòàâëåíû â òàáëèöå 2 (òàêæå ñì.: Êàðÿêèí è äð., 2012) è ñóììèðîâàíû â äèàãðàììå (ðèñ. 3).  2015 ã. ïðîâåðåíî 35 èç 40 ãíåçäî-

corded at 6 nesting territories (at least 4 were burned in 2015, probably not for a first time). At 6 burnt nesting territories we found only abandoned nest structures, partly charred; part of them was occupied or successful (1 case) in 2010. The power lines were investigated in passing – no one died Steppe Eagles were found. General estimation of changes for 2010–2015 The sampling size in 2015 became 1.5 times larger than in 2010. Meanwhile the

Òàáë. 2. Òèï âûÿâëåíèÿ è õàðàêòåð çàíÿòîñòè âûÿâëåííûõ ãíåçäîâûõ ó÷àñòêîâ ñòåïíîãî îðëà (Aquila nipalensis) â Äàóðèè â 2010 è 2015 ãã. (âûøå ÷åðòû êîëè÷åñòâî ãíåçäîâûõ ó÷àñòêîâ, íèæå ÷åðòû äîëÿ îò îáùåãî êîëè÷åñòâà îáñëåäîâàííûõ â äàííûé ãîä). Table 2. Occupancy statuses of the breeding territories of the Steppe Eagle (Aquila nipalensis) in Dauria in 2010 and 2015 (number of breeding territories is above the line, its proportion from the surveyed areas this year is under the line).

Õàðàêòåð çàíÿòîñòè (ñòàòóñ) ó÷àñòêà Status of nesting areas

Æèëîå ãíåçäî íà ó÷àñòêå (ãí¸çäà ñ âûâîäêàìè) With alive nest (with brood) Àáîíèðóåòñÿ ó÷àñòîê ñ íåóñïåøíûì ãíåçäîì With unsuccessful nest * Âñòðå÷è ïòèö ó ñòàðûõ ãí¸çä Meetings of birds near old nests ** Òîëüêî ñòàðûå ãí¸çäà íà ó÷àñòêå, ïòèöû íå âñòðå÷åíû Only with old nests, birds were not met Âñòðå÷è ïòèö â ãíåçäîâûõ áèîòîïàõ, ãíåçäî íå íàéäåíî Records of birds in nesting habitats, nests were not found *** Âñåãî ó÷àñòêîâ / Total Èç íèõ äîñòîâåðíî èñïîëüçóåìûõ â òåêóùåì ãîäó (ñ ðàçìíîæåíèåì èëè áåç) Inhabited in current year (with successful breeding or not)

Ãîä îáñëåäîâàíèÿ / Year of survey 2010 2015 Âñåãî / Total Âñåãî / Total  òîì ÷èñëå, âíîâü âûÿâëåííûå Newly detected 11 19 8 23.4 % 26.8 % 11 10 6 23.4 % 14.1 % 3 7 0 6.4 % 9.9 % 14 16 3 29.8 % 22.5 % 8 19 18 17 % 26.8 % 47 71 35 100 % 100 % 25 36 14 53.2 % 50.7 %

* Ãí¸çäà, íà ìîìåíò ïðîâåðêè ïóñòóþùèå ïî ïðè÷èíå íåóäà÷è ðàçìíîæåíèÿ èëè ãèáåëè ïîòîìñòâà, ñëó÷èâøåéñÿ ðàíüøå ìîìåíòà ïîñåùåíèÿ / The nests which are empty because of unsuccessful breeding or death of nestlings before observation time ** Ñòàðûìè ñ÷èòàëè ãí¸çäà, íå çàíèìàâøèåñÿ è íå ïîäíîâëÿâøèåñÿ â òåêóùåì ãîäó / We consider old nest that ones which were not occupied and not renovated in current year. *** Ïðåäïîëàãàåìûå ãíåçäîâûå ó÷àñòêè / Proposed breeding territories.


Raptor Research

Raptors Conservation 2016, 32 âûõ ó÷àñòêîâ, íà êîòîðûõ â 2010 ã. áûëè îáíàðóæåíû ãí¸çäà (â îäíîì ñëó÷àå ãíåçäî íàéäåíî íà ó÷àñòêå, ãäå â 2010 ã. áûëà âñòðå÷åíà ïòèöà). Åù¸ 17 ó÷àñòêîâ ñ ãí¸çäàìè ëîêàëèçîâàíî âïåðâûå. Âçðîñëûå ïòèöû áûëè îòìå÷åíû åù¸ â 18 íîâûõ òî÷êàõ (áîëüøåé ÷àñòüþ â ãíåçäîâîì áèîòîïå), à òàêæå âíîâü íàáëþäàëèñü íà îäíîì ó÷àñòêå 2010 ãîäà. Òàêèì îáðàçîì, âñåãî â 2015 ã. îñìîòðåí 71 ãíåçäîâîé ó÷àñòîê ñòåïíîãî îðëà (âêëþ÷àÿ êàê äîñòîâåðíî èçâåñòíûå, òàê è ïðåäïîëîæèòåëüíûå). Íà 19 ó÷àñòêàõ îáíàðóæåíû æèëûå ãí¸çäà (ñ âûâîäêàìè). Íà 10 ó÷àñòêàõ – çàíÿòûå ãí¸çäà, ïóñòóþùèå ïî ïðè÷èíå íåóäà÷è èëè îòñóòñòâèÿ ðàçìíîæåíèÿ ïòèö, ëèáî ãèáåëè èõ ïîòîìñòâà. Íà 7 ó÷àñòêàõ âñòðå÷åíû ïòèöû ó ñòàðûõ ãí¸çä áåç ñëåäîâ ïîäíîâëåíèÿ â òåêóùåì ãîäó. Íà 16 ó÷àñòêàõ îáíàðóæåíû ñòàðûå, ðàçâàëèâàþùèåñÿ ãí¸çäà ñòåïíûõ îðëîâ, íå çàíèìàâøèåñÿ ïòèöàìè ãîä èëè áîëåå, â òîì ÷èñëå ïîëíîñòüþ ðàçðóøåííûå. Èç ÷èñëà ýòèõ ïîñëåäíèõ, íà 5 ó÷àñòêàõ ðàíåå èçâåñòíûå ãí¸çäà ïîëíîñòüþ ñãîðåëè, íà 2 ó÷àñòêàõ ãí¸çäà áûëè ïîäíîâëåíû ìîõíîíîãèì êóðãàííèêîì. Íà 2 ó÷àñòêàõ ïðîâåðèòü ãí¸çäà íå óäàëîñü, íî îòìå÷åíû âçðîñëûå ïòèöû (òàáë. 2, ðèñ. 3). Ñðàâíèâàÿ îòíîñèòåëüíûå ïîêàçàòåëè (òàáë. 2), âèäèì, ÷òî äîëÿ æèëûõ ãí¸çä â 2015 ã. íåçíà÷èòåëüíî îòëè÷àëàñü îò íàáëþäàâøåéñÿ â 2010 ã.: 26,8 è 23,4 % ñîîòâåòñòâåííî. Äîëÿ ó÷àñòêîâ, ãäå ïðîèçîøëà íåóñïåøíàÿ ïîïûòêà ðàçìíîæåíèÿ, ñóùåñòâåííî ñíèçèëàñü: 23,4 % â 2010 ã. è 14,1 % â 2015 ã.  öåëîì æå, äîëÿ ó÷àñòêîâ, äîñòîâåðíî èñïîëüçóåìûõ îðëàìè â òåêóùåì ãîäó (ñ ðàçìíîæåíèåì èëè áåç, óñïåøíûõ è íåóñïåøíûõ), â 2010 è 2015 ãã. îêàçàëàñü ïî÷òè îäèíàêîâîé: 53,2 % è 50,7 % ñîîòâåòñòâåííî. Ïðè ýòîì ñðàâíåíèè íåîá-

99

main population characteristics did not sufficiently change. By the results of survey in 2010 the status of the Steppe Eagle population in Dauria was estimated as extremely unfavorable according to the following criteria (Karyakin et al., 2012): 1. Low density in suitable nesting habitats. 2. A number of abandoned nesting territories. 3. Low rate of occupied nesting territories. 4. Low efficiency of successful nests. 5. High mortality of adults and as a result – the rejuvenation of breeding population. After 2010, an average actual nesting density of the Steppe Eagle population has essentially increased but still low (just above 1 pair per 100 km2), and the distance between neighbor successful nests far exceeds the figures typically recorded in other regions. More than a half of the potential suitable nesting territories have been still not occupied as it was recorded in 2010 too. Productivity of successful nests has not increased. The negative factors such as power lines that are dangerous for birds and steppe wild fires are still acting. More than 40 % of all the nesting territories were affected by fires in 2015; the nest structures were completely burnt at 17 % of the known nesting territories visited in 2015. Taken together these characteristics mean the population is still unsafe. Meanwhile we note several positive trends in 2015 as comparing with 2010: 1. The population number has increased more than by 30 % (estimating 219 vs. 152 breeding pairs). 2. Breeding efficiency has increased by 24 %. 3. The breeding efficiency was 0.93 fledglings per 1 breeding pair in 2015 vs. 0.55 in 2010, which represents 60 % increase. 4. The share of successful pairs of potential population size has increased from 20 to 32 %. 5. The share of subadults (under the age of 4–5 years) in the breeding pairs has reduced almost twofold – from 76 to 35 % what means the mortality of adults has significantly reduced.

Ðèñ. 3. Ñòàòóñ ãíåçäîâûõ ó÷àñòêîâ ñòåïíîãî îðëà, ïîñåùàâøèõñÿ â 2010 è â 2015 ãã. Fig. 3. Statuses of the Steppe Eagle’s breeding territories were observed in 2010 and 2015.


100

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ

Ïòåíåö ñòåïíîãî îðëà â ãíåçäå, Êëè÷êèíñêèé õðåáåò. Ôîòî À. Áàðàøêîâîé. Nestling of the Steppe Eagle in the nest, Klichkinsky ridge. Photo by A. Barashkova.

õîäèìî ó÷èòûâàòü ðàçíèöó â îáú¸ìå âûáîðêè: â 2015 ã. âûáîðêà áûëà â 1,5 ðàç áîëüøå, ÷åì â 2010 ã. Ñóäüáà èçâåñòíûõ ãíåçäîâûõ ó÷àñòêîâ Ñóäüáà èçâåñòíûõ ñ 2010 ã. 35 ãíåçäîâûõ ó÷àñòêîâ îêàçàëàñü ðàçëè÷íîé (òàáë. 3, ðèñ. 4). Èç 11 æèëûõ ó÷àñòêîâ 2010 ãîäà â 2015 ã. îñòàëèñü æèëûìè 4, åù¸ 1 áûë çàíÿò (àáîíèðîâàëñÿ ïòèöàìè). Îäíàêî áîëåå ïîëîâèíû òàêèõ ó÷àñòêîâ â ýòîì ãîäó îêàçàëèñü íå èñïîëüçóåìûìè îðëàìè (ñêîðåå âñåãî òàêæå è â ïðîøëîì ãîäó, âîçìîæíî è åù¸ ðàíåå): íà 4 íàéäåíû ñòàðûå ãí¸çäà, íà 2-õ ãí¸çäà íå ñîõðàíèëèñü (íà îäíîì èç íèõ îòìå÷åíà âñòðå÷à ïòèöû, íà äðóãîì íåò). Âìåñòå ñ òåì, èç 10 ó÷àñòêîâ, áûâøèõ â 2010 ã. çàíÿòûìè, íî íåóñïåøíûìè, íà òð¸õ òåïåðü îáíàðóæåíû ãí¸çäà ñ âûâîäêàìè: â îäíîì ñëó÷àå æèëûì îñòàëîñü èçâåñòíîå ãíåçäî, â äðóãîì – ïîñòðîåíî íîâîå, â 100 ì îò ñãîðåâøåãî â ïîæàðå ðàíåå èçâåñòíîãî (âåðîÿòíî, ñãîðåëî âåñíîé 2015 ã.), â òðåòüåì ñëó÷àå ïòåíöû âûâåëèñü â îäíîì èç èçâåñòíûõ ñ 2010 ãîäà

Trends of the main population characteristics are briefly summarized in the table 6. Investigation of drivers of the changes listed above goes beyond the subject of the paper. We can only note that the weather conditions were unfavorable in 2010. Particularly extremely high summer temperatures caused mass mortality of nestlings of many bird species including Upland Buzzards. The facts of deaths of nestlings of Steppe Eagles were not recorded, but they were quite possible. At the same time the changes can be related to other factors which act on migration routes and winter sites or can be the result of slow restoration of the population after huge disturbance which has happened earlier.

Òàáë. 3. Ñóäüáà ãíåçäîâûõ ó÷àñòêîâ ñòåïíîãî îðëà, âûÿâëåííûõ â 2010 ã. è ïðîâåðåííûõ â 2015 ã. Table 3. Changes of statuses of breeding territories of the Steppe Eagle in Dauria since 2010 to 2015.

2010

Æèëîé Living Çàíÿòûé Occupied Ñòàðûå ãí¸çäà Old nests Âñòðå÷è ïòèö ó ñòàðûõ ãí¸çä Birds near old nests Âñòðå÷è ïòèö, ãí¸çä íåò Birds, no nests ÂÑÅÃÎ TOTAL

Âñåãî ó÷àñòêîâ Total 11 → (31.4 %) 10 → (28.6 %) 10 → (28.6 %) 3 → (5.7 %)

Æèëîé Çàíÿòûé Alive Occupied 4 1 3 2

2

Ñòàðûå Ðàçðóøåííûå ãí¸çäà ãí¸çäà Old Destroyed 4 1 1 2

1

1 → (2.9 %)

1*

35 (100 %)

11 (31.4 %)

3 7 (8.6 %) (20.0 %)

Âñòðå÷è ïòèö ó ñòàðûõ èëè èñ÷åçíóâøèõ ãí¸çä Birds near old or destroyed nests 1

2015 Çàíÿò ìîõíîíîãèì êóðãàííèêîì (Buteo hemilasius) Occupied by Upland Buzzard (Buteo hemilasius)

4 4

1

1

1

6 (17.1 %)

7 (20.0 %)

1

1 (2.9 %)

* Íà 1 ó÷àñòêå, ãäå â 2010 ã. áûëè òîëüêî âñòðå÷åíû ïòèöû, íàéäåíî ãíåçäî ñ âûâîäêîì (âîçìîæíî, áûëî ïðîïóùåíî ðàíåå) / In 2015 the nest with brood was found at the nesting area where the birds were met in 2010.


Raptor Research

Raptors Conservation 2016, 32

101

Ðèñ. 4. Ñòàòóñ ãíåçäîâûõ ó÷àñòêîâ ñòåïíîãî îðëà, ïðîâåðåííûõ â 2010 è â 2015 ãã. (ó÷òåíû òîëüêî òå ó÷àñòêè, êîòîðûå ïîñåùàëèñü â îáà ãîäà). Fig. 4. Statuses of the Steppe Eagle’s breeding territories were checked in 2010 and 2015 (taken into account only those breeding territories were checked in both years).

ñòàðûõ ãíåçä (â 1,2 êì îò èçâåñòíîãî æèëîãî ãíåçäà 2011 ãîäà). Åù¸ íà 2 ó÷àñòêàõ â 2015 ã. ïòèöû çàãíåçäèëèñü (â îäíîì ñëó÷àå ñî ñìåíîé ïîñòðîéêè), íî ðàçìíîæåíèå, êàê è ïÿòü ëåò íàçàä, îêàçàëîñü íåóñïåøíûì. Íà äðóãèõ 2 ó÷àñòêàõ èç ýòîé êàòåãîðèè âñòðå÷åíû ïòèöû ó ñòàðûõ ãí¸çä áåç ñëåäîâ ïîäíîâëåíèÿ è åù¸ íà 1 ó÷àñòêå íàéäåíû ñòàðûå ãí¸çäà áåç ïðèçíàêîâ ïîñåùåíèÿ ïòèöàìè. Íàêîíåö, íà äâóõ ó÷àñòêàõ âñòðå÷åíû ïòèöû, íî ãí¸çäà íå ïðîâåðåíû. Íàèáîëåå êîíòðàñòíî ðàçäåëèëàñü ñóäüáà 13 ó÷àñòêîâ, íà êîòîðûõ â 2010 ã. îáíàðóæåíû ñòàðûå ãí¸çäà (â òîì ÷èñëå ó 3 ãí¸çä îòìå÷àëèñü ïòèöû). Èç íèõ ÷åòûðå ó÷àñòêà âíîâü îáæèòû ïòèöàìè: íà 3 ó÷àñòêàõ â 2015 ã. çàôèêñèðîâàíî óñïåøíîå ðàçìíîæåíèå ñòåïíîãî îðëà (æèëûå ãí¸çäà ñ âûâîäêàìè) è åù¸ íà 1 ó÷àñòêå ãíåçäî áûëî ïîäíîâëåíî ìîõíîíîãèì êóðãàííèêîì.  òî æå âðåìÿ îñòàëüíûå ó÷àñòêè èç ýòîé êàòåãîðèè îñòàëèñü áðîøåííûìè: íà 2-õ, êàê è ðàíüøå, íàéäåíû òîëüêî ñòàðûå ãí¸çäà, íà 7 ó÷àñòêàõ çà ïðîøåäøåå âðåìÿ ãí¸çäà ïîëíîñòüþ èñ÷åçëè (ñãîðåëè â ñòåïíûõ ïîæàðàõ, â òîì ÷èñëå 3 èç íèõ – âèäèìî, â òåêóùåì ãîäó). Òàêèì îáðàçîì, èç ðàññìàòðèâàåìûõ 35 ãíåçäîâûõ ó÷àñòêîâ, ïðîñëåæåííûõ ñ èíòåðâàëîì 5 ëåò, â èþëå–àâãóñòå 2010 ã. æèëûå ñîñòàâëÿëè 31,4 %, çàíÿòûå ñ íåóñïåøíûì ãíåçäîâàíèåì – 28,6 %, ó÷àñòêè ñî ñòàðûìè ãíåçäàìè (â òðåõ ñëó÷àÿõ ñî âñòðå÷åé ïòèö) – 37,1%, âûäåëåííûå òîëüêî ïî âñòðå÷å ïòèö (ñ íåèçâåñòíûìè ãí¸çäàìè) – 2,9 %. ×åðåç ïÿòü ëåò ñòàòóñ áîëüøèíñòâà êîíêðåòíûõ ó÷àñòêîâ, âêëþ÷åííûõ â ýòó âûáîðêó, èçìåíèëñÿ. Òåì íå ìåíåå, äîëÿ æèëûõ ó÷àñòêîâ â èþëå–àâãóñòå 2015 ã. âíîâü îêàçàëàñü òî÷íî òàêîé

æå – 31,4 %, õîòÿ ëèøü îêîëî òðåòè ýòèõ ó÷àñòêîâ ñîâïàäàëî ñ æèëûìè ó÷àñòêàìè 2010 ãîäà. Çàíÿòûõ ó÷àñòêîâ ñ íåóñïåøíûì ãíåçäîâàíèåì ñòàëî çíà÷èòåëüíî ìåíüøå – 8,6 %. Ó÷àñòêè ñî ñòàðûìè ãíåçäàìè ñîñòàâèëè 31,4 % (â òîì ÷èñëå, 20 % îò âñåé âûáîðêè – ó÷àñòêè, ãäå ïòèöû íå áûëè îòìå÷åíû), ó÷àñòêè ñ èñ÷åçíóâøèìè (ñãîðåâøèìè) ãíåçäàìè – 22,9 % è çàíÿòûå ìîõíîíîãèì êóðãàííèêîì – 2,9 %. Äîëÿ ó÷àñòêîâ, äîñòîâåðíî èñïîëüçóåìûõ îðëàìè â òåêóùåì ãîäó (ñ ðàçìíîæåíèåì èëè áåç íåãî, óñïåøíûõ è íåóñïåøíûõ), â 2010 ã. ñîñòàâëÿëà â ýòîé âûáîðêå 68,6 % (24 ó÷àñòêà).  2015 ã. ïîêàçàòåëü íåìíîãî ñíèçèëñÿ – äî 60,0 %. Íî åñëè îöåíèâàòü èñïîëüçîâàíèå íå ñ òî÷êè çðåíèÿ ïîïóëÿöèè ñòåïíîãî îðëà, à «ñ òî÷êè çðåíèÿ» ñóäüáû ïóëà ó÷àñòêîâ, òî íóæíî ó÷åñòü, ÷òî îäèí ó÷àñòîê â 2015 ã. îêàçàëñÿ çàíÿò ìîõíîíîãèì êóðãàííèêîì. Ñòåðåîòèïû ãíåçäîâàíèÿ êóðãàííèêà è ñòåïíîãî îðëà â äàííîì ñëó÷àå î÷åíü ïîõîæè, âèäû ÷àñòî çàíèìàþò ïóñòóþùèå ãíåçäîâûå ïîñòðîéêè äðóã äðóãà (÷àùå êóðãàííèê çàíèìàåò îñòàâëåííûå ïîñòðîéêè ñòåïíîãî îðëà). Ñ ó÷¸òîì ýòîãî äîëÿ ó÷àñòêîâ, èñïîëüçóåìûõ êðóïíûìè ïåðíàòûìè õèùíèêàìè (íå òîëüêî îðëàìè), ñîñòàâèëà â 2015 ãîäó 62,9 % âûáîðêè, ÷òî åù¸ áëèæå ê ïîêàçàòåëþ 2010 ãîäà. Èç 10 ó÷àñòêîâ, êîòîðûå ïàðû îðëîâ äîñòîâåðíî àáîíèðîâàëè êàê â 2010 ã., òàê è â 2015 ã. (âêëþ÷àÿ ó÷àñòêè è ñ óñïåøíûì, è ñ íåóñïåøíûì ðàçìíîæåíèåì), òîëüêî â äâóõ ñëó÷àÿõ ïòèöû èñïîëüçîâàëè òó æå, èçâåñòíóþ ñ 2010 ã., ïîñòðîéêó.  îñòàëüíûõ ñëó÷àÿõ áûëà çàíÿòà äðóãàÿ ïîñòðîéêà – îáû÷íî îíà íàõîäèëàñü íà ðàññòîÿíèè ìåíåå 1 êì îò çàíÿòîãî ãíåçäà 2010 ãîäà (îò 100 äî 840 ì) è òîëüêî îäíàæäû â 3,4 êì. Âíîâü âûÿâëåííûå ãíåçäîâûå ó÷àñòêè  2015 ã. âïåðâûå ëîêàëèçîâàíî 35 íîâûõ ó÷àñòêîâ (òàáë. 2). Èç íèõ 8 óñòàíîâëåíû ïî íàõîäêå ãíåçäà ñ âûâîäêàìè (ñë¸òêàìè). Åù¸ íà 6 ó÷àñòêàõ îáíàðóæåíû íåóñïåøíûå ïîïûòêè ãíåçäîâàíèÿ (â òð¸õ ñëó÷àÿõ âçðîñëûå ïòèöû ïðîäîëæàëè äåðæàòüñÿ íà ó÷àñòêå). Íà 3 ó÷àñòêàõ íàé-


102

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ

äåíû òîëüêî ñòàðûå ãí¸çäà áåç ïðèçíàêîâ ïîñåùåíèÿ ïòèöàìè – â ýòî ÷èñëî âêëþ÷¸í è îäèí ó÷àñòîê ñ ãíåçäîì, ïîëíîñòüþ ñãîðåâøèì â ïîæàðå. Îñòàëüíûå 18 ó÷àñòêîâ âûÿâëåíû êàê ïðåäïîëîæèòåëüíûå – ïî âñòðå÷àì ïòèö â ãíåçäîâîì áèîòîïå.

Ýòî ñîîòíîøåíèå çåðêàëüíî îòëè÷àåòñÿ îò çàôèêñèðîâàííîãî â 2010 ã., êîãäà îíî áûëî, ñîîòâåòñòâåííî, îêîëî 76 è 24 % (n=37 – Êàðÿêèí è äð., 2012). Íåñìîòðÿ íà ðàçíèöó âûáîðîê ðàçëè÷èå ìåæäó ãîäàìè âûñîêî äîñòîâåðíî (p=0,005).

Âûâîäêè è ýôôåêòèâíîñòü ðàçìíîæåíèÿ  2015 ã. ó÷òåíî â öåëîì 27 ïòåíöîâ è ñë¸òêîâ â 19 ãí¸çäàõ (â 2010 ã. – 12 ïòåíöîâ è ñë¸òêîâ â 9 ãí¸çäàõ). Êàê â 2010, òàê è â 2015 ã. â íàáëþäàâøèõñÿ âûâîäêàõ áûëî 1–2 ïòåíöà (ñë¸òêà). Ñðåäíèé ðàçìåð âûâîäêà â 2015 ã. ñîñòàâèë 1,4±0,5 ïòåíöîâ (n=19), â 2010 ã. – 1,3±0,5 ïòåíöîâ (n=9). Ðàçëè÷èå ìåæäó ãîäàìè ñòàòèñòè÷åñêè íåçíà÷èìî. Âåðîÿòíî, îöåíêè ñðåäíåãî ðàçìåðà âûâîäêà çàíèæåíû, ò.ê. ðàáîòû â îáà ãîäà ïðîâîäèëèñü â ñåçîí âûëåòà ìîëîäûõ, è íà íåêîòîðûõ ó÷àñòêàõ ÷àñòü ñë¸òêîâ ìîãëà íàõîäèòüñÿ óæå íå âáëèçè ãíåçäà.  ðÿäå ñëó÷àåâ íàëè÷èå áîëüøåãî ÷èñëà ïòåíöîâ ìîæíî áûëî ïðåäïîëàãàòü ïî ñîñòîÿíèþ ïîêèíóòûõ ñë¸òêàìè ãí¸çä. Ýôôåêòèâíîñòü ðàçìíîæåíèÿ â 2015 ã. îöåíèâàåòñÿ êàê 0,93 ñë¸òêà (ñ÷èòàÿ è âçðîñëûõ ïòåíöîâ) íà ïðèñòóïèâøóþ ê ãíåçäîâàíèþ ïàðó.  2010 ã. ýòîò ïîêàçàòåëü ñîñòàâëÿë 0,55 ñë¸òêîâ íà ïðèñòóïèâøóþ ê ãíåçäîâàíèþ ïàðó.

