LE
M/V βVSLNAMEβ IMO No: 9999999
S
A
M
P
DAMAGE STABILITY BOOKLET
ALPHA MARINE CONSULTING P.C. MARINE CONSULTANTS & SURVEYORS T: +30 211 8881000, F: +30 211 8881039 mail@alphamrn.com | www.alphamrn.com
PLAN HISTORY DESCRIPTION Issued as Final Drawing
DATE 01/01/2019
M
P
LE
REV. 0
A
TOTAL ONE HUNDRED AND EIGHTEEN (118) SHEETS WITH COVER
CAUTION
THIS DRAWING OR DOCUMENT IS THE PROPERTY OF ALPHA MARINE CONSULTING AND IT MUST NOT BE PARTIALLY OR WHOLLY COPIED OR USED FOR ANY OTHER PURPOSE WITHOUT PRIOR WRITTEN PERMISSION OF AMC.
S
TITLE:
DAMAGE STABILITY BOOKLET
SHIP TYPE:
310,000 DWT OIL TANKER
SHIP NAME: CHECKED BY: DRAWN BY:
IMO NO.:
VSLNAME PT KT
DWG NO.: REV. NO.:
xxxx-DSB-0 0
ALPHA MARINE CONSULTING P.C.
HULL NO.:
DATE: SIZE:
8184 9999999 01/01/2019 A4
MARINE CONSULTANTS & SURVEYORS T: +30 211 8881000, F: +30 211 8881039 mail@alphamrn.com | www.alphamrn.com
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 3 OF 118
TABLE OF CONTENTS
PAGE GENERAL PARTICULARS ..................................................................................... 4
1.1.
GENERAL ................................................................................................................ 4
1.2.
PRINCIPAL DIMENSIONS....................................................................................... 4
1.3.
DISPLACEMENT AND DEADWEIGHT ................................................................... 4
2.
GENERAL NOTES .................................................................................................. 5
3.
ASSUMED EXTENT OF DAMAGE ......................................................................... 6
4.
GENERAL CRITERIA FOR SATISFACTORY STABILITY AFTER DAMAGE ....... 7
5.
ASSUMED PERMEABILITIES OF FLOODED SPACES ........................................ 8
6.
POSITION OF AIR PIPES AND OPENINGS ........................................................... 9
7.
CAPACITIES AND CENTERS OF TANKS ........................................................... 11
8.
EXAMINED INTACT LOADING CONDITIONS ..................................................... 14
9.
DAMAGED HULL AND COMPARTMENT CHARACTERISTICS ......................... 48
10.
DAMAGE CASES .................................................................................................. 52
11.
DAMAGE CALCULATION RESULTS β HOMOGENEOUS CARGO DEP ........... 62
12.
DAMAGE CALCULATION RESULTS β HOMOGENEOUS CARGO ARRIVAL .. 71
13.
DAMAGE CALCULATION RESULTS β CARGO DEPARTURE .......................... 80
A
M
P
LE
1.
DAMAGE CALCULATION RESULTS β CARGO ARRIVAL ................................ 89
15.
DAMAGE CALCULATION RESULTS β CARGO DEPARTURE ........................ 101
16.
DAMAGE CALCULATION RESULTS β CARGO ARRIVAL .............................. 110
S
14.
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 4 OF 118
1. GENERAL PARTICULARS
1.1.
GENERAL
Shipβs Name:
VSLNAME
Shipβs Type: Flag: Port of Registry: IMO Number: Classification: Built by: Year Built: PRINCIPAL DIMENSIONS
Length O.A.: Length B.P.:
M
Breadth (mld.):
P
1.2.
LE
Call Sign:
Depth (mld.):
Summer Load Draught (extr.):
DISPLACEMENT AND DEADWEIGHT
A
1.3.
Lightship Weight:
S
Displacement at S.L.D.: Deadweight at S.L.D.:
ALPHA MARINE CONSULTING
9999999
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 5 OF 118
2. GENERAL NOTES
According to Reg. 28 of Annex I of MARPOL 73/78 every new oil tanker must comply with subdivision and damage stability criteria described in the next chapter for any operating draught reflecting actual partial or full load conditions consistent with trim and strength of the ship.
2.
The initial conditions assumed for the damage calculations correspond to the cargo loaded conditions shown in the vesselβs βTrim & Stability BookletβLoading Manualβ Dwg. No. 1709-LMN-2.
S
A
M
P
LE
1.
