Math 53 exercise 5

Page 1

Mathematics 53

Exercise Set 5

I. Evaluate the following limits. ln x 1−x √ 1. lim + x→1 x − 1 1− x 2.

6. lim+ sinh−1 z

3. lim

x→∞

x→∞

x

8.

x→0

II. Find

9. lim

x→0+

−x

cschx −

10.

lim

x→ 12 +

lim (tanh x + 1) √ x

x→∞

tan πx +

14. lim− x→1

sin 3πx cot πx

cschx

x→−∞

13. lim 1 x

x3

cosh x 1 1 + ex − e 1 − x

15. lim+ (cosh t − 1)

sinh t

x→0

dy . dx √

1. y =

cosh x

+ (cosh x)

e

2. y = (πx) − (1 − cos x) 3. y = sinh−1 e + tan−1

√ 3

12. y =

5

6. ln x + 1

y

+ tanh

3

13. y = √ √ 4 x coth 2x − cosh−1 x2

y x

−1

7. sinh−1 (ex+y ) + 3tan

x

−1

= coth √

= log

√ 15. y = ln cos tanh−1 (xy)

sech−1 x

Z 3. Z

√ 3

20. y =

Z 5.

1 + ln y cot (ln y) dy y ln y

6.

dν 1 + e2ν

7.

2

z e

z 3 +ez

3

dz

x3

x2 + 1 tan3 ex 18. y = sin (3 − 2x) √ p 19. y = (log3 x) cot−1 x csch−1 x + 2e2x

0

2.

sin−1 3−2x

√ 3

ecosh ex sinh πx − cosh πx

11. y = tan−1 (ln sinh x) + ln tan−1 (sinh x)

Z

√x

r √ 5 cos ln3 x 16. y = 3 tan−1 17. y = xx

9. 3x2 y + cosh2 (5x) = 2y

III. Evaluate the following integrals. Z 1. tan x sec (ln sec x) dx

sec−1 (2x) log3 (tanh x3 )

14. ln x2 + y 2 = sinh e−4x − 52y x3

2x + 1 x 8. y = ln 4 x−2

10. y =

2 x 3 ln cos x + esin(3 −x ) − tan 5x 4

x

p √ ln (cschx) − sin−1 x 4. y = sech−1 ln x √ √ log y 3 3 2 5 5. 7 7 − (csc x) = eπ + 3x y

4.

12.

2x+1

e − e − 2x x − sin x

5. lim

lim

x→+∞

2x − 3 2x + 5

x3 3 x +4

cot x

x→0

sin 3x2 4. lim x→0 ln cos (2x2 − x) x

11. lim

7. lim+ (cos x + 2 sin x)

lim (sec x − tan x) x 1+x

z→0

− x→ π 2

tan z

8.

ln 2

√ x3 + cos x + 23x · log e − x2 − 1 √2 xex2 + π e tan 5x

q

2e dq −q e 3−eq

Z

2 − πt dt eπt

Z

2 tanh2 2w + esinh 2w dw sech2w

Z

27u du 3u − 3


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.