Resolvendo inequações de 1º grau
Para resolver a inequação, podemos também atribuir valores arbitrários a x a fim de encontrar a solução que torna a inequação verdadeira. Assim, substituindo x por números naturais que transformam a inequação numa sentença verdadeira temos: x = 0 → 0 + 2 < 6 → 2 < 6 (verdadeira) x = 1 → 1 + 2 < 6 → 3 < 6 (verdadeira) x = 2 → 2 + 2 < 6 → 4 < 6 (verdadeira) x = 3 → 3 + 2 < 6 → 5 < 6 (verdadeira) x = 4 → 4 + 2 < 6 → 6 < 6 (falsa) x = 5 → 5 + 2 < 6 → 7 < 6 (falsa) ... O conjunto formada por todas essas soluções é o conjunto solução ou conjunto verdade da inequação.
Observação importante!!! - Se considerarmos U = ℕ o conjunto solução seria: S = {0, 1, 2, 3}
- Se considerarmos U = ℤ o conjunto solução seria: S = {... -4, -3, -2, -1, 0, 1, 2, 3} - Se considerarmos U = ℝ o conjunto solução seria: S = {x ϵ ℝ / x < 3}
Quando não for especificado o conjunto universo, vamos supor que ele seja formado por todos os números reais.
Para verificar se a solução obtida está correta, atribuímos a x um valor maior, outro menor e outro igual a 4.
Para x = 3
x+2<6 3+2<6 5<6 Desigualdade verdadeira
Para x = 4
x+2<6 4+2<6 6<6 Desigualdade falsa
Para x = 5
x+2<6 5+2<6 7<6 Desigualdade falsa
Note que a desigualdade é verdadeira para x < 4. Portanto, a inequação x + 2 < 6 é verdadeira para x < 4.
Montagem: profª Ana Marcia A. Leal Fonte: Bonjorno, José Roberto Matemática fazendo a diferença– 7ª série FTD/2006 – São Paulo
FIM