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 6 OF 118
3. ASSUMED EXTENT OF DAMAGE
Side or bottom damage in tankers of more than 225 m is assumed to be anywhere in the shipβs length. For: L= B= the applicable extent of damage is:
LE
Side damage:
M
P
Bottom damage for 0.3L from the forward perpendicular of the ship:
S
A
Bottom damage at any other part of the ship:
ALPHA MARINE CONSULTING
M/V Γ’€œVSLNAMEΓ’€? DAMAGE STABILITY BOOKLET
PAGE 7 OF 118
GENERAL CRITERIA FOR SATISFACTORY STABILITY AFTER DAMAGE
This vessel is required to comply with the MARPOL 1973/78 (2006 Edition), Annex I, Regulation 28 damage stability criteria. Compliance with these damage stability criteria is achieved by ensuring that the following requirements are met for every sailing condition: The final waterline, taking into account sinkage, heel and trim, shall be below the lower edge of any opening through which progressive flooding may take place. Such openings shall include air-pipes and those which are closed by means of weathertight doors or hatch covers and may exclude those openings closed by means of watertight manhole covers and flush scuttles, small watertight cargo tank hatch covers which maintain the high integrity of the deck, remotely operated watertight sliding doors, and side scuttles of the non-opening type.
2.
In the final stage of flooding, the angle of heel due to unsymmetrical flooding shall not exceed 25o, provided that this angle may be increased up to 30o if no deck immersion occurs.
3.
The stability in the final stage of flooding shall be investigated and may be regarded as sufficient if the righting lever curve has at least a range of 20o beyond the position of equilibrium in association with a maximum residual righting lever of at least 0.1 m within the 20o range; the area under the curve within this range shall not be less than 0.0175 metre radians. Unprotected openings shall not be immersed within this range unless the space concerned is assumed to be flooded. Within this range, the immersion of any of the openings mentioned in subparagraph (a) of this paragraph and other openings capable of being closed weathertight may be permitted.
M
P
LE
1.
S
A
For damage stability purposes the Master should ensure that the watertight integrity of all subdivision bulkheads and boundaries is maintained at all times.
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 8 OF 118
S
A
M
P
LE
4. ASSUMED PERMEABILITIES OF FLOODED SPACES
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 9 OF 118
5. POSITION OF AIR PIPES AND OPENINGS
The locations of the vent pipes and openings have been obtained by the vesselβs original βDAMAGED STABILITY CALCULATIONβ, Dwg. No. CZAO-0062F and by the βVENTING & SOUNDING PIPING DIAGRAMβ, Dwg. No. 2622-12, and are presented in the following table: Dist. from Midship (m)
Dist. from C.L. (m)
Height from B.L. (m)
S
A
M
P
LE
Vent Pipes / Openings
ALPHA MARINE CONSULTING
Type
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
Vent Pipes / Openings
PAGE 10 OF 118
Dist. from Midship (m)
Dist. from C.L. (m)
Height from B.L. (m)
Type
S
A
M
P
LE
Note: The abovementioned vent head positions for tanks within the cargo area have been verified by the attending Class surveyor.
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 11 OF 118
6. CAPACITIES AND CENTERS OF TANKS
L.C.G. (METERS)
A
M
P
(FRAME NUMBER)
CAPACITY 100% FULL (CUBIC METERS)
S
TOTAL
ALPHA MARINE CONSULTING
V.C.G.
FREE SURFACE MOMENT (METERS^4)
LE
LOCATION CARGO OIL TANKS
(METERS)
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
LOCATION (FRAME NUMBER)
TOTAL
DIESEL OIL TANKS
WEIGHT
L.C.G.
V.C.G.
(METRIC TONS)
METERS
METERS
CAPACITY 100% FULL (CUBIC METERS)
WEIGHT
L.C.G.
V.C.G.
(METRIC TONS)
METERS
METERS
WEIGHT
L.C.G.
V.C.G.
(METRIC TONS)
METERS
METERS
WEIGHT
L.C.G.
V.C.G.
(METRIC TONS)
METERS
METERS
P
(FRAME NUMBER)
LOCATION
A
TOTAL
LOCATION
M
FUEL OIL TANKS
CAPACITY 100% FULL (CUBIC METERS)
LE
WATER BALLAST TANKS
PAGE 12 OF 118
(FRAME NUMBER)
CAPACITY 100% FULL (CUBIC METERS)
FREE SURFACE MOMENT (METERS^4)
FREE SURFACE MOMENT (METERS^4)
FREE SURFACE MOMENT (METERS^4)
S
D.O. TANK (P) D.O. TANK (S) TOTAL
LUBE OIL TANKS
LOCATION (FRAME NUMBER)
TOTAL
ALPHA MARINE CONSULTING
CAPACITY 100% FULL (CUBIC METERS)
FREE SURFACE MOMENT (METERS^4)
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
FRESH WATER TANKS
LOCATION (FRAME NUMBER)
PAGE 13 OF 118
CAPACITY 100% FULL (CUBIC METERS)
WEIGHT
L.C.G.