Ïëîòíîñòü ãíåçäîâàíèÿ Ñðåäíåé äèñòàíöèåé (ðàññòîÿíèåì) ìåæäó àêòèâíûìè ãí¸çäàìè ñ÷èòàëè ñðåäíåå àðèôìåòè÷åñêîå èç äèñòàíöèé ìåæäó áëèæàéøèìè àêòèâíûìè ãí¸çäàìè â ïðåäåëàõ ïëîùàäêè. Ñðåäíåå ðàññòîÿíèå ìåæäó ñîñåäíèìè àêòèâíûìè ãí¸çäàìè â ïðåäåëàõ ïëîùàäîê ïî âñåé âûáîðêå 2015 ãîäà ñîñòàâèëî 8,217±1,529 êì (n=11; 5,940– 10,120 êì).  2010 ã. ñðåäíÿÿ äèñòàíöèÿ ìåæäó ñîñåäíèìè àêòèâíûìè ãí¸çäàìè áûëà ðàññ÷èòàíà òîëüêî äëÿ îäíîé èç îáñóæäàåìûõ ïëîùàäîê. Íà Àðãóíñêîì õðåáòå (ïëîùàäêà ¹ 7 â òàáë. 1) ðàññòîÿíèÿ ìåæäó ñîñåäíèìè àêòèâíûìè ãí¸çäàìè (âñå – óñïåøíûå) ñîñòàâëÿëè 3,47–4,78 êì, â ñðåäíåì (n=3) 3,98±0,70 êì. Äëÿ âñåãî ìàññèâà äàííûõ 2010 ãîäà áûëà îïðåäåëåíà ëèøü ñðåäíÿÿ äèñòàíöèÿ ìåæäó áëèæàéøèìè ó÷àñòêàìè ðàçíîãî ñòàòóñà, âêëþ÷àÿ è íå ÿâëÿâøèåñÿ àêòèâíûìè â òåêóùåì ãîäó. Îíà îêàçàëàñü ðàâíîé 6,61±3,93 êì (n=29; 2,16–17,84 êì) (Êàðÿêèí è äð., 2012). Î÷åâèäíî, ÷òî ñðåäíåå ðàññòîÿíèå ìåæäó àêòèâíûìè ãí¸çäàìè äîëæíî ïðåâûøàòü ýòó âåëè÷èíó. Ñðàâíèòåëüíî ñ àíàëîãè÷íûì ïîêàçàòåëåì â íåêîòîðûõ äðóãèõ ðåãèîíàõ ãíåçäîâàíèÿ ñòåïíîãî îðëà, â Äàóðèè ñðåäíÿÿ äèñòàíöèÿ ìåæäó ñîñåäíèìè ó÷àñòêàìè, ðàññ÷èòàííàÿ äëÿ âñåé âûáîðêè, îêàçûâàåòñÿ î÷åíü áîëüøîé. Íàïðèìåð, â Ìóãîäæàðàõ (Àêòþáèíñêàÿ îáëàñòü Êàçàõñòàíà) â 2004–2006 ãã. ñîñåäíèå ãí¸çäà ðàñïîëàãàëèñü ïî÷òè â 2,5 ðàçà áëèæå äðóã ê äðóãó – ñðåäíåå ðàññòîÿíèå ìåæäó íèìè îöåíèâàëîñü êàê 3,3±1,67 êì (n=43; 0,95–8,65 êì) (Êàðÿêèí è äð., 2007). Íà ïëàòî Óêîê (Ðåñïóáëèêà Àëòàé, Ðîññèÿ) â 2009 ã. ýòîò ïîêàçàòåëü ñîñòàâëÿë 3,15±1,82 êì (n=25; 1,09–8,06 êì) (Âàæîâ è äð., 2011).  ñòåïíûõ ïðåäãîðüÿõ Àëòàÿ (Àëòàéñêèé êðàé, Ðîññèÿ) ðàññòîÿíèå ìåæäó áëèæàéøèìè ñîñåäíèìè àêòèâíûìè ãí¸çäàìè ïî ðå-

Âñòðå÷è âçðîñëûõ è âîçðàñò ïòèö Âñåãî çà âðåìÿ ðàáîò 2015 ã. âñòðå÷åíî îêîëî 50 âçðîñëûõ ñòåïíûõ îðëîâ, â òîì ÷èñëå 26 ó àáîíèðóåìûõ ãí¸çä. Èç íèõ òîëüêî äëÿ 17 ïòèö óäàëîñü îöåíèòü êàòåãîðèþ âîçðàñòà. Ðàçëè÷àëè òîëüêî äâå êàòåãîðèè: ìîëîäûå (äî 4–5 ëåò) è âçðîñëûå (ñòàðøå 4–5 ëåò). Ïåðâûõ îêàçàëîñü 8, âòîðûõ 13 îñîáåé – ò.å. îêîëî 38 è 62 % ñîîòâåòñòâåííî.

Ñàìêà ñ ïòåíöàìè â ãíåçäå, 8 èþëÿ 2015 ã., ìàññèâ ã. Îäæèòóé. Ôîòî Î. Ãîðîøêî. Female with chicks in the nest, July 8, 2015, Odjitui mountain. Photo by O. Goroshko.


Raptor Research

Raptors Conservation 2016, 32

103

Ñë¸òîê ñòåïíîãî îðëà â ãíåçäå, áàññåéí ð. Õèëà, 26 èþëÿ 2015 ã. Ôîòî È. Ñìåëÿíñêîãî. Fledgling of the Steppe Eagle on the nest, Khila River Bassin; July 26, 2015. Photo by I. Smelansky.

çóëüòàòàì ìíîãîëåòíèõ íàáëþäåíèé (n=85) áûëî åù¸ ìåíüøå, â ñðåäíåì 2,040±1,214 êì (0,571–6,840 êì) (Âàæîâ è äð., 2013). Èñõîäÿ èç äàííûõ î âûÿâëåííûõ ãíåçäîâûõ ó÷àñòêàõ è ïëîùàäè ó÷¸òíûõ ïëîùàäîê (òàáë. 1), ñäåëàíà îöåíêà ïëîòíîñòè ãíåçäîâàíèÿ ñòåïíîãî îðëà íà îòäåëüíûõ ïëîùàäêàõ è ñðåäíåé äëÿ ðåãèîíà â öåëîì.  êà÷åñòâå ñðåäíåé ïëîòíîñòè ãíåçäîâàíèÿ íà ïëîùàäêå ïðèíèìàëè îòíîøåíèå ÷èñëà ãí¸çä ê îñìîòðåííîé ïëîùàäè ïëîùàäêè. Îïðåäåëÿëè ôàêòè÷åñêóþ ïëîòíîñòü ãíåçäîâàíèÿ – ÷èñëî àêòèâíûõ ãí¸çä (ãíåçäîâûõ ó÷àñòêîâ, âêëþ÷àâøèõ àêòèâíîå ãíåçäî) íà åäèíèöó (100 êì2) îñìîòðåííîé ïëîùàäè, è ïîòåíöèàëüíóþ ïëîòíîñòü ãíåçäîâàíèÿ, êîòîðàÿ ìîæåò áûòü äîñòèãíóòà ïðè ñóùåñòâóþùèõ óñëîâèÿõ – îáùåå ÷èñëî âûÿâëåííûõ ãíåçäîâûõ ó÷àñòêîâ (êàê èìåþùèõ àêòèâíûå ãí¸çäà â òåêóùåì ãîäó, òàê è íå èìåþùèõ) íà åäèíèöó îñìîòðåííîé ïëîùàäè. Ïóáëèêîâàâøèåñÿ ðàíåå îöåíêè ïëîòíîñòè ãíåçäîâàíèÿ íà ïëîùàäêàõ ïî äàííûì 2010 ãîäà (Êàðÿêèí è äð., 2012) ðàññ÷èòûâàëèñü, èñõîäÿ èç ïëîùàäè óñëîâíûõ ïëîùàäîê â öåëîì. Äëÿ áîëåå êîððåêòíîãî ñðàâíåíèÿ ìû çäåñü ïåðåñ÷èòàëè ïîêàçàòåëè ïëîòíîñòè ãíåçäîâàíèÿ íà îñìîòðåííóþ ïëîùàäü äëÿ äàííûõ ïî îáîèì ãîäàì. Ðåçóëüòàòû ïðåäñòàâëåíû â òàáëèöå (òàáë. 4). Ðàçëè÷èÿ ïëîòíîñòè ãíåçäîâàíèÿ ìåæäó ïëîùàäêàìè ïðàêòè÷åñêè íå ñâÿçàíû ñ ðàçëè÷èåì â ïëîùàäè ïëîùàäîê (ÿâëÿþùåéñÿ â äàííîì ñëó÷àå âûðàæåíèåì ó÷¸òíîãî óñèëèÿ) – çíà÷èìàÿ êîððåëÿöèÿ ìåæäó ïëîòíîñòüþ ãíåçäîâàíèÿ è ïëîùàäüþ ïëîùàäêè îòñóòñòâóåò. Äëÿ ôàêòè÷åñêîé ïëîòíîñòè ãíåçäîâàíèÿ: â 2010 ã. r=-0,14 è â 2015 ã. r=-0,29 (îáà íåçíà÷èìû ïðè p<0,1).

Ïëîòíîñòü ãíåçäîâàíèÿ ñòåïíîãî îðëà íà óñðåäíåííîé äëÿ ðåãèîíà ïëîùàäêå (äàëåå – ñðåäíÿÿ ïëîòíîñòü ãíåçäîâàíèÿ) îöåíèâàëè êàê ñðåäíþþ èç ïîêàçàòåëåé ïëîòíîñòè äëÿ îòäåëüíûõ ïëîùàäîê. Èç ðàñ÷¸òà áûëè èñêëþ÷åíû ïëîùàäêè, ãäå íå íàéäåíî íè îäíîãî äîñòîâåðíî àêòèâíîãî ãíåçäîâîãî ó÷àñòêà: äâå ïëîùàäêè â 2015 ã. (â ïðåäãîðüÿõ Áîðùîâî÷íîãî õð. è íà Õàðàãàíàøñêîì õð.). Ðàññ÷èòàííàÿ òàêèì îáðàçîì ñðåäíÿÿ ôàêòè÷åñêàÿ ïëîòíîñòü ãíåçäîâàíèÿ â 2015 ã. ñîñòàâèëà 1,33±0,54 àêòèâíûõ ãíåçäîâûõ ó÷àñòêîâ/100 êì2 (òàáë. 4). Ìàêñèìàëüíàÿ ôàêòè÷åñêàÿ ïëîòíîñòü ãíåçäîâàíèÿ îòìå÷åíà â Àðãóíñêîì õð. – 1,91 ó÷àñòîê/100 êì2, ìèíèìàëüíàÿ – íà ïëîùàäêå â äîëèíå ð. Õèëà è êîòëîâèíå îç. Íîæèé – 0,46 ó÷àñòêîâ/100 êì2. Çà èñêëþ÷åíèåì «íóëåâûõ» ïëîùàäîê, ãäå íå óäàëîñü íàéòè àêòèâíûõ ó÷àñòêîâ, ïëîùàäêè îêàçàëèñü îòíîñèòåëüíî áëèçêèìè äðóã ê äðóãó ïî ýòîìó ïîêàçàòåëþ: ìàêñèìàëüíîå ðàçëè÷èå ìåæäó ïëîùàäêàìè – îêîëî 4 ðàç, íî áîëåå ïîëîâèíû âñåõ ïëîùàäîê õàðàêòåðèçóåòñÿ ôàêòè÷åñêîé ïëîòíîñòüþ ãíåçäîâàíèÿ â èíòåðâàëå 0,9–1,5 àêòèâíûõ ãíåçäîâûõ ó÷àñòêîâ/100 êì2.  2010 ã. ñðåäíÿÿ ôàêòè÷åñêàÿ ïëîòíîñòü ãíåçäîâàíèÿ áûëà ÷óòü íèæå – 1,26±1,31 ó÷àñòêîâ/100 êì2, íî ðàçëè÷èå ìåæäó ãîäàìè ñòàòèñòè÷åñêè íåçíà÷èìî. Ìàêñèìóì è òîãäà äîñòèãàëñÿ íà Àðãóíñêîì õð. (ñì. òàêæå: Êàðÿêèí è äð., 2012) – 5,06 ó÷àñòêîâ/100 êì2. Ìèíèìàëüíàÿ ôàêòè÷åñêàÿ ïëîòíîñòü ãíåçäîâàíèÿ â 2010 ã. ìàëî îòëè÷àëàñü îò ìèíèìóìà 2015 ãîäà, íî íàáëþäàëàñü íà äðóãîé ïëîùàäêå – â áàññåéíå ð. Äóðóëãóéêà, 0,42 ó÷àñòêà/100 êì2. Ðàçëè÷èå ìåæäó ìèíèìàëüíîé è ìàêñèìàëüíîé ôàêòè÷åñêîé ïëîòíîñòüþ ãíåçäîâàíèÿ íà ïëîùàäêå â 2010 ã. áûëî âûðàæåíî ñóùåñòâåííî ñèëüíåå – ðàçíèöà ñîñòàâëÿëà îêîëî 12 ðàç. Îäíàêî çà èñêëþ÷åíèåì îäíîãî âûñêàêèâàþùåãî çíà÷åíèÿ (ïëîùàäêà íà Àðãóíñêîì õð.) ãíåçäîâàíèå ñòåïíîãî îðëà â ðåãèîíå è â òîì ãîäó áûëî ðàñïðåäåëåíî îòíîñèòåëüíî îäíîðîäíî – íà ïîëîâèíå âñåõ ïëîùàäîê ôàêòè÷åñêàÿ ïëîòíîñòü ãíåçäîâàíèÿ áûëà â ïðåäåëàõ 0,5–1,0 ãíåçäîâûõ ó÷àñòêîâ/100 êì2.


104

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ

Òàáë. 4. Ïëîòíîñòü ãíåçäîâàíèÿ ñòåïíîãî îðëà â Äàóðèè â 2010 è 2015 ãã. Table 4. Density of the breeding population of the Steppe Eagle in Dauria in 2010 and 2015. Ôàêòè÷åñêàÿ ïëîòíîñòü ãíåçäîâàíèÿ, àêòèâíûõ ãíåçäîâûõ ó÷àñòêîâ íà 100 êì2 Actual nesting density, active nesting areas per 100 km2

Ó÷¸òíûå ïëîùàäêè Survey plots Îñíîâíûå ïëîùàäêè Main survey plots

Ïîòåíöèàëüíàÿ ïëîòíîñòü ãíåçäîâàíèÿ, ãíåçäîâûõ ó÷àñòêîâ íà 100 êì2 Potential nesting density, nesting areas per 100 km2

Èçìåíåíèå ôàêòè÷åñêîé ïëîòíîñòè ãíåçäîâàíèÿ çà 5 ëåò***, % ïåðâîíà÷àëüíîãî ïîêàçàòåëÿ Change in actual nesting density for 5 years, % of the 2010 figure

2010

2015

2010

2015

1

Äîëèíà ð. Õèëà ñ ïðèòîêàìè è îç. Íîæèé Khila river valley and Nozhiy lake

0.54

0.46

1.08

1.39

-14.42

2

Ïðåäãîðüå Áîðùîâî÷íîãî õð.: ìåëêîñîïî÷íèê ìåæäó ïàäüþ Ãàøóí è ð. Çóòêóëåé (ïîñ. Ñóäóíòóé è Çóòêóëåé) / Foothills of Borschovochny ridge (Suduntui and Zutkulei villages)

0.57

0

0.57

0.64

-100

3

Ïðåäãîðüå Áîðùîâî÷íîãî õð.: ëåâîáåðåæüå ð. Îíîí ìåæäó ïàäüþ Êóæåðòàé è ð. Áîë. Äæèïêîøà / Foothills of Borschovochny ridge (left banks of Onon river)

0.61

0.67

2.13

2.66

9.46

4

Õàðàãàíàøñêèé õð. / Kharaganash ridge

1,00

0

3.98

2.94

-100

5

Íåð÷èíñêèé õð.: ïàäè Áàðóí-Çàñóëàí è ×óìûðàñòóé / Nerchinsky ridge: Barun-Zasulan and Chumyrastui

0.80

1.85

1.61

3.70

129.76

6

Êëè÷êèíñêèé õð.: ìåæäó ïîñ. Êðàñíûé Âåëèêàí è Ñîêòóé-Ìèëîçàí / Klichkinsky ridge

0.83

0.97

2.09

3.41

16.64

7

Àðãóíñêèé õð.: ìåæäó ãðÿäîé Ãûðèòóé è ïàäüþ Áóðãàñòàé / Argunsky ridge

5.06

1.91

6.75

3.82

-62.28

8

Òîðåéñêàÿ êîòëîâèíà: ñîïêà Öàãàí-Îëà è îêðåñòíîñòè (çàêàçíèê «Äîëèíà äçåðåíà») Torei lakes depression: Tsaghan-Ola Mnt.

1.50

2.21

3.00

3.68

47.13

9

Òîðåéñêàÿ êîòëîâèíà: ñîïêà Îäæèòóé è îêðåñòíîñòè (çàêàçíèê «Äîëèíà äçåðåíà») Torei lakes depression: Odjitui Mnt.

1.06

0.99

1.77

2.97

-7.09

10

Òîðåéñêàÿ êîòëîâèíà: ìåëêîñîïî÷íèê ê ñåâåðó îò îç. Çóí-Òîðåé / Torei lakes depression: hills on north banks of Zun-Torei lake

1.46

1.19

2.92

2.38

-18.71

11

Ïðàâîáåðåæüå Îíîíà: ìåëêîñîïî÷íèê â áàññåéíå ð. Äóðóëãóéêà / Right banks of Onon river in Durulguika river basin

0.42

1.65

0.84

3.29

292.70

12

Ìåëêîñîïî÷íèê â ìåæäóðå÷üå Áîðçè è Áûðêè – ïðåäãîðüÿ õð. Êóêóëüáåé (Îëäîíäèíñêèé çàêàçíèê) Hills between Borzya and Byrka rivers

Íåò / No

1.37

Íåò / No

2.74

Íåò / No

13

Ìåëêîñîïî÷íèê â ïðåäãîðüÿõ Áîðùîâî÷íîãî õð. ìåæäó ð. Çóòêóëåé è ïàäüþ Êóæåðòàé Foothills of Borschovochny ridge between Zutkulei river and Kuzhertai

Íåò / No

1.31

Íåò / No

1.31

Íåò / No

Ïëîòíîñòü íà óñðåäíåííîé ïëîùàäêå**, M±SD / Density on the averaged plot**, M±SD

1.26±1.31 1.12±0.70

2.43±1.75

2.69±1.01

Òî æå, áåç ó÷¸òà «íóëåâûõ» ïëîùàäîê (ãäå íå íàøëîñü àêòèâíûõ ó÷àñòêîâ), M±SD The same, without the “zero” plots (where there was no active sites), M±SD

Íåò / No 1.33±0.54

Íåò / No

Íåò / No

Òî æå, áåç ó÷¸òà «íóëåâûõ» ïëîùàäîê è ñ èñêëþ÷åíèåì Àðãóíñêîãî õð., M±SD The same, without the “zero” plots and excluding the Argun mountain ridge, M±SD

0.88±0.38 1.27±0.53

2.00±1.07

2.59±0.99

¹

Äîïîëíèòåëüíûå ïëîùàäêè Additional survey plots

* Íóëè â êëåòêàõ òàáëèöû îçíà÷àþò, ÷òî íà ïëîùàäêå íå íàéäåíî íè îäíîãî äîñòîâåðíî àêòèâíîãî ó÷àñòêà / Zeros mean there were found no active nesting areas in the study site. ** Ñðåäíåå èç ïîêàçàòåëåé ïëîòíîñòè äëÿ âñåõ ïëîùàäîê â äàííîì ãîäó / Average density for all study sites. *** Èçìåíåíèå ïëîòíîñòè ãíåçäîâàíèÿ – ìîäóëü ðàçíîñòè ìåæäó âåëè÷èíàìè ïëîòíîñòè ãíåçäîâàíèÿ â íà÷àëå è êîíöå îöåíèâàåìîãî ïåðèîäà, íîðìèðîâàííûé íà âåëè÷èíó ïåðâîíà÷àëüíîãî ïîêàçàòåëÿ è ïðåäñòàâëåííûé â ïðîöåíòíîé ôîðìå / Changing in nesting density is the module of difference between nesting densities in the beginning and end of estimating period, normalized by primary figure and given in percent.


Raptor Research

Raptors Conservation 2016, 32

105

Ðèñ. 5. Ïëîòíîñòü ãíåçäîâàíèÿ ñòåïíîãî îðëà (áåç Àðãóíñêîãî õðåáòà). Fig. 5. The density of nesting of the Steppe Eagle (without Argun ridge).

Íåîáû÷íî âûñîêàÿ ïëîòíîñòü íà åäèíè÷íîé ïëîùàäêå ìàñêèðóåò òîò ôàêò, ÷òî ñðåäíÿÿ ôàêòè÷åñêàÿ ïëîòíîñòü ãíåçäîâàíèÿ â ðåãèîíå, çà èñêëþ÷åíèåì ïëîùàäêè íà Àðãóíñêîì õð., â 2015 ã. ñòàëà íå íèæå, à ïî÷òè íà 31 % âûøå, ÷åì â 2010 ã., è ýòî ðàçëè÷èå ñòàòèñòè÷åñêè çíà÷èìî (ð<0,05; ðèñ. 5). Òàêîé æå ìàñêèðóþùèé ýôôåêò ýòî âûñêàêèâàþùåå çíà÷åíèå îêàçûâàåò ïðè ñðàâíåíèè ðàñïðåäåëåíèé ôàêòè÷åñêîé ïëîòíîñòè ãíåçäîâàíèÿ ïî ðåãèîíó. Ìåæäó ðàñïðåäåëåíèÿìè ïëîòíîñòè ïî ïëîùàäêàì â 2010 è 2015 ãã. èìååòñÿ î÷åíü íèçêàÿ, íî ñòàòèñòè÷åñêè äîñòîâåðíàÿ êîððåëÿöèÿ (r=0,6, p<0,1), êîòîðàÿ, îäíàêî, èñ÷åçàåò, åñëè èñêëþ÷èòü èç ðàññìîòðåíèÿ àíîìàëüíóþ ïëîùàäêó â Àðãóíñêîì õð. (r=0,41, NS). Òàêèì îáðàçîì, â äåéñòâèòåëüíîñòè, ðàñïðåäåëåíèå ïëîòíîñòè ãíåçäîâàíèÿ ìåæäó 2010 è 2015 ãã. ñóùåñòâåííî èçìåíèëîñü. Ýòî õîðîøî âèäíî òàêæå ïî âåëè÷èíå èçìåíåíèé, âàðüèðóþùèõ íà ðàçíûõ ïëîùàäêàõ îò îêîëî 2 äî 293 % ïåðâîíà÷àëüíîãî ïîêàçàòåëÿ (òàáë. 4). Ïòåíåö ñòåïíîãî îðëà â ãíåçäå. Ôîòî À. Áàðàøêîâîé. Nestling of the Steppe Eagle in the nest. Photo by A. Barashkova.

Åñëè ôàêòè÷åñêàÿ ïëîòíîñòü ãíåçäîâàíèÿ õàðàêòåðèçóåò àêòóàëüíîå ñîñòîÿíèå ãíåçäîâîé ãðóïïèðîâêè ñòåïíîãî îðëà, òî ïîòåíöèàëüíàÿ ïëîòíîñòü óêàçûâàåò ïðåäåë, êîòîðîãî ãíåçäîâàÿ ãðóïïèðîâêà ìîãëà áû äîñòè÷ü, â ñèòóàöèè, êîãäà âñå óæå ñóùåñòâóþùèå ìíîãîëåòíèå ãíåçäîâûå ó÷àñòêè çàíÿòû ðàçìíîæàþùèìèñÿ ïàðàìè. Ïîïàðíîå ñðàâíåíèå ïîêàçûâàåò, ÷òî çà åäèíè÷íûì èñêëþ÷åíèåì ôàêòè÷åñêàÿ ïëîòíîñòü ñîñòàâëÿåò îò ïîòåíöèàëüíîé 25–60 % êàê â 2010 ã., òàê è â 2015 ã.  åäèíè÷íûõ ñëó÷àÿõ ýòà äîëÿ âûøå: 75 % äëÿ ïëîùàäêè íà Àðãóíñêîì õð. â 2010 ã. è 100 % äëÿ ïëîùàäîê â ïðåäãîðüÿõ Áîðùîâî÷íîãî õðåáòà – ìåæäó ïîñ. Ñóäóíòóé è Çóòêóëåé â 2010 ã. è ìåæäó ð. Çóòêóëåé è ïàäüþ Êóæåðòàé â 2015 ã. Òàêèì îáðàçîì, ôàêòè÷åñêè ïòèöàìè èñïîëüçóåòñÿ äëÿ ãíåçäîâàíèÿ (íå îáñóæäàÿ åãî óñïåøíîñòü) îò ÷åòâåðòè äî ïîëîâèíû âñåõ äîñòóïíûõ íà êàæäîé ïëîùàäêå ó÷àñòêîâ.  ñðåäíåì, äëÿ ðåãèîíà â öåëîì ôàêòè÷åñêàÿ ïëîòíîñòü ãíåçäîâàíèÿ óñòîé÷èâî ñîñòàâëÿåò îêîëî ïîëîâèíû ïîòåíöèàëüíîé ïëîòíîñòè: 51,9 % â 2010 ã. è 49,4 % â 2015 ã. Íî â îïèñàííûõ ðàñ÷åòàõ ïëîòíîñòü ãíåçäîâàíèÿ îöåíèâàëàñü íà îñíîâå âñåé òåððèòîðèè, îñìîòðåííîé â òîò èëè èíîé ãîä – ýòè òåððèòîðèè íåñêîëüêî ðàçëè÷àþòñÿ êàê ïî êîíôèãóðàöèè, òàê è ïî îáùåé ïëîùàäè (ñì. âûøå). Áîëåå êîððåêòíàÿ îöåíêà ìîæåò áûòü äàíà, åñëè èñïîëüçîâàòü äàííûå, ïîëó÷åííûå íà ñòàáèëüíûõ ïëîùàäêàõ – ò.å. â ïðåäåëàõ òîëüêî òåõ


106

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ

Òàáë. 5 Ïëîòíîñòü ãíåçäîâàíèÿ ñòåïíîãî îðëà â Äàóðèè â 2010 è 2015 ãã. íà îñíîâå äàííûõ íåèçìåííûõ ó÷åòíûõ ïëîùàäîê (2010 è 2015 ãã.). Table 5. Density of the Steppe Eagle nesting population in Dauria in 2010 and 2015 on the permanent survey plots (surveyed in both 2010 and 2015).

