Ευκλειδης β 104

Page 1


EMHNIKH MA0HMATIKH ETAIPEIA T1:uxos 104 -Anpf?\1oc:; - Maroc:; - 106v1oc:; 2017 - Eupoo: 3,so e-mail: info@hms.gr, www.hms.gr MAE>HMATIKO nEPIO.L\IKO rlA TO AYKEIO

ftvtKU 0tµaTa

nEPIEXOMENA

Ilu0ay6pm:.; Atalipoµt<; ...................................................................................... Mia aµqnµovoaqµaVT1] l:UvapT1)1f11 f yia TlJV api0µ111n1 Trov OntKrov PlJTcOV Ma011µaT1Kt<; 01..uµinalii:.;, ................................................................................

Homo Mathematkus, . .... . .................................................................................... A'

Ta�1J

.Ai.yr.flpa: En:ava/..11n:TtKE<; AaK1]ai:i.; A/..yi:flpa.;, ...................................... ...... fr.roµnpia: En:aval..1Jn:TtKE<; AaK1]ai:i.; ftroµnpia.; ........................ ................ B' Ta�1J Ai.yr.Jlpa: En:aval..1Jn:TtKE<; AaKl]att.; A/..yi:flpa.;, ........................... . .. . ............... ftroµnpia: En:avul..1Jn:TtKE<; AaK1]ai:i.; fi:roµnpia.;, ............ . ..... ........ .... . ......... KaT1:uOuva11: En:aval..1Jn:TtKt<; AaK1]ai:i.; IlpoaavaTol..taµou ..........................

f Tu�1J

fr.VtKtj nmodu: AaK1]<rEt<; IltOavoTIJTrov, ............. . ................................ ........... KaT1:U0uv11: En:aval..1Jn:TtKt<; AaK1]ai:i.; - Ava/..\llfTI , ........................................ A�101n1µi:iroTE<; EKOETtKE<; Kat AoyaptOµtKt<; avt<r6T1JTE<;, ............................... A�tolfTlµEiroTE<; EKOETlKE<; Kat AoyaptOµtKE<; UVlGOT1JTE<;, ......... ...................... Ilapayouai:.;, . . ................................................................................................. ...... Ailo En:aval..11n:TtKa Oiµaw, ............................... . ...................................... . .. . ...... Ailo AaK1]att<; tn:aval..1J1j11J<;, ................................................................................ Ailo an:At.; an:o6Ei�Et<; yia Tt<; aviaoTlJTE<; Jensen Kat Hermite-Hadamard ..... 0tµaTa EiaayroyiKcl>v E�ETaai:rov yia Tu (A.E.I) Ila/..atoTtprov En:oxrov, ...... Xpijaiµi:.; Em1n1µavai:i.; AaKt'jati.;, ...................................................................

To

B

ijµa Toll EuKl..£1611:

ftvtKU 0tµaw

MtOolio.; l:uµn:/..ijpro1n1.; Toll Tnpayrovou ................

EuKl..Eili1J<; IlpoTEivti, ... ....................................................................................... Ma011µanKa Kai AoyoTE)(Via .......................... ......................... ...........................

1 9 14 22 27 29

33 36 41

43 48 54 52 54 57 60 64 66 69

73 76 80

Kci.8E 20.��m:oylv ovmL aOPEAN µa8�µam, 8uµl�ouµE on: EpwT�µam OXETLKCT µEm

8£µam aLayWVLOµWV UTT.O�CTAf..OVTal OU]V EmT on· l'.Ha wvLo wv T

E.M.E.

EVKatprJ nA.ripwµ� TrJ� ouv6poµ�c; �ori8a£L oTriv £Ki5oori rnu n£ptoi5LKou

E�w<l>uAAo:

Eux6µaon TO cpwc; Tl]«; Ava<rTa<rl]c; va oac; OlilJYEL OTO liUOKOAO lipoµo oac; y1a TlJV EmTux[a Tou 01ro[ou o T£pµanoµ6c; va dvm µ1a µipaAaµnptic;xapcic;. To 4o uuxoc; TOU nt:ptolitKou µac;, 6nwc; oac; £Lxaµ£ unoaxrOd, EPXETaL ALYE«; µt'pt:c;µETa an6 TO 3o nuxoc;. Ennliti 0 xp6voc; µ£xp1 nc; E�ETCcOEL«; ELVaL TIOAU Hyoc; <j>pO\'TloaµE va unapxouv ETiaVaAlJTITLKCc Ot'µaTa Kai OTO 3o ni'XOC. WOTE \'U

l.:0

EXETE Tl]V liuvaTOTl]Ta va EL<rnpa�ETE ano TO TIE p LO O L uac onota liijnon: flotiOna Km ami Ta liuo TEAEUTaia Tn·xr,

fvwp[�ouµE fl£flma OTL O xwpoc; KaTaKAU�ETaLUUTO TO\" Katp<J axo npOTnvoµEVE«; AoKijOEL«;. !:TO TIEplOOLKO µac; oµwc;. cnrw<; 9a litaTUTIWOETE, <j>pOVT[�ouµE va li[vouµt: LlitaLTEPlJ <rl]µaai..a TOGO OTlJ litaTUTIW<rl] OOO KaL OTlJ mJAAOyl<rTLKij TIOU µac; OOqyri <rTTJ

Au<rlJ, <rTO fla0µ6 flrflma nou auTo µnopt:i va rntTruxOt:i µfoa ano Tl]V TIOAllTipoowmi mJµµEToxii apOpoypciqiwv. ME mmi Tl]V t:nm/.fov cppovT[lia t:/.n[�ouµr va oac; cpavouµt: xptio1µ01 mJµnapa<rTcinc;. To KaAOKa[p1 nou aKo/.ouOd, ruxoµa<rTE va dva1 µ1a ruxapt<rTTJ Emflpaflrn<rlJ Tl]c;µEYciAl]c;oac;npoanciOEtac;. 0 p El)po r 100pyo<; laOOOTTOUAO<;

n o <; TI]<; l:UVTOKTI Ktj<; EmTpontj<;: VT mp6Elipo 1 : BayyiAI]<; Euorn Ofou, r10VV1]<; KEpaoapffil]<;

01 U

Ynru8uvo 1 y1a TIJV rmµiAEla TI]<; UAIJS Twv Ta�rwv rivai 01 O"UVOOEA<po 1 :

Y.r.

A"AuK<iou (Xp. Aa�apioqs. Xp. Tmcpc«qs, r. Kawou�qsl. B'AuK<iou (B. KapK<'rvqs. L. Aoupi6as. Xp. To1cp0•qs, ATT. KaKKaflOsl.

Ma01')µatlKOl dtaywvtoµoi

12 Noe:µppiou 2016 0aAqc;: EuKA£ili11c;: 28 lavouapiou 2017 4 Maptiou 2011 Apx • 1-1qli11c;: npoKpl!JOTIKOC): 8 AnptAlou 2017

2m ypacjJEla U]� E.M.E., Arr.6 8 OKT W�plou 2016.

H

Aya1If1TOL µaOl]TE«; KaL mJVCcliEAljlOI,

Mcuoyc 1060:

EtKaonK� ouv0EOri 13aotaµE:vri OTl"J fEWµETpia

EKll.OIH THI EA/\HNIKHI MA0HMATIKHI ETAIPEIAI

nANEnlITHMIOY 34 106 79A8HNA TIJA. : 210 3617784 - 210 3616532 Fax: 210 3641025 EKli6n1s:

N 1 KOAaoc; AAE�avliprjc; A1w9uVTtjs: lwci.wris TupJ.rjs

EKTEi\EOTlKtl rpaµµmEia

np6r6pos: Taaaonoullos r1wpyos AVTmp6r6poi:

MEAi]:

EucrraOfou BayyEAl]S 1<£paaapili!]<; r10w11s ApyupOKl]S ll.1]µ�Tp1os Aoupilias l:on�p!]<; l:ncpav�s navay1ci>TIJS TanEIVO') N1K6Aaos

Tm<paKric; Xpf)arnc; YnOOTl"JPLKt�<; apaOtl"JPLOT�tWV tl"J<; E.M.E.

e

El\l\HNIKA nETPEAAIA

YnootriptKt�<; Taxuc5poµtKwv YnripEotwv

IuvmK"rtK� Emtpon� A8avaa6nou>.oc; rewpy1cx; Av<SpouA.aKaKric; NiKoc; AVTwv6nouA.oc; rewpy1oc; AVTwv6nouA.oc; NiKoc; Apyup6Kflc; ll.!]µf)TpLoc; BaKaA.6nouA.oc; KwaTOc; ra13p6c; T6aoc; Euma8fou BayyeA.ric; Zaxap6nouA.oc; Kwv/voc; KaKa(36c; An6moA.oc; KaA.iKac; ITaµcrn,c; KaµnouKoc; Kup16Koc; KaveMoc; Xpf)moc; KapK6VT]c; BaaiAric; KawouA.ric; rtwpyoc; Kepaaapi<Sl]c; rt6VVT]c; Kap<SaµiTO"T]c; Inupoc; Kov6µT]c;ApTl KOTO"l<j>clKT]c; r lWpyoc; KouA.ouµeVTac; <l><ilTTlc;ric; Kup1a�t'Jc; lw6VVT]c; Kup1aK6nouA.oc; AVTWVT]c; Kup1aKonouA.ou Kwv/va