V.C.G.
(METRIC TONS)
METERS
METERS
WEIGHT
L.C.G.
V.C.G.
FREE SURFACE MOMENT (METERS^4)
TOTAL
LOCATION (FRAME NUMBER)
TOTAL
CAPACITY 100% FULL (CUBIC METERS)
S
A
M
(FRAME NUMBER)
ALPHA MARINE CONSULTING
FREE SURFACE MOMENT (METERS^4)
(METRIC TONS)
METERS
L.C.G.
V.C.G.
FREE SURFACE MOMENT
METERS
METERS
(METERS^4)
P
LOCATION VOID SPACES
CAPACITY 100% FULL (CUBIC METERS)
LE
MISCELLANEOUS TANKS S.G. = 1.000
METERS
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 14 OF 118
S
A
M
P
LE
7. EXAMINED INTACT LOADING CONDITIONS
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 48 OF 118
8. DAMAGED HULL AND COMPARTMENT CHARACTERISTICS
S
A
M
P
LE
DAMAGED HULL AND COMPARTMENTS CHARACTERISTICS Damaged HULL Draft Volume LCB TCB VCB (m) (m3) (m) (m) (m) Xmin Xmax Ymin Ymax Zmin Zmax (m) (m) (m) (m) (m) (m)
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 49 OF 118
S
A
M
P
LE
DAMAGED COMPARTMENTS COMPARTMENT FRA FRF Volume LCB TCB VCB Code Description (m3) (m) (m) (m)
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 50 OF 118
S
A
M
P
LE
DAMAGED COMPARTMENTS COMPARTMENT Xmin Xmax Ymin Ymax Zmin Zmax Code (m) (m) (m) (m) (m) (m)
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 51 OF 118
S
A
M
P
LE
OPENINGS Opening X (Amid) Y(CL) Z(BL) Reflect Type Name (m) (m) (m) βββββββ ββββββββ βββββ βββββ βββββββ ββββ
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 52 OF 118
9. DAMAGE CASES
S
A
M
P
LE
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 53 OF 118
S
A
M
P
LE
D A M A G E C A S E S Continued ...
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 54 OF 118
S
A
M
P
LE
D A M A G E C A S E S Continued ... D A M A G E C A S E S Continued ...
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 55 OF 118
S
A
M
P
LE
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 56 OF 118
S
A
M
P
LE
D A M A G E C A S E S Continued ...
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 57 OF 118
S
A
M
P
LE
D A M A G E C A S E S Continued ...
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 58 OF 118
S
A
M
P
LE
D A M A G E C A S E S Continued ...
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 59 OF 118
S
A
M
P
LE
D A M A G E C A S E S Continued ...
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 60 OF 118
S
A
M
P
LE
D A M A G E C A S E S Continued ...
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 61 OF 118
S
A
M
P
LE
D A M A G E C A S E S Continued ...
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 62 OF 118
10. DAMAGE CALCULATION RESULTS β HOMOGENEOUS CARGO DEPARTURE
S
A
M
P
LE
Initial Condition: Damage Case: Stage: ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | DAMAGED COMPARTMENTS | Permeabilities | ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | | | | | | | | | | | | ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ STATICAL STABILITY CURVE (Starboard) Heel GZ Dmid Trim FreeB VCG LCG TCG DISPL (Deg) (m) (m) (m) (m) (m) (m) (m) (MT) FLOATING POSITION AND STABILITY Disp = MT Da = m LCGo = m LCG = m Trim = m Df = m TCGo = m TCG = m Heel = Stbd Dm = m VCGo = m VCG = m FloodW= MT LostLiq= MT Freebrd= m GM = m In Calculation LOST BOUYANCY Method is Used Constant Displacement = Reference Points Check
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 63 OF 118
S
A
M
P
LE
X (Amid) Y(CL) Z(BL) Draft Freeboard Immersion Description (m) (m) (m) (m) (m) Angle (Deg) ββββββββ βββββ βββββ βββββ βββββββββ βββββββββββ βββββββββββββββββββ Minimum Freeboard (OPENINGS) = Angle of OPENINGS Immersion = Angle of Progressive Flooding = ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 64 OF 118
S
A
M
P
LE
DAMAGE LIMITING VCG Applied Intact LimVCG GMreq Criterion (m) (m) DAMAGE STABILITY CRITERIA CRITERION Calculated Required Status
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 65 OF 118
S
A
M
P
LE