Ó÷¸òíûå ïëîùàäêè ¹ Survey plots 1 Äîëèíà ð. Õèëà ñ ïðèòîêàìè è îç. Íîæèé / Khila river valley and Nozhiy lake 2 Ïðåäãîðüå Áîðùîâî÷íîãî õð.: ìåëêîñîïî÷íèê ìåæäó ïàäüþ Ãàøóí è ð. Çóòêóëåé (ïîñ. Ñóäóíòóé è Çóòêóëåé) Foothills of Borschovochny ridge (Suduntui and Zutkulei villages) 3 Ïðåäãîðüå Áîðùîâî÷íîãî õð.: ëåâîáåðåæüå ð. Îíîí ìåæäó ïàäüþ Êóæåðòàé è ð. Áîë. Äæèïêîøà / Foothills of Borschovochny ridge (left banks of Onon river) 4 Õàðàãàíàøñêèé õð. Kharaganash ridge 5 Íåð÷èíñêèé õð.: ïàäè ÁàðóíÇàñóëàí è ×óìûðàñòóé / Nerchinsky ridge: Barun-Zasulan and Chumyrastui 6 Êëè÷êèíñêèé õð.: ìåæäó ïîñ. Êðàñíûé Âåëèêàí è ÑîêòóéÌèëîçàí Klichkinsky ridge 7 Àðãóíñêèé õð.: ìåæäó ãðÿäîé Ãûðèòóé è ïàäüþ Áóðãàñòàé / Argunsky ridge 8 Òîðåéñêàÿ êîòëîâèíà: ñîïêà Öàãàí-Îëà è îêðåñòíîñòè (çàêàçíèê «Äîëèíà äçåðåíà») Torei lakes depression: Tsaghan-Ola Mnt. 9 Òîðåéñêàÿ êîòëîâèíà: ñîïêà Îäæèòóé è îêðåñòíîñòè (çàêàçíèê «Äîëèíà äçåðåíà») Torei lakes depression: Odjitui Mnt. 10 Òîðåéñêàÿ êîòëîâèíà: ìåëêîñîïî÷íèê ê ñåâåðó îò îç. ÇóíÒîðåé / Torei lakes depression: hills on north banks of Zun-Torei lake 11 Ïðàâîáåðåæüå Îíîíà: ìåëêîñîïî÷íèê â áàññåéíå ð. Äóðóëãóéêà / Right banks of Onon river in Durulguika river basin Ïëîòíîñòü íà óñðåäíåííîé ïëîùàäêå**, M±SD Density on the averaged plot**, M±SD Òî æå, áåç ó÷¸òà «íóëåâûõ» ïëîùàäîê è ñ èñêëþ÷åíèåì Àðãóíñêîãî õð., M±SD The same, without the “zero” plots and with the exception of the Argun ridge, M±SD

Ôàêòè÷åñêàÿ Ïîòåíöèàëüíàÿ Èçìåíåíèå ïëîòíîñòü ïëîòíîñòü ôàêòè÷åñêîé ãíåçäîâàíèÿ, ãíåçäîâàíèÿ, ïëîòíîñòè àêòèâíûõ ãíåçäîâûõ ãíåçäîâûõ ó÷àñòêîâ íà ãíåçäîâàíèÿ ó÷àñòêîâ íà 100 êì2 100 êì2 çà 5 ëåò***, % Ïëîùàäü, îñìàòðèâàâ- Actual nesting density, Potential nesting den- ïåðâîíà÷àëüíîãî ïîêàçàòåëÿ øàÿñÿ ïîactive nesting areas sity, nesting areas per âòîðíî, êì2 per 100 km2 100 km2 Change in actual nesting density Area under for 5 years, % of survey re2010 2015 2010 2015 the 2010 figure peatedly, km2 143.16 0.70 0.70 1.40 2.10 0

132.64

0.75

0

0.75

0.75

-100

239.56

0.83

0.83

2.09

2.92

0

63.61

1.57

0.00

6.29

3.14

-100

154.5

1.29

1.85

2.59

3.70

50.00

194.5

1.03

1.03

2.57

3.60

0

46.41

6.46

4.31

8.62

8.62

-33.33

42.52

2.35

2.35

4.70

4.70

0

197.62

1.52

1.52

2.53

3.54

0

170.82

2.93

1.17

4.10

2.93

-60.00

173

0.58

1.73

1.16

3.47

200

1.82±1.70

1.42±1.11

3.34±2.40

3.61±1.90

1.36±0.77

1.41±0.51

2.82±1.73

3.10±1.1


Raptor Research

Raptors Conservation 2016, 32 òåððèòîðèé, êîòîðûå îñìàòðèâàëèñü ïîâòîðíî. Òàêîé ðàñ÷¸ò âêëþ÷àåò òîëüêî òå ãíåçäîâûå ó÷àñòêè ñòåïíîãî îðëà, êîòîðûå ïîïàäàþò â çîíó ïåðåñå÷åíèÿ ó÷åòíûõ ïëîùàäîê 2010 è 2015 ãã. Ïëîùàäü îñìîòðåííûõ òåððèòîðèé è äàííûå ïî ôàêòè÷åñêîé è ïîòåíöèàëüíîé ïëîòíîñòè ãíåçäîâàíèÿ â íèõ ïðåäñòàâëåíû â òàáë. 5. Êàê âèäíî, ïðè ðàñ÷¸òå íà îñíîâå ñòàáèëüíûõ ïëîùàäîê îöåíêè êàê ïîòåíöèàëüíîé, òàê è ôàêòè÷åñêîé ïëîòíîñòè îêàçûâàþòñÿ íà 10–30 % âûøå, ÷åì íà îñíîâå èçìåíÿåìûõ ïëîùàäîê. Îäíàêî çàêîíîìåðíîñòè â õàðàêòåðå ýòîãî óâåëè÷åíèÿ íå ïðîñëåæèâàåòñÿ. Ïðè îöåíêå íà îñíîâå ñòàáèëüíûõ ïëîùàäîê ïîòåíöèàëüíàÿ ïëîòíîñòü ãíåçäîâàíèÿ ìàëî èçìåíÿåòñÿ ñ 2010 ïî 2015 ã. (íåáîëüøîå óâåëè÷åíèå âåðîÿòíî ñâÿçàíî ñ áîëåå âíèìàòåëüíûì îñìîòðîì òåððèòîðèè). Èçìåíåíèå ôàêòè÷åñêîé ïëîòíîñòè ãíåçäîâàíèÿ òàêæå íåâåëèêî è ñòàòèñòè÷åñêè íåçíà÷èìî (ïðè p=0,1), ïðè÷åì îíî îñòàåòñÿ òàêîâûì è ïîñëå óñòðàíåíèÿ ìàñêèðóþùåãî âëèÿíèÿ àíîìàëüíî âûñîêîé ïëîòíîñòè íà ïëîùàäêå 7 (Àðãóíñêèé õð.). Òàêèì îáðàçîì, ðîñò ôàêòè÷åñêîé ïëîòíîñòè ãíåçäîâàíèÿ, ïî ñðàâíåíèþ ñ 2010 ã., ïðåäñòàâëÿåò ñîáîé ñêîðåå àðòåôàêò ðàñ÷¸òà, ÷åì ðåàëüíîå óâåëè÷åíèå. Ôàêòè÷åñêàÿ ïëîòíîñòü ãíåçäîâàíèÿ (ñ èñêëþ÷åíèåì Àðãóíñêîãî õð.) ñîõðàíÿåòñÿ â 2010–2015 ãã., â ñðåäíåì, îêîëî 1,4 ãíåçäîâûõ ó÷àñòêà íà 100 êì2 è ñîñòàâëÿåò îêîëî 45–48 % îò ïîòåíöèàëüíîé ïëîòíîñòè (÷òî ìàëî îòëè÷àåòñÿ îò îöåíîê íà îñíîâå èçìåíÿåìûõ ïëîùàäîê). Îöåíêà îáùåé ÷èñëåííîñòè ãíåçäîâîé ãðóïïèðîâêè Ïî îöåíêå, ïðèíÿòîé ðàíåå (Êàðÿêèí è äð., 2012), ïëîùàäü ñòåïíûõ ìåëêîñîïî÷íèêîâ è íèçêîãîðèé, ïðèãîäíûõ äëÿ ãíåçäî-

Ïòåíåö ñòåïíîãî îðëà â ãíåçäå. Ôîòî È. Êàðÿêèíà. Nestling of the Steppe Eagle in the nest. Photo by I. Karyakin.

107

âàíèÿ ñòåïíîãî îðëà, ñîñòàâëÿåò â ðåãèîíå îêîëî 17240 êì2. Ýêñòðàïîëÿöèÿ ñðåäíåé ïëîòíîñòè ðàçìåùåíèÿ ãíåçäîâûõ ó÷àñòêîâ (ïîòåíöèàëüíîé ïëîòíîñòè ãíåçäîâàíèÿ) ñ ó÷¸òíûõ ïëîùàäîê (èñêëþ÷àÿ âûñêàêèâàþùåå çíà÷åíèå äëÿ Àðãóíñêîãî õð.) íà âñþ ãíåçäîïðèãîäíóþ ïëîùàäü ïîçâîëÿåò ïðåäïîëàãàòü â ðåãèîíå âîçìîæíîñòü ãíåçäîâàíèÿ, â ñðåäíåì, 345 ïàð ñòåïíîãî îðëà, èñõîäÿ èç îöåíêè 2010 ãîäà. Ïðèíèìàÿ çà êðàéíèå îöåíêè ãðàíèöû äîâåðèòåëüíîãî èíòåðâàëà ñðåäíåé ±25 % (ñ îêðóãëåíèåì äî áëèæàéøåãî öåëîãî), ìîæíî ãîâîðèòü, ÷òî ïîòåíöèàëüíàÿ åìêîñòü ðåãèîíà äëÿ ãíåçäîâîé ãðóïïèðîâêè ñòåïíîãî îðëà ñîñòàâëÿåò îò 187 äî 504 ïàð (ïî äàííûì òîãî æå ãîäà). Îöåíêà ÷èñëåííîñòè ôàêòè÷åñêè ãíåçäÿùèõñÿ ïòèö 2010 ãîäà, ïîëó÷åííàÿ èñõîäÿ èç ôàêòè÷åñêîé ïëîòíîñòè ãíåçäîâàíèÿ, ñîñòàâëÿåò, â ñðåäíåì, 152 ïàðû (îò 114 äî 180 ïàð ïðè òîì æå äîïóùåíèè î ãðàíèöàõ äîâåðèòåëüíîãî èíòåðâàëà). Ðàíåå ïóáëèêîâàâøèåñÿ áîëåå íèçêèå îöåíêè áûëè îñíîâàíû íà ðàñ÷åòå ïëîòíîñòè ãíåçäîâàíèÿ, èñïîëüçóþùåì ïëîùàäü óñëîâíûõ ïëîùàäîê, à íå ôàêòè÷åñêè îñìîòðåííóþ ïëîùàäü (Êàðÿêèí è äð., 2012). Ïîòåíöèàëüíàÿ ÷èñëåííîñòü îöåíèâàëàñü, â ñðåäíåì, 196 ïàð (143–296 ïàð, îöåíêè ïî ìèíèìàëüíîé è ìàêñèìàëüíîé ïëîòíîñòÿì ãíåçäîâàíèÿ íà ïëîùàäêå), ôàêòè÷åñêàÿ ÷èñëåííîñòü – 144 ïàðû (105–198 ïàð) (Êàðÿêèí è äð., 2012). Êàê âèäíî, îöåíêè ïîòåíöèàëüíîé åìêîñòè ðàçëè÷àþòñÿ çíà÷èòåëüíî, íî ñìåùåíèå îöåíêè ôàêòè÷åñêîé ÷èñëåííîñòè íåâåëèêî. Ïî äàííûì 2015 ã. (ïðè òîé æå ìåòîäèêå ðàñ÷åòà, íà îñíîâå èçìåíåííûõ ïëîùàäîê) ïîòåíöèàëüíàÿ ÷èñëåííîñòü ãíåçäîâîé ãðóïïèðîâêè äîëæíà áûòü îöåíåíà áîëåå âûñîêî – â ñðåäíåì, 447 ïàð (îò 335 äî 559 ïàð). Ôàêòè÷åñêàÿ ÷èñëåííîñòü îöåíèâàåòñÿ, â ñðåäíåì, 219 ïàð (îò 164 äî 274 ïàð).


108

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ

Òàáë. 6 Òåíäåíöèè èçìåíåíèÿ îñíîâíûõ îöåíåííûõ õàðàêòåðèñòèê ãíåçäîâîé ãðóïïèðîâêè ñòåïíîãî îðëà â Äàóðèè. Table 6. Trends in main characteristics of the nesting population of steppe eagle in Dauria.

Õàðàêòåðèñòèêà / Characteristic Çàíÿòîñòü ó÷àñòêîâ (äîëÿ ó÷àñòêîâ, äîñòîâåðíî èñïîëüçóåìûõ îðëàìè, ñ ïîïûòêîé ãíåçäîâàíèÿ èëè áåç, îò îáùåãî ÷èñëà ãíåçäîâûõ ó÷àñòêîâ) Occupancy rate (share of territories, which are confirmed to use by eagles, with or without breeding attempt, of the total number of breeding territories) Äîëÿ ó÷àñòêîâ ñ óñïåøíûì ãíåçäîâàíèåì îò îáùåãî ÷èñëà ãíåçäîâûõ ó÷àñòêîâ Success rate (share of successful territories of the total number of nesting territories) Äîëÿ ó÷àñòêîâ, íà êîòîðûõ ïòèöû ïðèñòóïàëè ê ãíåçäîâàíèþ â òåêóùåì ãîäó, îò îáùåãî ÷èñëà ãíåçäîâûõ ó÷àñòêîâ Share of territories with recorded breeding attempts in the current year of the total number of nesting territories Äîëÿ ó÷àñòêîâ, äîñòîâåðíî èñïîëüçóåìûõ îðëàìè (ñ ïîïûòêîé ãíåçäîâàíèÿ èëè áåç), â âûáîðêå ó÷àñòêîâ ñ èçâåñòíîé ñóäüáîé Share of territories which are confirmed to use by eagles (with or without breeding attempt), of the number of nesting territories with known fate

Äîëÿ ó÷àñòêîâ ñ óñïåøíûì ãíåçäîâàíèåì) â âûáîðêå ó÷àñòêîâ ñ èçâåñòíîé ñóäüáîé Share of successful territories of the number of nesting territories with known fate Äîëÿ ó÷àñòêîâ, íà êîòîðûõ ïòèöû ïðèñòóïàëè ê ãíåçäîâàíèþ â òåêóùåì ãîäó, â âûáîðêå ó÷àñòêîâ ñ èçâåñòíîé ñóäüáîé Share of territories with recorded breeding attempts in the current year of the total number of nesting territories with known fate Ñðåäíåå ðàññòîÿíèå ìåæäó ñîñåäíèìè àêòèâíûìè (æèëûìè èëè àáîíèðóåìûìè) ãí¸çäàìè â ïðåäåëàõ ïëîùàäîê The average distance between neighbor active (successful or occupied) nests within the plots Ôàêòè÷åñêàÿ ïëîòíîñòü ãíåçäîâàíèÿ íà óñðåäíåííîé ïëîùàäêå The actual nesting density for the averaged plot Ôàêòè÷åñêàÿ ïëîòíîñòü ãíåçäîâàíèÿ íà óñðåäíåííîé ïëîùàäêå áåç ó÷¸òà âûñêàêèâàþùèõ çíà÷åíèé The actual nesting density for the averaged plot without outlier values Äîëÿ ó÷àñòêîâ, ãäå ïòèöû ôàêòè÷åñêè ïðåäïðèíèìàëè ïîïûòêó ãíåçäîâàíèÿ, îò îáùåãî ïóëà äîñòóïíûõ ãíåçäîâûõ ó÷àñòêîâ (îòíîøåíèå ôàêòè÷åñêîé ïëîòíîñòè ãíåçäîâàíèÿ ê ïîòåíöèàëüíîé) The share of territories with recorded breeding attempts of the total pool of available nesting territories (the ratio of actual to potential nesting density) Ïðîäóêòèâíîñòü óñïåøíûõ ãí¸çä (ñðåäíèé ðàçìåð âûâîäêà) Productivity of successful nests (average brood size) Óñïåøíîñòü ãíåçäîâàíèÿ (äîëÿ óñïåøíûõ ïàð îò îáùåãî ÷èñëà äåëàâøèõ ïîïûòêó ãíåçäîâàíèÿ) The breeding success (rate of successful pairs of he total number of pairs attempting to breed) Äîëÿ óñïåøíûõ ïàð îò ïîòåíöèàëüíîé ÷èñëåííîñòè ïîïóëÿöèè The share of successful pairs of potential population size Ýôôåêòèâíîñòü ðàçìíîæåíèÿ Breeding efficiency

Ôàêòè÷åñêàÿ ÷èñëåííîñòü ãíåçäîâîé ãðóïïèðîâêè The actual number of population Îòíîñèòåëüíàÿ ÷èñëåííîñòü ãíåçäîâîé ãðóïïèðîâêè (ñîîòíîøåíèå ôàêòè÷åñêîé è ïîòåíöèàëüíîé ÷èñëåííîñòè) Relative abundance of population (the ratio of the actual and potential numbers) Äîëÿ ìîëîäûõ ïòèö (ìëàäøå 4–5 ëåò) â âûáîðêå ðàññìîòðåííûõ âçðîñëûõ The share of subadults (under the age of 4–5 years) in the sample of examined adults

Òåíäåíöèÿ / Trend Íå èçìåíèëàñü / No change

Íå èçìåíèëàñü / No change

Íåçíà÷èòåëüíî ñíèçèëàñü / Slightly decreased

Íå èçìåíèëàñü (ñ ó÷åòîì ó÷àñòêîâ, çàíÿòûõ ìîõíîíîãèì êóðãàííèêîì) èëè íåçíà÷èòåëüíî ñíèçèëàñü (áåç ó÷åòà êóðãàííèêà) No change (including territories, occupied by the Upland Buzzard) or slightly decreased (without the Upland Buzzard) Íå èçìåíèëàñü / No change

Ñîêðàòèëàñü íà 17 % âûáîðêè Reduced by 17 % of the sample

Âèäèìî íå èçìåíèëîñü (ñëàáîå óâåëè÷åíèå – àðòåôàêò àíàëèçà) Probably no change (a slight increase is the artifact of the analysis) Ïðàêòè÷åñêè íå èçìåíèëàñü / Practically not changed Ïðàêòè÷åñêè íå èçìåíèëàñü (âîçðîñëà íà òðåòü, åñëè ñðàâíèâàòü ïëîùàäêè èçìåíåííîé ïëîùàäè) Practically not changed (comparing plots with changed area one-third increase is noted) Íåçíà÷èòåëüíî âûðîñëà / Slightly increased

Íå èçìåíèëàñü / No change Âîçðîñëà (ñ 50 % äî 65,5 %) Increased (from 50 % to 65.5 %)

Âîçðîñëà (ñ 20 % äî 32 % èëè ìåíåå) Increased (from 20 % to 32 % or less) Âûðîñëà ïî÷òè âäâîå (ñ 0,55 äî 0,93 ñë¸òêîâ íà ïðèñòóïàâøóþ ê ãíåçäîâàíèþ ïàðó) Almost doubled (from 0.55 to 0.93 fledglings per breeding pair) Âûðîñëà / Increased Íåñêîëüêî âûðîñëà (ñ 44 % äî 49 %) Slightly increased (from 44 % to 49 %)

Ñíèçèëàñü ïðèìåðíî âäâîå (ñ 76 % äî 35 %) Decreased approximately by half (from 76 % to 35 %)


Raptor Research

Raptors Conservation 2016, 32 Òàêèì îáðàçîì, â 2010 ã. ôàêòè÷åñêè ãíåçäÿùèåñÿ ïòèöû ñîñòàâëÿëè, â ñðåäíåì, îêîëî 44 % ïîòåíöèàëüíî âîçìîæíîé ÷èñëåííîñòè, à â 2015 ã. – îêîëî 49 %. Íóæíî ó÷åñòü, ÷òî îöåíêà ÷èñëåííîñòè ôàêòè÷åñêè ãíåçäÿùèõñÿ ïòèö îñíîâàíà íà ïëîòíîñòè ðàçìåùåíèÿ àêòèâíûõ ãíåçäîâûõ ó÷àñòêîâ, íî óñïåøíûì ãíåçäîâàíèå áûëî òîëüêî íà ÷àñòè ýòèõ ó÷àñòêîâ.  èññëåäîâàííîé âûáîðêå äîëÿ óñïåøíûõ îò îáùåãî ÷èñëà àêòèâíûõ ãíåçäîâûõ ó÷àñòêîâ â 2010 ã. ñîñòàâèëà 50 %, â 2015 ã. – 65,5 %. Ïîñëåäíÿÿ îöåíêà, ñêîðåå âñåãî, çàâûøåíà.  2015 ã. áîëüøîå ÷èñëî ãíåçäîâûõ ïîñòðîåê áûëî óíè÷òîæåíî âåñåííèìè ïîæàðàìè, òàê ÷òî ïðè îñìîòðå íå âñåãäà óäàâàëîñü óçíàòü, ÿâëÿëñÿ ëè ó÷àñòîê çàíÿòûì ê ìîìåíòó ïîæàðà (ïðîéäåííûå ïîæàðîì ó÷àñòêè, ãäå ñîõðàíèëèñü ñëåäû íåóñïåøíîé ïîïûòêè ãíåçäîâàíèÿ, ó÷èòûâàëè â ñîîòâåòñòâóþùåé êàòåãîðèè – êàê íåóñïåøíûé). Ñîîòâåòñòâåííî, â îáùåì ÷èñëå ó÷àñòêîâ ñ ðàçðóøåííûìè ãí¸çäàìè îêàçàëàñü ó÷òåíà, âèäèìî, êàêàÿ-òî íåèçâåñòíàÿ äîëÿ ó÷àñòêîâ, ãäå èìåëî ìåñòî íåóñïåøíîå (ïðåðâàííîå ïîæàðîì) ãíåçäîâàíèå. Òåì íå ìåíåå, ìû íå ìîæåì ñêàçàòü, íàñêîëüêî ïîêàçàòåëü çàâûøåí. Åñëè ýêñòðàïîëèðîâàòü óêàçàííûå ñîîòíîøåíèÿ íà âñþ ãíåçäîâóþ ãðóïïèðîâêó (÷òî ìîæíî ñäåëàòü òîëüêî óñëîâíî), òî ïîëó÷èì ñëåäóþùèå îêîí÷àòåëüíûå îöåíêè: â 2010 ã. óñïåøíûìè áûëè òîëüêî îêîëî 76 ïàð – ÷óòü áîëåå 20 % îò ïîòåíöèàëüíîé ÷èñëåííîñòè ãíåçäîâîé ãðóïïèðîâêè, â 2015 ã. óñïåøíûõ ïàð ñòàëî îêîëî 143 – íåìíîãî áîëåå 30 % îò ïîòåíöèàëüíîé ÷èñëåííîñòè ãíåçäîâîé ãðóïïèðîâêè (íî ñ ó÷¸òîì ïðèâåäåííîé âûøå îãîâîðêè – âåðîÿòíî ìåíüøå). Âëèÿíèå íåãàòèâíûõ ôàêòîðîâ Èç ÷èñëà îñíîâíûõ íåãàòèâíûõ ôàêòîðîâ, âëèÿþùèõ íà ïîïóëÿöèþ ñòåïíîãî îðëà â Äàóðèè (ñì. âûøå), â õîäå îáñëåäîâàíèÿ ñïåöèàëüíîå âíèìàíèå îáðàùàëè íà ýôôåêòû ñòåïíûõ ïîæàðîâ è ïòèöåîïàñíûõ ËÝÏ. Èç îñìîòðåííûõ â 2015 ã. ó÷àñòêîâ ñòåïíîãî îðëà 31 ó÷àñòîê (îêîëî 42,5 %) ñ 32 ãíåçäîâûìè ïîñòðîéêàìè â ðàçíîé ñòåïåíè ïðîéäåí ïîæàðàìè òåêóùåãî ãîäà (â îñ-

Ïòåíåö ñòåïíîãî îðëà â ãíåçäå. Ôîòî À. Áàðàøêîâîé. Nestling of the Steppe Eagle in the nest. Photo by A. Barashkova.

109

íîâíîì â àïðåëå, ðåæå ëåòîì), â òîì ÷èñëå 25 ó÷àñòêîâ ñ ãíåçäàìè (48 % îáùåãî ÷èñëà òàêèõ ó÷àñòêîâ). Ïî ìåíüøåé ìåðå, 15 ãíåçäîâûõ ïîñòðîåê ñãîðåëî â ïîæàðàõ, 9 èç íèõ î÷åâèäíî â 2015 ã. Íà 9 ãîðåâøèõ ó÷àñòêàõ áûëè îáíàðóæåíû ãí¸çäà ñ âûâîäêàìè. Âîçìîæíî, ïîæàðû â ýòèõ ñëó÷àÿõ ïðîøëè ðàíüøå íà÷àëà ãíåçäîâàíèÿ îðëîâ. Íà 4 ó÷àñòêàõ íàéäåíû ïðèçíàêè íåóñïåøíîãî ðàçìíîæåíèÿ.  îäíîì ãíåçäå, ïî-âèäèìîìó, ïîãèáëà êëàäêà èëè ïóõîâûå ïòåíöû – ñàìî ãíåçäî íå ñãîðåëî, íî îãîíü ïîäõîäèë ê íåìó âïëîòíóþ.  3 ñëó÷àÿõ îáíàðóæåíû ñâåæèå íàáðîñêè ãí¸çä ïîâåðõ ãàðè. Ýòè ïîïûòêè íå çàêîí÷èëèñü óñïåøíûì ðàçìíîæåíèåì. Íà 6 ó÷àñòêàõ çàôèêñèðîâàíû ôàêòû ïîëíîãî ñãîðàíèÿ èçâåñòíûõ ðàíåå ãíåçä (ñì. âûøå). Íå ìåíåå 4 èç íèõ ñãîðåëè â ïîæàðàõ 2015 ãîäà, õîòÿ íå èñêëþ÷åíî, ÷òî îíè ìîãëè ãîðåòü è â ïðåäûäóùèå ãîäû. Åù¸ íà 6 ïðîéäåííûõ ïîæàðîì ó÷àñòêàõ ãí¸çäà ñîõðàíèëèñü – îíè áûëè ñòàðûå, áîëüøåé ÷àñòüþ ðàçðóøåííûå è îáãîðåâøèå (â íåêîòîðûõ ñëó÷àÿõ â ïîñòðîéêå èñïîëüçîâàíû ðàíåå îáãîðåâøèå ïðóòüÿ). Èç ýòîãî ÷èñëà 5 ãí¸çä îñìàòðèâàëèñü â 2010 ã., â îäíîì èç íèõ òîãäà áûë îòìå÷åí âûâîäîê èç 2 ïòåíöîâ. Îáñëåäîâàíèå ïòèöåîïàñíûõ ËÝÏ â 2015 ã. ïðîâîäèëîñü òîëüêî ïîïóòíî. Ïîãèáøèõ îðëîâ ïîä ËÝÏ íå íàéäåíî, õîòÿ òðóïû äðóãèõ âèäîâ ïòèö áûëè îáíàðóæåíû. Îáùàÿ îöåíêà èçìåíåíèé çà ïåðèîä 2010–2015 ãã. Îáú¸ì âûáîðêè îáñëåäîâàííûõ ãíåçäîâûõ ó÷àñòêîâ â 2015 ã. áûë â ïîëòîðà ðàçà


110

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Ïòåíåö ñòåïíîãî îðëà â ãíåçäå. Ôîòî À. Áàðàøêîâîé. Nestling of the Steppe Eagle in the nest. Photo by A. Barashkova.