Kwli1KOC) EA.TA: 2054 ISSN: 1105 - 8005 •

9 AnptAlou 2017

Ku(3epvfirnu Xpum. Aa�api<Sric; Xpfimoc; /\6nnac; /\eUTep!]c; Aoup1Mc; rt6VVT]c; /\oupi<Sac; IwTijpric; MaA.a<peKOc; eav60"T]c; Mav10nic; Av<Speac; Mav1aronouA.ou AµaA.ia Maupoy1avv6Kflc; /\ewvi<Sac; Mev<Sp1v6c; r16VVT]c; Me-ra�6c; NLK6A.aoc; Mt'JA.1oc; rewpy1oc; Mnepafµl]c; <l>payKiaKoc; Mnpfvoc; navayLWTT]c; MuA.wv6c; ll.l]µl'[rpric; MWKOc; Xpt'Jmoc;X nav<St'Jc; XpfJmoc; nananeTpoc; BayytA.ric; IiaKou Mapia IaiTTl Eua Im'iKoc; Kwamc; IT61Koc; navayt<ilTT]c; ITe<pavfic; navayt<ilTT]c;

ITpaTijc; rt6VVT]c; Tane1v6c; N1K6A.aoc; Taaa6nouA.oc; rtwpyoc; T�&Mnric; MKric; T�LWT�1oc; eav6C11Jc; Toupva(3fTT]c; In:py1oc; TpLaVToc; rewpy1oc; TaayK6p!]c; Av<Speac; TaayK6pric; Kwmac; TmKaA.ouMKl]c; r1wpyoc; Ta1ouµac; eav60"T]c; Tm<pclKT]c; Xpt'Jmoc; TaouA.ouxac; Xapric; TupA.t'Jc; lw6VVT]c; <1>avtA.11Avvu XapaA.aµnaKric; Eum681oc; XapaA.aµnonouA.ou Afva XPlaTL6c; Inupoc; Xp1m6nouA.oc; eav60"T]c; Xp1m6nouA.oc; navay1cim]c; �uxac; BayytA.11c;

IxoA10: 01 [pyaoi[c; yia rn TT[p1oli1Ko miAvovrn1 Km qA[Ktpov1Ka mo e-mail: stelios@hms.gr

Ta liiacp11µ1�6µt:va f31f3i\fa lit 011µafvE1 6T1 nponfvoVTrn crrr6 T'lV E.M.E.

T1µt'J Truxou<;: wpw 3,50

01 auvt:pyaafE<;, [Ta apepa, 011TpOTE1v6µt:vE<; aoKt'Jom;, rn Mow; aoKt'Jot:oov Ki\n.J rrpETTEI va OTEAVOVTrn !'.yKrnpa, OTa ypacpEfa T'lS E.M.E. µt: TIJV tvliE1 �'1 'Tia TOV EuKi\tili'l B'". Ta XELpoypacpa litv ETTIOTpEq>OVTOI. 'Oi\a Ta ap&pa U1TOKE IVTOI OE Kpioq, ai\i\a Tl)V KUp m EUOUVIJ TI] q>i:pE I O E IOIJYIJTrJ<;. ET�Ola auvlipoµfi (12,.00 + 2,00 Taxulipoµ 1 Ka = wpoo 14,00). ETt'Jma auvlipoµfi y1a :Ixoi\Efa wpoo 12,00 To av1friµo yia rn TEuxri rrou rrapayyEi\voVTrn OTEAVETrn: (1 ). ME arri\fi TO)(ulipoµ1KfJ rn1rnyt'J OE liiarnyt'J E.M.E. Tax. rpaq>Efo A0fi va 54 T.G. 30044 (2). LT'lV IOTOO"Ei\ilia T'lS E.M.E., OTTOU unapxt:1 6uvm6T'1Ta Tp<rrrE�IKfJS auvai\i\ayfic; !JE Tl]V Tpam�a EUROBANK (3). ni\l]pOOVtTal OTO ypacpEfa Tl]S u.u. (4). •

Mt <XVTIKOTaj3oi\fJ, OE tTrnpEfa TO)(UµETaq>opoov OTO xoopo 00'), KOTO TIJV rrapai\af3t'J.

EKTUTT<OOIJ: ROTOPRINT (A. MnPOYLA/\H & :LIA EE). Tl'Ji\.: 210 6623778 - 358 Yu1:uOuvoc; wnoypacp1:fou: /'J.. ncrrrali6rroulloc;


l/t:'.J. t:'Ol ,8 'l:HVI':!IV)IA:!I

-3Tbt3 DA }3dOlLri A3g Dllt1<).dDg lt og31L}lL3 01lA9JldO 3.0 'SoniQ 'OX}Ol AOl 13.o}lX D0 910.D lg�dr(D 3ri lD)I lgJd -Dg DAq mil}A DAq 3.0 13.0�ri3d)I D0 Slt1.011X 0 og3lL}lL3 OllA<;>Jtdo 01.0 Dl30�)1 SoX101 SDAq }31.0Do.3)1.0DlD)I DA mA. 'miA.13g�dDlL DlJ ·SDlltl.<).dDg Slt1 mA.<;>Y. Sltri0�1.o SW. Dril}A 01 3ri 1Dl}3A.do.01riltg og3lLJlL3 ocbo.d9;11D1D;11 3.o SD}A©A. Sl;t.0do lt.olt}OlLO'(.O. H 'DTI?0 01 3.0llLC!Jl3TillAD D0 SolL©d0A� 0 �1'(.DlL <).'(.OlL 91LD 3l9lLO '�1A0l)l3llXdD Am Dd319;111A3A. m;11 Am1d11;11 1;t.ro;11.0D1D;11 Am mA. SltgC?1Y.3ri30 mAp AC!JlAmA. AC!J0do lt.olt1olLO'(.O. H ·So1Dril;t.d -©30 0.0}3dOA.D0nlL 0.01 ocbodl.O}lAD 01 3ri DA©cbric;i..o l:t0do 1DA}3 JHV OA©A.}dl 01.0 v A91L10'(. D}A©A. H 'Dlnril;lwmg D.O} s ll))I f7 '£ 5?d 03'(1L 3ri OA©A. -}dl DAq Ao.O.O�o.Olriltg DA 3WC!J 1.ol? ltA9g31LdD Am ADA©lAql D13X?Ao..o llll 'lt'(.<).lLTfD)I l;tw13'(.)I mri AD.O<).OA.dO.O -1riltg ZJ Ao1 3ri 1101Lri9;11 AOl :WlAOAC!JA'3 ·nritµ.o ro1�;11DdDlL ow SIDlL<;> 'DlDril;lwmg DDJ 3.0 So.olLri9;11 3ri JAlO)l,O DAq ADll;t. ltA<;>g3lLdD H ·S3JA©A. 5?0do AD.0<).0lOlLO'(.O. O}OlLO 01 3ri OADA.d9 DAq 'llA9gaudD Alll AD.0<).0lOlLOrit.oltdX AC!JtA©A. lD)I AC!))lltri Sl3.ol;t.d13ri Ao.0"1)>)1 DA 31L3dJL? O.OlL S3�Aog31LdD 1Q 'Arod<;>AO..O Affi?A �d�X ltl l;t.gn'{ ltg '�o.og ltl l;t.lo.D 3ri loA?TI.oudocbru3 ADll;t. s £ o.OlL 'S3�Aog31Ldn 10A3ri9A. t ?J lj v 8 -3'(. 10 '10'(.lt'(Wlto. }O)IUDd;ll • • • • • • • • • • • • • ADXdl;t.JLA 'AC!JlcbDdmX A©l DdOA<).D Dl lDlAOJJdOlg.oodlL e. • £ • •v -DAD1L3 DA 31L3dlL? S3d<).ri -rilt'(.lL Su �13ri OOY.!3N 0.01 S30Xg Su.o Ollto.A.}y DJDXdn Altw 'Spcbnd,Ll,.o..o lOJDXdn t 10 AO.Od?cbDAD SIDlLQ ·0.01 S?1ltenri So.01 91LD 3A\A.? DA l;t.lo.D 'Sm.01 ·� 'Dd9A.D00.u AOl Olfil AOW lt� J -13g9uD Alll Ao.ogJgOlLD }O)lld -3W ·SpcbDdilo..o lOJDXdD lo A<).odmdDri Smug 'So.OJ3doA.D00.u So.01 9uD 3A\A.? So1Dril;t.dro30 0.01 lt�13g9uD H ·LtwroAA.� SC!JY.3lADlL ADll;t. 0.01 �g91LD lt 310ul;t.g.oroJLO \D)I l;twmM ADll;t. Altri DA '5©,0J 'Srocb9dWUAD \D)I 0 A. + 0g = 0D lt.o?X.o lt 13c_lX.o1 ug l;t.gDY. ltg 'O.OAC!JA.ldl O,OJA©A.o 0 ' -do SgA3 A.'g'D 5?dn3'(.lL 53}DXnl mA. So1Dril;t.dro30 0.01 Srori9 lt.oro;11JA3A. H '01AC!JA.o0do 1DAJ3 <;>l<ID 3191 zV + 0£ = 0S lt.o?X.o lt 13c_lX.ol l;t.gDY. ltg 'S'f7'£ S?d 03'(1L 13X? OA©A.}dl DAq AD l;t.gn'{ ltg 'O.Ol ocbodW}lAD 01 \D)I 91.o©M ADll;t. 'SltD}ll3 . zV + 0£ = 0S lt.o?X.o lt 13c,lX.ot S'f7'£ 5?d03'(1L 3ri OA©A.}dl 01AC!JA.o0do DAq 3.0 119 DriA.13�dDlL mA. 'A©Wdl Arot3d9A. -D0nlL l;t.cbdori ltl 3ri 0A9ri AD11;l DA 0.01 lt.oC!JM lt SC!JAD01I1 ·ttwroAA.� AD11;l S<).OlnD 3.0 0.01 �g<;>lLD lt � '101AC?Y. -o.gDg 10 m;11 101llL<).A.1v lo SmJL9 'S<).ODY. lD)I Sc;i.ori.ou1Y.ou Sc;i.01D'(.DJL 3.0 9wroAA. ADll;t. DriltdC!J30 013d9A.D0o.JL oi . 06 = v 3ri OlAC!JA.o0do 1DA}3 3191 '/1w + g = n 13(,\X.01 JS:V OA©A.}dl 01.0 AD1;1.gD'(.ltV 0 z z ·�d0,3'(.lL ltl}dl Altl. D.00.0A}3101LO. 3ri g 'tr/ J 01AC!JA.o0do mAp 0AroA.1d1 01 3191 ·s�d0,3'(.lL Sltl1d1 sw. 0AmA.�d131 01 3ri m1 -<).0.01 AC!Jd0,3'(.lL oc;i.g A©AC!)A.Ddl3l A©l Dri.010d0� 01 OA©A.}dl DAq 3,0 AV _

ocbodw}J.Av

A

e

3191

' (0 06 = y)