Initial Condition: Damage Case: Stage: ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | DAMAGED COMPARTMENTS | Permeabilities | ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | | | | | | | | | | | | | | | | | | ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ STATICAL STABILITY CURVE (Starboard) Heel GZ Dmid Trim FreeB VCG LCG TCG DISPL (Deg) (m) (m) (m) (m) (m) (m) (m) (MT) FLOATING POSITION AND STABILITY Disp = MT Da = m LCGo = m LCG = m Trim = m Df = m TCGo = m TCG = m Heel = Stbd Dm = m VCGo = m VCG = m FloodW= MT LostLiq= MT Freebrd= m GM = m In Calculation LOST BOUYANCY Method is Used Constant Displacement =
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 66 OF 118
S
A
M
P
LE
Reference Points Check X (Amid) Y(CL) Z(BL) Draft Freeboard Immersion Description (m) (m) (m) (m) (m) Angle (Deg) βββββββ βββββ βββββ βββββ βββββββββ βββββββββββ βββββββββββββββββββ Minimum Freeboard (OPENINGS) = Angle of OPENINGS Immersion = Angle of Progressive Flooding = ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 67 OF 118
S
A
M
P
LE
DAMAGE LIMITING VCG Applied Intact LimVCG GMreq Criterion (m) (m) DAMAGE STABILITY CRITERIA CRITERION Calculated Required Status
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 68 OF 118
S A
M
P
LE
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ INITIAL CONDITION HOMO.DEP Dmid = Trim = m Disp = MT Trim is Positive By Stern VCG = m GM = m ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ Damage Stage Dmid Trim Heel FRB MaxGZ ARea PosRange VCG GM Critical VCGreq GMreq Range Range Case (m) (m) deg (m) (m) m*rad (deg) (m) (m) Criterio (m) (m) Damage Stage Dmid Trim Heel FRB MaxGZ ARea PosRange VCG GM Critical VCGreq GMreq Range Range ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 69 OF 118
S A
M
P
LE
Case (m) (m) deg (m) (m) m*rad (deg) (m) (m) Criterio (m) (m) Damage Stage Dmid Trim Heel FRB MaxGZ ARea PosRange VCG GM Critical VCGreq GMreq Range Range Case (m) (m) deg (m) (m) m*rad (deg) (m) (m) Criterio (m) (m) ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 70 OF 118
S A
M
P
LE
INTACT CRITICAL VCGreq GMreq Draft Mid Trim Damage Case (m) (m) (m) (m)
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 71 OF 118
11. DAMAGE CALCULATION RESULTS β HOMOGENEOUS CARGO ARRIVAL
S
A
M
P
LE
Initial Condition: Damage Case: Stage: ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | DAMAGED COMPARTMENTS | Permeabilities | ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | | | | | | | | | | | | | | | ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ STATICAL STABILITY CURVE (Starboard) Heel GZ Dmid Trim FreeB VCG LCG TCG DISPL (Deg) (m) (m) (m) (m) (m) (m) (m) (MT) FLOATING POSITION AND STABILITY Disp = MT Da = m LCGo = m LCG = m Trim = m Df = m TCGo = m TCG = m Heel = Stbd Dm = m VCGo = m VCG = m FloodW= MT LostLiq= MT Freebrd= m GM = m In Calculation LOST BOUYANCY Method is Used Constant Displacement = Reference Points Check X (Amid) Y(CL) Z(BL) Draft Freeboard Immersion Description
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 72 OF 118
S
A
M
P
LE
(m) (m) (m) (m) (m) Angle (Deg) βββββββ βββββ βββββ βββββ βββββββββ βββββββββββ βββββββββββββββββββ Minimum Freeboard (OPENINGS) = Angle of OPENINGS Immersion = Angle of Progressive Flooding = ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 73 OF 118
S
A
M
P
LE
DAMAGE LIMITING VCG Applied Intact LimVCG GMreq Criterion (m) (m) LimVCG= 16.092 GMreq= 1.578 DAMAGE STABILITY CRITERIA CRITERION Calculated Required Status
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 74 OF 118
S
A
M
P
LE
Initial Condition: Damage Case: Stage: ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | DAMAGED COMPARTMENTS | Permeabilities | ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | | | | | | | | | | | | | | | | | | ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ STATICAL STABILITY CURVE (Starboard) Heel GZ Dmid Trim FreeB VCG LCG TCG DISPL (Deg) (m) (m) (m) (m) (m) (m) (m) (MT) FLOATING POSITION AND STABILITY Disp = MT Da = m LCGo = m LCG = m Trim = m Df = m TCGo = m TCG = m Heel = Stbd Dm = m VCGo = m VCG = m FloodW= MT LostLiq= MT Freebrd= m GM = m In Calculation LOST BOUYANCY Method is Used Constant Displacement =