áîëüøå, ÷åì â 2010. Íåçàâèñèìî îò ýòîãî, îñíîâíûå ïîääàþùèåñÿ ïðÿìîìó èçìåðåíèþ õàðàêòåðèñòèêè ãíåçäîâîé ãðóïïèðîâêè çà ïðîøåäøèå ãîäû ñóùåñòâåííî íå èçìåíèëèñü. Ïî èòîãàì ðàáîò 2010 ãîäà ñîñòîÿíèå ïîïóëÿöèè ñòåïíîãî îðëà â Äàóðèè îöåíèâàëîñü êàê êðàéíå íåáëàãîïîëó÷íîå íà îñíîâàíèè íàëè÷èÿ ñëåäóþùèõ ïðèçíàêîâ äåãðàäàöèè (Êàðÿêèí è äð., 2012): 1. Íèçêàÿ ïëîòíîñòü â ãíåçäîïðèãîäíûõ ìåñòîîáèòàíèÿõ. 2. Áîëüøîå êîëè÷åñòâî ïîêèíóòûõ ó÷àñòêîâ. 3. Íèçêèé óðîâåíü çàíÿòîñòè ó÷àñòêîâ. 4. Íèçêàÿ ïðîäóêòèâíîñòü óñïåøíûõ ãí¸çä. 5. Âûñîêèé óðîâåíü ñìåðòíîñòè âçðîñëûõ ïòèö è, êàê ñëåäñòâèå, îìîëàæèâàíèå ðàçìíîæàþùåéñÿ ÷àñòè ïîïóëÿöèè. Çà ïðîøåäøèå ïÿòü ëåò ôàêòè÷åñêàÿ ñðåäíÿÿ ïëîòíîñòü ãíåçäîâàíèÿ ñòåïíîãî îðëà â ðåãèîíå ñóùåñòâåííî âûðîñëà, íî îíà ïî-ïðåæíåìó íåâûñîêà (íåìíîãèì âûøå 1 ïàðû/100 êì2), à ñðåäíÿÿ äèñòàíöèÿ ìåæäó áëèæàéøèìè óñïåøíûìè ãí¸çäàìè êðàòíî ïðåâûøàåò ïîêàçàòåëè, îáû÷íûå äëÿ ñòåïíîãî îðëà â äðóãèõ ðåãèîíàõ. Áîëåå ïîëîâèíû âñåõ ïîòåíöèàëüíî äîñòóïíûõ äëÿ ïòèö ó÷àñòêîâ â ãíåçäîïðèãîäíûõ áèîòîïàõ îñòàþòñÿ íåçàíÿòûìè, ïðè÷åì îòíîñèòåëüíîå êîëè÷åñòâî íåçàíÿòûõ ïòèöàìè ó÷àñòêîâ (èõ äîëÿ îò âñåé âûáîðêè) ïðàêòè÷åñêè íå èçìåíèëîñü çà ïðîøåäøèå ïÿòü ëåò. Ïðîäóêòèâíîñòü óñïåøíûõ ãí¸çä òàêæå íå óâåëè÷èëàñü. Òàêèì îáðàçîì, áîëüøèíñòâî (èëè âñå) ïðèçíàêè íåáëàãîïîëó÷èÿ ïîïóëÿöèè ïðîäîëæàþò íàáëþäàòüñÿ. Ïðè ýòîì â ðåãèîíå ïðîäîëæàþò äåéñòâîâàòü ëîêàëüíûå íåãàòèâíûå ôàêòîðû, â òîé èëè èíîé ìåðå çàòðàãèâàþùèå íå ìåíåå òðåòè ïîïóëÿöèè (íàïðèìåð, ïîæàðû). Âìåñòå ñ òåì, ïðåäñòàâëÿåòñÿ, ÷òî ñðàâíèòåëüíî ñ ñèòóàöèåé 2010 ãîäà ìîæíî îòìåòèòü ðÿä áîëåå èëè ìåíåå õîðîøî âû-

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ ðàæåííûõ ïîëîæèòåëüíûõ òåíäåíöèé: 1. Ðîñò àáñîëþòíîé ÷èñëåííîñòè ïîïóëÿöèè (ïî÷òè íà 30 %, ñ ïðèìåðíî 152 äî 219 ãíåçäÿùèõñÿ ïàð). 2. Óâåëè÷åíèå óñïåøíîñòè ãíåçäîâàíèÿ (äîëè óñïåøíûõ ïàð îò îáùåãî ÷èñëà äåëàâøèõ ïîïûòêó ãíåçäîâàíèÿ) íà 24 %. 3. Óâåëè÷åíèå ýôôåêòèâíîñòè ðàçìíîæåíèÿ (ñðåäíåãî êîëè÷åñòâà ñë¸òêîâ íà îäíó ïðèñòóïàâøóþ ê ãíåçäîâàíèþ ïàðó) ïî÷òè âäâîå. 4. Óâåëè÷åíèå äîëè óñïåøíûõ ïàð îò ïîòåíöèàëüíîé ÷èñëåííîñòè ãíåçäîâîé ãðóïïèðîâêè ñ ìåíåå ÷åòâåðòè äî ïî÷òè òðåòè (ñ 22 äî 32%, âîçìîæíî ìåíåå). Òåíäåíöèè èçìåíåíèÿ îñíîâíûõ îöåíåííûõ õàðàêòåðèñòèê ãíåçäîâîé ãðóïïèðîâêè ñóììèðîâàíû â òàáëèöå (òàáë. 6). Âûÿâëåíèå ïðè÷èí íàáëþäàåìûõ èçìåíåíèé â ãíåçäîâîé ãðóïïèðîâêå ñòåïíîãî îðëà íå âõîäèò â çàäà÷è íàñòîÿùåé ñòàòüè. Òåì íå ìåíåå, íåîáõîäèìî îòìåòèòü, ÷òî 2010 ã. â ðåãèîíå ðàáîò âûäåëÿëñÿ íåáëàãîïðèÿòíûìè ïîãîäíûìè óñëîâèÿìè.  ÷àñòíîñòè, â òîì ãîäó îòìå÷àëèñü ýêñòðåìàëüíî âûñîêèå ëåòíèå òåìïåðàòóðû, âûçâàâøèå ìàññîâóþ ãèáåëü ïîòîìñòâà ìíîãèõ âèäîâ ïòèö, â òîì ÷èñëå, íàïðèìåð, ìîõíîíîãèõ êóðãàííèêîâ. Ôàêòû ãèáåëè îò æàðû ïòåíöîâ ñòåïíîãî îðëà íå áûëè çàôèêñèðîâàíû, íî îíè âåñüìà âåðîÿòíû.  òî æå âðåìÿ, èçìåíåíèÿ ìîãóò áûòü ñâÿçàíû ñ êàêèìè-òî ôàêòîðàìè, äåéñòâóþùèìè íà ìàðøðóòå ïðîëåòà è ìåñòàõ çèìîâêè, ëèáî áûòü ñëåäñòâèåì ïîñòåïåííîãî âîññòàíîâëåíèÿ ïîïóëÿöèè ïîñëå êàêîãî-òî ðàíåå ñëó÷èâøåãîñÿ êðóïíîãî íàðóøåíèÿ. Ëèòåðàòóðà Âàæîâ Ñ.Â., Êàðÿêèí È.Â., Íèêîëåíêî Ý.Ã., Áàðàøêîâà À.Í., Ñìåëÿíñêèé È.Ý., Òîìèëåíêî À.À., Áåêìàíñóðîâ Ð.Õ. Ïåðíàòûå õèùíèêè ïëàòî Óêîê, Ðîññèÿ. – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2011. ¹ 22. Ñ. 153–175. [Vazhov S.V., Karyakin I.V., Nikolenko E.G., Barashkova A.N., Smelansky I.E., Tomilenko A.A., Bekmansurov R.H. Raptors of the Ukok Plateau, Russia. – Raptors Conservation. 2011. 22: 153–175]. URL: http:// rrrcn.ru/ru/archives/12748 Äàòà îáðàùåíèÿ: 10.03.2016. Âàæîâ Ñ.Â., Áàõòèí Ð.Ô., Áàðàøêîâà À.Í., Ñìåëÿíñêèé È.Ý. Ê èçó÷åíèþ ñòåïíîãî îðëà â Àëòàéñêîì êðàå, Ðîññèÿ. – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2013. ¹ 27. Ñ. 162–171. [Vazhov S.V., Bachtin R.F., Barashkova A.N., Smelansky I.E. On the Study of the Steppe Eagle in the Altai Kray, Russia. – Raptors Conservation. 2013. 27: 162– 171]. URL: http://rrrcn.ru/ru/archives/21177 Äàòà îáðàùåíèÿ: 10.03.2016. Âàñèëü÷åíêî À.À. Ðåäêèå âèäû ïòèö þãî-âîñ-


Raptor Research

Raptors Conservation 2016, 32 òî÷íîãî Çàáàéêàëüÿ. – Èçó÷åíèå ïòèö ÑÑÑÐ, èõ îõðàíà è ðàöèîíàëüíîå èñïîëüçîâàíèå. Ò. 1. Ë, 1986. Ñ. 116–117 [Vasilchenko A.A. Rare species of birds of southeastern Transbaikalia. – The study of the birds of the USSR, their protection and rational use. Vol. 1. Leningrad, 1986: 116– 117 (in Russian)]. Ãîðîøêî Î.A. Ãèáåëü ïòèö íà ËÝÏ â Äàóðñêîé ñòåïè (Þãî-Âîñòî÷íîå Çàáàéêàëüå), Ðîññèÿ. – Ïåðíàòûå õèùíèêè è èõ îõðàíà, 2011, ¹ 21. Ñ. 84–99. [Goroshko O.A. Bird Electrocution in the Daurian Steppe (South-Eastern TransBaikal Region), Russia. – Raptors Conservation. 2011, 21: 84–99]. URL: http://rrrcn.ru/ru/archives/15240 Äàòà îáðàùåíèÿ: 15.03.2016. Ãîðîøêî Î.À. Ñòåïíîé îð¸ë. – Êðàñíàÿ êíèãà Çàáàéêàëüñêîãî êðàÿ. Æèâîòíûå / Ðåä. êîëëåãèÿ: Å.Â. Âèøíÿêîâ, À.Í. Òàðàáàðêî, Â.Å. Êèðèëþê, Î.À. Ãîðîøêî, Î.Â. Êîðñóí, Î.Ê. Êëèøêî, Å.Ý. Ìàëêîâ, È.Å. Ìèõååâ, Í.À. Õàð÷åíêî, Í.Ñ. Êî÷íåâà. Íîâîñèáèðñê: ÎÎÎ «Íîâîñèáèðñêèé èçäàòåëüñêèé äîì», 2012. Ñ. 99–100 [Goroshko O.A. Steppe Eagle. – The Red Data Book of the Zabaikalsky Kray. Animals / E.V. Vishnyakov, A.N. Tarabarko, V.E. Kiriluk, O.A. Goroshko, O.V. Korsun, O.K. Klishko, E.E. Malkov, I.E. Miheev, N.A. Harchenko, N.S. Kochneva eds. Novosibirsk, 2012: 99–100 (in Russian)]. Äîáðîíðàâîâ Â.Ï. Î áèîëîãèè ñòåïíîãî îðëà â þãî-âîñòî÷íîì Çàáàéêàëüå. – Èçâ. ãîñ. ïðîòèâî÷óì. èí-òà Ñèáèðè è Äàëüíåãî Âîñòîêà. Ò. 7. Èðêóòñê, 1949. Ñ. 183–193 [Dobronravov V.P. About biology of the Steppe Eagle in southeastern Transbaikalia. – Newsletter of the State Antiplague Institute of Siberia and Far East. Vol. 7. Irkutsk, 1949: 183–193 (in Russian)]. Êàðäàø À.È., Ïåøêîâ Á.È., Âåðøèíèí Í.Ì. ×èñëåííîñòü ñòåïíîãî îðëà â Þãî-Âîñòî÷íîì Çàáàéêàëüå. – Ïðèðîäíîî÷àãîâûå èíôåêöèè â Çàáàéêàëüå. ×èòà, 1983. Ñ. 95–97 [Kardash A.I., Peshkov B.I., Vershinin N.M. The population number of the Steppe Eagle in SouthEast Transbaikalia. – Natural focal infections in Transbaikalia. Chita, 1983: 95–97 (in Russian)]. Êàðÿêèí È.Â. Ìåòîäè÷åñêèå ðåêîìåíäàöèè ïî îðãàíèçàöèè ìîíèòîðèíãà ïîïóëÿöèé ñòåïíîãî îðëà â Ðîññèè è Êàçàõñòàíå. Íîâîñèáèðñê: Àêàäåìè÷åñêîå èçäàòåëüñòâî «Ãåî», 2012. 89 ñ. [Karyakin I.V. Methods on the organization of monitoring of the Steppe Eagle populations in Russia and Kazakhstan. Novosibirsk, 2012: 1–89. (in Russian)]. URL: http://rrrcn.ru/ru/archives/12822 Äàòà îáðàùåíèÿ: 15.03.2016. Êàðÿêèí È.Â. Îáçîð ñîâðåìåííîãî ñòàòóñà ñòåïíîãî îðëà â ìèðå è â Ðîññèè. – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2013. ¹ 26. Ñ. 22–43 [Karyakin I.V. Review of the Modern Population Status of the Steppe Eagle in the World and in Russia. – Raptors Conservation. 2013. 26: 22– 43.]. URL: http://rrrcn.ru/archives/19580 Äàòà îáðàùåíèÿ: 15.03.2016. Êàðÿêèí È.Â. Ïîâûøåí ãëîáàëüíûé ïðèðîäîîõðàííûé ñòàòóñ ñòåïíîãî îðëà. – Ïåðíàòûå

111

õèùíèêè è èõ îõðàíà. 2015a. ¹ 30. Ñ. 21–30. DOI: 10.19074/1814-8654-2015-30-21-30 [Karyakin I.V. The Steppe Eagle Global Conservation Status Was Raised. – Raptors Conservation. 2015. 30: 21–30. DOI: 10.19074/18148654-2015-30-21-30]. URL: http://rrrcn.ru/ru/ archives/25956 Äàòà îáðàùåíèÿ: 15.03.2016. Êàðÿêèí È.Â. Ñòåïíîé îð¸ë ïðèçíàí èñ÷åçàþùèì â Åâðîïå è óãðîæàåìûì â ìèðîâîì ìàñøòàáå. – Ñòåïíîé Áþëëåòåíü. 2015b. ¹ 45. Ñ. 50–53 [Karyakin I.V. Steppe Eagle recognized as critically endangered in Europe and endangered on a global scale. – Steppe Bulletin. 2015b. 45: 50–53]. URL: http://savesteppe.org/ru/archives/12392 Äàòà îáðàùåíèÿ: 15.03.2016. Êàðÿêèí È.Â., Íèêîëåíêî Ý.Ã., Áàðàøêîâà À.Í. Îðëû Äàóðèè, Ðîññèÿ. – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2012. ¹ 25. Ñ. 97–114 [Karyakin I.V., Nikolenko E.G., Barashkova A.N. The Eagles in Dauria, Russia. – Raptors Conservation. 2012. 25: 97–114.]. URL: http://rrrcn.ru/ru/archives/19116 Äàòà îáðàùåíèÿ: 15.03.2016. Êàðÿêèí È.Â., Ïàæåíêîâ À.Ñ., Êîâàëåíêî À.Â., Êîðæåâ Ä.À., Íîâèêîâà Ë.Ì. Êðóïíûå ïåðíàòûå õèùíèêè Ìóãîäæàð, Êàçàõñòàí. – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2007. ¹8. C. 53–65 [Karyakin I.V., Pazhenkov A.S., Kovalenko A.V., Korzhev D.A., Novikova L.M. Large raptors in the Mugdzhary Mountains, Kazakhstan. – Raptors Conservation. 2007. 8: 53–65]. URL: http:// docs.sibecocenter.ru/programs/raptors/RC08/ raptors_conservation_2007_8_pages_53_65. pdf Äàòà îáðàùåíèÿ: 10.03.2016. Ïåøêîâ Á.È. Íåêîòîðûå îñîáåííîñòè ýêîëîãèè ñòåïíîãî îðëà â âîñòî÷íîé ÷àñòè àðåàëà (Çàáàéêàëüå). – Ìàòåðèàëû ê II Âñåñîþç. ñîâåù. «Âèä è åãî ïðîäóêòèâíîñòü â àðåàëå». Âèëüíþñ, 1976. Ñ. 100–102 [Peshkov B.I. Some features of the ecology of the Steppe Eagle in the eastern part of the range (Baikal). – Proceedings of the II All-Union Conference “Species and productivity in the range”. Vilnius, 1976: 100–102 (in Russian)]. Ðåãèîíû Ðîññèè. Ñîöèàëüíî-ýêîíîìè÷åñêèå ïîêàçàòåëè. Ñòàò. ñá. 2015 / Ðîññòàò. Ì., 2015. 1266 ñ. [Regions of Russia. Socio-economic indicators. Statistical Yearbook 2015 / Rosstat. Moscow, 2015: 1–1266]. Ðåãèîíû Ðîññèè: Ñòàò. ñá. â 2 ò. Ò. 2. / Ãîñêîìñòàò Ðîññèè. Ì., 2001. 827 ñ. [Regions of Russia. Statistical Yearbook. Vol. 2. / State Statistics Committee of Russia. Moscow, 2001: 1–827]. Ñìåëÿíñêèé È.Ý. Ñêîëüêî â ñòåïíîì ðåãèîíå Ðîññèè çàëåæåé? – Ñòåïíîé Áþëëåòåíü. 2012. ¹ 36. Ñ. 4–7 [Smelansky I.E. How many fallow land in the steppe region of Russia? – Steppe Bulletin. 2012. 36: 4–7 (in Russian)]. URL: http:// savesteppe.org/ru/archives/9501 Äàòà îáðàùåíèÿ: 07.03.2016. BirdLife International. Aquila nipalensis. The IUCN Red List of Threatened Species 2015: e.T22696038A80351871. 2015. DOI: 10.2305/ IUCN.UK.2015-4.RLTS.T22696038A80351871. en. URL: http://www.iucnredlist.org/details/22696038/0 Date accessed: 07.03.2016.


112

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ

Species Accounts ВИДОВЫЕ ОЧЕРКИ Will the Merlin Disappear As a Breeding Species from Northern Belarus? ИСЧЕЗНЕТ ЛИ ДЕРБНИК НА ГНЕЗДОВАНИИ ИЗ СЕВЕРНОЙ БЕЛОРУССИИ? Ivanovsky V.V. (Vitebsk State University named P.M. Masherov, Belarus) Ивановский В.В. (Витебский государственный университет имени П.М. Машерова, Белоруссия)

Êîíòàêò: Âëàäèìèð Èâàíîâñêèé Âèòåáñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò èìåíè Ï.Ì. Ìàøåðîâà 210038, Ðåñïóáëèêà Áåëàðóñü, Âèòåáñê, Ìîñêîâñêèé ïð-êò, 33 ivanovski@tut.by Contact: Vladimir Ivanovsky Vitebsk State University named P.M. Masherov Moskovskiy ave., 33, Vitebsk, Belarus, 210038 ivanovski@tut.by

Ðåçþìå  ìàòåðèàëå î ñîêîëå äåðáíèêå (Falco columbarius) ðàññìàòðèâàþòñÿ èçìåíåíèå ÷èñëåííîñòè è ñòðóêòóðû àðåàëà ó þæíîé ãðàíèöû ãíåçäîâàíèÿ. Çà 2014–2015 ãîäû ïðîàíàëèçèðîâàíà ôåíîëîãèÿ ðàçìíîæåíèÿ, ïðîäóêòèâíîñòü, óñïåõ ðàçìíîæåíèÿ è ñîñòàâ äîáû÷è ýòîãî âèäà. Êëþ÷åâûå ñëîâà: õèùíûå ïòèöû, ïåðíàòûå õèùíèêè, äåðáíèê, Falco columbarius, ãíåçäîâàíèå, Áåëîðóññèÿ. Ïîñòóïèëà â ðåäàêöèþ: 28.01.2016 ã. Ïðèíÿòà ê ïóáëèêàöèè: 28.02.2016 ã. Abstract This article describes the changes in population number and structure, of Merlin (Falco columbarius) at the southern limit of its breeding range. Breeding phenology, reproductive efficiency and success, and prey species composition were analysed during 2014–2015. Keywords: birds of prey, raptors, Merlin, Falco columbarius, breeding, nesting, Belarus. Received: 28/01/2016. Accepted: 28/02/2016. DOI: 10.19074/1814-8654-2016-32-112-117

 Âèòåáñêîé îáëàñòè Áåëîðóññèè (Áåëîðóññêîì Ïîîçåðüå) ìîíèòîðèíã ãíåçäîâîé ãðóïïèðîâêè äåðáíèêà (Falco columbarius), ñîêîëà âíåñ¸ííîãî â Êðàñíóþ êíèãó Ðåñïóáëèêè Áåëàðóñü ñ êàòåãîðèåé III, èìååò äàâíèå òðàäèöèè (Äîðîôååâ, Èâàíîâñêèé, 1980; Èâàíîâñêèé, 1999; Èâàíîâñêèé, Èâàíîâñêèé, 2003; Èâàíîâñêèé, 2012; Ìîðîçîâ è äð., 2013 è äð.). Åñëè ðàññìàòðèâàòü ñèòóàöèþ çà âåñü ïåðèîä èññëåäîâàíèé (1962–2015), òî ìîæíî îòìåòèòü ïëàâíóþ, íî óñòîé÷è-

Monitoring of the breeding population of the Merlin (Falco columbarius) in the Vitebsk region of Belarus (Belorusskoye Poozjorye) has a long history (Dorofeev, Ivanovsky, 1980; Ivanovsky, 1980; Ivanovsky, 1999; Ivanovsky, Ivanovsky, 2003; Ivanovsky, 2012; Morozov et al., 2013; e.t.c). The Merlin is rated under the III category in the Red Book of endangered species of Belarus Republic. During the whole period of population monitoring in Belarus (1962–2015), a slow but steady decrease in numbers was recorded. At the end of the 70ties, breeding pairs of Merlin began to vanish from cultivated areas (pine forest edges in open landscapes) (Dorofeev, Ivanovsky, 1980). In the last decades, the species does not

Ðèñ. 1. Ñèëüíî îáâîäí¸ííûé ãðÿäîâî-ìî÷àæèííûé êîìïëåêñ íà âåðõîâîì áîëîòå – íàèáîëåå ðàñïðîñòðàí¸ííûé òèï ãíåçäîâîãî áèîòîïà äåðáíèêà (Falco columbarius) â Áåëîðóññèè. Ôîòî Â. Èâàíîâñêîãî. Fig. 1. A hummock-hollow complex of a raised bog is the most common type of breeding biotope of the Merlin (Falco columbarius) in Belarus. Photo by V. Ivanovsky.


Raptor Research

Raptors Conservation 2016, 32

113

Ðèñ. 2. Ãí¸çäà äåðáíèêà: À – î÷åíü ðåäêèé ñëó÷àé, êîãäà ñàìêà, îáîãðåâàâøàÿ ìàëåíüêèõ ïòåíöîâ 06.06.2015, ñëåòåëà òîëüêî êîãäà ìû ïîäíÿëèñü ê ñàìîìó ãíåçäó, B – êëàäêà äåðáíèêà 22.05.2007 â èñêóññòâåííîì ãíåçäå – «âåäðå», Ñ – ïòåíöû äåðáíèêà 28.06.2015 âî âòîðîì ïóõîâîì íàðÿäå ñ íà÷àâøèìèñÿ ðàñêðûâàòüñÿ ðóëåâûìè è ìàõîâûìè, D – íà÷àâøèå îïåðÿòüñÿ ïòåíöû äåðáíèêà íà èñêóññòâåííîì ãíåçäå – «êî÷êå». Ôîòî Â. Èâàíîâñêîãî. Fig. 2. Merlin’s nests: À – a rare case when a female warming her chicks on 06.06.2015, sat tight until we almost reached the nest, B – a clutch of eggs on 22.05.2007 in the artificial nest “bucket”, Ñ – nestlings in the second down plumage with wing and tail feathers beginning to unfold on 28.06.2015, D – fledged nestlings in the artificial nest “hummock”. Photos by V. Ivanovsky.

