Regresion y Correlación Lineal

Page 1

AREA: Escuela de Ciencias Básicas Tecnología e Ingeniería ESTADÍSTICA CIENCIAS BÁSICAS UNIDAD: Medidas de Dispersión y estadísticas bivariantes CAPÍTULO: IV LECCIÓN: Regresión y Correlación

NUMERO DE LA PRÁCTICA 2 NOMBRE DE LA PRÁCTICA Regresión y correlación NOMBRE DEL SOFTWARE Excel Libre: ______x_____ Licenciado: _____________ (Marque con una X) Aspectos Teóricos: REGRESIÓN Y CORRELACIÓN

En muchos casos se requiere conocer más que el comportamiento de una sola variable, se requiere conocer la relación entre dos o más variables como la relación entre producción y consumo; salarios y horas de trabajo; oferta y demanda; salarios y productividad; la altura de un árbol y el diámetro de su tronco; el nivel socioeconómico de una persona y su grado de depresión; etc. Muchos de estos comportamientos tienen una tendencia lineal, aunque hay muchos otros que lo hacen de forma curva. Para determinar el grado de correlación entre las variables, no basta con calcular la varianza explicada, pues existe el coeficiente de determinación o coeficiente de correlación; sin embargo, frecuentemente se utiliza un coeficiente de correlación rectilíneo, r siendo este un valor entre -1 y 1. Para estas confrontaciones se utiliza el diagrama de dispersión que es plano cartesiano en el que se marcan los puntos los puntos correspondientes a los pares (x,y) de los valores de las variables.


El análisis de Regresión tiene los siguientes usos: el primero es obtener los estimadores de los parámetros, estimar la varianza del error, obtener los errores estándares de los parámetros estimados, probar la hipótesis sobre los parámetros, cálculo de valores estimados basados en la ecuación estimada, estimar el ajuste o la falta de ajuste del modelo. El modelo a utilizar es Y = a + bx, a es el intercepto, b es la pendiente de la función, la que nos indica el cambio marginal de Y respecto a X. Ejemplo Una empresa de mensajería de entrega puerta a puerta, con el fin de mejorar la prestación del servicio desea establecer la relación que puede existir entre el tiempo empleado y la distancia recorrida para la entrega de un determinado producto.

Distancia en Kilómetros 825 (x)

215

1070

550

480

920

1350

325

670

1215

Tiempo de entrega ( y) (días)

1,0

4,0

2,0

1,0

3,0

4,5

1,5

3,0

5,0

3,5

a. Realice un diagrama de dispersión a partir de los datos obtenidos b. Determine la mejor ecuación que se ajusta a los datos. Solución: El diagrama de dispersión se obtiene mediante el asistente de gráficos. Trasladamos los datos a una hoja en Excel, seleccionamos la tabla donde están los datos <<Insertar<<Dispersión. En estilo de diseño puede personalizar su diagrama de barras. Seleccionamos un diseño de grafico de la barra de herramientas y damos nombre a los ejes y al Diagrama.


Para hallar la recta de Regresi贸n y la ecuaci贸n que mejor se ajusta a los datos, en el diagrama de dispersi贸n hacemos click derecho sobre uno de los puntos y seleccionamos Agregar l铆nea de tendencia.


Así obtenemos una ventana, la cual nos permite escoger la línea de tendencia, elegimos opción de línea de tendencia (Lineal) y seleccionamos: Presentar ecuación en el grafico. Presentar el valor R cuadrado en el grafico.


De esta manera obtenemos nuestra recta de regresión, la ecuación que más se ajusta a los datos y el coeficiente de determinación el cual mide la relación entre las dos variables.

Análisis:

Con los resultados obtenidos se puede asegurar que la ecuación de la recta es una muy buena estimación de la relación entre las dos variables. El R2 afirma además que el modelo explica el 90.05% de la información y el valor de r coeficiente de correlación lineal confirma además el grado de relación (94%) entre las variables: Distancia y tiempo de entrega de un determinado producto.


EJERCICIOS: 1. Se quiere estudiar la asociación entre consumo de sal y tensión arterial. A una serie de voluntarios se les administra distintas dosis de sal en su dieta y se mide su tensión arterial un tiempo después. X (sal)

Y (Presión)

1,8

100

2,2

98

3,5

105

4,0

110

4,3

112

5,0

120

a. Realice el diagrama de dispersión y determine el tipo de asociación entre las variables b. Encuentre el modelo matemático que permite predecir el efecto de una variable sobre la otra. Es confiable? c. Determine el porcentaje de explicación del modelo y el grado de relación de las dos variables. d. Si a un paciente se le administra una dosis de sal de 6,5. ¿ Cuál es la tensión arterial esperada? 2. En un nuevo proceso artesanal de fabricación de cierto artículo que esta implantado, se ha considerado que era importante ir anotando periódicamente el tiempo medio ( medido en minutos) que se utiliza para realizar una pieza y el número de días desde que empezó dicho proceso de fabricación. Con ello, se pretende analizar como los operarios van adaptándose al nuevo proceso mejorando paulatinamente su proceso de producción. Los siguientes datos representan dicha situación: X Y

10 35

20 28

30 23

40 20

50 18

60 15

70 13

a. Realice el diagrama de dispersión y determine el tipo de asociación entre las variables b. Encuentre el modelo matemático que permite predecir el efecto de una variable sobre la otra. Es confiable? c. Determine el porcentaje de explicación del modelo y el grado de relación de las dos variables. d. Que tiempo deberá tardarse un empleado cuando se lleven 100 días?


3. Una Nutricionista de un hogar infantil desea encontrar un modelo matemático que permita determinar la relación entre el peso y la estatura de sus estudiantes. Para ello selecciona 10 niños y realiza las mediciones respectivas. A continuación se presentan los resultados: Estatura (cm) Peso ( kg)

121

123

108

118

111

109

114

103

110

115

25

22

19

24

19

18

20

15

20

21

a. Realice el diagrama de dispersión y determine el tipo de asociación entre las variables b. Encuentre el modelo matemático que permite predecir el efecto de una variable sobre la otra. Es confiable? c. Determine el grado de relación de las dos variables. d. Cual es el peso que debería tener un estudiante que mida 130 cm?


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.