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 75 OF 118
S
A
M
P
LE
Reference Points Check X (Amid) Y(CL) Z(BL) Draft Freeboard Immersion Description (m) (m) (m) (m) (m) Angle (Deg) ββββββββ βββββ βββββ βββββ βββββββββ βββββββββββ βββββββββββββββββββ Minimum Freeboard (OPENINGS) = Angle of OPENINGS Immersion = Angle of Progressive Flooding = ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 76 OF 118
LE
DAMAGE LIMITING VCG Applied Intact LimVCG GMreq Criterion (m) (m) DAMAGE STABILITY CRITERIA CRITERION Calculated Required Status
S
A
M
P
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 77 OF 118
S A
M
P
LE
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ INITIAL CONDITION Dmid = m Trim = m Disp = MT Trim is Positive By Stern VCG = m GM = m ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ Damage Stage Dmid Trim Heel FRB MaxGZ ARea PosRange VCG GM Critical VCGreq GMreq Range Range Case (m) (m) deg (m) (m) m*rad (deg) (m) (m) Criterio (m) (m) Damage Stage Dmid Trim Heel FRB MaxGZ ARea PosRange VCG GM Critical VCGreq GMreq Range Range ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 78 OF 118
S A
M
P
LE
Case (m) (m) deg (m) (m) m*rad (deg) (m) (m) Criterio (m) (m) Damage Stage Dmid Trim Heel FRB MaxGZ ARea PosRange VCG GM Critical VCGreq GMreq Range Range Case (m) (m) deg (m) (m) m*rad (deg) (m) (m) Criterio (m) (m) ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 79 OF 118
LE
INTACT CRITICAL VCGreq GMreq Draft Mid Trim Damage Case (m) (m) (m) (m)
S A
M
P
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 80 OF 118
12. DAMAGE CALCULATION RESULTS β CARGO DEPARTURE
S
A
M
P
LE
Initial Condition: Damage Case: Stage: ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | DAMAGED COMPARTMENTS | Permeabilities | ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | | | | | | | | | | | | ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ STATICAL STABILITY CURVE (Starboard) Heel GZ Dmid Trim FreeB VCG LCG TCG DISPL (Deg) (m) (m) (m) (m) (m) (m) (m) (MT) FLOATING POSITION AND STABILITY Disp = MT Da = m LCGo = m LCG = m Trim = m Df = m TCGo = m TCG = m Heel = Stbd Dm = m VCGo = m VCG = m FloodW= MT LostLiq= MT Freebrd= m GM = m In Calculation LOST BOUYANCY Method is Used Constant Displacement = Reference Points Check
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 81 OF 118
S
A
M
P
LE
X (Amid) Y(CL) Z(BL) Draft Freeboard Immersion Description (m) (m) (m) (m) (m) Angle (Deg) ββββββββ βββββ βββββ βββββ βββββββββ βββββββββββ βββββββββββββββββββ Minimum Freeboard (OPENINGS) = Angle of OPENINGS Immersion = Angle of Progressive Flooding = ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 82 OF 118
S
A
M
P
LE
DAMAGE LIMITING VCG Applied Intact LimVCG GMreq Criterion (m) (m) DAMAGE STABILITY CRITERIA CRITERION Calculated Required Status
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 83 OF 118
S
A
M
P
LE
Initial Condition: Damage Case: Stage: ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | DAMAGED COMPARTMENTS | Permeabilities | ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | | | | | | | | | | | | | | | | | | ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ STATICAL STABILITY CURVE (Starboard) Heel GZ Dmid Trim FreeB VCG LCG TCG DISPL (Deg) (m) (m) (m) (m) (m) (m) (m) (MT) FLOATING POSITION AND STABILITY Disp = MT Da = m LCGo = m LCG = m Trim = m Df = m TCGo = m TCG = m Heel = Stbd Dm = m VCGo = m VCG = m FloodW= MT LostLiq= MT Freebrd= m GM = m In Calculation LOST BOUYANCY Method is Used Constant Displacement =
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 84 OF 118
S
A
M
P
LE
Reference Points Check X (Amid) Y(CL) Z(BL) Draft Freeboard Immersion Description (m) (m) (m) (m) (m) Angle (Deg) ββββββββ βββββ βββββ βββββ βββββββββ βββββββββββ βββββββββββββββββββ Minimum Freeboard (OPENINGS) = Angle of OPENINGS Immersion = Angle of Progressive Flooding = ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 85 OF 118
LE