âóþ òåíäåíöèþ ê ñíèæåíèþ ÷èñëåííîñòè äåðáíèêà â Áåëîðóññèè.  êîíöå 70-õ ãîäîâ ÕÕ ñòîëåòèÿ äåðáíèê ñòàë èñ÷åçàòü íà ãíåçäîâüå èç êóëüòóðíîãî ëàíäøàôòà (îïóøêè ñîñíîâûõ ïåðåëåñêîâ ñðåäè îòêðûòûõ ïðîñòðàíñòâ) (Äîðîôååâ, Èâàíîâñêèé, 1980).  ïîñëåäíèå äåñÿòèëåòèÿ â ýòîì áèîòîïå îí óæå íå ãíåçäèòñÿ. Ïåðâàÿ ýêñïåðòíàÿ îöåíêà ÷èñëåííîñòè äåðáíèêà â Áåëîðóññêîì Ïîîçåðüå áûëà äàíà â 1979 ãîäó: 250–300 ãíåçäÿùèõñÿ ïàð (Äîðîôååâ, Èâàíîâñêèé, 1980). Ýêñïåðòíàÿ îöåíêà 2011 ãîäà ïîêàçàëà ñíèæåíèå ÷èñëåííîñòè äåðáíèêà â ýòîì ðåãèîíå äî 220–250 ïàð (Èâàíîâñêèé, 2012).  2014–2015 ãîäàõ, âïåðâûå çà 40 ëåò íàáëþäåíèé, äåðáíèê íå ãíåçäèëñÿ íà âûðàáîòàííûõ è çàáðîøåííûõ òîðôîêàðüåðàõ. Íå îòìå÷åíî è ïåðåðàñïðåäåëåíèÿ ãíåçäÿùèõñÿ ïàð, òàê êàê â íàèáîëåå ñòàáèëüíûõ ãíåçäîâûõ áèîòîïàõ (êðóïíûå âåðõîâûå áîëîòà) íå íàáëþäàåòñÿ óâåëè÷åíèÿ ïëîòíîñòè ãíåçäîâàíèÿ ýòîãî ñîêîëà. Òàêèì îáðàçîì, íàëèöî óìåíüøåíèå ÷èñëåííîñòè ýòîãî ðåäêîãî äëÿ Áåëîðóññèè âèäà è äåãðàäàöèÿ åãî þæíîé ÷àñòè ãíåçäîâîãî àðåàëà.  ýòîé ÷àñòè ãíåçäîâîé àðåàë äåðáíèêà çà 50 ëåò ïðåâðàòèëñÿ èç ñïëîøíîãî â «îñòðîâíîé», ãäå îí îñòàëñÿ íà ãíåçäîâàíèè òîëüêî íà êðóïíûõ âåðõîâûõ áîëîòàõ.

breed in this habitat anymore. The first expert assessments of the Merlin population in Belorusskoye Poozjorye were done in 1979, and found 250–300 breeding pairs (Dorofeev, Ivanovsky, 1980). The assessments of 2011 revealed a further decrease to 220–250 pairs (Ivanovsky, 2012). In 2014–2015, for the first time in 40 years, we did not find a single breeding pair in depleted and abandoned peateries (peat extraction sites). We also found no signs of redistribution of breeding pairs of Merlin, since no positive changes in breeding density were observed in the biggest and most stable breeding biotopes (extensive raised bogs). Thus, a decrease in number of this rare Belarus species, and the degradation of the southern part of its breeding area is established. Here, after 50 years, the distribution is no longer continuous, but now consists of multiple “islands” of small breeding areas associated with large raised bogs. In this situation the question arose whether or not the main population parameters changed in the breeding population of Merlin in Belorusskoye Poozjorye. For this purpose we analyzed the data collected in the breeding seasons of 2014–2015 on raised bogs in the Vitebsk Region, i.e. when the Merlin had already


114

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32 Áåçóñëîâíî, íàñ íå ìîãëî íå çàèíòåðåñîâàòü, èçìåíèëèñü èëè íåò â ýòîé ñèòóàöèè îñíîâíûå ïîïóëÿöèîííûå ïàðàìåòðû ãíåçäîâîé ãðóïïèðîâêè äåðáíèêîâ, îáèòàþùèõ â Áåëîðóññêîì Ïîîçåðüå.  ýòîé ñâÿçè, ïðîàíàëèçèðîâàíû ìàòåðèàëû ïîëó÷åíû â ãíåçäîâûå ñåçîíû 2014–2015 ãã. íà âåðõîâûõ áîëîòàõ Âèòåáñêîé îáëàñòè, ò.å. â òîò ïåðèîä, êîãäà äåðáíèê óæå íå áûë íàéäåí íà çàáðîøåííûõ òîðôîðàçðàáîòêàõ. Ýòî, â îñíîâíîì, âåðõîâûå áîëîòà, âõîäÿùèå â ñîñòàâ çàêàçíèêîâ «Êîçüÿíñêèé», «Ëåáåäèíûé Ìîõ» è íåêîòîðûõ äðóãèõ. Åæåãîäíî ïðîâåðÿëîñü 7–10 èçâåñòíûõ íàì ïîñòîÿííûõ ãíåçäîâûõ òåððèòîðèé ýòîãî ðåäêîãî ñîêîëà. Ìåñòà ãíåçäîâàíèÿ äåðáíèêîâ ïîñåùàëèñü 1–3 ðàçà çà ñåçîí â ïåðèîä ñ 13 ìàðòà ïî 7 ñåíòÿáðÿ. Ó÷èòûâàëàñü çàíÿòîñòü òåððèòîðèè, íàëè÷èå êëàäêè è å¸ âåëè÷èíà, êîëè÷åñòâî âûëóïèâøèõñÿ ïòåíöîâ, êîëè÷åñòâî ñë¸òêîâ, ïîêèíóâøèõ ãíåçäî. Ñëåäóåò îòìåòèòü, ÷òî áîëüøàÿ ÷àñòü ïîñåùåíèé ïðèõîäèëàñü íà èþíü ìåñÿö, ÷òî áûëî ñâÿçàíî ñ íåîáõîäèìîñòüþ êîëüöåâàòü ïòåíöîâ. Íàèáîëåå ïîñòîÿííûå ãíåçäîâûå òåððèòîðèè äåðáíèêîâ ïðåäñòàâëÿþò ñîáîé ãðÿäîâî-ìî÷àæèííûå è ãðÿäîâî-îç¸ðíûå êîìïëåêñû ðàñòèòåëüíîñòè èëè îêðåñòíîñòè

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ disappeared as a breeder from abandoned peateries. Annually we checked 7–10 already known breeding territories of the Merlin. The nesting sites were visited 1–3 times during the season between March 13 and September 7. The following parameters were recorded: presence of a breeding pair, presence of an egg clutch and its size, number of chicks hatched, and number of fledglings. The most stable breeding territories of Merlins are located in hummock-hollow and hummock-lake vegetation complexes or in the surroundings of big relict lakes of raised bogs. The breeding territory often contains a small grove of tall pine trees emerging above the surrounding forest, on the very edge of an open area (46.1 %), a pine plantation close to a lake (30.8 %), a small patch of old pine forest (15.4 %), or a single tall pine tree with an old nest previously occupied by Ospreys (Pandion haliaetus) in pine-ledum forest (7.7 %). Reportedly, a pair of Merlins bred in a former nest of Golden Eagle (Aquila chrysaetos) located on a promontory with mixed forest that juts out into a large raised bog (V.V. Grichik, pers. comm.). This nest was located on a “witch’s broom” at the very top of a pine tree. All other nests occupied by the Merlin were artificial, old perforated buckets stuffed with moss. Nests were located in the canopy of pine trees, at 3–17 meters above ground (mean 6.5±1.2, n=13). Below we describe the breeding phenology of Merlins in 2014–2015. Alarm-calling birds were encountered near the nests in the period from March 13 to April 29; eggs incubated to various degrees were present in the nests from May 1 to May 20; on June 6–18 we observed chicks in the first down plumage, on June 12–28, chicks in the second down (gray) plumage; on June 21–25 chicks began to fledge, and vanes of the flight and tail feathers to unfold. On the 27th of June, the nestlings in one nest were fledged but with flight and tail feathers still

Ðèñ. 3. Âëàäèìèð Èâàíîâñêèé êîëüöóåò ïòåíöîâ äåðáíèêà 14.07.2015 – ââåðõó, ïòåíöû äåðáíèêà ñïóùåííûå íà çåìëþ äëÿ êîëüöåâàíèÿ – âíèçó. Ôîòî À. Àíäðåÿíîâà è Ê. ×åïåíàñà. Fig. 3. Vladimir Ivanovskiy ringing Merlin chicks on 14.07.2015 – above, moving nestlings to the ground for ringing – below. Photos by A. Andreyanow and K. Chepenas.


Raptor Research

Ñàìêà äåðáíèêà êîðìèò ïòåíöà â èñêóññòâåííîì ãíåçäå. Ôîòî Â. Ôåäîñåíêî. The female of Merlin feeding of nestling in the artificial nest. Photo by V. Fedosenko.

Raptors Conservation 2016, 32

êðóïíûõ îñòàòî÷íûõ îç¸ð âåðõîâûõ áîëîò. ×àùå âñåãî ãíåçäîâîé ó÷àñòîê ïðåäñòàâëÿåò ñîáîé íåáîëüøóþ ðîùèöó áîëåå âûñîêèõ áîëîòíûõ ñîñåíîê íà êðàþ «÷èñòèêà» (46,1 %) èëè ýòî ñîñíîâûå íàñàæäåíèÿ ðÿäîì ñ îñòàòî÷íûìè îç¸ðàìè (30,8 %), èëè ýòî íåáîëüøèå îñòðîâà ñòàðîãî ñîñíîâîãî ëåñà (15,4 %), èëè ýòî ñîñíÿê áàãóëüíèêîâûé ñ îòäåëüíûìè âûñîêèìè ñîñíàìè, íà êîòîðûõ ðàíåå ïûòàëèñü ñòðîèòü ãí¸çäà ñêîïû (Pandion haliaetus) (7,7 %). Ïî âñåé âèäèìîñòè, ïàðà äåðáíèêîâ ãíåçäèëàñü òàêæå â ñòàðîì ãíåçäå áåðêóòà (Aquila chrysaetos) íà ìûñå âûñîêîñòâîëüíîãî ñìåøàííîãî ëåñà, âäàþùåãîñÿ â êðóïíîå âåðõîâîå áîëîòî (Â.Â. Ãðè÷èê, ëè÷íîå ñîîáùåíèå). Ýòî ãíåçäî áûëî ðàñïîëîæåíî íà «ìåòëå» ñîñíû ó ñàìîé ìàêóøêè. Âñå îñòàëüíûå ãí¸çäà, çàíÿòûå äåðáíèêàìè, áûëè èñêóññòâåííûìè, îíè ïðåäñòàâëÿëè ñîáîé äûðÿâûå â¸äðà, â êîòîðûå áûëè çàáèòû ïëîòíûå ìîõîâûå êî÷êè. Ãí¸çäà ðàñïîëàãàëèñü â êðîíàõ ñîñåí íà âûñîòå îò 3 äî 17 ìåòðîâ, â ñðåäíåì 6,5±1,2 ìåòðà (n=13). Ôåíîëîãèÿ ðàçìíîæåíèÿ äåðáíèêîâ â 2014–2015 ãã. ïðåäñòàâëåíà íèæå. Áåñïîêîÿùèåñÿ ó ãíåçäà ïòèöû âñòðå÷åíû â ïåðèîä ñ 13 ìàðòà ïî 29 àïðåëÿ; ñ 1 ïî 20 ìàÿ â ãí¸çäàõ êëàäêè ðàçíîé ñòåïåíè íàñèæåííîñòè; 6–18 èþíÿ ïòåíöû â ïåðâîì ïóõîâîì íàðÿäå (îäíà ñàìêà ñèäåëà íà ãíåçäå î÷åíü ïëîòíî, ÷òî íå ñâîéñòâåííî äëÿ ýòîãî âèäà); 12–28 èþíÿ ïòåíöû âî âòîðîì ïóõîâîì (ñåðîì) íàðÿäå; 21–25 èþíÿ ïòåíöû íà÷èíàþò îïåðÿòüñÿ, îïàõàëà ìàõîâûõ è ðóëåâûõ óæå ðàçâîðà÷èâàòüñÿ; 27 èþíÿ ïòåíöû â îäíîì ãíåçäå îïåðåíû ñ åù¸ íå äîðîñøèìè ìàõîâûìè è ðóëåâûìè, ïðè ïîïûòêå êîëüöåâàíèÿ äâà ïòåíöà ñëåòåëè ñ ãíåçäà (îäèí îïóñòèëñÿ íà çåìëþ, à âòîðîé ñåë íà âåòêó ñîñåäíåé ñîñíû); 6 èþëÿ 2014 ã. ñë¸òêè óæå ïîêèíóëè ãíåçäî è ñèäåëè â êðîíàõ

115

not completely grown, and during ringing, two of them left the nest (one landed and another perched on the branch of a neighboring pine tree). On the 6th of July we found young Merlins outside the nest, perching in the canopy of pine trees 10–30 m away from the nesting tree. Their flight was yet uncertain and the young birds became exhausted very fast, so we managed to catch one of them by flushing it repeatedly from the perch until it landed on the ground. The clutch size varied from 3 to 5 eggs, mean 4.0±0.58, n=3. The size of broods varied from 2 to 5 chicks, mean 3.9±0.25, n=9. In two broods that were observed at the time when nestlings left the nest, each had 4 nestlings. The reproductive success was 100 %, meaning that every breeding pair under observation successfully reared fledglings. We collected prey remains left on the nests. The analysis revealed only bird species (table 1). We also established that, during foul weather, Merlins can purposefully search for the nests of small passerine birds to steal nestlings. It would be very interesting to obtain data on the reasons for the Merlin’s population decline and the structural changes of the breeding areas near the southern limit of the species’ distribution. But it would certainly require a prolonged study and a bigger research team. Now we can only assume that the most important reason is a drastic climate change. Annual wildfires on the raised bogs and abandoned peateries during spring and summer seasons undoubtedly influence negatively the Merlin’s population, not only in Belarus but also in the neighboring regions. Like in other Birds of Prey, the thousandyears co-evolution in the Merlin was not only “predator-prey” interactions, but also adaptations to habitat and climate, which would necessarily affect this northern species during a global warming. Under the most pessimistic scenario, the next stage in the process would be the loss of the Merlin from the small raised bogs with poor development of hummock-hollow complexes. Then, it would disappear from the mediumsize raised bogs lacking hummock-lake complexes, and finally, from the largest raised bogs with all types of mire vegetation complexes present. The optimistic scenario, in our opinion, foresee that a subsequent cooling of the climate will cause the breeding habitat of the Merlin to spread back to the south.


116

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ

Òàáë. 1. Ïèòàíèå äåðáíèêîâ (Falco columbarius) Áåëîðóññêîãî Ïîîçåðüÿ â 2014–2015 ãã. Table 1. Prey species of the Merlin (Falco columbarius) in Belorusskoye Poozjorye in 2014–2015.

Âèä äîáû÷è / Prey species Êîëè÷åñòâî / Number Êóêóøêà / Common Cuckoo (Cuculus canorus) 1 Áîëüøîé ï¸ñòðûé äÿòåë / Great Spotted Woodpecker (Dendrocopus major) 2 Áåêàñ / Common Snipe (Gallinago gallinago) 1 Ïîëåâîé æàâîðîíîê / Sky Lark (Alauda arvensis) 1 Ëåñíîé êîí¸ê / Tree Pipit (Anthus trivialis) 1 Äåðÿáà / Mistle Thrush (Turdus viscivorus) 1 Äðîçä sp. / Thrush sp. (Turdus sp.) 2 Ïåíî÷êà sp. / Phylloscopus warbler sp. (Phylloscopus sp.) 1 Ìåëêàÿ âîðîáüèíàÿ ïòèöà / Unknown small passerine bird (Passeriformes sp.) 14 ÈÒÎÃÎ / TOTAL 24

áîëîòíûõ ñîñåíîê â ðàäèóñå 10–30 ì îò ãíåçäà. Ñë¸òêè ëåòàëè íåóâåðåííî è îäèí èç íèõ, áóäó÷è äâà ðàçà âñïóãíóò ñ ïðèñàäû, â êîíöå êîíöîâ, ñåë íà çåìëþ è áûë ïîéìàí ðóêàìè, òî åñòü, ìîëîäûå î÷åíü áûñòðî óñòàþò ïðè ïîë¸òå. Âåëè÷èíà êëàäêè êîëåáàëàñü îò 3 äî 5 ÿèö, â ñðåäíåì, 4,0±0,58 (n=3).

Äîëÿ (%) / Share (%) 4,2 8,3 4,2 4,2 4,2 4,2 8,3 4,2 58,2 100

 âûâîäêàõ ñ ïòåíöàìè ðàçíîãî âîçðàñòà áûëî 2–5 ïòåíöà, â ñðåäíåì, 3,9±0,25 (n=9).  äâóõ âûâîäêàõ â ïåðèîä ïîêèäàíèÿ ãíåçäà ñë¸òêàìè áûëî ïî 4 ñë¸òêà. Óñïåõ ðàçìíîæåíèÿ ñîñòàâèë 100 %, òî åñòü, ñë¸òêè âûëåòåëè èç âñåõ çàíÿòûõ ñîêîëàìè è êîíòðîëèðóåìûõ íàìè ãí¸çä. Íà ãí¸çäàõ ñîáðàíû îñòàòêè äîáû÷è, êîòîðûå ïðåäñòàâëåíû òîëüêî ïòèöàìè (òàáë. 1). Ñðåäè îñòàòêîâ äîáû÷è áûëè, â îñíîâíîì, ïåðåäíèå ÷àñòè ãðóäèí, êðûëüÿ è ëàïêè ïòèö. Óñòàíîâëåíî òàêæå, ÷òî â íåïîãîäó äåðáíèêè ìîãóò àêòèâíî ðàçûñêèâàòü ãí¸çäà ìåëêèõ âîðîáüèíûõ ïòèö è ïîõèùàòü èõ ïòåíöîâ. Åñëè ñðàâíèòü ïîëó÷åííûå äàííûå ñ ðåçóëüòàòàìè èññëåäîâàíèé 2012 ãîäà (Èâàíîâñêèé, 2013), òî ñëåäóåò êîíñòàòèðîâàòü, ÷òî ðàçëè÷èÿ ïîïóëÿöèîííûõ ïàðàìåòðîâ, àíàëèçèðóåìûõ â äàííîì ðàçäåëå, ñîãëàñíî êðèòåðèþ Ñòüþäåíòà, íå äîñòîâåðíû. Áûëî áû î÷åíü èíòåðåñíûì ïîëó÷èòü äàííûå î ïðè÷èíàõ óìåíüøåíèÿ ãíåçäîâîé ãðóïïèðîâêè äåðáíèêà è èçìåíåíèè ñòðóêòóðû àðåàëà ó þæíîé ãðàíèöû ðàñïðîñòðàíåíèÿ âèäà â äàëüíåéøåì. Íî, áåçóñëîâíî, ýòî òðåáóåò áîëåå äëèòåëüíûõ ïî âðåìåíè äîïîëíèòåëüíûõ èññëåäîâàíèé è óæå äðóãèõ îðíèòîëîãîâ. Ìîæíî ëèøü ïðåäïîëîæèòü, ÷òî îäíîé èç îñíîâíûõ ïðè÷èí íàáëþäàåìîãî òðåíäà ÿâëÿåòñÿ

Ðèñ. 4. Îáñëåäîâàíèå ãíåçäà äåðáíèêà 23.06.2014 – ââåðõó, òèïè÷íûå ïîåäè äåðáíèêà, ñîáðàííûå íà ãíåçäå 23.10.2014 – âíèçó. Ôîòî Ê. ×åïåíàñà è Â. Èâàíîâñêîãî. Fig. 4. Nest survey of Merlin, on 23.06.2014 – above, typical prey remains, collected at the nest on 23.10.2014 – below. Photos by K. Chepenas and V. Ivanovsky.


Raptor Research

Raptors Conservation 2016, 32

117

Ðèñ. 5. Ïîëóîïåð¸ííûå ïòåíöû äåðáíèêà ñ îñòàòêàìè ïóõà, 25.06.2011 – A, ãîëîäíûå ïòåíöû äåðáíèêà ìîãóò ãëîòàòü ìåëêèõ ïòèö öåëèêîì – B, càìêà äåðáíèêà íà ãíåçäå ñ ïòåíöàìè, 26.06.2009 – C, â íåíàñòíûå äíè äåðáíèêè àêòèâíî ðàçûñêèâàþò ãí¸çäà ìåëêèõ ïòèö è ïîõèùàþò ïòåíöîâ, 14.06.2010 – D. Ôîòî Â. Ôåäîñåíêî, Ê. ×åïåíàñà, Â. Ïóøêèíà. Fig. 5. A – Half-fledged nestling of Merlin with some remaining down, on 25.06.2011, B – hungry nestlings of Merlin can swallow small birds wholly at once, C – a female on the nest with nestlings on 26.06.2009, D – during foul weather Merlins purposefully search for nests of small birds and steal the nestlings, 14.06.2010. Photos by V. Fedosenko, K. Chepenas, V. Pushkin.

ðåçêîå èçìåíåíèå êëèìàòà. Åæåãîäíûå âåñåííåå-ëåòíèå ïîæàðû íà âåðõîâûõ áîëîòàõ è çàáðîøåííûõ òîðôîðàçðàáîòêàõ áåçóñëîâíî ïîäîðâàëè ïîïóëÿöèþ ýòîãî âèäà ó þæíîé ãðàíèöû ãíåçäîâîãî àðåàëà è íå òîëüêî â Áåëîðóññèè. Êàê è ó äðóãèõ ïåðíàòûõ õèùíèêîâ, òûñÿ÷åëåòíÿÿ êîýâîëþöèÿ øëà äëÿ äåðáíèêà íå òîëüêî ïî ëèíèè «õèùíèê – æåðòâà», íî è ïî ëèíèè «âèä – êëèìàò âìåùàþùåãî ëàíäøàôòà», ÷òî íå ìîãëî íå îòðàçèòüñÿ ïðè ïîòåïëåíèè íà ðàñïðîñòðàíåíèè ýòîãî ñåâåðíîãî âèäà. Åñëè ðàññìàòðèâàòü ñàìûé ïåññèìèñòè÷íûé ñöåíàðèé, òî ñëåäóþùåé ñòàäèåé áóäåò èñ÷åçíîâåíèå äåðáíèêà íà ãíåçäîâüå ñ íåáîëüøèõ âåðõîâûõ áîëîò, ãäå ñëàáî ðàçâèò ãðÿäîâî-ìî÷àæèííûé êîìïëåêñ. Çàòåì îí èñ÷åçíåò è ñî ñðåäíèõ ïî ïëîùàäè âåðõîâûõ áîëîò, ãäå íåò ãðÿäîâî-îç¸ðíîãî êîìïëåêñà. È, íàêîíåö, èñ÷åçíåò îí è ñ ñàìûõ êðóïíûõ âåðõîâûõ áîëîò, ãäå ïðåäñòàâëåíû âñå òèïû êîìïëåêñîâ áîëîòíîé ðàñòèòåëüíîñòè. Îïòèìèñòè÷åñêèé ñöåíàðèé, ïî íàøåìó ìíåíèþ, ïðåäóñìàòðèâàåò, ÷òî ïðè âîçâðàùåíèè î÷åðåäíîãî «ëåäíèêîâîãî ïåðèîäà», ïðîèçîéä¸ò ïóëüñàöèÿ àðåàëà äåðáíèêà â þæíîì íàïðàâëåíèè. Ëèòåðàòóðà Äîðîôååâ À.Ì., Èâàíîâñêèé Â.Â. Ýêîëîãèÿ ñîêîëà-äåðáíèêà (Falco columbarius L.) â Áåëîðóññêîì Ïîîçåðüå. – Âåñòíèê çîîëîãèè. 1980. ¹ 5. Ñ. 62–67 [Dorofeev A.M., Ivanovsky V.V. Ecology of the Merlin (Falco columbarius L.)

in Belorusskoye Poozjorye. – Vestnik zoologii. 1980. 5: 62–67. In Russian]. Èâàíîâñêèé Â.Â. Ìàëûé ïîäîðëèê è äåðáíèê íà Âèòåáùèíå â 2012 ãîäó. – Íàóêà – îáðàçîâàíèþ, ïðîèçâîäñòâó, ýêîíîìèêå: ìàòåðèàëû XVIII (65) ðåãèîíàëüíîé íàó÷íî-ïðàêòè÷åñêîé êîíôåðåíöèè ïðåïîäàâàòåëåé, íàó÷íûõ ñîòðóäíèêîâ è àñïèðàíòîâ, Âèòåáñê, 13–14 ìàðòà 2013 ã. Ò. 1. Âèòåáñê: ÂÃÓ èìåíè Ï.Ì. Ìàøåðîâà, 2013. Ñ. 79–81 [Ivanovsky V.V. Lesser Spotted Eagle and Merlin in the Vityebsk Region in 2012. – Science for education, production, economy: proceedings of the XVIII (65) regional scientific-practical conference for teachers, scientific staff and postgraduates in Vitebsk, 13–14 March 2013. Vol.1. Vitebsk, 2013: 79–81. In Russian]. Èâàíîâñêèé Â.Â., Èâàíîâñêèé Ì.Â. Äåðáíèê (Falco columbarius) ó þæíîé ãðàíèöû àðåàëà â Áåëàðóñè. – Subbuteo. 2003. Ò. 6. Ñ. 23–31 [Ivanovsky V.V., Ivanovsky M.V. Merlin (Falco columbarius) at the southern limit of its distribution in Belarus. – Subbuteo. 2003. 6: 23–31. In Russian]. Èâàíîâñêèé Â.Â. Õèùíûå ïòèöû Áåëîðóññêîãî Ïîîçåðüÿ. Âèòåáñê: ÓÎ «ÂÃÓ èì. Ï.Ì. Ìàøåðîâà», 2012. 209 ñ. [Ivanovsky V.V. The Birds of Prey in the Belorussian Poozerie. Vitebsk, 2012: 1–209. In Russian]. URL: http://rrrcn.ru/ru/archives/24498 Äàòà îáðàùåíèÿ: 28.01.2016. Ìîðîçîâ Â.Â., Áðàãèí Å.À., Èâàíîâñêèé Â.Â. Äåðáíèê /ïîä ðåä. Â.Â. Ìîðîçîâà. Âèòåáñê: ÂÃÓ èìåíè Ï.Ì. Ìàøåðîâà, 2013. 256 ñ. [Morozov V.V., Bragin Å.À., Ivanovski V.V. Merlin / Ed. V.V. Morozov. Vitebsk, 2013: 1–256. In Russian with English summary]. URL: http://rrrcn.ru/ru/ archives/23129 Äàòà îáðàùåíèÿ: 28.01.2016.