· zJ..,+zg = n z

01AC!JA.o9do 1DAJ3 JS:V 0AmA.1d1 01 AD 1;1.gD'(.ltV . AC!Jd0.3'(.lL A©l?0D)I oc;i.g A©l A©AC!)A.ndl3l A©l Dri.010d0� 01 3ri m1c;i.o.01 SD.onoAp1olLo. SW. 0AmA.�d131 01 0AmA.1d1. 01AC!JA.o0do 30�)1 3l <,tO<L:!I

:Sl;t.�3 lt 1DA}3 0.01 lt.o©lL<).lDlg H '910.D mA. 11�)1 13.o<).O)ID 13X? Altri DA O.OlL ltj ltl..o ©A�lL OTIOl� OlDriri�d,{,fa SpAD)I 13.0l;t.lADAO..O D0 D'(.0)1.0<).g <).Y.OU ' AC!))lllDrilt9Dri A©l DriltdC!J30 orilt.o�1g OllL 01 Dllt11;lg.01cbriDAD 1DA}3 DriltdC!J30 013d9A.n9o.JL OJ. ·u!�lSU!'3 0.01 SD1lt19;11113X.o Slt1 SD}d©30 S�1g13 Sltl l;t.lo.D 1dX?ri Aropd -oA.D00.I1 A©l 1;1.Xo1L3 Alll 91LD So1Dril;t.dro39 o.opdoA.n00.u 0.01 l;t.riodgmg ltl 3TI<).Og D0 910.D od0d� Oll

SylJaO.l.A(\0)1.J ·dx Slld\ll,(l):i

�1rl<M1901v �:11�u


------- Uu0ay6ptu:� Aiai)popt� taA.Af:u0ei, o1tote to 1tapa.mivco eeµeA.trooe� tpiycovo eivm auto 1tou uA.o1totei opee� ycovie� oe opt�ovno it OE 01tOtOOTt1tOtE E1tl1tEOO. Autft Aol1tOV TI eeµeA.tcOOTI� tOtO't'fltO. toU 1tUea.yopeiou eecopftµa.to� 1tOU crucrxeti­ �El 1tl..eup€� Km ycovie� evo� tptyrovou, ioco� eivm to otoixeio eKeivo 1tOU cruvriyopei Ka.ta.A.uttKci O't'fl 01tOUOmO't'fltU toU. Me Pucrri to 1tUea.yopet0 eeropTlµa. 1ta.pciyovtm Ot µetptKE� oxfoet� (oxfoet� µeta.;u 1tAeuprov, aUci Km 1tAeuprov-yrovtcOV OE E1ti1teoa crxftµata) Km 5oµeitm Eva� tlcioo� 't'fl� Eutleioeta� fe­ roµetpia.�, TI MetptKft fecoµetpia.. l:'t'flV AvaA.unKft fecoµetpia. to 1tUeayopeto eeropTlµa oivet 't'flV 0.1tOOtacrri Mo crri µeicov A Km B, AB (X - X1)2 +(y - y I )2 +(zl - Z )2 ' OTIAO.Oit µa� oivet €va "µfapo" 2 2 2 yta tTI µfapTIO'fl toU xropou Km µ1topei va yevtKEUtei yta xropou� 1tEptooot€pcov tCOV tptrov Ota.otcioecov. H yeviKEUO'fl Km TI E1tEKtacriµo't'fltO. tou 1tU0ayopeiou eecopftµa.to� eivm E1ttO'fl� €va� aKoµTI Myo� 1tou cruvriyopei O't'fl o1touomo't'fltci tou. Ot eq>apµoy€� tou 1tUeayopeiou eecopftµato� eivm 1tapa 1toW�, apKEi va. a.vacp€pouµe on TI tptyrovoµetpia paoi�Etat OE auto. l:'t'flV 1tOpeia tCOV xtA.ienrov, 0.1t0 't'flV E1t0Xll toU Ilu0ayopa. €co� crftµepa, exouv ooeei EKa.tOVtUOE� 0.1tOOEi;Et� yta to 1tUea.yopeto 0eropTlµa.. 0 AµeptKO.VO� µaeTlµa.nKo� Elisha Scott Loomis oto PtPA.io tou "The Pythagorean Proposition" 1tOU EKMeT1KE to 1940 a1to to AµeptKavtKo E0vtKo I:uµpouA.io Ka0'fl'Y'Tltrov Ma0TlµanKrov, 1tapae€tet 370 a1tooei;ei�. l:'t'fl OUVEXEta ea. orooouµe µeptKE� 0.1t0 n� 0.1tOOei;e� tOU 1tUea.yopeiou eecopftµato�. H 1tpcO't'fl 0.1tOOet;TI totoptKU, 01tCO� µaprupeitm Km 0.1t0 toV TIA.citrova., eivm TI 1tU0ayopeta. Autft ea oouµe O't'fl OUVEXEta. l:tov 1tAa.tCOvtKO 0tciA.oyo E "M€vcov" oivetm TI a.nooet;TI tou 1tUeayopeiou 0ecopftµato� yia opeoyrovia Km icro01<eA.it tpiyco­ va., nou a1tooioetm otou� nuea.yopeiou�. 'Eotro to opeoyrovto tpiycovo ABf µe A 90° Km AB Ar P . I:xriµmi�ouµe to tetpciycovo r N A LlEZH µe 1tA.eupci 2P Km to tetpciycovo KAMN µe KOpUq>E� ta µfoa tCOV nA.euprov toU LlEZH. To tetpciycovo LlEZH anoteA.eitm a.no tfooepa opeoyrovta tpiycova icra µe to ABf Km to tetpci­ ycovo KAMN . A H B To eµpaoov tou tetpa.yrovou LlEZH iooutm K µe E (2P)2 4P2. Emcrri �. to eµpaoov tou tetpa.yrovou tooutm µe to uepoioµa trov eµpaorov trov teoocipcov iocov opeoycovicov tptyrovcov Km tou te=

=

=

=

=

=

tpa.yrovou

r

KAMN ,

c5T1A.a.oft exouµe on:

E

=

1

4· -p2+a2 2p2+a2. Onote exouµe 2 =

Me Pcicrri A.omov 't'flV 1tapancivco anooet;TI µta mea.vft anooet;TI yia ruxa.io opeoyrovio tpiycovo a.no tou� nuea.yopeiou� eivm TI e;ft�: 'Eotro to opeoyrovto tpiycovo K y E ABf µe opeft 't'fl ycovia. A. I:xriµa.t�ouµe to tetpciycovo LlEZH facrt roote Knee nA.eupci tou va. icroutm µe P+y , onco� oto 1ta.­ paKcitro oxftµa.. To tetpciycovo A.ot1tov LlEZH anoteA.eitm a.no N tfooepa. opeoyrovta. tpiycova. ioa µe to ABf Kaero� Km to te­ tpciycovo KAMN To eµpa.Mv tou tetpa.yrovou LlEZH iooutm /\ µe E (p+y)2• E1tiO'fl�, to eµpa.Mv tou tetpayrovou icroutm y µe to uepotoµa trov eµpa.orov trov teoocipcov iocov opeoycovicov tptyrovcov Km tOU tEtpa.yrovou KAMN' OTIAO.Oit z y B H V M .

=

1

4· -Py+a2 2Py+a2. 'Exouµe A.omov ott: 2 2 (p+y)2 2py+a (*). H npotacrri 11.4 tCOV Erozxeiwv, nou anooioetm OtoU� nuea.yopeiou�, eivm TI e­ ;ft�: (p+y)2 p2+y2+2py (**). Onote TI oxecrri (*) µe 't'fl Pofteeia 't'fl� oxecrri � (**) yivetm : (p+y)2 2py+(l2 <=> p2+y2+2py 2py+(l2 <=> p2+y2 (l2. I:ta. Erozxeia tou EutleioTI to 1tUea.yopeio eeropTlµa eivm TI npota.crri 1.47 Km TI oiamncocrft tou eivm TI e;ft�: Ev roz� opBoywvioz� -rpzydJvoz� w air6 V/� V/V opBf/v ywviav virowzvov<frf� irkvpa� -rGrpaywvov iE

=

=

=

=

=

EYKAEIAH:E B'

=

=

104 T.4/2


-------

Il't>Oayop&1&� Aiaopoµ.t�

oov t:OTi wu; an6 'l'WV 'fr/V op(hjv ywviav nt:pit:xov<JdJv nkvpdJv rerpaydJvou;.