DAMAGE LIMITING VCG Applied Intact LimVCG GMreq Criterion (m) (m) DAMAGE STABILITY CRITERIA CRITERION Calculated Required Status
S
A
M
P
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 86 OF 118
S A
M
P
LE
Damage Stage Dmid Trim Heel FRB MaxGZ ARea PosRange VCG GM Critical VCGreq GMreq Range Range Case (m) (m) deg (m) (m) m*rad (deg) (m) (m) Criterio (m) (m) Damage Stage Dmid Trim Heel FRB MaxGZ ARea PosRange VCG GM Critical VCGreq GMreq Range Range Case (m) (m) deg (m) (m) m*rad (deg) (m) (m) Criterio (m) (m) ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 87 OF 118
S A
M
P
LE
Damage Stage Dmid Trim Heel FRB MaxGZ ARea PosRange VCG GM Critical VCGreq GMreq Range Range Case (m) (m) deg (m) (m) m*rad (deg) (m) (m) Criterio (m) (m) ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 88 OF 118
S A
M
P
LE
INTACT CRITICAL VCGreq GMreq Draft Mid Trim Damage Case (m) (m) (m) (m)
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 89 OF 118
13. DAMAGE CALCULATION RESULTS β CARGO ARRIVAL
S
A
M
P
LE
Initial Condition: Damage Case: Stage: ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | DAMAGED COMPARTMENTS | Permeabilities | ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | | | | | | | | | | | | ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ STATICAL STABILITY CURVE (Starboard) Heel GZ Dmid Trim FreeB VCG LCG TCG DISPL (Deg) (m) (m) (m) (m) (m) (m) (m) (MT) FLOATING POSITION AND STABILITY Disp = MT Da = m LCGo = m LCG = m Trim = m Df = m TCGo = m TCG = m Heel = Stbd Dm = m VCGo = m VCG = m FloodW= MT LostLiq= MT Freebrd= m GM = m In Calculation LOST BOUYANCY Method is Used Constant Displacement =
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 90 OF 118
S
A
M
P
LE
Reference Points Check X (Amid) Y(CL) Z(BL) Draft Freeboard Immersion Description (m) (m) (m) (m) (m) Angle (Deg) ββββββββ βββββ βββββ βββββ βββββββββ βββββββββββ βββββββββββββββββββ Minimum Freeboard (OPENINGS) = 5.024 (m) at X = β10.85 (m) from Amidships Angle of OPENINGS Immersion = 22.06 (deg) Angle of Progressive Flooding = 52.34 (deg) ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 91 OF 118
S
A
M
P
LE
DAMAGE LIMITING VCG Applied Intact LimVCG GMreq Criterion (m) (m) DAMAGE STABILITY CRITERIA CRITERION Calculated Required Status
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 92 OF 118
S
A
M
P
LE
Initial Condition: Damage Case: Stage: ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | DAMAGED COMPARTMENTS | Permeabilities | ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | | | | | | ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ STATICAL STABILITY CURVE (Starboard) Heel GZ Dmid Trim FreeB VCG LCG TCG DISPL (Deg) (m) (m) (m) (m) (m) (m) (m) (MT) FLOATING POSITION AND STABILITY Disp = MT Da = m LCGo = m LCG = m Trim = m Df = m TCGo = m TCG = m Heel = Stbd Dm = m VCGo = m VCG = m FloodW= MT LostLiq= MT Freebrd= m GM = m In Calculation LOST BOUYANCY Method is Used Constant Displacement =
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 93 OF 118
S
A
M
P
LE
Reference Points Check X (Amid) Y(CL) Z(BL) Draft Freeboard Immersion Description (m) (m) (m) (m) (m) Angle (Deg) ββββββββ βββββ βββββ βββββ βββββββββ βββββββββββ βββββββββββββββββββ ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 94 OF 118
S
A
M
P
LE
DAMAGE LIMITING VCG Applied Intact LimVCG GMreq Criterion (m) (m) DAMAGE STABILITY CRITERIA CRITERION Calculated Required Status
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 95 OF 118
S
A
M
P
LE
Initial Condition: Damage Case: Stage: ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | DAMAGED COMPARTMENTS | Permeabilities | ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | | | | | | | | | | | | | | | | | | ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ STATICAL STABILITY CURVE (Starboard) Heel GZ Dmid Trim FreeB VCG LCG TCG DISPL (Deg) (m) (m) (m) (m) (m) (m) (m) (MT) FLOATING POSITION AND STABILITY Disp = MT Da = m LCGo = m LCG = m Trim = m Df = m TCGo = m TCG = m Heel = Stbd Dm = m VCGo = m VCG = m FloodW= MT LostLiq= MT Freebrd= m GM = m In Calculation LOST BOUYANCY Method is Used Constant Displacement =