118

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Êðàòêèå ñîîáùåíèÿ

Short Reports КРАТКИЕ СООБЩЕНИЯ The First Record of Case of the Imperial Eagle and the Steppe Eagle Successful Breeding in the Mixed Pair in Western Kazakhstan and Records of Probable Hybrids of These Species in Russia and Kazakhstan ПЕРВЫЙ СЛУЧАЙ УСПЕШНОГО ВЫВЕДЕНИЯ ПОТОМСТВА СМЕШАННОЙ ПАРОЙ СТЕПНОГО ОРЛА И ОРЛА-МОГИЛЬНИКА В ЗАПАДНОМ КАЗАХСТАНЕ И РЕГИСТРАЦИИ ВЕРОЯТНЫХ ГИБРИДОВ МЕЖДУ СТЕПНЫМ ОРЛОМ И ОРЛОМ-МОГИЛЬНИКОМ В РОССИИ И КАЗАХСТАНЕ Karyakin I.V. (Center of Field Studies, N. Novgorod, Russia) Kovalenko A.V. (Institute of Zoology, Ministry of Education and Sciences, Almaty, Kazakhstan) Zinevich L.S. (Koltzov Institute of Developmental Biology of Russian Academy of Sciences IDB RAS, Moscow, Russia) Карякин И.В. (Центр полевых исследований, Н.Новгород, Россия) Коваленко А.В. (Институт зоологии ЦБИ МОН РК, Алматы, Казахстан) Зиневич Л.С. (ФГБУН Институт биологии развития им. Н.К. Кольцова РАН, Москва, Россия)

DOI: 10.19074/1814-8654-2016-32-118-125

Êîíòàêò: Èãîðü Êàðÿêèí Öåíòð ïîëåâûõ èññëåäîâàíèé 603109, Ðîññèÿ, Íèæíèé Íîâãîðîä, óë. Íèæåãîðîäñêàÿ, 3–29 òåë.: +7 831 433 38 47 ikar_research@mail.ru Àíäðåé Êîâàëåíêî 405030, Êàçàõñòàí, Àëìàòû, óë. Âàõòàíãîâà, 11Á – 3 òåë.: +7 727 246 29 11 +7 701 570 25 60 +7 777 339 10 35 +7 700 910 05 32 akoval69@mail.ru Ëþäìèëà Çèíåâè÷ ÔÃÁÓÍ Èíñòèòóò áèîëîãèè ðàçâèòèÿ èì. Í.Ê. Êîëüöîâà ÐÀÍ 119334, Ðîññèÿ, Ìîñêâà, óë. Âàâèëîâà, 26 òåë.: +7 499 135 33 22, ôàêñ: +7 499 135 80 12 lzinevich@gmail.com

Åñòåñòâåííàÿ ãèáðèäèçàöèÿ â ðîäó Aquila îïèñàíà ëèøü äëÿ áîëüøîãî (A. clanga) è ìàëîãî (A. pomarina) ïîäîðëèêîâ â çîíå èõ êîíòàêòà â Ïîëüøå, Ïðèáàëòèêå, Áåëàðóñè, íà ñåâåðî-çàïàäå Óêðàèíû è â Åâðîïåéñêîé ÷àñòè Ðîññèè (Âÿëè, Ëûõìóñ, 2001; Äîìáðîâñêèé, 2002; 2009; Bergmanis et al., 1997; Blockx, 2002; Dombrovski, 2005; Gutierrez, Villa 2002; Lõhmus 1998; Lõhmus, Väli, 2001; Lontkowski, Maciorowski, 2010; Maciorowski et al., 2015; Treinys, 2005; Väli, 2004, 2005, 2010; Väli, Lõhmus 2001, 2004). Ïðåäïîëàãàåòñÿ, ÷òî â îñíîâå ïðè÷èí ãèáðèäèçàöèè ýòèõ äâóõ âèäîâ, ëåæèò àíòðîïîãåííîå èçìåíåíèå ìåñòîîáèòàíèé, â ÷àñòíîñòè îñóøåíèå è ìåëèîðàöèÿ áîëîòíûõ ìàññèâîâ – ÿâëÿþùèõñÿ îñíîâíûìè ìåñòàìè îáèòàíèÿ áîëüøîãî ïîäîðëèêà. Àíòðîïîãåííîå íàðóøåíèå ìåñòîîáèòàíèé áîëüøîãî ïîäîðëèêà îòêðûëî âîçìîæíîñòè äëÿ âñåëåíèÿ â íèõ ìàëîãî ïîäîðëèêà, ñàìöû êîòîðîãî â èçìåíèâøèõñÿ óñëîâèÿõ îêàçà-

The Steppe Eagle (Aquila nipalensis) population in Western Kazakhstan has decreased in numbers since 2006, and the population has lost at least 40 % of individuals over 10 years (see. Karyakin, 2015). At the same time, in the region the Imperial Eagle (Aquila heliaca) population has started to grow, move to the south and occupy the Steppe Eagle habitats. Currently, in the contact zone of both species in the north of Western Kazakhstan and along the northern edge of the Urda Sands in the southwest of Western Kazakhstan, where both species nest in trees, ecological barriers between them are blurred (fig. 1), thus, birds form the mixed pairs. Surveying the edge of Urda Sands on 18 June, 2013, the Steppe Eagle’s nest that had been known since 2003 was visited. The female in the nest was new and identified by us as a hybrid of the Steppe and Imperial Eagle (fig. 2, fig. 5–G1), The male was typical Imperial Eagle. The nest


Short Reports Contact: Igor Karyakin Center of Field Studies Nizhegorodskaya str., 3–29 Nizhniy Novgorod Russia, 603109 tel.: +7 831 433 38 47 ikar_research@mail.ru Andrey Kovalenko, Vahtangova str., 11b–3 Almaty, Kazakhstan, 405030 tel.: +7 727 246 29 11 +7 701 570 25 60 +7 777 339 10 35 +7 700 910 05 32 akoval69@mail.ru Ludmila Zinevich Koltzov Institute of Developmental Biology of Russian Academy of Sciences IDB RAS Vavilova str., 26 Moscow, Russia, 119334 tel.: +7 499 135 33 22, fax: +7 499 135 80 12 lzinevich@gmail.com

Raptors Conservation 2016, 32 ëèñü ëó÷øèìè äîáûò÷èêàìè ïðîïèòàíèÿ, ÷òî ïðèâåëî ê ðåãóëÿðíîìó ôîðìèðîâàíèþ ñìåøàííûõ ïàð ñ ñàìêàìè áîëüøîãî ïîäîðëèêà è îáðàçîâàíèþ øèðîêîé çîíû ãèáðèäèçàöèè äâóõ ýòèõ âèäîâ. Òàêèì îáðàçîì, ïðè÷èíîé íà÷àëà ðåãóëÿðíîé ãèáðèäèçàöèè áîëüøîãî è ìàëîãî ïîäîðëèêîâ ñòàëî ñíÿòèå ýêîëîãè÷åñêîãî áàðüåðà, ÷òî â óñëîâèÿõ ñèìïàòðèè ñîçäàëî óñëîâèÿ äëÿ ÷àñòûõ ìåæâèäîâûõ êîíòàêòîâ (Maciorowski et al., 2014). Áîëüøîé è ìàëûé ïîäîðëèê â ýâîëþöèîííîì ïëàíå äîñòàòî÷íî ìîëîäûå âèäû, ñôîðìèðîâàâøèåñÿ â ðåçóëüòàòå ðàçäåëåíèÿ åâðîàçèàòñêîé ôàóíû íà åâðîïåéñêèé è ñèáèðñêèé ôàóíèñòè÷åñêèå êîìïëåêñû â ðåçóëüòàòå ïëåéñòîöåíîâîãî îëåäåíåíèÿ è âíîâü íà÷àâøèå êîíòàêòèðîâàòü â ãîëîöåíå (Väli, 2005;).  îòëè÷èå îò ïîäîðëèêîâ, ñëó÷àè ãèáðèäèçàöèè ìåæäó äðóãèìè âèäàìè îðëîâ, áîëåå äðåâíèìè â ýâîëþöèîííîì ïëàíå, åäèíè÷íû. Åâãåíèé ÌàêÊàðòè (McCarthy, 2006) ñî ññûëêîé íà Corso, Forsman, 1997 ïðèâîäèò ñëó÷àè åñòåñòâåííîé ãèáðèäèçàöèè áåðêóòà (Aquila chrysaetos) ñ èñïàíñêèì îðëîì-ìîãèëüíèêîì (Aquila [heliaca] adalberti) è ìàëûì ïîäîðëèêîì â Èñïàíèè, è ñî ñëîâ J.R. Barnaby (2003, pers. comm.) ñëó÷àè ãèáðèäèçàöèè â óñëîâèÿõ íåâîëè áåðêóòà ñî ñòåïíûì îðëîì (Aquila nipalensis) è èíäèéñêèì ñòåïíûì îðëîì (Aquila vindhiana). Òàêæå åñòü ïðåäïîëîæåíèå, ÷òî èíäèéñêèå ñòåïíûå îðëû òåìíîé ìîðôû – ðåçóëüòàò ãèáðèäèçàöèè ìåæäó ñòåïíûì îðëîì è èíäèéñêèì ñòåïíûì îðëîì (Grimmett et al., 1998), îäíàêî äåòàëüíî ýòîò âîïðîñ íå èçó÷åíèè è ïîêà ýòî îñòà¸òñÿ ëèøü ïðåäïîëîæåíèåì. Îïóáëèêîâàííàÿ èíôîðìàöèÿ î ñëó÷àÿõ åñòåñòâåííîé ãèáðèäèçàöèè ñòåïíîãî îðëà ñ äðóãèìè âèäàìè îðëîâ íàìè íå íàéäåíà, õîòÿ òàêèå ñëó÷àè èìåþò ìåñòî áûòü. Ñìåøàííàÿ ïàðà ñòåïíîãî îðëà (ñàìåö) è îðëà-ìîãèëüíèêà (ñàìêà) íàáëþäàëàñü â Òóðöèè, ãäå ïîçæå íà ýòîì æå ãíåçäîâîì ó÷àñòêå óñòàíîâëåíî óñïåøíîå ðàçìíîæåíèå ãèáðèäíîãî ñàìöà A. heliaca × nipalensis â ïàðå ñ ñàìêîé îðëà-ìîãèëüíèêà (M. Horvath, pers. comm, íàøè äàííûå). Ïîñëåäíåå íàáëþäåíèå ðàññåèâàåò ñîìíåíèÿ â ôèðòèëüíîñòè ãèáðèäîâ. Óñïåøíàÿ ãèáðèäèçàöèÿ ìåæäó ñòåïíûì îðëîì è èñïàíñêèì îðëîì-ìîãèëüíèêîì óñòàíîâëåíà â Èñïàíèè (R. Sanchez, pers. comm.). Íà÷èíàÿ ñ 2006 ã. â Çàïàäíîì Êàçàõñòàíå äîñòàòî÷íî ÷¸òêî îáîçíà÷èëàñü òåíäåíöèÿ ñîêðàùåíèÿ ÷èñëåííîñòè ñòåïíîãî îðëà, ïîïóëÿöèÿ êîòîðîãî ïîòåðÿëà çà 10 ëåò íå ìåíåå 40 % îñîáåé (ñì. Êàðÿêèí,

119

Ãèáðèä Aquila nipalensis × A. heliaca èç Òóðöèè. Ôîòî È. Êàðÿêèíà. Hybrid Aquila nipalensis × A. heliaca from Turkey. Photo by I. Karyakin.

was placed at a height of 4 m on the top of elm (Ulmus parvifolia), growing in the group of trees in a flat semi-desert 350 m from the edge of the hilly sands. The nest lining was typical for the Steppe Eagle with many man-made materials and wool. There was only fledgling close in its plumage to the Imperial Eagle. Its only distinguished feature was darker brown coverts of upperparts. The Steppe Eagle’s nest that had been known in the basin of the Esenankaty river (30 km to the east of the Shalkar lake) since 2006 was visited on 21 June, 2013. At the time of visit an adult female Imperial Eagle was observed in the nest and adult male Steppe Eagle was delivering a prey to it (fig. 3–A, B; fig. 5–G2). Judging the nest condition it was occupied by birds throughout the season. In 2015, this nest was destroyed. During the monitoring of the Imperial Eagle population formed on the watershed of Utva and Kiyl rivers, a nest that perhaps appeared in the territory in 2014 was found on 26 June, 2015. The nest was placed in the fork of elm at a height of about 5 m. There were a female Imperial Eagle in juvenile plumage and 3 nestlings. The Male Steppe Eagle at the age of 4 years was recorded delivering a prey to the nest, and then the female was feeding nestlings. Alarmed by human approach the female Imperial Eagle left the nest and sat down next to the male Steppe Eagle, and then returned to the nest (fig. 3–C, D; fig. 5–G3). Due to the fact that the age of nestlings was less than a month, their inspection was not carried out.


120

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Êðàòêèå ñîîáùåíèÿ

Ðèñ. 1. Ãí¸çäà ñòåïíîãî îðëà (Aquila nipalensis) (A, B, C, D) è îðëàìîãèëüíèêà (Aquila heliaca) (E, F, G, K) â Çàïàäíîì Êàçàõñòàíå. Ôîòî È. Êàðÿêèíà. Fig. 1. Nests of the Steppe Eagle (Aquila nipalensis) (A, B, C, D) and Eastern Imperial Eagle (Aquila heliaca) (E, F, G, K) in Western Kazakhstan. Photos by I. Karyakin.

2015).  òî æå âðåìÿ, â ýòîì æå ðåãèîíå íà÷àëñÿ ðîñò ÷èñëåííîñòè îðëà-ìîãèëüíèêà, êîòîðûé ñòàë ðàññåëÿòüñÿ â þæíîì íàïðàâëåíèè è çàíèìàòü ìåñòîîáèòàíèÿ ñòåïíîãî îðëà.  ðåçóëüòàòå â ñòåïíîé çîíå Çàïàäíîãî Êàçàõñòàíà áóêâàëüíî íà ãëàçàõ çà 10 ëåò ñôîðìèðîâàëàñü ãíåçäîâàÿ ãðóïïèðîâêà îðëà-ìîãèëüíèêà. Ôîðìèðîâàíèå íîâîé ãíåçäîâîé ãðóïïèðîâêè îðëà-ìîãèëüíèêà ïðîèçîøëî íà êðàþ äîâîëüíî êðóïíîé ïîïóëÿöèè ñòåïíîãî îðëà, ïîêà åù¸ ñîõðàíÿþùåãî çäåñü âûñîêóþ ÷èñëåííîñòü íà ãíåçäîâàíèè.  íàñòîÿùåå âðåìÿ â çîíå êîíòàêòà îáîèõ âèäîâ íà ñåâåðå Çàïàäíîãî Êàçàõñòàíà è âäîëü ñåâåðíîé

It should be noted that registration of mixed pairs between Steppe Eagles and Imperial Eagles and hybridization between these species occur not only in the Western Kazakhstan. In particular, surveying Betpak Dala an empty nest of the Imperial Eagle was found on 28 April, 2005. The nest was placed on saxaul, the female Imperial Eagle was sitting in the nest and invitingly crying, looking up, while the male Steppe Eagle was flying over her (that time we were not noticed the fact, and did not visited the nest once again; fig. 5–G4). Probable hybrid (A. heliaca × nipalensis)


Short Reports

Raptors Conservation 2016, 32 êðîìêè Óðäèíñêèõ ïåñêîâ íà þãî-çàïàäå Çàïàäíîãî Êàçàõñòàíà, ãäå îáà âèäà â íàñòîÿùåå âðåìÿ ãíåçäÿòñÿ íà äåðåâüÿõ, ýêîëîãè÷åñêèå áàðüåðû ìåæäó íèìè ñò¸ðòû (ðèñ. 1), è ïðîèñõîäèò ïðîöåññ ôîðìèðîâàíèÿ ñìåøàííûõ ïàð. Ïðè îáñëåäîâàíèè êðîìêè Óðäèíñêèõ ïåñêîâ, â êîòîðûõ ñîñðåäîòî÷åíà êðóïíàÿ ïîïóëÿöèÿ îðëà-ìîãèëüíèêà (ñì. Êàðÿêèí è äð., 2006), 18 èþíÿ 2013 ã., áûëî ïðîâåðåíî ãíåçäî ñòåïíîãî îðëà, èçâåñòíîå ñ 2003 ã. Ñàìêà íà ýòîì ãíåçäå ñìåíèëàñü è áûëà èäåíòèôèöèðîâàíà íàìè êàê ãèáðèä ñòåïíîãî îðëà è îðëà-ìîãèëüíèêà (ðèñ. 2; ðèñ. 5–G1), ñàìåö – òèïè÷íûé îð¸ë-ìîãèëüíèê. Ãíåçäî áûëî óñòðîåíî íà âûñîòå 4 ì íà âåðøèíå êàðàãà÷à (Ulmus parvifolia), ðàñòóùåãî â ãðóïïå äåðåâüåâ ñðåäè ðîâíîé ïîëóïóñòûíè â 350 ì îò êðàÿ áóãðèñòûõ ïåñêîâ. Âûñòèëêà ãíåçäà áûëà òèïè÷íîé äëÿ ñòåïíîãî îðëà – ñ îáèëèåì àíòðîïîãåííûõ ìàòåðèàëîâ è øåðñòè.  ãíåçäå íàõîäèëñÿ 1 îïåðÿþùèéñÿ ïòåíåö, áëèçêèé ïî îêðàñêå ê òàêîâûì îðëà-ìîãèëüíèêà, îòëè÷àþùèéñÿ ëèøü áîëåå ò¸ìíûì áóðûì ôîíîì êðîþùèõ âåðõà òåëà.

Ðèñ. 2. Ãíåçäî (E, F), âçðîñëàÿ ñàìêà (A, B) è îïåðÿþùèéñÿ ïòåíåö (C, D) âåðîÿòíîãî ãèáðèäà ñòåïíîãî îðëà è îðëà-ìîãèëüíèêà. 18.06.2013. Ôîòî È. Êàðÿêèíà. Fig. 2. Nest (E, F), adult female (A, B) and nestling (C, D) of the possible hybrid A. nipalensis × heliaca. 18/06/2013. Western Kazakhstan. Photos by I. Karyakin.

121

was observed in the Sorbulak lake near the Karaoy village in South-Eastern Kazakhstan during January – February 2014 (Belyalov, 2014, Kovalenko, 2014). In its plumage the eagle was very close to the subadult Imperial Eagle, but had specific ocher colored crown and white “juvenile” strip along the bottom of the wing formed by coverts, which is characteristic of young Steppe Eagle (fig. 4; fig. 5–G5). A similar coloured bird (probably also hybrid A. heliaca × nipalensis) was encountered in the south of the Orenburg region near Orsk in a group of 4 Steppe Eagle, 2 Imperial Eagles and several Long-Legged Buzzards (Buteo rufinus) and Kites (Milvus migrans) on 15 August, 2015 (Liseenko, 2015; fig. 5–G6). The eagle looked like a young Imperial Eagle, but was with pronounced ocher coloured crown33. Moulted feathers of an eagle female were sampled in the nest with the dead clutch in Dauria (in the Onon river basin) on 3 August, 2010 (fig. 5–G7). The nest was placed on the ground and was typical for the Steppe Eagle34. However, analysis of the D-


122

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Êðàòêèå ñîîáùåíèÿ

Ðèñ. 3. Ñìåøàííûå ïàðû îðëîâ: ñàìåö – ñòåïíîé îð¸ë, ñàìêà – îð¸ë ìîãèëüíèê: A – âçðîñëûé ñàìåö ñòåïíîãî îðëà êîðìèò âçðîñëóþ ñàìêó îðëàìîãèëüíèêà íà ïóñòîì ãíåçäå, B – ñàìêà îðëàìîãèëüíèêà ñ ýòîãî ãíåçäà (21.06.2013), Ñ – ïîëóâçðîñëûé ñàìåö ñòåïíîãî îðëà è ìîëîäàÿ ñàìêà îðëà-ìîãèëüíèêà áëèç ãíåçäà, D – ýòà æå ñàìêà îðëà-ìîãèëüíèêà íà ãíåçäå ñ ïóõîâûìè ïòåíöàìè (26.06.2015). Ôîòî È. Êàðÿêèíà. Fig. 3. Mixed pairs of the Eagles: male – Steppe Eagle, female – Eastern Imperial Eagle: A – adult male of the Steppe Eagle brought the prey to the adult female of the Eastern Imperial Eagle in the empty nest, B – female of the Eastern Imperial Eagle from this nest (06.21.2013), C – subadult male of the Steppe Eagle and the juvenile female of the Eastern Imperial Eagle near the nest, D – this female of the Eastern Imperial Eagle in the nest with nestlings (26/06/2015). Photos by I. Karyakin.

 áàññåéíå ð. Åñåíàíêàòû (30 êì ê âîñòîêó îò îç. Øàëêàð) 21 èþíÿ 2013 ã. áûëî ïðîâåðåíî ãíåçäî ñòåïíîãî îðëà, èçâåñòíîå ñ 2006 ã.  ìîìåíò îñìîòðà ãíåçäà íà í¸ì íàõîäèëàñü âçðîñëàÿ ñàìêà îðëà-ìîãèëüíèêà, êîòîðîé âçðîñëûé ñàìåö ñòåïíîãî îðëà ïðèí¸ñ äîáûòóþ êóðîïàòêó (Perdix perdix) (ðèñ. 3–A, B; ðèñ. 5–G2). Îïðåäåëåííî, ÷òî ãíåçäî, ñóäÿ ïî åãî ñîñòîÿíèþ, çàíèìàëîñü ïòèöàìè â òå÷åíèå âñåãî ñåçîíà.  2015 ã. äàííîå ãíåçäî îêàçàëîñü ðàçðóøåííûì. È, íàêîíåö, 26 èþíÿ 2015 ã. â õîäå ìîíèòîðèíãà ñôîðìèðîâàâøåéñÿ íà âîäîðàçäåëå ðåê Óòâà è Êèûë ãíåçäîâîé ãðóïïèðîâêè îðëà-ìîãèëüíèêà îáíàðóæåíî ãíåçäî, ïîÿâèâøååñÿ íà äàííîé òåððèòîðèè â 2014 ã. Ãíåçäî áûëî óñòðîåíî â ðàçâèëêå êàðàãà÷à íà âûñîòå îêîëî 5 ì. Íà í¸ì íàõîäèëàñü ñàìêà îðëà-ìîãèëüíèêà â þâåíèëüíîì íàðÿäå è 3 ïóõîâûõ ïòåíöà. Ñàìåö ñòåïíîãî îðëà 4-õ ëåòíåãî âîçðàñòà ïðèí¸ñ íà ãíåçäî äîáû÷ó (ñóñëèêà Spermophilus sp.), ïîñëå ÷åãî ñàìêà ïðèñòóïèëà ê êîðìëåíèþ. Ïîñëå áåñïîêîéñòâà íàáëþäàòåëÿìè, ñàìêà îðëà-ìîãèëüíèêà ñëåòåëà ãíåçäà è ñåëà ðÿäîì ñ ñàìöîì ñòåïíîãî îðëà, à çàòåì ñíîâà âåðíóëàñü íà ãíåçäî (ðèñ. 3–C, D; ðèñ. 5–G3).  ñâÿçè ñ òåì, ÷òî ïòåíöû áûëè ìëàäøå ìåñÿ÷íîãî âîçðàñòà, îñìîòð èõ íå ïðîâîäèëè. Ñòîèò îòìåòèòü, ÷òî ïîÿâëåíèå ñìåøàííûõ ïàð ìåæäó ñòåïíûìè îðëàìè è îðëàìè ìîãèëüíèêàìè è ãèáðèäèçàöèÿ ìåæäó ýòèìè âèäàìè ïðîèñõîäÿò íå òîëüêî â Çàïàäíîì Êàçàõñòàíå.

loop of mitochondrial DNA of these feathers has shown haplotype being identical to one of the haplotypes of the Imperial Eagle. In this case, we can talk about introgression of mitochondrial genome of the Imperial Eagle into the genome of the Steppe Eagle, and may reflect the recent events of his hybridization with the Steppe Eagle when it is impossible to pair with individuals of their own species (Zinevych et al., in press). Although it is possible there was a breeding attempt of the mixed pair. Unfortunately, the female could not be observed in detail, it was photographed from a distance, but was more like the Steppe Eagle. To confirm the hybrid nature of the female or the fact of breeding attempt of the mixed pair, it is necessary to conduct a control analysis of nuclear DNA. All the facts mentioned above give evidence of the possibility of forming the mixed pairs between Steppe and Imperial Eagles, breeding success and fertility of hybrids. All the observed mixed pairs were found in the contact zone of the two species on the periphery of the Steppe Eagle breeding range under conditions of either decrease in numbers of one species (Steppe Eagle) and the growth of another (in Western Kazakhstan), or decline in numbers of both species and the lack of birds of their own species (in Dauria). Considering the fact that the number of Steppe Eagles continues to decline, the hybridization process may amplify and this phenomenon requires a more thorough examination.


Short Reports

Raptors Conservation 2016, 32  ÷àñòíîñòè, 28 àïðåëÿ 2005 ã. ïðè îáñëåäîâàíèè Áåòïàê-Äàëû áûëî îáíàðóæåíî ïóñòîå ãíåçäî îðëà-ìîãèëüíèêà, óñòðîåííîå íà ñàêñàóëå, â êîòîðîì ñàìêà îðëà-ìîãèëüíèêà ñèäåëà è ïðèçûâíî êðè÷àëà, ïîãëÿäûâàÿ ââåðõ, íî íàä íåé ëåòàë ñàìåö ñòåïíîãî îðëà (òîãäà ìû íà ýòî íå îáðàòèëè âíèìàíèå, è ïîçæå ãíåçäî íå ïðîâåðÿëîñü; ðèñ. 5–G4). Îð¸ë, î÷åâèäíî ãèáðèäíîãî ïðîèñõîæäåíèÿ (âåðîÿòíûé ãèáðèä A. heliaca × nipalensis), â òå÷åíèå ÿíâàðÿ – ôåâðàëÿ 2014 ã. íàáëþäàëñÿ íà Ñîðáóëàêå áëèç ïîñ. Êàðàîé â Þãî-Âîñòî÷íîì Êàçàõñòàíå (Áåëÿëîâ, 2014; Êîâàëåíêî, 2014). Âíåøíå îð¸ë áûë áëèçîê ïî îêðàñêå ê ïîëóâçðîñëîìó îðëó-ìîãèëüíèêó, íî èìåë ñïåöèôè÷åñêóþ îõðèñòóþ îêðàñêó òåìåíè è õàðàêòåðíóþ äëÿ ìîëîäîãî ñòåïíîãî îðëà áåëóþ «þâåíèëüíóþ» ïîëîñó ïî íèçó êðûëà, îáðàçîâàííóþ áîëüøèìè êðîþùèìè ìàõîâûõ (ðèñ. 4; ðèñ. 5–G5). Áëèçêàÿ ïî îêðàñêå ïòèöà (âåðîÿòíî òàêæå ãèáðèä A. heliaca × nipalensis) áûëà âñòðå÷åíà 15 àâãóñòà 2015 ã. íà þãå Îðåíáóðãñêîé îáëàñòè áëèç Îðñêà â ñêîïëåíèè èç 4 ñòåïíûõ îðëîâ, 2 îðëîâ-ìîãèëüíèêîâ è íåñêîëüêèõ êóðãàííèêîâ (Buteo rufinus) è êîðøóíîâ (Milvus migrans) (Ëèñååíêî, 2015; ðèñ. 5–G6). Îð¸ë áûë ïîõîæ íà ìîëîäîãî îðëà-ìîãèëüíèêà, íî èìåë ÿðêî âûðàæåííóþ îõðèñòóþ îêðàñêó òåìåíè33. È, íàêîíåö, ëèííûå ïåðüÿ ñàìêè (êàê

Ðèñ. 4. Îð¸ë, î÷åâèäíî ãèáðèäíîãî ïðîèñõîæäåíèÿ (âåðîÿòíûé ãèáðèä A. heliaca × nipalensis), íà Ñîðáóëàêå áëèç ïîñ. Êàðàîé â Þãî-Âîñòî÷íîì Êàçàõñòàíå: A, B – 11.01.2014, C, D – 22.02.2014. Ôîòî À. Êîâàëåíêî è Î. Áåëÿëîâà. Fig. 4. Eagle (probably a hybrid of A. heliaca × nipalensis) near Sorbulak Lake (near the Karaoy village) in the South-Eastern Kazakhstan: A, B – 11/01/2014, C, D – 22/02/2014. Photos by A. Kovalenko and A. Belyalov.