LlrtA.a<>r, to eµpa.Mv tOU tetpayrovou µe nA.eupa trtV unoteivoucra Bf eivm icro µe to a8po1crµa tO)V eµpa­ orov tCOV tetpayrovcov µe nA.euper; ttr; Mo Ka9eter; nA.euper; toU tptyrovou. E>a anooei�ouµe A.omov on: ( BrE�) = (ABZH) +(ArKE>) . Anoo&�ll

<l>epouµe a.no to A trtv AA napaUriA.ri crtrtv BLl. Ta tpiycova ABLl Km BfZ eivm icra y1a.ti AB=BZ, BLl=Bf Km 01 ycovier; ABLl Km ZBf eivm icrer; crav a8po1crµa µtar; oper,r; Km trt<; ycoviar; B. Apa ta tpiycova ABLl Km BfZ eivm tcroouvaµa. fta to eµpaoov tou tptyrovou Bf Z exouµe: 1

(B rz) = -BZ·u . Dµcor; u = ZH apa z 2 (BrZ) =!BZ· ZH =!BZ2 =!(ABZH) (*) 2 2 2 fta to eµpaoov toU tptyrovou ABLl exouµe: (A B�) =).!_ B�· A�=.!_ (B�AM) (**) 2 2 Ano ttr; (*) Km (**) exouµe O'tl ABZH ( ) = ( B�AM) (1) Oµoicor; exouµe O'tl ta tpiycova BfK Km AfE eivm icra apa (BrK) = (Ar E) . Enicrri r;: fJ. A (BrK)=!rK ·KE>=!rK 2 =!(ArKE>) Km (ArE)=!rE·AE=!(rEAM) Apa exouµe on 2 2 2 2 2 E (ArKE>) = (rEAM) (2) t& Ilpocr9etouµe Kata µEA.rt nr; ( 1) Km (2): ABZ H) +(ArKE>) = ( B�AM) +(rEAM) = ( BrE�) . ( 1

1

,

Anoot1;11 TO'\) Bhaskara (lvoia, 12� auova�)

Me nA.eupa trtV unoteivoucra Br tou op9oycoviou tp1yc0vou ABf Ka.taO"Keuai;ouµe to tetpaycovo Bf LlE. Ano ttr; Kopuq>er; Ll Km E cpepouµe LlZl.Af Km EHl.LlZ. IlpoeKteivouµe trtV BA nou teµvet trtV EH crto 0. I:xriµmii;ovtm etcrt tfocrepa icra op9oyrovta tpiycova Km to tetpaycovo AZHE> µe nA.eupa icrri µe AZ = P- y , onote to eµpa.Mv tou eivm icro µe E2 = (p- y)2• Ta tfocrepa op9oyrovia tpiycova ABf, fLlZ, LlEH Km BEE> acpou eivm icra µeta�U tour; ea eivm lO'OOUvaµa Km to eµpaoov Ka9evor; eivm icro µe E1=!py . To eµpaoov tou tetpayrovou 2 2 BfLlE eivm icro µe E = a • Enicrri r; auto anoteA.eitm a.no ta tfocrepa op9oyrovia tpiycova Km to tetpaycovo AZHE>. Apa to eµpaoov tou eivm icro µe 1 E=4E1+E2 <=>a2 =4-py+(p- y)2 <=>a2 =P2+y2. 2 Anoot1;11 TOl> Leonardo Da Vinci (1490)

LtrtV KO.taO'KEUll tOU Euiliiori npocreerouµe O'tO crmµa to op8oyc0v10 tpiycovo LlEA (A=90°) icro µe to ABf (LlA=AB Km AE=Af) Km q>epouµe to tµr,µa E>H. <l>epouµe enicrri r; ta tµilµma KZ Km EA. To KZ 01epxetm a.no trtv Kopucpr, A tou tp1yc0vou ABf ytati 01 tpeir; ycovier; KAB, BAf Km fAZ exouv a9pomµa EYKAEIAHl: B' 104 T.4/3

a

• ' ' ' ' ' • ' • • • ' ' • • '

H

r


------- Ilt>Ouyop&wc; Amopoptc;

Ta tpiyrova ABf, AE>H Km �EA sivm icm µsta�l> wu<;. Ta t&tpcinl.zupa KE>HZ Km ABEA sivm icm yimi E>H=BE, KE>=AB, EA=HZ Km m yrovis<; KE>H=ABE = 90°+B, E>HZ=BEA = 90°+f . Apa ( Ke HZ) = (AB EA) ( ) Enicni<; 'tCl tstpcinl.zupa KBfZ Km Af �A &ivm icm ymti KB=�A, Bf=f �. fZ=Af Km 01 yrovis<; KBf=A�f = 90°+B, BfZ=�fA = 90°+f. Apa (K Brz ) = ( Ar 6 A) ( ) A no n<; ( *) KCll ( ** ) exouµs on ta &�ciyrova BfZHE>K KCll ABEA�f sivm icm KCll icroouvaµa. Av ano ta icm autci &�ciyrova, Cl<pmpfoouµs ta icra tpiyrova ABf, AE>H KCll �EA ea ncipouµs on (Br6 E) = (ABK0) +(ArZH) oriA.aoft a2 =P2+y2. Anoo&1;11 p& opma Tpiymva. Bhaskara (12� aui>vu� Ka& John Wallis (1685) r <l>epouµs to U\jfO<; A�. Ta tpiyrova AB� Km fBA sivm oµoia yimi sivm opeoyrovia Km 01 yrovis<; A1 Km f sivm icrs<; yimi sivm o�sis<; µs Kaests<; 180° (45°+90°+45°).

*

**

1tl.zupe<; (A�.lBf Km AB.lAf). Onots

AB 86 <:::> AB2 = B6. Br = Br AB

Oµoiro<; a1to ta oµom tpiyrova Af � Km BfA ea 1tcipouµs

't1'J

(1)

crxecni :

Ar r6 = <=>Ar2 = r6·Br (2) Br Ar (1)+(2) : AB2+AP =B6·Br+r&Br=(B6+r6}Br=Bf.Br=BP �riA.aoft p2+y2 = a2.

A

B

H snoµsvri a1toosi�ri &ivm tou James Abraham Garfield (1831-1881) 20°u 1tpoeopou trov HITA 1tou OOAOq>ovi}01'JK& crti<; 19 :Esntsµppiou 1881. H oriµocrisucni 'tl'J<; anOO&l�l'J<; EylV& to 1882, tva XPOVO µstci to eavmo tou, crto aµsptKaV\KO nsp1001Ko The mathematical Magazine. Anoo&1;11 TOl> James Garfield (1882) <l>epouµs 'tl'JV fE Kae&'tl'J CT'tl'JV Bf KCll rE = Br = a. Ano to B E cpepouµs E�.lAf. To tstpcinl.zupo ABE� &ivm tpanesio, aq>ol> AB 11 6E µs i>'l'o<; to M. Ta tpiyrova ABr KCll f �E &ivm icra ytati sivm opeoyrovm v £xouv Bf=rE=a KCll Ol yrovis<; BI = rl yimi sivm O�&is<; µs Kcl­ est&<; 1tAeupE<;. Apa �E=Af=P KCll r�=AB=y . To sµpaoov tou tpanssiou ABE� &ivm icro µs : ,

A

(ABE6) =_!. (A B +6E) ·A6=_!.(y+p)(p+y) =_!.(p+y)2(1) 2 2 2

r

To tpa1tesio anotsA&hm ano ta icra opeoyrovia tpiyrova ABf Km f �E µs sµpaoov E1 =.!.py Km 2 to opeoyrovio Km icrocrK&AE<; tpiyrovo BfE µs sµpaoov E =_!. a2 2 2

1

Apa to sµpaoov tou (ABE6)=2E1+E =.!.py+.!.a2 (2) 2 2 2 Ano tl<; (1) KCll (2) exouµs 1

1

A

-(P+ y)2 =-Pr+-a2 <=>p2+y2 = a2. 2 2 2 AnoO&\;'l TOl> P. Fabre (1888) Ms nl.zupci 'tl'JV unot&ivoucra Bf KCl'tacrK&ucisouµs to t&tpciyrovo Bf �E. <l>epvouµs to AH icro Kat napciAAl'JAO µs to BE. Tots ta tstpci1tl.zupa ABEH Km Af �H &ivm napaUriA6ypaµµa, svro ta tpiyrova ABf Km HE� sivm icra. Ano to f q>epouµs to fZ.lH�, A E oriA.aoft to U\jfO<; to'U Af �H. Ta Mo opeoyrovia tpiyrova ABf KCll f �z &ivm icra yiati exouv Bf=f � Kat Ol yrovis<; rI = r ymti 2 &ivm O�&is<; µ& Kci0&t&<; nl.zupe<;. Onot& r z = Ar = p . To sµpaoov to'U napaUriA.oypciµµou Af �H &i·

EYKAEIAHI: B'

104 T.4/4


-------

UvOayoptu:i; Amopo p.ti;

Vat i<ro µf: : (A r �H) = Af· rz = p2. Oµoiros to eµpaoov tOU 1tapaMT1Aoypaµµou ABEH eivm icJO µf: (ABEH) = y2. Apa : p2+y2 =(A r �H) +(A BEH) = (Ar�HEB) ( ) To e�ayrovo Ar�HEB eivm icroMvaµo µt to rerpayrovo Bf�E yiari ra rpiyrova ABr Km HE� eivm icm,o1tote cx.2 =(Ar�HEB) ( ) A1to ns(*)Km(**)£xouµe p2+y2 = cx.2. *

**

Anoitl�'l Tou P. Renan (1889)

e

Me 1tA.Eup€s ri,s AB Km Ar Kata<JKEUa�ouµe ra rerpayrova ABHZ Km Ar �E. IlpoeKteivouµt ro U'lfOs KA Kata rµi)µa AE>=Br Km crxeOia�OUµf: to tpiyrovo E>Br. Ta rpiyrova ABE> Km BrH eivm icra ytari £xouv AB=BH, AE>=Br Km 01 yroviEs BAE> Km HBf eivm icres yiari eivm aµpA.EiEs µe Ka0eres 1tA.Eup€s (AE>..LBr Km AB..LBH). ria ro eµpaoov rou rptyrovou ABE> £xouµe:

(ABE>) = AE>· BK = Bf· BK ,

e1ti<JT'ls

1 , 1 1 (BilI) =-BH· AB=-y2,o1tote: (ABE>)= -y2 (1) 2 2 2 K B r fta ro eµpaMv tou rptyrovou Are £xouµt: 1 1 2 , 1 1 1 � · Ar = -p , rris (Bf�) = -r ,o1tote: (ArE>) =-p2 (2). (ArE>) = -AE). fK = -Bf· fK , emc 2 2 2 2 2 Ilpocr0faouµt Kara µ€A.TI (1)+(2): (AB8) +(Ar 8) = .!.(p2+y2) ( ) 2 E1ti<JT'ls (ABE>) +(ArE>) =_!_Bf. BK +_!_Bf. Kr =_!_Bf. (BK +Kr) =_!_a2 ( ) 2 2 2 2 A1to tts (*) Km (**) £xouµt : .!.(p2+y2)= .!.a2 <=>P2+y2 = cx.2. 2 2 KAf:ivouµe e8ro ti,s a1to8ei�ets tOU 1tV0ayopeiou 0eropi)µaros. Na <JTlµf:lcO<JOUµf: on avaµecra crns a1t08ei�ets 1tOU 1tapa0€tet o Loomis crro PtPA.io rou 8cv U1tapxe1 Kaµia rp1yrovoµtrp1Ki},e1tet8i} 01 pamKoi tU1tOl rris tptyrovoµerpias crrrip�ovrm crto 1tV0ayopeto 0eropTlµa. D1tros xapaKrriptcrttKa ypaq>et "Trigo­ nometry is because the Pythagorean Theorem is", 8T1A.a8i) "H Tptyrovoµtrpia uq>icrrarm, e1tet8i} to Ilu0a­ yopeto E>effipT1µa uq>i<rrarm". E>a 8ouµe rropa ro avTi<rrpoq>o rou 1tV0ayopeiou 0eropi)µaros. :Era Ewzxda eivm TI 1tporacrri 1.48 Km TI 8ta'tU1trocri} rris eivm TI e�i)s: *

**

Eav rpzychvov w an6 µza� rcvv nJ...evpchv rcrpaycvvov iuov � wz� an6 rcvv A.oznchv wv rpzychvov JiJo nkvpchv rcrpaychvoz�, 1/ nepzex6µev11 ycvvia vn6 rcvv A.oznchv wv rpzychvov JiJo nkvpchv opB� euriv.

�TIA.a8i) av cre €Ya rpiyrovo to rerpayrovo µms 1tA.Eupas £xe1 eµpaMv i<ro µe ro a0poicrµa rrov eµpa8rov rrov terpayrovrov µe 1tAEUPEs ns Mo aA.A.Es 1tAEuPEs tou tptyrovou,tote to tpiyrovo eivm op0oyrovto Km £xe1 rriv op0i) yrovia µera�u rrov Mo 1tA.Euprov. Anoitt;q

r

'Ecrtro ABr Eva tpiyrovo tEtoto rocrte to eµpaMv rou tetpayrovou µt 1tA.Eupa rriv Br va eivm i<ro µe a0poicrµa rrov eµpaorov rrov rerpayrovrov µt 1tA.Eup€s rts AB Km Ar,8T1A.a8i) cx.2 = p 2+y2 (1) E>a a1to8e�ouµt on TI yrovia BAr eivm op0i). cl>€pouµt rriv A�..LAf Km Jtaipvouµt M = AB = y. Tore ra re­ rpayrova µt 1tAEuPEs A� Km AB eivm i<ra. Av 1tpocr0foouµe cre aura tO tetpayrovo µe 1tAEupa tl'IV Af tote tO a0potcrµa t(l)V eµpa8cOV t©V terpayrovrov µf: 1tAEuPEs tls AB Km Ar eivm icro µe to a0potcrµa t(l)V B eµpa8rov rrov rerpayrovrov µe 1tAEuPEs ns A� Km Ar. ll. v v A E1tet8i} oµros TI yrovia rA� eivm op0i), to a0potcrµa rrov eµpa8rov rrov tetpayrovrov µe 1tAEuPEs ns EYKAEIAH�

B' 104 T.4/5


-------

UuOayopeu:i; Aiaopoµti;

A/1 Km Ar eivm icro µe 'to eµ�aoov wu 'te'tpayffivou µe nA.eup<i TIJV f /1 (7tUeay6pe10 eerop11µa), 011A.aM1 f� 2 = �2+y2(2) Ano n; ( 1) Km (2) exouµe 6n: f� = fB = a. Ta 'tpiyrova ABf Km A/if eivm iaa ytmi exouv 'tpet� 7tArupe� icre� µia 7tp0� µia, 'tl� Af KOtvit, AB = M an6 Ka'ta<JKeut1, Km fB = f� . Apa fAB = fA� = 90° . e

E1ttKTU<Jll Tot> Ilt>Oayopdot> 0eropfiµaToi; IlpoTa<Jll VI.31 (.Ewzxeia)

11ive'tm opeoyrovto 'tpiyrovo ABf (A= 90°) Km e�ro'teptK<i auwu KamaKeu<i�ouµe noA.uyrova 6µ01a µem�u wu� nou µta nA.eup<i wu� eivm Kotvit µe wu 'tptyffivou. T6'te 'to eµ�aoov 'tOU noA.uyffivou µe nA.eup<i TIJV uno'teivouaa eivm icro µe w aepomµa 'trov eµ�aoffiv 'tOOV noA.uyffivrov µe nA.eupe� n� Mo Kaee'te� nA.eupe�. fao axt1µa m opeoyffivta BfEZ, AfH0 Km ABK.A ei­ vm 6µota µem�U 'tOU�. 07tO't& ea a7tOOel�OUµe O'tl E1= E1 +E3.

H K B

z

A1tooei�11

E

<l>epouµe w U'lfO� A/1, on6'te m 'tpiyrova ABf Km !1BA eivm 6µoia µ&'ta�u wu�. Bf AB � 2 , Apa-=AB =B�·Bf. AB B� B� , E3 = AB2 = B�· Bf =, , BfEZ Km ABKA etvm oµoia (1 ) apa Ta op eoyrovia Bf Bf2 E1 Bf2 E f� E1ti<JT)� 'ta opeoyffivta BfEZ Km AfH0 eivm 6µota <ipa 2 = (2) E1 Bf E3 E2 B� f� Bf (1)+(2): -+=-+- = = 1 � E2+E3 = E1. E1 E1 Bf Bf Bf Av Kma<JKeucmouµe e�ro'teptK<i wu opeoyroviou 'tptyffivou Kavov1Kci noA.Uyrova µe ioio nA.t1eo� nA.eu­ pffiv 7t.X l<J07tArupa 'tpiyrova tl KaVOVlKU m:v't<iyrova, 07t00� <J'tO napaKU'tOO <JXtlµa, ea exouµe O'tl E1=E2 +E3. ,

-

--

-

z

E

Au't6 mx(>et aav n6pmµa TI'l� np6'ta<JT)� Vl .3 1, yimi 'ta KavovtK<i no­ A.Uyrova µe tOlO 1tAtle0� 7tAeUpcOV eivm 6µota µe'ta�U 'tOU� Km Kaee eva µnopei va µemaX'lµana'tei ae opeoyffivto nou eivm taeµ�aOtK6 µe au't6 (Ilp6'ta<JT) II. 14). Eni<JT)�, av e�ro'teptK<i 'tOU 'tptyffivou KmaaKeu<iaouµe 11µ1Ki>tlta µe Otaµe'tpou� 't� 7tArupe� 't01) 'tptyffivou ea exouµe Km n<iA.t 6n E1= E1 +E3. .

EYKAEIAHI:

B' 104 T.4/6


-------

A1t00Et;'I

IIvOayopEiEi; Ataopopti;

l:uµcpcova µe tTJV npotami XII.2 tcov Ewzxdwv, "o A.6yo� tcov sµpaorov Mo Ki>tlcov Ti 11µurutlicov si­ vm icro� µs t0 A&yo tcov tetpayrovcov tcov omµttpcov wu�". Onots -2 = -(1) Km - = L. (2) a2 EI . a2 EI p2

E

E

E3

2

E3

p2

12

p2 + 2

a2

y (1)+(2): -2 +- = +- = = - = l � E2 +E3 = E1• 2 2 2 a a2 a a EI EI ea oouµe tropa µta npO-mmi ano tTJ Evvaywy� tOU Il6.1t1tOU 1tOU eivm yeviKEU<TI'J tOU nu9ayopeiou 9scopijµat0�. I:.vvaycoy'll, Ilpchaaq IV.4

E�co-rsptKO. wu -rpiyrovou ABf KatacrKeuat.;ouµs -ra napaU11Mypaµµa ABEZ Km AreK. IlposK-rsivouµe -r� nl..eupe� EZ Km eK nou -reµvov-rm crw A. ct>epouµs tTJV 119 A µieu9eia AA nou -reµvsi tTJV nl..eupO. Bf crt0 cniµeio N Km naipvouµs t0 -rµijµa NM=AA. KmacrKeuat.;ouµe t0 napaA.A.11Mypaµµo BfLlH -reww rocr-rs NM//fLll/BH. Tots yia -ra sµpaoa. -rcov -rpirov napaU11A.oyp6.µµcov icrxt>si on E1 = E2 + E3 . A1t00Et;'I

p /E 2

IlposK-reivouµs tTJV Llf nou -reµvsi tTJV eK crt0 P Km 'tTJV HB nou -reµvsi tTJV ZE crw T K, To napaU11Mypaµµo AfeK sivm icroMvaµo µs t0 AfPA ono-rs (AfPA)=E2 . To ,1tapaU11A.6ypaµµo ABEZ sivm icroMvaµo µe t0 ABTA o1tO'te (ABTA)=E3. ·-----------Ta napaMT)AOypaµµa AfPA Km fLlMN eivm lO'OOuvaµa a<pou " z T exouv icre� P O.crel� (A A = NM) .Km ppicrKOV'tm µe-ra�u 'tCOV nap<lA­ A.iJA.cov PLl Km AM. Ono-re E2 = (AfeK) = (AfPA) = (fLlMN) (1) Oµoico� E3 = (ABEZ) = (ABTA) = (BHMN) (2) I I I I I I I I .