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 96 OF 118
S
A
M
P
LE
Reference Points Check X (Amid) Y(CL) Z(BL) Draft Freeboard Immersion Description (m) (m) (m) (m) (m) Angle (Deg) ββββββββ βββββ βββββ βββββ βββββββββ βββββββββββ βββββββββββββββββββ ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 97 OF 118
S
A
M
P
LE
DAMAGE LIMITING VCG Applied Intact LimVCG GMreq Criterion (m) (m) DAMAGE STABILITY CRITERIA CRITERION Calculated Required Status
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 98 OF 118
S A
M
P
LE
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ Damage Stage Dmid Trim Heel FRB MaxGZ ARea PosRange VCG GM Critical VCGreq GMreq Range Range Case (m) (m) deg (m) (m) m*rad (deg) (m) (m) Criterio (m) (m) Damage Stage Dmid Trim Heel FRB MaxGZ ARea PosRange VCG GM Critical VCGreq GMreq Range Range ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 99 OF 118
S A
M
P
LE
Case (m) (m) deg (m) (m) m*rad (deg) (m) (m) Criterio (m) (m) Damage Stage Dmid Trim Heel FRB MaxGZ ARea PosRange VCG GM Critical VCGreq GMreq Range Range Case (m) (m) deg (m) (m) m*rad (deg) (m) (m) Criterio (m) (m) ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 100 OF 118
S A
M
P
LE
INTACT CRITICAL VCGreq GMreq Draft Mid Trim Damage Case (m) (m) (m) (m)
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 101 OF 118
14. DAMAGE CALCULATION RESULTS β CARGO DEPARTURE
S
A
M
P
LE
Initial Condition: Damage Case: Stage: ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | DAMAGED COMPARTMENTS | Permeabilities | ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | | | | | | | | | | | | | | | | | | ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ STATICAL STABILITY CURVE (Starboard) Heel GZ Dmid Trim FreeB VCG LCG TCG DISPL (Deg) (m) (m) (m) (m) (m) (m) (m) (MT) FLOATING POSITION AND STABILITY Disp = MT Da = m LCGo = m LCG = m Trim = m Df = m TCGo = m TCG = m Heel = Stbd Dm = m VCGo = m VCG = m FloodW= MT LostLiq= MT Freebrd= m GM = m In Calculation LOST BOUYANCY Method is Used Constant Displacement =
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 102 OF 118
S
A
M
P
LE
X (Amid) Y(CL) Z(BL) Draft Freeboard Immersion Description (m) (m) (m) (m) (m) Angle (Deg) ββββββββ βββββ βββββ βββββ βββββββββ βββββββββββ βββββββββββββββββββ ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 103 OF 118
S
A
M
P
LE
DAMAGE LIMITING VCG Applied Intact LimVCG GMreq Criterion (m) (m) DAMAGE STABILITY CRITERIA CRITERION Calculated Required Status
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 104 OF 118
S
A
M
P
LE
Initial Condition: Damage Case: Stage: ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | DAMAGED COMPARTMENTS | Permeabilities | ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | | | | | | | | | | | | | | | | | | ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ STATICAL STABILITY CURVE (Starboard) Heel GZ Dmid Trim FreeB VCG LCG TCG DISPL (Deg) (m) (m) (m) (m) (m) (m) (m) (MT) FLOATING POSITION AND STABILITY Disp = MT Da = m LCGo = m LCG = m Trim = m Df = m TCGo = m TCG = m Heel = Stbd Dm = m VCGo = m VCG = m FloodW= MT LostLiq= MT Freebrd= m GM = m In Calculation LOST BOUYANCY Method is Used Constant Displacement =
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 105 OF 118
S
A
M
P
LE
Reference Points Check X (Amid) Y(CL) Z(BL) Draft Freeboard Immersion Description (m) (m) (m) (m) (m) Angle (Deg) ββββββββ βββββ βββββ βββββ βββββββββ βββββββββββ βββββββββββββββββββ ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 106 OF 118
S
A
M
P
LE
DAMAGE LIMITING VCG Applied Intact LimVCG GMreq Criterion (m) (m) DAMAGE STABILITY CRITERIA CRITERION Calculated Required Status
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 107 OF 118
S A
M
P
LE