33 34

http://raptors.wildlifemonitoring.ru/get_photo.php?id=39086 http://raptors.wildlifemonitoring.ru/get_photo.php?id=60467

123

íàì êàçàëîñü, ñòåïíîãî îðëà) áûëè ñîáðàíû íà ãíåçäå ñ ïîãèáøåé êëàäêîé, â Äàóðèè (â áàññåéíå Îíîíà) 3 àâãóñòà 2010 ã. (ðèñ. 5–G7). Ãíåçäî áûëî óñòðîåíî íà çåìëå è ÿâëÿëîñü òèïè÷íûì ãíåçäîì ñòåïíîãî îðëà34. Îäíàêî, àíàëèç D-ïåòëè ìèòîõîíäðèàëüíîé ÄÍÊ èç ýòèõ ïåðüåâ ïîêàçàë, ÷òî ãàïëîòèï èäåíòè÷åí îäíîìó èç ãàïëîòèïîâ îðëà-ìîãèëüíèêà.  äàííîì ñëó÷àå ðå÷ü ìîæåò èäòè îá èíòðîãðåññèè ìèòîõîíäðèàëüíîãî ãåíîìà ìîãèëüíèêà â ãåíîì ñòåïíîãî îðëà è ìîæåò îòðàæàòü íåäàâíèå ñîáûòèÿ åãî ãèáðèäèçàöèè ñî ñòåïíûì îðëîì ïðè íåâîçìîæíîñòè ñîçäàòü ïàðó ñ îñîáüþ ñâîåãî âèäà (Çèíåâè÷ è äð., â ïå÷àòè). Õîòÿ âîçìîæíî èìåëà ìåñòî è ïîïûòêà ðàçìíîæåíèÿ ñìåøàííîé ïàðû. Ê ñîæàëåíèþ, ñàìêó íå óäàëîñü ðàññìîòðåòü äåòàëüíî, îíà áûëà çàñíÿòà èçäàëåêà, íî áûëà áîëüøå ïîõîæà íà ñòåïíîãî îðëà. Äëÿ ïîäòâåðæäåíèÿ ãèáðèäíîãî ïðîèñõîæäåíèÿ ñàìêè èëè æå ôàêòà ïîïûòêè ðàçìíîæåíèÿ ñìåøàííîé ïàðû, íåîáõîäèìî ïðîâåñòè êîíòðîëüíûé àíàëèç ÿäåðíîé ÄÍÊ. Èíòåðåñíî òî, ÷òî ÷èñëåííîñòü ãíåçäîâîé ãðóïïèðîâêè ñòåïíûõ îðëîâ, ê êîòîðîé ïðèíàäëåæèò äàííàÿ ïàðà, ñèëüíî ñîêðàòèëàñü â êîíöå ÕÕ – íà÷àëå ÕÕI ñòîëåòèé, êàê è ðàñïîëîæåííàÿ íà ýòîé æå òåððèòîðèè ãíåçäîâàÿ ãðóïïèðîâêà îðëîâ-ìîãèëüíèêîâ, ÷òî ñîçäàëî ëèìèò ïàðòí¸ðîâ è âîçìîæíîñòü äëÿ ìåæâèäîâîé ãèáðèäèçàöèè.  òî æå âðåìÿ îð¸ë-ìîãèëüíèê è ñòåïíîé îð¸ë â äàííîé ãðóïïèðîâêå, â îòëè÷èå îò


124

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Êðàòêèå ñîîáùåíèÿ

Ðèñ. 5. Êàðòà ðåãèñòðàöèé ñìåøàííûõ ïàð ñòåïíûõ îðëîâ è îðëîâ-ìîãèëüíèêîâ è âåðîÿòíûõ ãèáðèäîâ ìåæäó ýòèìè âèäàìè: A – ãíåçäîâîé àðåàë ñòåïíîãî îðëà, B – ãíåçäîâîé àðåàë îðëà-ìîãèëüíèêà, Ñ – ñìåøàííûå ïàðû â êîòîðûõ ñàìêà – îð¸ë-ìîãèëüíèê, ñàìåö – ñòåïíîé îð¸ë, D – âåðîÿòíûé ãèáðèä â ïàðå ñ ñàìöîì îðëàìîãèëüíèêà, E – âåðîÿòíûé ãèáðèä â ïàðå ñ ñàìöîì ñòåïíîãî îðëà, F – âåðîÿòíûé ãèáðèä â þâåíèëüíîì íàðÿäå. Fig. 5. Map of the records of mixed pairs of the Steppe Eagle and Imperial Eagle and probable hybrids between these species: A – breeding range of the Steppe Eagle, B – breeding range of the Imperial Eagle, C – mixed pair in which the female is Imperial Eagle and male is Steppe Eagle, D – probable hybrid in pair with male Imperial Eagle, E – probable hybrid in pair with male Steppe Eagle, F – probable hybrid in juvenile plumage.

Êàçàõñòàíà, ñóùåñòâåííî ðàñõîäÿòñÿ ïî ñòåðåîòèïàì ãíåçäîâàíèÿ è âûáîðó ìåñòîîáèòàíèé – îð¸ë-ìîãèëüíèê îáèòàåò â çîíå âûñîòíîé ëåñîñòåïè è óñòðàèâàåò ãí¸çäà íà âåðøèíàõ ìàÿ÷íûõ ñîñåí, ñòåïíîé îð¸ë ãíåçäèòñÿ â ñòåïíîé ÷àñòè äîëèíû Îíîíà è óñòðàèâàåò ãí¸çäà íà çåìëå è ñêàëüíûõ âûõîäàõ ïî ñêëîíàì ñòåïíûõ âîçâûøåííîñòåé. Âñå âûøåïåðå÷èñëåííûå ôàêòû ãîâîðÿò íå òîëüêî î âîçìîæíîñòè ôîðìèðîâàíèÿ ñìåøàííûõ ïàð ìåæäó ñòåïíûì îðëîì è îðëîì-ìîãèëüíèêîì, íî è îá óñïåøíîì ðàçìíîæåíèè è ôåðòèëüíîñòè ãèáðèäîâ. Âñå ñëó÷àè ôîðìèðîâàíèÿ ñìåøàííûõ ïàð âûÿâëåíû â çîíå êîíòàêòà äâóõ âèäîâ ïî ïåðèôåðèè àðåàëà ñòåïíîãî îðëà ïðè ñîêðàùåíèè ÷èñëåííîñòè îäíîãî (ñòåïíîãî îðëà) è ðîñòå äðóãîãî (â Çàïàäíîì Êàçàõñòàíå), ëèáî ïðè ñîêðàùåíèè ÷èñëåííîñòè îáîèõ è íåäîñòàòêå ïàðòí¸ðîâ ñâîåãî âèäà (â Äàóðèè). Ó÷èòûâàÿ òî, ÷òî ÷èñëåííîñòü ñòåïíîãî îðëà ïðîäîëæàåò ñîêðàùàòüñÿ, ïðîöåññ ãèáðèäèçàöèè ìîæåò óñèëèòüñÿ è ýòî ÿâëåíèå òðåáóåò áîëåå òùàòåëüíîãî èçó÷åíèÿ. Áëàãîäàðíîñòè Àâòîðû áëàãîäàðÿò Ò. Áàðàáàøèíà, À. Âàãèíà, Ì. Êàëàøíèêîâà, Ð. Ëàïøèíà, À. Ñåì¸íîâà, ó÷àñòâîâàâøèõ â ýêñïåäèöèÿõ è ïîìîãàâøèõ â ñáîðå ìàòåðèàëîâ, Î. Áåëÿëîâà è À. Ëèñååíêî çà ôîòîãðàôèè ïðåäïîëîæèòåëüíî ãèáðèäíûõ îðëîâ.

Ëèòåðàòóðà Áåëÿëîâ Î. Îð¸ë (âèä íå îïðåäåë¸í) (Aquila sp.). – Ïåðíàòûå õèùíèêè Ìèðà (Âåá-ÃÈÑ «Ôàóíèñòèêà»). 2014. [Belyalov O. Eagle (Species is not detected) (Aquila sp.). – Raptors of the World (Web-GIS “Faunistics”). 2014]. URL: http://raptors.wildlifemonitoring.ru/#object/o_id=5839 Äàòà îáðàùåíèÿ: 10.03.2016. Âÿëè Þ.È., Ëûõìóñ À.À. Õàðàêòåðèñòèêà ãèáðèäîâ áîëüøîãî è ìàëîãî ïîäîðëèêà (Aquila clanga × pomarina). – Àêòóàëüíûå ïðîáëåìû èçó÷åíèÿ è îõðàíû ïòèö Âîñòî÷íîé Åâðîïû è Ñåâåðíîé Àçèè. Ìàòåðèàëû Ìåæäóíàðîäíîé êîíôåðåíöèè (XI Îðíèòîëîãè÷åñêàÿ êîíôåðåíöèÿ). Êàçàíü, 2001. Ñ. 154–155 [Väli Ü, Lõhmus A. Characteristics hybrids beetwen Greater and Lesser Spotted Eagles (Aquila clanga × pomarina). – Actual problems of the study and protection of birds of Eastern Europe and Northern Asia. Proceedings of the International Conference (XI Ornithological Conference). Kazan, 2001: 154–155 (in Russian)]. Äîìáðîâñêèé Â.×. Ãèáðèäèçàöèÿ ìàëîãî (Aquila pomarina) è áîëüøîãî (Aquila clanga) ïîäîðëèêîâ â Áåëàðóñè: ïðàâèëî èëè èñêëþ÷åíèå? – Subbuteo. 2002. ¹ 5 (1). Ñ. 23–31. [Dombrovski V.C. Hybridization of Lesser and Greater Spotted eagles (Aquila pomarina et A. clanga) in Belarus: rule or exception? – Subbuteo. 2002. 5 (1): 23–31 (in Russian)] URL: http://www.ptushki.org/info/materials/ get/1435 Äàòà îáðàùåíèÿ: 10.03.2016. Äîìáðîâñêèé Â.×. Î âèäîâîé èäåíòèôèêàöèè ìàëîãî, áîëüøîãî ïîäîðëèêîâ è èõ ãèáðèäîâ â ïîëåâûõ óñëîâèÿõ. — Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2009. ¹ 15 Ñ. 97–110 [Dombrovski V.C. About Species Identification of Lesser and Greater Spotted Eagles and their Hybrids in the Field Conditions. – Raptors Conserva-


Short Reports

Raptors Conservation 2016, 32 tion. 2009. 15: 97–110]. URL: http://rrrcn.ru/ru/ archives/21073 Äàòà îáðàùåíèÿ: 10.03.2016. Çèíåâè÷ Ë.Ñ., Ùåïåòîâ Ä.Ì., Ñîðîêèíà Ñ.Þ., Êàðÿêèí È.Â. Ãåíåòè÷åñêîå ðàçíîîáðàçèå ïîïóëÿöèé ñòåïíîãî îðëà â óñëîâèÿõ áûñòðîãî ñîêðàùåíèÿ ÷èñëåííîñòè âèäà. – Ìàòåðèàëû VII Ìåæäóíàðîäíîé êîíôåðåíöèè ïî èçó÷åíèþ è îõðàíå õèùíûõ ïòèö Ñåâåðíîé Åâðàçèè. Ñî÷è, 2016 (â ïå÷àòè) [Zinevich L.S., Schepetov D.M., Sorokina S.Yu., Karyakin I.V. Genetic diversity of rapidly vanishing steppe eagle populations. – Proceedings of the VII International Conference on Birds of Prey and Owls of Northern Eurasia. Sochi, 2016 (in press).]. Êàðÿêèí È.Â. Ïîâûøåí ãëîáàëüíûé ïðèðîäîîõðàííûé ñòàòóñ ñòåïíîãî îðëà. — Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2015. ¹ 30. Ñ. 21–30. DOI: 10.19074/1814-8654-2015-30-21-30 [Karyakin I.V. The Steppe Eagle Global Conservation Status Was Raised. – Raptors Conservation. 2015. 30: 21–30. DOI: 10.19074/18148654-2015-30-21-30]. URL: http://rrrcn.ru/ru/ archives/25956 Äàòà îáðàùåíèÿ: 10.03.2016. Êàðÿêèí È.Â., Êîâàëåíêî À.Â., Íîâèêîâà Ë.Ì. Îð¸ë-ìîãèëüíèê â Âîëãî-Óðàëüñêèõ ïåñêàõ. Ðåçóëüòàòû èññëåäîâàíèé 2006 ãîäà. – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2006. ¹ 6. Ñ. 39–47 [Karyakin I.V., Kovalenko A.V., Novikova L.M. The Imperial Eagle in the Volga-Ural Sands: results of researches in 2006. – Raptors Conservation. 2006. 6: 39–47]. URL: http://docs.sibecocenter.ru/programs/raptors/ RC06/raptors_conservation_2006_6_pages_39_47. pdf Äàòà îáðàùåíèÿ: 10.03.2016. Êîâàëåíêî À. Îð¸ë (âèä íå îïðåäåë¸í) (Aquila sp.). – Ïåðíàòûå õèùíèêè Ìèðà (Âåá-ÃÈÑ «Ôàóíèñòèêà»). 2014. [Kovalenko A. Eagle (Species is not detected) (Aquila sp.). – Raptors of the World (Web-GIS “Faunistics”). 2014]. URL: http://raptors.wildlifemonitoring.ru/#object/o_ id=5838 Äàòà îáðàùåíèÿ: 10.03.2016. Ëèñååíêî À. Îð¸ë (âèä íå îïðåäåë¸í) (Aquila sp.). – Ïåðíàòûå õèùíèêè Ìèðà (ÂåáÃÈÑ «Ôàóíèñòèêà»). 2015. [Liseenko A. Eagle (Species is not detected) (Aquila sp.). – Raptors of the World (Web-GIS “Faunistics”). 2015]. URL: http://raptors.wildlifemonitoring.ru/#object/o_ id=32490 Äàòà îáðàùåíèÿ: 10.03.2016. Bergmanis U., Petrins A., Strazds M., Krams I. Probable case of hybridization of Spotted Eagle, Aquila clanga, and Lesser Spotted Eagle, A. pomarina, in eastern Latvia. – Acta ornithoecologica. 1997. 4: 297–304. Blockx H. De “schreeuwarend” van Tourinnes. Boomklever. 2002. 30: 61. Corso, A., Forsman, D. Hybrids between Black Kite and Common Buzzard. – Alula. 1997. 3: 44–45. Dombrovski V.C. Hybridation entre les aigles criard Aquila clanga et pomarin A. pomarina en Bielorussie: Consequence taxonomique. – Nos Oiseaux. 2005. 52: 27–30. Grimmett R., Inskipp C., Inskipp T. Birds of the Indian subcontinent, London: A. & C. Black, 1998. Gutierrez R., Villa S. A possible hybrid Spotted Eagle × Lesser Spotted Eagle in Spain. – Birding World. 2002. 15: 104–105. Lõhmus A. [The numbers of the Lesser Spotted Eagle and Greater Spotted Eagle in Estonia]. – Hirundo. 1998. 11: 24–34.

125

Lõhmus A., Väli Ü. Interbreeding of the Spotted Eagle (Aquila clanga) and Lesser Spotted Eagle (A. pomarina). – IV Eurasian Congress on Raptors (Sevilla), 2001: 190. Lontkowski J., Maciorowski G. Identification of juvenile Greater Spotted Eagle, Lesser Spotted Eagle and hybrids. – Dutch Birding. 2010. 32: 384–397. URL: http://www.sovds. info/VismoOnline_ActionScripts/File.ashx?id_ org=200105&id_dokumenty=1042 Date accessed: 10.03.2016. Maciorowski G., Lontkowski J., Mizera T. The Spotted Eagle – Vanishing Bird of the Marshes. Poznan, 2014: 1–306. URL: http://rrrcn.ru/ru/archives/22598 Date accessed: 10.03.2016. Maciorowski G., Mirski P., Väli Ü. Hybridisation Dynamics between the Greater Spotted Eagles Aquila clanga and Lesser Spotted Eagles Aquila pomarina in the Biebrza River Valley (NE Poland). – Acta Ornithologica. 2015. 50 (1): 33–41. DOI: 10.3161/00016454AO2015.50.1.005. McCarthy E.M. Handbook of Avian Hybrids of the World. Oxford University Press 2006: 1–586. URL: http://spinus.info/Images/books/ AH743697479746.pdf Date accessed: 10.03.2016. Treinys R. The Greater Spotted Eagle (Aquila clanga): Previous, current status and hybridisation in Lithuania. – Acta zoologica lituanica. 2005. 15: 31–38. Väli Ü. The Greater Spotted Eagle Aquila clanga and Lesser Spotted Eagle A. pomarina – Taxonomy, phylogeography and ecology. Ph.D. Dissertation, Tartu University, Tartu, Estonia. 2004: 1–32. URL: http://dspace.ut.ee/bitstream/handle/10062/1293/Vali.pdf?sequence=5 Date accessed: 10.03.2016. Vali U. Hybridisation: a threat to European Greater Spotted Eagles Aquila clanga. – International Meeting on Spotted Eagles (Aquila clanga, A. pomarina and A. hastata). Research and Conservation / Mizera, T. & Meyburg, B.U., eds. Biebrzański Park Narodowy, Osowiec, 2005: 103–114. Väli Ü. Successful Breeding of a Ten-YearOld Hybrid Spotted Eagle Aquila clanga × A. pomarina Retaining Immature Plumage Characters. – Ardea. 2010. 98 (2): 235–241. DOI: 10.5253/078.098.0214. Väli Ü., Dombrovski V., Treinys R., Bergmanis U., Daroczi S.J., Dravecky M., Ivanovski V., Lontkowski J., Maciorowski G., Meyburg B.-U., Mizera T., Zeitz R., Ellegren H. Widespread hybridization between the Greater Spotted Eagle Aquila clanga and the Lesser Spotted Eagle Aquila pomarina (Aves: Accipitriformes) in Europe. – Biological Journal of the Linnean Society, 2010, 100, 725–736. URL: http://milvus.ro/wp-content/uploads/2008/02/Vali-et-al.-2010.pdf Date accessed: 10.03.2016. Väli Ü., Lõhmus A. Interbreeding of the Spotted Eagle (Aquila clanga) and Lesser Spotted Eagle (A. pomarina). – Acta ornithoecologica. 2001. 4: 377–384. Väli Ü., Lõhmus A. Nestling characteristics and identification of the Lesser Spotted Eagle Aquila pomarina, Greater Spotted Eagle A. clanga, and their hybrids. – Journal of Ornithology. 2004. 145: 256–263.


126

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Êðàòêèå ñîîáùåíèÿ

Nesting of the Blakiston’s Fish-Owl in the Nest of the Steller’s Sea Eagle, Magadan Region, Russia ГНЕЗДОВАНИЕ РЫБНОГО ФИЛИНА В ГНЕЗДЕ БЕЛОПЛЕЧЕГО ОРЛАНА, МАГАДАНСКАЯ ОБЛАСТЬ, РОССИЯ Utekhina I.G. (Magadan State Reserve, Magadan, Russia), Potapov E.R. (Bryn Athyn College, Bryn Athyn, Pennsylvania, USA), McGrady M.J. (International Avian Research, Austria) Утехина И.Г. (ФГБУ «Государственный заповедник «Магаданский»), Потапов Е.Р. (Брин Афинский Колледж, Пенсильвания, США), МакГради М.Дж. (Международные исследовательские проекты птиц, Австрия)

DOI: 10.19074/1814-8654-2016-32-126-129

Êîíòàêò: Èðèíà Óòåõèíà ÔÃÁÓ «Ãîñóäàðñòâåííûé çàïîâåäíèê «Ìàãàäàíñêèé» 685000, Ðîññèÿ, ã. Ìàãàäàí, óë. Êîëüöåâàÿ, ä. 17 òåë.: 8 914 039 7321, 8 4132 657871 steller@magterra.ru, irinautekhina@gmail.com Åâãåíèé Ïîòàïîâ eugenepotapov@ gmail.com Ìàéê ÌàêÃðàäè MikeJMcGrady@aol.com Contact: Irina Utekhina Magadan State Reserve Koltsevaya str., 17, Magadan, Russia, 685000 tel.: 8 914 039 7321, 8 4132 657871 steller@magterra.ru, irinautekhina@gmail.com Eugene Potapov eugenepotapov@ gmail.com Michael J. McGrady MikeJMcGrady@aol.com

Î âñòðå÷àõ ðûáíîãî ôèëèíà (Ketupa blakistoni Seebohm, 1884) íà ð. ×åëîìäæà â çàïîâåäíèêå «Ìàãàäàíñêèé» (áàññåéí ð. Òàóé, ñåâåðíîå ïîáåðåæüå Îõîòñêîãî ìîðÿ, Ìàãàäàíñêàÿ îáëàñòü) áûëî èçâåñòíî ñ 1980-õ ãîäîâ (Òàðõîâ, Ïîòàïîâ, 1986). Ïî ôèêñàöèè äóýòíîãî ïåíèÿ â ôåâðàëå 1986 ã. îíè îöåíèëè ÷èñëåííîñòü ðûáíîãî ôèëèíà íà 75-êì ó÷àñòêå ð. ×åëîìäæà â 5–6 ïàð.  ïîñëåäóþùèå ãîäû èíñïåêòîðû çàïîâåäíèêà è îðíèòîëîãè, ðàáîòàâøèå íà Êàâà-×åëîìäæèíñêîì ó÷àñòêå çàïîâåäíèêà, ïîñòîÿííî îòìå÷àëè ðûáíîãî ôèëèíà (ãîëîñîâóþ àêòèâíîñòü, ñëåäû è âñòðå÷è ïòèö) íà ð. ×åëîìäæà. Ñîòðóäíèêè çàïîâåäíèêà (È.Ã. Óòåõèíà, Â.Â. Èâàíîâ) ñîâìåñòíî ñ À.Â. Àíäðååâûì (ÈÁÏÑ ÄÂÎ ÐÀÍ) ïðîâåëè ó÷¸ò ãíåçäîâûõ ïàð ðûáíîãî ôèëèíà ïî ãîëîñàì 10–19 èþíÿ 2003 ã. âî âðåìÿ ñïëàâà ïî ð. ×åëîìäæà íà 166 êì ó÷àñòêå (140 êì äîëèíû) îò óñòüÿ ð. Áóðãàãûëêàí äî ìåñòà âïàäåíèÿ ð. ×åëîìäæà â ð. Òàóé. Ïî ðåçóëüòàòàì ó÷¸òà ÷èñëî ó÷àñòêîâ ðûáíîãî ôèëèíà íà ïðîéäåííîì ó÷àñòêå ðåêè áûëî îöåíåíî â 10 ïàð, à ïîòåíöèàëüíóþ ÷èñëåííîñòü âèäà â áàññåéíå ð. ×åëîìäæà À.Â. Àíäðååâ îöåíèë â 10–12 ïàð (Àíäðååâ, 2006, ðèñ.1). Êðîìå ðûáíîãî ôèëèíà â çàïîâåäíèêå «Ìàãàäàíñêèé» îáèòàåò äðóãîé ðûáîÿäíûé õèùíèê – áåëîïëå÷èé îðëàí (Haliaeetus pelagicus Pallas, 1811). Íà ð. ×åëîìäæà îðëàíû ñòðîÿò ìàññèâíûå ãí¸çäà èç ñó÷üåâ íà òîïîëÿõ è ëèñòâåííèöàõ íà âûñîòå îò 10 äî 25 ì. Áîëüøèíñòâî ãí¸çä ïîñòðîåíî ïîáëèçîñòè îò áåðåãà ðåêè (îò 0 äî 200 ì) íà äîìèíèðóþùèõ äåðåâüÿõ íà êðàþ ïðîãàëîâ, îïóøåê èëè îáðûâîâ ðåêè òàê, ÷òî ó ïòèö âñåãäà åñòü õîðîøèé îáçîð (Óòåõèíà, 2004).

The Blakiston’s Fish Owl (Ketupa blakistoni Seebohm, 1884) was first recorded on the Chelomdja River, within the limits of the Magadan State Nature Reserve (Tauy River basin, Northern part of the Sea of Okhotsk, Okhotsk), in 1980’s (Tarkhov, Potapov, 1986), and call-back surveys suggested that the 75 km stretch of the Chelomdja river accommodates 5–6 breeding pairs. In the years since then, Magadan State Nature Reserve personnel have regularly reported sightings of Blakiston’s Fish Owl, its calls and tracks. In 2003, Magadan Nature Reserve employees and A. Andreev of the Institute of the Biological Problems of the North (Russian Academy of Sciences) carried out a survey of the Blakiston’s Fish Owls along the Chelomdja River. The surveys were conducted while rafting along the river from the confluence of the Burgagylkan and Tauy Rivers, a distance of 166 km (140 straight line along the valley). The survey recorded 10 pairs, and Andreev (2006) later estimated the total potential breeding number as 10–12 pairs in the Chelomdja River basin (fig. 1). Another large fish-eating predator, the Steller’s Sea Eagle (Haliaeetus pelagicus Pallas, 1811), lives alongside the Blakiston’s Fish Owl in the Magadan State Reserve. On the Chelomdja River, Steller’s Sea Eagles build massive stick nests in poplar and larch trees at the height of 10–25 m. The majority of the nests are close to the river (0 to 200 m away). The nests are typically located in dominant trees, near openings in the woodlands, at forest edges and the banks of the rivers, with good visibility on the surrounding landscapes (Utekhina, 2004).


Short Reports

Ðèñ. 1. Ðàñïîëîæåíèå ãíåçäîâûõ ó÷àñòêîâ ðûáíîãî ôèëèíà (Ketupa blakistoni) â äîëèíå ð. ×åëîìæà ïî ðåçóëüòàòàì ó÷¸òîâ 2003 ãîäà (ïî: Àíäðååâ, 2006, ñ èçìåíåíèÿìè È. Óòåõèíîé, ïðîèçâîäèâøåé ó÷¸ò). Íà ñõåìå ïîêàçàí íîâûé ó÷àñòîê ðûáíûõ ôèëèíîâ (×-11). Fig. 1. Breeding territories of the Blakiston’s Fish Owl (Ketupa blakistoni) in the Chelomdja river valley resulted from the survey of 2003 (from Andreev, 2006, with some corrections of the I. Utekhina, who carried out the survey). The location of the new nest (and territory) indicated as ×-11 is also shown.