H

.. ·

(1)+(2): E2 + E3 = E1• H npo-rami au'tij icrxt>si Km yta onoiooijno-rs napaU11Mypaµµo BfLlH (µs nl..eupa tTJV Bf)

apKei -ra -rµijµaµa-ra NM = AA . ea tleicrouµe tO 6.p9po au-ro µe tTJ Ota<JTOA1\ T01) XPOV01) ano tTJV elOlKTJ escopia tTJ� crxenKOtT)'ta�. A� uno9foouµe on exouµe Mo napatT)pTJ'tE�. 0 eva� eivm aKiVTJtO� Km XPOVOµE'tprovta� eva <pmvoµevo ppiO'Kel on au-ro A.aµpavel xropa O'e XPOVO t. 0 a.A.Ao� Ktvehm µe -raxt>trJ'ta u co� 1tp0� tOV 1tpc0t0 Km XPOvoµe-rprov-ra� tO iOto <pmvoµevo ppiO'Kel on aU'tO A.aµpO.vel xropa O'e XPOVO to. TO'te yta tOU� Mo XPOVOU� t onou c TJ mxt>trJ-ra wu <pco-ro� ( c 3 108 m Is). Am)OEt;tt

=

·

A� uno9foouµs on eva payovi KlVehm npo� ta Oe�tO. µs taxUtTJ'ta u. Ano tTJ eemi A O'tTJV opo<pij tOU payo­ VlOU �eKlV6. eva <pCO'tOVlO KlVOUµEVO K6.9s-ra npo� t0 nO.-rcoµa µs taxUtrJ'ta C, 01tOU C TJ taxUtT)'ta tOU <pCO'tO�. 'Eva� napatT)pTJ-riJ� Ilo 1tOU ppi­ O'Ke'tm µfoa O"tO payovt 9a aVttATJ<p9ei on tO <pCO'tOVlO 1tpOO'ID1t'tel O'tO <TI'JµEio B. Av o XPOVO� tTJ� KiVTJmi� wu <pro-

A

.

n,

EYKAEIAHI:. B' 104 T.4/7

.

.. . . . . .

I !

u


-------

nuOayopt:u:i; Aiaopoµti;

toviou yux tov 1ta.paTT)PlltTt 110 sivm t0, tots yta to ouicrTT}µa AB exouµs ott AB = c·t0. 'Eva� aKiVlltO� 1tapaTT) PlltTt� 111 1tOU �pim<stm €�co a1to to �ayovt ea avttA.11cpesi Ott to <pCOtOVtO OUl­ ypacpst TT}V tpoxta Ar (yta.ti to tpevo Ktvsitm npo� ta os�ta) Km XPStasstm XPovo t. To otacrTT}µa Ar d­ vm icro µs A r = C·t SVcO yux to OtUOTT)µa Bf exouµs Ott B r = u . t yuxti to �ayovt KlVSitm µs taxj>­ TT}ta u. To nueayopsto esc0p11µa crto opeoyffivto tpiycovo ABf ea µa� officrst : AB2 +Br2 =Ar2�(c·t0)2 +(u·t)2 =(c·t)2 t . Av l.UaouµHl]V <�i<J COOl] ro<; � t ea KITTaA��OUµ£ <m] OJ(SGlj : t = '

'

1,

�1-(:r

u < exouµs Ott to < t' 7tpayµa 7tOU 011µaivst Ott 0 XPOVO� yux tOV Ktvouµsvo na­ c pa.t11p11tft "tpexst" mo apya crs crxe011 µs toV aKiVlltO 7tapa't11Plltit, 011M18it 0 XPOVO� "oiac:ntw-rm". t0 l ,IS·t0• To l 1=t6 yia fta mxp«6styµa av u = tOts = <ipa t Acpou u < c�

0

:

�,

�,

0

=

Fffi � � =

=

=

wv aKiVlltO napaTT)Plltit icroouvaµsi µs 0,86 Af:nta yta tov Ktvouµsvo. t t u Av t©pa u = ,9c , t&ts = ,9 , Opa t = � o = -o _ = 2 29·t0 c 436 92

1-0 0 '

'

'

To 1 Af:rrto yw. TOV aKiVllTO 1tClP«TTIP11Tll UJOOuvaµt:i µt 0,44 Af:nta 'YlCl TOV K\VOilµtvo!

u c tciva ITTO µ110EY apa to = t . Ot Mo XPOVOl Aot7tOV 7tpaKttKa dvm foot av Ot tax;l>TT}tS� dvm µtKp€� crs crx€01l µs 'tllV tax;l>'tll tO. tOU <pcoto�, 7tpayµa 7t0U cruµ�aivst OTT)V Kae11µsptvft µa� scoft. H Ota<poponoi11011 tcov Mo :xpovcov yivstm mcre11tit av ot tax;l>TT}ts� nA.11masouv TT}V tax;l>TT}ta tou cpcoto�. I:TT}v napanavco 8tanpayµatsucr11 XPllcrtµonotftcraµs to Af:yoµsvo "A;iroµa TO'O Einstein" TT}� st8tK'ft� escopia� TT}� crxsttKOTT}ta�, Ott 11 tax;l>TT}ta tOU <pcoto� dvm ioux yta oA.ou� tOU� napaTT)plltE� 7t0U �pim<o­ vtm navco crs aopavstaKa crucrtftµa.ta, 011A.a8ft 11 taxUTT}ta tou cpcoto� dvm 11 µsyaA.Utsp11 nou µnopsi va U1tap�st OTT) <pU<J11. Km yta tOU� Mo 7tapaTT)p11t€� Ilo Km 111 11 tax;l>TT}ta tOU <pcotoviou dvm c Km oxt c +u yux tOV aKi­ VlltO, onco� smtacrcrst 11 µllxavtKft wu Nsutcova. Eni<J11�, escopftcraµs TT}V tpoxta Ar su%ypaµµ11. I:TT}v 1tpayµattKOTT}ta autft dvm Kaµm'.>A.11, µs µs­ yaA.11 oµco� a.Ktiva KaµnuA.6'tllta� met8it 11 anocrta<J11 Af dvm µtKpft. 11paKttKa A.mnov 11 Kaµm'.>A.11 Af ei­ vm sueeia.. Be�ma av

1.

11 tO.xUtllta u sivm 1tOAU µtKpit crs crxe011 µs 'tllV tax;l>TT}tO. tOU cpcot b�, tots to tlacrµa

BIBAIOfPACl>IA I:.ron}p11i; Xp. fKO'OVTovpai;, I'ewµccpud� L1za­

Nfo Kmu..ocpopfo

I>ra Bt�A.toncoA.eia: 1. Kopqn6:r!]�, TTJA.210-3628492,

2. :Ea��ciA.a�, 3. Ila'tciKT]�, 4. IloA.rrnia 5. AvtKouA.a�,

Jpoµt�, "0€µa.ta fscoµetpia.� ano TT}V apxmoTT}­ ta co� tov 20° mffiva", Aeftva 20 1 5 2. K.E.Eil.EK., EVTckiJ17 "Ewixda , toµot I, II, III, Aeftva 200 1 . 3 . Kenneth W. Ford, 10.aaauaj Kai aiJyX,Pov17 <pvai­ "�' EKMcrst� r. 11vsuµa.ttKOU, Aei]va 1980 4. Fourrey E., Curiosites Geometriques, Paris, Vuibert, 1 938 5. Loomis Elisha Scott, The Pythagorean Proposi­ tion, Wasinghton, NCTM, 1 940 "

EYKAEIAHI:. B' 104 -r.4/8

IOTHPHI XP. rKOYNTOYBAI

rEwµEtplKE<;

�1aopoµ£c;


MIA AMIIMONOJ:HMANTH J:YNAPTHJ:H f

rIA THN APieMHJ:H TtlN eETIKJlN PHTnN

T aiJ...iaKo� At\>'Ttp1]�,

0 fKfopyK Kavtop XP110'lµonoi11cre tOV nivaKa (I) yta va anoBe�el on to crUVOAO o: tCOV avaycoycov tlacrµatcov eivm apieµi)crtµo. :EtT)v epyacria auti) ea napoucrtacrouµe µia aµqnµovocri)µaVtT) cruvaptT)<JT) f: o: N* XPllmµonotrovtac; tov nivaKa (I). -

lllNAKAl: I

TonoettT)<JT) tcov eettKrov p11trov p

"'

o-+

1

2

3

4

cr crto

p

5

6

N* x N* 7

/

0ecopouµe tT)V apieµ11<JT) tCOV avaycoycov tlacr µatCOV ( oncoc; EKaVe Kat 0 Kavtop) Kata µi)Koc; tCOV Btaycovicov, navtote ave�aivovtac; ano aptcrtepa npoc; ta Bel;ta, Km µoA.tc; teA.etrocret 11 api0µ11<J11 tcov avaycoycov tlacrµatcov µiac; Btaycoviou, tT)<; 07COiac; 0 nprotoc; opoc; eiva.t _!_ Kat 0 T.eAeUtaio c; opoc; eivm 0 K K (o qmmKoc; apieµoc; K), 11 apieµ11<J11 ea <JUvexicrtei ano tT)V apxfi Tfl<; e1tOµevT); Bmycoviou Km ano to I

' -�'\ '

apxiKo IV\.acrµa

1

-- .