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ INITIAL CONDITION 094.DEP Dmid = 17.07 m Trim = β0.010 m Disp = 164268 MT Trim is Positive By Stern VCG = 14.062 m GM = 3.620 m ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ Damage Stage Dmid Trim Heel FRB MaxGZ ARea PosRange VCG GM Critical VCGreq GMreq Range Range Case (m) (m) deg (m) (m) m*rad (deg) (m) (m) Criterio (m) (m) Damage Stage Dmid Trim Heel FRB MaxGZ ARea PosRange VCG GM Critical VCGreq GMreq Range Range ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 108 OF 118
S A
M
P
LE
Case (m) (m) deg (m) (m) m*rad (deg) (m) (m) Criterio (m) (m) Damage Stage Dmid Trim Heel FRB MaxGZ ARea PosRange VCG GM Critical VCGreq GMreq Range Range Case (m) (m) deg (m) (m) m*rad (deg) (m) (m) Criterio (m) (m) ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 109 OF 118
S A
M
P
LE
INTACT CRITICAL VCGreq GMreq Draft Mid Trim Damage Case (m) (m) (m) (m)
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 110 OF 118
15. DAMAGE CALCULATION RESULTS β CARGO ARRIVAL
S
A
M
P
LE
Initial Condition: Damage Case: Stage: ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | DAMAGED COMPARTMENTS | Permeabilities | ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | | | | | | | | | | | | | | | | | | ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ STATICAL STABILITY CURVE (Starboard) Heel GZ Dmid Trim FreeB VCG LCG TCG DISPL (Deg) (m) (m) (m) (m) (m) (m) (m) (MT) FLOATING POSITION AND STABILITY Disp = MT Da = m LCGo = m LCG = m Trim = m Df = m TCGo = m TCG = m Heel = Stbd Dm = m VCGo = m VCG = m FloodW= MT LostLiq= MT Freebrd= m GM = m In Calculation LOST BOUYANCY Method is Used Constant Displacement =
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 111 OF 118
S
A
M
P
LE
Reference Points Check X (Amid) Y(CL) Z(BL) Draft Freeboard Immersion Description (m) (m) (m) (m) (m) Angle (Deg) ββββββββ βββββ βββββ βββββ βββββββββ βββββββββββ βββββββββββββββββββ ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 112 OF 118
S
A
M
P
LE
DAMAGE LIMITING VCG Applied Intact LimVCG GMreq Criterion (m) (m) DAMAGE STABILITY CRITERIA CRITERION Calculated Required Status
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 113 OF 118
LE
Initial Condition: Damage Case: Stage: ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | DAMAGED COMPARTMENTS | Permeabilities | ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ | | | | | | | | | | | | | | | | | | ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ STATICAL STABILITY CURVE (Starboard) Heel GZ Dmid Trim FreeB VCG LCG TCG DISPL (Deg) (m) (m) (m) (m) (m) (m) (m) (MT)
P
A
M
S
FLOATING POSITION AND STABILITY Disp = MT Da = m LCGo = m LCG = m Trim = m Df = m TCGo = m TCG = m Heel = Stbd Dm = m VCGo = m VCG = m FloodW= MT LostLiq= MT Freebrd= m GM = m In Calculation LOST BOUYANCY Method is Used Constant Displacement =
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 114 OF 118
S
A
M
P
LE
Reference Points Check X (Amid) Y(CL) Z(BL) Draft Freeboard Immersion Description (m) (m) (m) (m) (m) Angle (Deg) ββββββββ βββββ βββββ βββββ βββββββββ βββββββββββ βββββββββββββββββββ ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 115 OF 118
S
A
M
P
LE
DAMAGE LIMITING VCG Applied Intact LimVCG GMreq Criterion (m) (m) DAMAGE STABILITY CRITERIA CRITERION Calculated Required Status
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 116 OF 118
S A
M
P
LE
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ INITIAL CONDITION 094.ARR Dmid = 17.040 m Trim = β0.010 m Disp = 163921 MT Trim is Positive By Stern VCG = 13.920 m GM = 3.760 m ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ Damage Stage Dmid Trim Heel FRB MaxGZ ARea PosRange VCG GM Critical VCGreq GMreq Range Range Case (m) (m) deg (m) (m) m*rad (deg) (m) (m) Criterio (m) (m) ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
PAGE 117 OF 118
S A
M
P
LE
Damage Stage Dmid Trim Heel FRB MaxGZ ARea PosRange VCG GM Critical VCGreq GMreq Range Range Case (m) (m) deg (m) (m) m*rad (deg) (m) (m) Criterio (m) (m)
ALPHA MARINE CONSULTING
M/V βVSLNAMEβ DAMAGE STABILITY BOOKLET
S A
M
P
LE
PAGE 118 OF 118
ALPHA MARINE CONSULTING