Raptors Conservation 2016, 32

 2015 ã. â îäíîì èç ãí¸çä áåëîïëå÷åãî îðëàíà íà ð. ×åëîìäæà ïîñåëèëñÿ ðûáíûé ôèëèí. Ïåðâîå ñîîáùåíèå îá ýòîì ïîñòóïèëî îò ãîñèíñïåêòîðà çàïîâåäíèêà Å.À. Ñòåïàíîâà, êîòîðûé 17 ìàÿ çàìåòèë ïàðó ðûáíûõ ôèëèíîâ ó ãíåçäà áåëîïëå÷åãî îðëàíà íà ïðàâîì áåðåãó ð. ×åëîìäæà â 3-õ êì íèæå êîðäîíà Ìîëäîò. Îäíà èç ïòèö íàõîäèëàñü â ãíåçäå, âòîðàÿ ñèäåëà íà äåðåâå ðÿäîì ñ ãíåçäîì. 26 ìàÿ E.À. Ñòåïàíîâ îòìåòèë, ÷òî ôèëèíû íàõîäÿòñÿ òàì æå – îäèí â ãíåçäå îðëàíà, äðóãîé ðÿäîì. Ìû îñìîòðåëè ýòî ãíåçäî 20 è 21 èþíÿ 2015 ã. – â í¸ì íàõîäèëñÿ îäèí êðóïíûé ïòåíåö ðûáíîãî ôèëèíà, âçðîñëûõ ïòèö îêîëî ãíåçäà ìû íå âèäåëè (ðèñ.2A, B è Ñ). Ïòåíåö ïîêèíóë ãíåçäî îðëàíà ìåæäó 23 è 25 èþíÿ. Èíñïåêòîð À.À. Ñòåïàíîâ 23 èþíÿ âèäåë ïòåíöà â ãíåçäå è îäíîãî âçðîñëîãî ôèëèíà íà ñîñåäíåì äåðåâå, à 25 èþíÿ, ïî ñîîáùåíèþ èíñïåêòîðà À.Â. Àõàíîâà, ãíåçäî áûëî ïóñòûì è â ïîñëåäóþùèå äíè íè ïòåíöà, íè âçðîñëûõ ôèëèíîâ èíñïåêòîðû çàïîâåäíèêà ó ãíåçäà íå âèäåëè. Ãíåçäî îðëàíà, âïîñëåäñòâèè çàíÿòîå ôèëèíàìè, áûëî âïåðâûå îáíàðóæåíî íàìè 15.08.2014 ã. âî âðåìÿ ìîíèòîðèíãà ãíåçäîâàíèÿ áåëîïëå÷èõ îðëàíîâ, åæåãîäíî ïðîâîäèìîãî â çàïîâåäíèêå ñ 1991 ã. (Potapov et al., 2000; Ïîòàïîâ è äð., 2013). Ãíåçäî áûëî ïîñòðîåíî ëåòîì 2014 ã. è ïðèíàäëåæàëî íîâîé ïàðå áåëîïëå÷èõ îðëàíîâ, ðàíåå íà ýòîì ó÷àñòêå ðåêè íå îòìå÷àâøåéñÿ. Âíîâü îáíàðó-

127

In 2015 one Steller’s Sea Eagle nest was occupied by a Blakiston’s Fish Owl, the first record of which came from the Nature Reserve Inspector, E.A. Stepanov, who, on May 17, noted a pair of fish owls near a Steller’s Sea Eagle nest on the western bank of the Chelomdja River, 3 km downstream from the Moldot ranger’s station. On that date one of the owls was sitting in the nest, and another was sitting in a tree nearby the nest. On May 26, E. Stepanov observed the owls in the same position. We observed the nest on 20 and 21 June 2015, and saw one large Blakiston’s Fish Owl chick in the nest; no adults were noted. (fig. 2 A and B). Inspector A. Stepanov saw the chick in the nest on June 23, and an adult nearby. Magadan State Reserve Inspector A. Akhanov reported that the nest was empty and no adults were seen on June 25. Fledging date has been recorded for Blakiston’s Fish Owl nest in the Magadan State Reserve on one previous occasion. In that case, fledging occurred on June 25, 2003, when the chick was 49–51 days of age (Andreev 2006). The Steller’s Sea Eagle nest occupied by the Blakiston’s Fish Owls was first found on August, 15, 2014 during the Steller’s Sea Eagle surveys that we have conducted annually since 1991 (Potapov et al., 2000; 2013). The nest was built in the summer 2014 on a stretch of the river not previously occupied by territorial eagles. The platform-type nest was placed in a fork of a poplar tree (Populus suaveolens), which was growing on the bank


128

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Ðèñ. 2. Ïòåíåö ðûáíîãî ôèëèíà (A, B) â ãíåçäå áåëîïëå÷åãî îðëàíà (Haliaeetus pelagicus) (C, D). Ôîòî È. Óòåõèíîé è Å. Ïîòàïîâà. Fig. 2. Nestling of the Blakiston’s Fish Owl (A, B) in the nest of the Steller’s Sea Eagle (Haliaeetus pelagicus) (C, D). Photos by E. Potapov and I. Utekhina.

æåííîå ãíåçäî îòíîñèëîñü ê ðàçâèëî÷íîìó òèïó è áûëî ïîñòðîåíî íà æèâîì òîïîëå (Populus suaveolens), ñòîÿùåì íà áåðåãó ×åëîìäæè â óñòüå ìàëåíüêîé òèõîé ïðîòîêè (ðèñ. 2D). Ýòî âòîðàÿ äîñòîâåðíàÿ íàõîäêà ãíåçäÿùåéñÿ ïàðû ðûáíûõ ôèëèíîâ â çàïîâåäíèêå «Ìàãàäàíñêèé» è â ñåâåðíîì Ïðèîõîòüå. Íàõîäêà ýòà òàêæå èíòåðåñíà òåì, ÷òî ôèëèíû çàíÿëè ÷óæîå ãíåçäî, ïðè÷¸ì ïðèíàäëåæàùåå áîëåå êðóïíîìó õèùíèêó. Îáû÷íî, îíè ãíåçäÿòñÿ â äóïëàõ èëè ïîëóäóïëàõ ñòàðûõ äåðåâüåâ, èëè, â ðåäêèõ ñëó÷àÿõ, â ðàçâèëêå äåðåâà (Takenaka, 1998; Ïóêèíñêèé, 1993). Ïåðâîå ãíåçäî ðûáíîãî ôèëèíà, íàéäåííîå â îõðàííîé çîíå çàïîâåäíèêà «Ìàãàäàíñêèé», áûëî îáíàðóæåíî À.Â. Àíäðååâûì 7 ìàÿ 2003 ã. â ëåâîáåðåæüå ×åëîìäæè â ðàéîíå êîðäîíà Áóðãàëè. Îíî áûëî ðàñïîëîæåíî íà âåðøèíå ñëîìàííîãî òîïîëÿ (â óãëóáëåíèè ñòâîëà) â 12 ì îò çåìëè â ñðåäèííîé ÷àñòè çðåëîãî ïîéìåííîãî ëåñà. Ðàññòîÿíèå îò ãíåçäà

Êðàòêèå ñîîáùåíèÿ of the Chelomdja River at a confluence with a small, dead-end side channel (fig. 2 C, D). This is the second confirmed breeding of Blackiston’s Fish Owl in the Magadan State Reserve and in the northern part of the Sea of Okhostk. This finding is rather interesting because the nest site was in a disused eagle nest; fish owls usually nest in tree cavities or, more rarely, in a fork of a tree (Takenaka 1998; Pukinsikiy 1993). The first fish owl nest recorded in the Magadan State Reserve was found by A. Andreev on May, 7, 2003 on the western bank of the Chelomdja River at the Burgaly ranger station (within the KavaChelomdja easement). The nest was located at about 12 m on top of a poplar tree, which had its main stem snapped off and which was growing in a mature forest patch. The distance from that nest to the nearest river channel was 200 m; the distance to the main Chelomdja channel was 350 m (Andreev 2006; Andreev et al., 2006). Apparently the fish owls breeding in the nest of the Steller’s Sea Eagle represent a new territory (Ch-11), which was not recorded in the survey of 2003 (fig. 1). The nearest known neighbouring nests occur 3 km upstream (Ch-6), at the Moldot creek confluence, and 12.5 km downstream, at the Burgaly creek confluence (fig. 2 C). Observations of fish owls were regularly made at the Burgaly ranger station during 2002–2007, after which calls and sightings were intermittent. In 2012 the Burgaly ranger station was swept away by the river. At the Moldot ranger station, the fish owl territory was occupied in 2015; the rangers reported vocalizations of the birds from January to June 2015. Steller’s Sea Eagles arrive on breeding territories in the northern part of the Sea of Okhotsk at the end of March, and start breeding in the second half of April (Utekhina, 2004); their nests are placed in dominant, well-visible trees. In 2015 the first eagle was noted at the breeding territory on March 28 (Ranger: E. Stepanov). The Blakiston’s Fish Owl is considered to be sedentary species; they start to breed in the end of March (Andreev 2006; Andreev et al., 2006; Pukinskiy 1994). This means that the by the time Steller’s Sea Eagles arrived in 2014 from spring migration, the nest must have been occupied by the fish owls. That this fish owl pair bred on a platform nest indicates the lack of available tree cavities. In our opinion the successful breeding was fortunate because a highly visible fish owl chick in an open platform nest must have been an easy target for predation.


Short Reports

Raptors Conservation 2016, 32 äî áëèæàéøåé ïðîòîêè ñîñòàâèëî îêîëî 200 ì, ðàññòîÿíèå äî ðóñëà ×åëîìäæè – îêîëî 350 ì.  ãíåçäå íàõîäèëñÿ îäèí ïòåíåö, êîòîðûé ïîêèíóë ãíåçäî 25 èþíÿ â âîçðàñòå 49–51 äåíü (Àíäðååâ, 2006). Ôèëèíû, ïîñåëèâøèåñÿ â ãíåçäå áåëîïëå÷åãî îðëàíà, îáðàçîâàëè íîâûé ó÷àñòîê ãíåçäîâàíèÿ (×-11), íå îòìå÷åííûé äî è âî âðåìÿ ó÷¸òà 2003 ã. Áëèæàéøèå îò íåãî ãíåçäîâûå ó÷àñòêè ðûáíûõ ôèëèíîâ ðàñïîëîæåíû â 3-õ êì âûøå ïî òå÷åíèþ – ×-6, óñòüå ð. Ìîëäîò, è â 12,5 êì íèæå ïî òå÷åíèþ ×åëîìäæè – ×-7, óñòüå ð. Áóðãàëè (ðèñ. 1). Íà êîðäîíå Áóðãàëè íàáëþäåíèÿ íå âåäóòñÿ ñ 2012 ã. Ñ 2002 ïî 2007 ã. èíñïåêòîðû ðåãóëÿðíî îòìå÷àëè ïðèñóòñòâèå ðûáíûõ ôèëèíîâ â îêðåñòíîñòÿõ êîðäîíà, à ñ 2008 ã. çàïèñè î ãîëîñå è âñòðå÷àõ ïòèö ñòàëè åäèíè÷íûìè. Íà êîðäîíå Ìîëäîò â 2015 ã. ãíåçäîâîé ó÷àñòîê ðûáíûõ ôèëèíîâ áûë çàíÿò – èíñïåêòîðû íà êîðäîíå íàáëþäàëè ôèëèíîâ è îòìå÷àëè ãîëîñîâóþ àêòèâíîñòü ïòèö ïî ð. Ìîëäîò ñ ÿíâàðÿ ïî èþíü 2015 ã. Áåëîïëå÷èå îðëàíû îáû÷íî ïðèëåòàþò íà ðå÷íûå ãíåçäîâûå ó÷àñòêè Ñåâåðíîãî Ïðèîõîòüÿ â êîíöå ìàðòà, à ïðèñòóïàþò ê ãíåçäîâàíèþ âî âòîðîé ïîëîâèíå àïðåëÿ (Óòåõèíà, 2004).  2015 ã. ïåðâîãî âçðîñëîãî îðëàíà íà ãíåçäîâîì ó÷àñòêå íà ð. ×åëîìäæà îòìåòèë èíñïåêòîð Å.À. Ñòåïàíîâ â ðàéîíå êîðäîíà Ìîëäîò 28 ìàðòà. Ðûáíûå ôèëèíû âåäóò îñåäëûé îáðàç æèçíè è ê ãíåçäîâàíèþ ïðèñòóïàþò â êîíöå ìàðòà (Àíäðååâ, 2006; Àíäðååâ è äð., 2006; Ïóêèíñêèé, 1993). Î÷åâèäíî, ê ìîìåíòó ïîÿâëåíèÿ áåëîïëå÷èõ îðëàíîâ íà ñâî¸ì ó÷àñòêå èõ ãíåçäî îêàçàëîñü óæå çàíÿòûì. Ñàì ôàêò ãíåçäîâàíèÿ ðûáíîãî ôèëèíà â ãíåçäå, îòêðûòîì äëÿ õèùíè÷åñòâà, âåðîÿòíî, ãîâîðèò îá îòñóòñòâèè óäîáíûõ äóïåë â îêðóæàþùåì ëåñó. À ôàêò óñïåøíîãî ãíåçäîâàíèÿ ìîæíî ëèøü îòíåñòè ê óäà÷íîìó ñòå÷åíèþ îáñòîÿòåëüñòâ, òàê êàê íà íàø âçãëÿä, ïòåíåö ôèëèíà íà çàìåòíîì ãíåçäå îðëàíà ÿâëÿåòñÿ óäîáíîé ìèøåíüþ äëÿ õèùíèêîâ. Ëèòåðàòóðà Àíäðååâ À.Â. Ðûáíûé ôèëèí (Ketupa blakistoni) íà Ñåâåðî-Âîñòî÷íîé îêðàèíå àðåàëà. – Ãåîëîãèÿ, ãåîãðàôèÿ è áèîëîãè÷åñêîå ðàçíîîáðàçèå Ñåâåðî-Âîñòîêà Ðîññèè: Ìàòåðèàëû Äàëüíåâîñòî÷íîé ðåãèîíàëüíîé êîíôåðåíöèè, ïîñâÿùåííîé ïàìÿòè À.Ï. Âàñüêîâñêîãî è â ÷åñòü åãî 95-ëåòèÿ (Ìàãàäàí, 28–30 íîÿáðÿ 2006 ã.). Ìàãàäàí: ÑÂÍÖ ÄÂÎ ÐÀÍ, 2006. Ñ. 309–312 [Andreev, A.V. Blakiston’s Fish Owl

129

(Ketupa blakistoni) in the North-Eastern corner of its range. In: Geology, Geography and Biodiversity of the Russian North East: Proceedings of the FarEastern regional conference in the Memory of and commemoration of 95th birthday of A.P. Vaskovsiy, Magadan, 28–30 Novebmer 2006. Magadan, North Eastern Center of the Far Eastern Branch of the Russian Academy of Sciences, 2006: 309–312 (in Russian)]. Àíäðååâ À.Â., Äîêó÷àåâ Í.Å., Êðå÷ìàð À.Â., ×åðíÿâñêèé Ô.Á. Íàçåìíûå ïîçâîíî÷íûå Ñåâåðî-Âîñòîêà Ðîññèè: àííîòèðîâàííûé êàòàëîã. Ìàãàäàí: ÑÂÍÖ ÄÂÎ ÐÀÍ, 2006. 315 ñ. [Andreev, A.V., Dokuchaev, N.E., Krechmar A.V., Chernyavsky F.B. Terrestrial vertebrates of the Russian Far East: annotated catalog. Magadan, The Eastern Center of the Far Eastern Branch of the Russian Academy of Science, 2006: 1–315 (in Russian)]. Ïîòàïîâ Å.Ð., Óòåõèíà È.Ã., ÌàêÃðàäè Ì.Äæ., Ðèìëèíãåð Ä. Ìîíèòîðèíã áåëîïëå÷åãî îðëàíà íà ñåâåðå Îõîòîìîðüÿ: ïòèöû, ëþäè, òåõíîëîãèè. – Ïåðíàòûå õèùíèêè è èõ îõðàíà. 2013. ¹ 27. Ñ. 46–57. [Potapov E.R., Utekhina I.G., McGrady M.J., Rimlinger D. Steller’s Sea Eagle monitoring at the Northern part of the Sea of Okhotsk: birds, people, technologies. – Raptors Conservation. 2013. 27: 46–57]. URL: http:// docs.sibecocenter.ru/programs/raptors/RC27/ RC27_46-57_Potapov1.pdf Äàòà îáðàùåíèÿ: 23.02.2016. Ïóêèíñêèé Þ.Á. Ðûáíûé Ôèëèí. – Ïòèöû Ðîññèè è ñîïðåäåëüíûõ Ðåãèîíîâ / Ðåä. Â.Ä. Èëüè÷¸â. Ì.: Íàóêà, 1993. C. 290–302 [Pukinskii, Y.B. Blakiston’s Fish Owl Ketupa blakistoni. – Birds of Russia and adjacent regions / V.D. Ilichev, Ed. Moscow, 1993: 290–302 (in Russian)]. Òàðõîâ Ñ.Â., Ïîòàïîâ Å.Ð. Çèìîâêà ðûáíîãî ôèëèíà â Ìàãàäàíñêîé îáëàñòè. – Àêòóàëüíûå ïðîáëåìû îðíèòîëîãèè. Ì.: Íàóêà, 1986. Ñ. 239–240 [Tarkhov S.V., Potapov, E.R. Wintering of the Blakiston’s Fish Owl in the Magadan District. Actual Problems of Ornithology, Moscow, Nauka Publishers, 1986: 239–240 (in Russian)]. Óòåõèíà È.Ã. Áåëîïëå÷èé îðëàí Haliaeetus pelagicus (Pallas, 1811) íà ñåâåðíîì ïîáåðåæüå Îõîòñêîãî ìîðÿ: ðàñïðîñòðàíåíèå, ÷èñëåííîñòü, ýêîëîãèÿ, ìèãðàöèè. Äèñ. … êàíä. áèîë. íàóê. Ìîñêâà, 2004. 187 ñ. [Utekhina I.G. Steller’s Sea Eagle in the Northern coast of the Sea of Okhotsk: distribution, numbers, ecology and migrations. Unpublished PhD thesis. Moscow, 2004: 1–187 (in Russian)]. Potapov E., McGrady M., Utekhina I. Steller’s Sea Eagle in the Magadan District and in the North of the Khabarovsk District. – First Symposium on Steller’s and White-Tailed Sea Eagles in East Asia / Ueta M. & McGrady M.J. (eds). 2000: 205–208. URL: http://www.wbsj.org/nature/database/report/eagle/magadan.pdf Äàòà îáðàùåíèÿ: 23.02.2016. Takenaka K. Distribution, habitat environments, and reasons for reduction of the endangered Blakiston’s fish owl in Hokkaido, Japan. Unpublished Doctoral Thesis, Hokkaido Univ. Sapporo, Japan, 1998.


130

Ïåðíàòûå õèùíèêè è èõ îõðàíà 2016, 32

Ñîäåðæàíèå

Ñîäåðæàíèå

Contents

Ñîáûòèÿ ..................................................................... 3

Events .......................................................................... 3

Èçó÷åíèå ïåðíàòûõ õèùíèêîâ ................................. 8

Raptor Research .......................................................... 8

Ýêîëîãèè äëèííîõâîñòîé íåÿñûòè íà þãî-çàïàäíîé ãðàíèöå ñâîåãî ðàñïðîñòðàíåíèÿ (Ñëîâåíèÿ). Âðåæåê À. ................................................................. 8

The Ecology of the Ural Owl at South-Western Border of Its Distribution (Slovenia). Vrezec A........................ 8

Ïèòàíèå îðëàíà-áåëîõâîñòà â ãíåçäîâîé ïåðèîä â Ïîëåññêîì ãîñóäàðñòâåííîì ðàäèàöèîííîýêîëîãè÷åñêîì çàïîâåäíèêå, Áåëàðóñü. Þðêî Â.Â. .... 21 Õèùíûå ïòèöû Ìåæäóíàðîäíîãî àýðîïîðòà «Ñòðèãèíî», Ðîññèÿ. Êîëåñîâà Í.Å., Ñòðèæîâà Ñ.Â. .... 32 Õèùíûå ïòèöû â ìàòåðèàëàõ ïÿòèëåòíåãî ìîíèòîðèíãà ëåòíèõ îðíèòîêîìïëåêñîâ Ãîñóäàðñòâåííîãî áèîñôåðíîãî çàïîâåäíèêà «Êåðæåíñêèé» ïîñëå ëåñíûõ ïîæàðîâ 2010 ãîäà, Ðîññèÿ. Íîñêîâà Î.Ñ. .... 39

Diet of the White-Tailed Eagle During the Breeding Season in the Polesski State Radiation-Ecological Reserve, Belarus. Yurko V.V. ...................................... 21 Birds of Prey at the International Airport “Strigino”, Russia. Kolesova N.E., Strizhova S.V. ........................ 32 Raptors in the State Nature Reserve “Kerzhensky” After Forest Fires of 2010: Materials of Five-Year Monitoring of a Summer Bird Population. Noskova O.S............................................................ 39

Ãíåçäîâàÿ ýêîëîãèÿ ÷¸ðíîãî êîðøóíà â ëåñîïîëîñàõ Àëòàéñêîãî êðàÿ, Ðîññèÿ. Áàõòèí Ð.Ô. .................... 49

Breeding Ecology of the Black Kite in Forest Shelter Belts of Altai Kray, Russia. Bachtin R.F. ..................... 49

Ðåøåíèå ïðîáëåìû îïðåäåëåíèÿ ñòàòóñà ãí¸çä áåëîáðþõîãî îðëàíà – âàæíàÿ çàäà÷à äëÿ ïëàíèðîâàíèÿ îõðàíû ýòîãî âèäà. Õàëåãèçàäý À. ....... 59

The Problem of Nest Occupancy of the White-bellied Sea Eagle – a Special Case for Their Species Conservation. Khaleghizadeh A. .............................. 59

Ñòàòüè ïî ðåçóëüòàòàì ïðîãðàììû èçó÷åíèÿ è îõðàíû ñòåïíîãî îðëà Ðîññèéñêîé ñåòè èçó÷åíèÿ è îõðàíû ïåðíàòûõ õèùíèêîâ ........... 67

Articles on the Results of the Steppe Eagle Study and Conservation Programme of the Russian Raptor Research and Conservation Network ........ 67

Ïîïóëÿöèîííàÿ ñòðóêòóðà àðåàëà ñòåïíîãî îðëà è ïðåäâàðèòåëüíûå äàííûå ïî ãåíåòè÷åñêîìó ðàçíîîáðàçèþ åãî ïîïóëÿöèé è ñòàòóñó ïîäâèäîâ. Êàðÿêèí È.Â., Çèíåâè÷ Ë.Ñ., Ùåïåòîâ Ä.Ì., Ñîðîêèíà Ñ.Þ. ....................................................... 67

Population Structure of the Steppe Eagle Range and Preliminary Data on the Population Genetic Diversity and Status of Subspecies. Karyakin I.V., Zinevich L.S., Schepetov D.M., Sorokina S.Yu. ............................... 67

Ðåçóëüòàòû ìîíèòîðèíãà ïîïóëÿöèè ñòåïíîãî îðëà â Çàáàéêàëüñêîì êðàå â 2015 ã., Ðîññèÿ. Áàðàøêîâà À.Í., Ãîðîøêî Î.À., Ñìåëÿíñêèé È.Ý. .. 89 Âèäîâûå î÷åðêè .................................................... 112 Èñ÷åçíåò ëè äåðáíèê íà ãíåçäîâàíèè èç Ñåâåðíîé Áåëîðóññèè? Èâàíîâñêèé Â.Â................................ 112 Êðàòêèå ñîîáùåíèÿ .............................................. 113 Ïåðâûé ñëó÷àé óñïåøíîãî âûâåäåíèÿ ïîòîìñòâà ñìåøàííîé ïàðîé ñòåïíîãî îðëà è îðëà-ìîãèëüíèêà â Çàïàäíîì Êàçàõñòàíå è ðåãèñòðàöèè âåðîÿòíûõ ãèáðèäîâ ìåæäó ñòåïíûì îðëîì è îðëîì-ìîãèëüíèêîì â Ðîññèè è Êàçàõñòàíå. Êàðÿêèí È.Â., Êîâàëåíêî À.Â., Çèíåâè÷ Ë.Ñ. ......................................................... 113 Ãíåçäîâàíèå ðûáíîãî ôèëèíà â ãíåçäå áåëîïëå÷åãî îðëàíà, Ìàãàäàíñêàÿ îáëàñòü, Ðîññèÿ. Óòåõèíà È.Ã., Ïîòàïîâ Å.Ð., ÌàêÃðàäè Ì.Äæ. ............................. 115

Results of the Monitoring of the Steppe Eagle Population in Trans-Baikal Territory (Zabaikalsky Kray) in 2015, Russia. Barashkova A.N., Goroshko O.A., Smelansky I.E. ................................ 89 Species Accounts .................................................... 112 Will the Merlin Disappear As a Breeding Species from Northern Belarus? Ivanovsky V.V. ........................... 112 Short Reports........................................................... 113 The First Record of Case of the Imperial Eagle and the Steppe Eagle Successful Breeding in the Mixed Pair in Western Kazakhstan and Records of Probable Hybrids of These Species in Russia and Kazakhstan. Karyakin I.V., Kovalenko A.V., Zinevich L.S............... 113 Nesting of the Blakiston’s Fish-Owl in the Nest of the Steller’s Sea Eagle, Magadan Region, Russia. Utekhina I.G., Potapov E.R., McGrady M.J................ 115


Raptor Ringing Programme of the Russian Raptor Research and Conservation Network ПРОГРАММА КОЛЬЦЕВАНИЯ ХИЩНЫХ ПТИЦ РОССИЙСКОЙ СЕТИ ИЗУЧЕНИЯ И ОХРАНЫ ПЕРНАТЫХ ХИЩНИКОВ

Íà ôîòî: îð¸ë-ìîãèëüíèê (Aquila heliaca) èç Òàòàðñòàíà (Ðîññèÿ) â ÎÀÝ. Ìàéê Áàðñ. Photo: Imperial Eagle (Aquila heliaca) from Republic of Tatarstan (Russia) in UAE. Mike Barth.

All information about the Program is available on website of the RRRCN: http://rrrcn.ru/en/ringing Вся информация о программе доступна на сайте Сети: http://rrrcn.ru/ru/ringing



Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.