K+l

:EtOV 7ttVaKa (I) napatT)pOUµB, On tO aepotcrµa tCOV opcov Kaee tlacrµatoc; 7COU �pi<JKetat <Je µia

<JU-yKeKptµEvri Bmyrovio eivm crtaeepo, �· Jtavco <JtT) Biayrovio nou apx�et ano to tlacrµa _!_ , to K aepoicrµa auto eivm icro µe K+I. fta <JUvtoµia ea <JUµ�oA.icrouµe tT) Btayrovto 1t01) apx�el ano to tlcicrµa ..!_ µe K

XPll<Jtµonoti)crouµe <JtT) <JUVEXeta ym eUKoA.ia µac; tov nivaKa (II) avti tou nivaKa (I). EYKAEIAID: B ' 104 T.4/9

d( _!_)

K

Kat ea


----- MIA AMC>IMONOI:HMANTH I:YNAPTHI:H

f rIA THN API0MHI:H TON 0ETIIillN PHTilN -----

ni:\AKAl.: ll

Ot 0enKoi Pll'tOi

E>uµisouµe 6n µe TI'IV 1toUa1tA.acnacrtud1 cruvap'tTl<Jll <p tou Euler p picrKouµe to 1tA.fj0o� tcov 1tprotcov ° q 1tp0� 'tOV n (ne N ) 'tEtOlCOV rocrte: 1 �q�n. OpiSouµe 6n: <p(l)= l . 61tOU p A1t6 'tTl yvcocrtfj eecopia TI'I� <JUVclPTI'l<Jll� <p exouµe 'tOU� nmou�: (TI) : <I> ( p ) p - p 1tpro't0� Kat Ke N°. (T2): cl>(n) n 1µe n = p�' · p�2 ... p�· (avclA.U<Jll tou 11=

{ ;J { :J ... ( :J

K

=

K

K-I

'

n cre yiv6µevo 1tprotcov 1tapay6vtcov) (T3) : <p( a P y . . . p)= <p(a) cp(p)cp(y) . . . <p(p ), av ot a, p , y ,. . .,p e N" Kat ava ouo eivm 1tpc0t01 µeta�u 'tOU�. I A1t6 'tOV (TI) yta p=2 KCll I<C2 =>cl>( 2K)= 2K - 2K- = apno� fta p;C2 =>cl>( PK)= PK - PK-I = apno� co� Ota<popa OUo 1teptt'tcOV fta n = p�' · p�2 ... p�· =>cl>( n) = c!>(P�') c!>(p�2) ... c!>(p�·) = aptto� co� ytv6µevo apncov. ·

·

9

t!l

·

EYKAEIAHI:. B' 104 't'.4/10


-----

MIA AMCl>IMONOl:HMANTH l:YNAPTHl:H f rIA THN API0MHl:H TnN 0ETIKnN PHTnN -----

I:uµrrspm1µa: 0 apt0µoi; <p(n) civm apnoi; yta Ka9e n EN* µe n>2. 'faov 7tivaKa II 7tapaTI)pouµe on:

:ETI)V �( ! ) U7tUPXEt 1 avayroyo KAacrµa µE a0potcrµa oprov tOV 2 Kut tcrxj>Et: <p(2)= 1 . 1

• •

:ETI)V �( .!. ) U1tUPXOUV 2 avayroya KAficrµata µe a9potcrµa OpOOV tOV 3 Kut tcrxj>Et: cp(3)=2 2

:ETI)V �( .!._) U7tUPXOUV 6 avayroya KAficrµata µE a9potcrµa OpOOV tOV 9 Kut tcrxj>Et <p(9)=6 8

:ETI)V �( _..!.._) U7tUPXOUV 1 0 avayroya KAacrµata µE a9potcrµa OpOOV tOV 1 1 Kut tcrxf>et: cp( l 1 )=10 10 'Etcrt o&mouµe9a va a7to&ei�ouµe on OTIJV � -1- u7tapxouv cp(v) avayroya tlacrµata, 7tou Ka9tva wui; v -1 EXEt a0potcrµa trov oprov tOU 'tOV V. fta 'tO OK07t0 auto, ea a7to&Ei�ouµe TI)V E7tOµEV117tPOta<J11: TIPOTA:EH l fta v�2, VEN* U1tUPXOUV cp(v) avayroya KA.acrµata, 7t0U Ka9tva wtO ama ExEt a9potcrµa trov oprov 'tOU 'tOV v. Arr6on�q: E>eropouµe tva apxtKO a7toKoµµa Tv-l (v�2) wu, &riA.a&i) Tv_1 = { 1 ,2,3, . . . ,v-2, v- 1 }. i. Ot 7tpc0t0t 7tpoi; 'tOV v ea civm KU7tOta crtotxeia tOU Tv- 1 7tA.i)0oui; cp(v) Km µaA.tcrta TI)V 7tpcOTI) 9e<J11 KatEXEt 0 1 Kut TI)V tEMUtaia 0 v- 1 . ii. Av a e Tv - l Km (a,v)=l tote Kut (v-a,v)=l µe wui; a Km v-a va a7texouv e�icrou a7to wui; 1 Kut v- 1 avticrtotxa acpou la- 1 l=lv-a-(v- 1 )I; &rtl..a&i) Ot 7tpcOtOt 7tpoi; 'tOV V eµcpavi�ovtm ava �euyri, etcrt rocrtE ta µEA.rt Ka9e �El>youi; va antxouv e�icrou ano wui; 1 Km v- 1 avticrtoixa Km va sxouv a0poicrµa v. Ilpayµan: a+(v-a)=v. iii. Av tropa crxriµaticrouµe ta tlacrµata (2) 7tOU eivm avayroyat ' ( 1 ) Kut ta tlacrµata v •

)

(

·,

_a_

v-a.

-

a

a

tote to 7tA.i)9oi; wui; eivm cp(v), acpou ot apt0µritsi; trov (1) eivm nprotot 7tpoi; tov v Km ot tou autou nA.i)9oui; (Myro wu ii) apt9µritsi; trov (2) eivm ot U7tOAot7tot 7tpcOtot npoi; wv v wu Tv-l . Ka0tva A.otnov ano ta tlacrµma ( 1 ) eivm < 1 Km Ka9tva a7to ta tlacrµma (2) eivm > 1 . Tiapaonyµa: 'Ecrtro v=l 0. Ilprowt npoi; tov 1 0 wu T 9 eivm ot apt9µoi 1 ,3, 7 ,9. :Euve7troi;, w crl>voA.o trov avayroyrov KAacrµatOOV { .!.,�,2.,2. } µe 7tArt9tKO apt0µo 4=cp( 1 0) avi)KOUV OTI)V � -1- =� -1- = 9 7 3 1 v-1 10-1

( ) ( )

( �J . 'Etcrt, av exouµe tva avayroyo tlacrµa � µnopouµe aµforoi; va opicrouµe TI) &tayrovto E1tl onoiai; �picrKEtm. Auti) eivm ri � ( ) . Ano ta npomouµeva enetm on: 7tpc0TI) &tayrovtoi; � ( T) 1tEPIBXEt l (=cp(2)) avayroya tlacrµata. &El>tEPTt &tayrovtoi; � ( ±) 7tEPIBXEt 2 (=cp(3)) avayroya tlacrµata. Apa ( ) I tpiTI) &tayrovtoi; � ( �) 7tEptEXEt 2 (=cp(4)) avayroya tlacrµata. Apa ( ) f I �-

TI)£

1 K+A-1

H H

r 3. =f(2)=1+2= f,q,(a.) a=2

H

r � =f{3)=1+2+2=

a=2

<!>(a.)

Apa, yta tov nA.rt9tKo apt9µo n tou cruvol..ou trov avayroyrov tlacrµatrov, nou Ka9tva ano auta ftatiav (v-a,v)=O� O/v Kat O/v-a� O/v-(v-a)=a=> O/(a,v)=l � O=!

t ftatiav (a, v-a)=o=> o/a Kat O/v-a => O/(v-a)+a=v

O/(a,v)=l => 0=1

EYKAEIAHI: B' 104 T.4/1 1


-----

MIA AMCl>IMONOI:HMANTH I:YNAPTHI:H f rIA THN API0MHI:H TfiN 0ETIKnN PHTfiN -----

K+ I

avi)Kel O''t� K npcine� 5myrovte� sxouµe: n=cp(2)+ cp(3)+ . . . +cp(K)+cp(K+ 1) it n =Lei>( a) KCll enet5it cp(l )=l n

ea sxouµe:

I

I

a=I

n=

ea eivm:

K-

= f'.

<I>( Cl) - l . Enet5it

f ( K)

K+ I

=Lcj>(a) -1

6µco� 'tO 'tel...eumio avaycoyo tlacrµa Tll� /),, (3) A1t6 'tOV W1t0 (3) naipvouµe:

a=I

eivm 'tO 'teAeu'taio avaycoyo tlacrµa Tll� f),,(

_K-1 1

_

),

O'

E>ecopouµe 'tO avaycoyo tlacrµa

p

s:

f

( _!_) K eivm 'tO l ' bTJA. 0 K, �

( - =i K

l)

<I>( Cl) - l '

a=I

K2'.2 01tOU 0

Ta avaycoya tlacrµa'ta 1tOU aµfoco� S1tOV'tCll 'tOU

, K-1 , 1 K , -etvCll 'ta -, ... ,- 1tOU aVT)KOUV O'TIJV e1tOµeVT) vlCl'YCOVlO 1 K 1 ,

.

a=2

A Ll

( -1 ) K

Tll� /),,( .!._ ) Kat Scr'tCO O'tl au't6 Ka'tsxet Til e esO'T) O'TIJV au�oucra 5m5oxfl K

1 O' K , 1 'tCOV -, ... , - , ... , - avaycoycov 1V1.acrµa'tcov TIJ� ( )

.

