Motion Systems Handbook 2019

Page 126

MOTION SYSTEMS HANDBOOK

Update on

sealing technologies

Non-contact seals, like these from Centritec Seals, form a reliable seal even when subjected to severe vibration and shaft motion. They do not require tight axial or radial alignment between the inner and outer ring.

In any motion control system, the risk from dirt and other ingress materials is great. Contaminants like these can damage bearings and other rotating equipment, destroy whole machinery systems and cause unwanted downtime and costs. To prevent these catastrophic events, all motion systems require some type of sealing system. In addition to stopping the ingress of contamintants, seals also prevent leakage of necessary lubricants, such as oil, grease or hydraulic fluid.

122

DESIGN WORLD — MOTION

Seals — Motion Control HB 08-19 Vs3.indd 122

Molded seals and v-shaped seals are two of the most common seals found in power transmission applications. V-shaped seals, such as wipers, are used most commonly in fluid power systems to prevent contaminants from entering a system while allowing lubricating oils to return to a system on inward stroke of the hydraulic piston. Molded seals, which are more common in power transmission applications, can be further divided into O-rings, radial lip seals and shaft seals. O-rings are one of the most common types of seals because of their simple and inexpensive construction. They are designed to create a seal between the interfaces of two or more components. They generally consist of an elastomer ring with a circular cross section and are usually placed in a groove. They are used frequently in hydraulic components, particularly on cylinder pistons and rotating pump shafts. Mechanical face seals, or heavy-duty seals, are used in extreme applications, such as bearings, gearboxes, turbines and machinery used in 8 • 2019

motioncontroltips.com | designworldonline.com

8/19/19 11:23 AM


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

The basics of compression springs

2min
pages 138-139

Update on shock & vibration technologies

4min
pages 130-137

Sensors for motion systems

2min
pages 128-129

Update on sealing technologies

2min
pages 126-127

The basics of retaining rings

1min
pages 124-125

Positioning systems: An overview

3min
pages 120-123

Stepper motors – an overview

4min
pages 116-119

Servomotors: the basics

3min
pages 112-115

Summary of direct-drive motors

6min
pages 108-111

Fundamentals of gearmotors

3min
pages 104-107

Fundamentals of dc motors

3min
pages 100-103

When should you use dual guide rails?

1min
pages 98-99

Hertz contact stresses: How they affect linear bearings

2min
pages 96-97

Calculating linear bearing life

4min
pages 92-95

Human-machine interfaces (HMIs) in evolution from operator terminals

2min
pages 90-91

Gearbox service factor and service class explained

7min
pages 82-89

Encoders – the basics

5min
pages 76-81

Flexible couplings for motion design

7min
pages 66-73

Conveyors for simple to complex transport

5min
pages 62-65

Programmable automation controllers (PACs) and industrial PCs

5min
pages 58-61

Servo versus closed-loop stepper motion controls

5min
pages 54-57

Flexible and controlled cabling and connections

4min
pages 48-53

Brakes, clutches, and torque limiters

7min
pages 42-47

Sizing and applying belts and pullets

3min
pages 38-41

Basics of sprockets and chain drives

3min
pages 36-38

Rotary bearings for precision motion applications

5min
pages 30-35

The basics of ball & roller screws

3min
pages 28-29

Chain actuation – rigid type

2min
pages 26-27

Pneumatic actuators

6min
pages 22-25

Linear actuators: Make versus buy

10min
pages 14-21

What ancient myths can teach us about today's technology

2min
page 8
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Motion Systems Handbook 2019 by WTWH Media LLC - Issuu