Misael Hernández; Ricardo Alejos Fundamentos de Sistemas de Comunicación
Tarea 02 Procesamiento de audio En Octave/MatLab, lea diez segundos de una canción en formato WAV. Es importante que la canción venga directamente de un disco compacto. Convierta a monoaural.
segundos en transmitirse con la tasa mencionada en el enunciado del ejercicio: bits/muestra
bits
segundos
Ejercicio 1 Enunciado
Del procedimiento anterior podemos encontrar entonces que la relación entre la calidad de la señal y el tiempo de transmisión es:
Cambie el número de bits por muestra a 14, 10, 8 y 4 bits. Para cada caso, grabe un archivo WAV diferente y escúchelo (utilice el comando wavwrite como si tuviera 16 bits por muestra). ¿Qué relación hay entre los niveles de cuantificación y la calidad de la señal recuperada?
Donde es el tiempo que dura la pista de audio en segundos, en este caso .
Solución Conforme se reduce la cantidad de bits por muestra (y por lo tanto los niveles de cuantificación) la señal pierde resolución y al mismo tiempo calidad. La cantidad de ruido por cuantificación aumenta y se manifiesta con ruido auditivo al momento de reproducir la pista de audio. Se agrega un ruido blanco que se manifiesta a lo largo de todo el espectro.
Ejercicio 3 Enunciado Obtenga el espectrograma de los diez segundos de audio con 14, 10, 8 y 4 bits por muestra. ¿Se puede estimar o predecir la calidad de la señal a partir de su espectrograma?
Ejercicio 2
Solución
Enunciado
Sí se puede estimar la calidad por medio del espectrograma. En él podemos ver como la magnitud de todas las frecuencias aumenta durante toda la canción conforme se disminuyen la cantidad de bits por muestra. Esto se manifiesta en la gráfica al uniformizarse los colores de la imagen, es decir que los colores de toda la gráfica se van convirtiendo en colores más cálidos. Esto significa que la magnitud aumenta.
Suponga que podemos transmitir bits a tasa ⁄ . ¿Cuánto tiempo tomaría transmitir los diez segundos de audio, con 14, 10, 8 y 4 bits por muestra? ¿Cuál es la relación entre la calidad de la señal y el tiempo de transmisión?
Solución Si la frecuencia de muestre original es como lo marca el estándar para discos compactos, entonces dentro de los diez segundos de audio para cada caso existen (donde es el número de bits por muestra) bits y tardarían
1
Misael Hern谩ndez; Ricardo Alejos Fundamentos de Sistemas de Comunicaci贸n Espectrograma (4bits)
Espectrograma (16bits)
20000
15000
15000
Frequency
Frequency
20000
10000
10000
5000
5000
0 0
0
1
2
3
4
5 Time
6
7
8
9
0
1
2
3
4
10
Espectrograma (14bits)
5 Time
6
7
8
9
1
1.5
2
10
Espectrograma (16bits)
0
10
20000
-2
10
-4
15000
Frequency
10
-6
10 Magnitud2
10000
5000
-8
10
-10
10
0
-12
0
1
2
3
4
5 Time
6
7
8
9
10
10
-14
10
Espectrograma (10bits) -16
10
20000
-2.5
-2
-1.5
-1
-0.5
0 0.5 Freq (Hz)
2.5 4
x 10
Frequency
15000 Espectrograma (14bits)
0
10
10000 -2
10
5000
-6
0
1
2
3
4
5 Time
6
7
8
9
10
10
Magnitud2
0
-4
10
Espectrograma (8bits)
-8
10
-10
10
20000 -12
10
15000
-14
Frequency
10
-16
10
10000
5000
0
0
1
2
3
4
5 Time
6
7
8
9
10
2
-2.5
-2
-1.5
-1
-0.5
0 0.5 Freq (Hz)
1
1.5
2
2.5 4
x 10
Misael Hernández; Ricardo Alejos Fundamentos de Sistemas de Comunicación audio original con cada filtro y grabe el resultado en archivos diferentes (note que el proceso de filtrado no cambia ni la frecuencia de muestreo ni el número de bits por muestra). ¿Qué relación hay entre y la calidad de la señal de audio?
Espectrograma (10bits)
0
10
-5
Magnitud2
10
Solución Conforme la frecuencia de corte del filtro es menor la calidad del audio es menor, pues se van atenuando las frecuencias audibles (de mayores a menores). Cuando la frecuencia de corte es muy baja, nada más se escucharán los sonidos graves del audio original.
-10
10
-15
10
-2.5
-2
-1.5
-1
-0.5
0 0.5 Freq (Hz)
1
1.5
2
2.5 4
x 10
Ejercicio 5
Espectrograma (8bits)
0
10
Enunciado
-2
10
Después de filtrar la señal de audio, se obtiene una nueva señal con una frecuencia máxima igual a la frecuencia de corte del filtro. Suponiendo una frecuencia de muestreo de y 16 bits por muestra, ¿cuánto tiempo tomaría transmitir los diez segundos de audio en cada caso? (suponga la misma taza de transmisión que en el ejercicio 2). ¿Cuál es la relación entre y el tiempo de transmisión?
-4
Magnitud2
10
-6
10
-8
10
-10
10
-12
10
-14
10
-2.5
-2
-1.5
-1
-0.5
0 0.5 Freq (Hz)
1
1.5
2
2.5 4
x 10
Solución De acuerdo con el enunciado del ejercicio, la señal se muestrea a una frecuencia , de modo que el tiempo de transmisión es (partiendo de la expresión propuesta en la solución del ejercicio 2):
Espectrograma (4bits)
-2
10
-4
10
Magnitud2
-6
10
(
-8
10
)( (
)( )
)
-10
10
Así bien, para cada caso, el tiempo de transmisión es:
-12
10
-2.5
-2
-1.5
-1
-0.5
0 0.5 Freq (Hz)
1
1.5
2
2.5 4
x 10
Ejercicio 4
hertz
Enunciado Diseñe filtros pasabajas con frecuencias de corte en 8 000, 4 000 y 1 000 Hz. Filtre los diez segundos de 3
segundos
Misael Hernández; Ricardo Alejos Fundamentos de Sistemas de Comunicación
Ejercicio 6
10
Enunciado
10
Espectrograma (8000Hz)
0
-5
Obtenga los espectrogramas de cada una de las señales de audio obtenidas después de filtrar (ejercicio 4). ¿Cómo se puede utilizar el espectrograma para predecir o estimar la calidad de la señal?
-10
Magnitud2
10
-15
10
-20
10
Solución
-25
10
Espectrograma (8000Hz) 20000
-30
10
-2.5
-2
-1.5
-1
-0.5
Frequency
15000
10000
0 0.5 Freq (Hz)
1
1.5
2
2.5 4
x 10
Espectrograma (4000Hz)
0
10
5000
-5
10
0
0
2
4
6
8
-10
10
10 Magnitud2
Time Espectrograma (4000Hz) 20000
-15
10
-20
10
Frequency
15000 -25
10
10000 -30
10
-2.5
-2
-1.5
-1
-0.5
5000
0
0
2
4
6
8
10
0 0.5 Freq (Hz)
1
1.5
2
2.5 4
x 10
Espectrograma (1000Hz)
0
10
Time Espectrograma (1000Hz)
-5
10
20000
-10
10
Magnitud2
Frequency
15000
10000
-15
10
-20
10
-25
5000
10
-30
0
10
0
2
4
6
8
10
Time
-35
10
4
-2.5
-2
-1.5
-1
-0.5
0 0.5 Freq (Hz)
1
1.5
2
2.5 4
x 10