••

p

K

1

,

+

A Ll

-

K

e esO'TJ

fipocpaVOO� ea tcrx\>et:

r(:)= "�1<j>(a)-1 +e

f

( )= er p

f (K

- l) + 0 <::>

f

( )= i <j>( er p

a=I

Cl) - l + 0

, it e1tet5it cr+p=K+ 1 ea elVCll:

(4)

Dnco� 6µco� eA.SxeTJ (Ilp6'taO'TJ 1 cr'to

(iii))

o apieµTJ'tft� cr Tou

cr

'tcOp<l 'tO

p

eivm nprow� npo� Tov K+ 1. E>ecopouµe

apxlKO a7t6Koµµa Tcr = { 1 ,2,3, .. . ,0'} 'tOU N*. Av avfll;TJ 'tftcrouµe TO crl>voA.o B Tcov crwixeicov wu Tcr• nou eivm nprowt npo� wv K+ 1 'tO'te: i.

ii.

motxeio 'tOU B ea eivm apteµT)'tft� avaycoyou tlacrµaw� Tll� !),,( .!._ ) (Ilp6'taO'T) 1, 'tO iii).

Knee

Enet5it

K

o cr eivm w Tel...euTaio crwixeio wu Tcr fae'tat 6n o nA.T)etK6� apieµo� Tcov crwixeicov Tou B

'taU't\l;e'tCll µ£ 'tOV e, 1tOU opiset TIJ esO'T) 'tOU avaycoyou tlacrµa'tO�

er p

O'TIJV /),,( .!._) K

ApKei A.otn6v va emA.Ucrouµe w en6µevo np6PA.TJµa: «Na ppeeei o 7tA.T)etK6� apieµ6� e 'tOU cruv6A.ou 'tCOV x e Tcr nou eivm Tswta rocr'te: (x, K+ 1)=l . Aua11

Ot x e Tcr µe (x,K+ 1)=1 6nou cr+ p = K+1 = p�' p�2 p:· eivm ot cpumKoi apteµoi nou 5ev 5tmpouv'tm an6 wu� PP p2, , Ps . 'Ecr'tco 6n Kanom crwixeia wu Tcr sxouv TIJV t5tOTIJ'ta I l • bTJA. va 5tmpouV'tm 5ta P l )))) )))) )) )) »» »» »» 12, bTJA. va btCllpOUV'tCll blCl P2 •••

•••

»»

»»

»»

»»

»»

»»

18, 511A..

va 5tmpouV'tm 5m Ps Me A(lj), l �Ss cruµpoA.isouµe wv nA.T)etK6 apieµo wu cruv6A.ou Tcov crwixeicov wu T<J ' nou sxouv TIJV t5t6TIJ'ta � n.x. A(l2) eivm o nA.T)etK6� apieµo� Tou cruv6A.ou Tcov crwixeicov wu T0 nou 5tmpouvTm 5ta p2. Me A(lj,Ip) cruµpoA.isouµe 'tOV 1tAT)etK6 apteµ6 'tOU cruv6A.ou 'tCOV O''tOtxeicov 'tOU T O' 1tOU 'tO Kaeeva sxet 'tt� t5t6TIJ'te� Ij,Ip 5TJA.. va 5tmpouvTm 5m wu ytvoµevou PjPp µe l �, p:Ss Km Pj=fPp• tln. TsA.o� µe A(l1,12, ...,15) cruµpoA.ll;ouµe wv 1tATJ0tK6 apieµo wu cruv6A.ou Tcov cr'tmxeicov wu T0 nou w Kaeeva sxet 't� lblOTIJ'te� l1,l2,...,ls (5TJA.a5it va btCllpOUV'tCll bta 'tOU ytvoµevou P1P2 P ) ·

0

cruv5uacrnK6� rono� wu

J.

µa� 5ivet wv e e N* nou eivm o

· · ·

s

e=cr- LA(Ii)+LA(li'IP)- LA(li'IP,lµ)+...+(-1)5 A(l1,I2,.••,I.) j,p,µ j j,p 7tA.T)etK6� apteµo� wu cruv6A.ou B 'tCOV crwixeicov wu T0 nou 3EV

Sylvester

s

s

EYKAEIAHI:. B ' 104 'T.4/12

s


-----

MIA AMCl>IMONOI:HMANTH I:YNAPTHI:H r rIA THN API0MHI:H TnN 0ETIKnN PHTnN -----

Kaveva ano toui:; P 1 ,P2 ,. · · ·Ps · Auto crri µaivet Ott Ka0e OT01xeio TOU B eivm evai:; cpucrtKO<; ap10µoi:; npcinoi:; npoi:; TOV K+ 1 (it o+p) Km avftKet oto T 'Etm yia to npoPA.Tlµa µai:; o npoTlrouµevoi:;

oimpo'6vrm µe

t. [ � ] + t.[ P ;�P.l - ;� [ P ; p� PJ · · + ( - 1)' [ p, p,� p.l 01tOU OTO 2° a0potoµa 1t.X. nftpaµe roi:; napovoµaotsi:; ta y1voµeva ava OUO foacpopettKOOV µtta�u TOU<; ano

M°' yivemi:

0•

9=a-

wui:; p 1 ,p2 , . . . ,ps µe oA.oui:; TOui:; ouvaTOui:; tponoui:; (cruvouaoµoui:;). :Eto 3° a0poicrµa · nftpaµe roi:; napovoµaotsi:; ta y1voµeva ava tptci:>v 01acpopettKci:>v µeta�u TOui:; ano wui:; P 1 ,P2 · · · .,ps µe oA.oui:; TOU<; ouvatoui:; tponoui:;, tln. 'Etcrt teA.tKa 0 mnoi:; (4) yivetm 0 napaKatro: mnoi:; (5)

()

f

0

P

=

"f"' IJ>( a ) a=I

_

1+0

-I [�Pi ] + Ii.P [ Pi · pp ] -Ii,p,µ [ Pi · pp · pµ ] + 0

0

-

i =I

(To cri>µpoA.o [x] eivm TO aKspmo µtpoi:; TOU x e R ) Ilapa&e1yµa: 'Eatro 11 <n>vapTl)(Jl) r : Q: --+ N * . Na pptOd 11 tiµ1]

r

Ai>aTI

cr = .!.!. . Apa o+p=l 1 + 3=14 Km 14 2 7 . Dµroi:; o+p- 1=13. · 3 p

( [ ] + [ ; ]) + [ ] = r

. . .

+ - 1 )5

( )

(

11 . 3

[ P1 · P 2 · · p. ] ( 0

5)

. . .

=

Omm: ( ) t. r 131

=

+( a )- I + 1 1 -

1

11 2

1 2 .17

- 1 +1 1 - (5 + !) + O = 62

Ano TOv nivaKa (III).

IlapaTT1 Pftae1i:;

l. H 2.

n

cruvapTfl <JTt g : N· � N· µe mno: g(n) = I,<l>(a.) eivm µia ( 1 - 1 ) cruvapTfl crfl acpou yta n:;tn' (n,n e N*) 1crx;Ue1 g(n);tg(n ' ) Me XPitcrri Tfl<; 1 '1' napatftPTl <JTt <; Km tou mnou ( 5) Tfl<; f faetm aµforoi:; Ott Km TI f eivm µia ( 1 - 1 ) cruvapTfl crfl · Ai:; 0eropitoouµe tci:>pa TflV h, avtiotpocpTI Tfl<; cruvapTfl <JTt <; f, OT1A.aoit h : N • � Q: '

a=l

Il po PA.11 µa: Av h(30)= cr , Tott va IJptOd to avuyroyo KMiaµa � . p

Aua'l :

p

Apx1Ka ano TOV mvaKa III ppioKouµe no10 ano ta a0poioµata L cl>(a) eivm icro it TO aµtoroi:;

µtKpotepo tou 30. :ETflV nepintrocrft µai:;

f, cl>( a ) a=I

=

2g

n

a=I

. EnoµSvroi:;, o+p- 1 = 9

cr + p = 1 0 = 2 · 5 onote to

avayroyo tlaoµa cr avftKet OTfl .::\( .!. ). AvttKa0toTOuµe OTOV tU1tO (4) Km sxouµe: 9 p f

( o) = P

-

Apa 3 cr

-

3

=

Dµroi:;,

( ) L I + TI 30=28- 1 +0 ( [ ; J + [ � J) + [ 1� J Km ene1oit o< 1 0 [ 1� J Km (6) [;] + [� ]

=

�- · L cl>(a ) - I

"

a=I

+e

'1, f

cr

P

-

cr -

[; J [ � J >O +

=>

=

9

a=I

cl>( a ) -

e

,

=

o

>

'1

0 =3 e�icrrocrri yivetm:

cr - 3 0 , onote o e {4,5,6,7,8,9} .

Me 0oKtµsi:; OTflV (6) ppicrKouµe ott autft aA.rt0el>e1 y1a cr=7 <::::> p=3. L\rtA.a<>it EYKAEIAIU: B ' 104 t.4/13

� p

=

'!._ 3

=

h(30).


M a8 11 µ aTI KO i a1 aywv1aµoi M a811 µ ar1 Kt� 0Au µrr1a6E�

E.M.E.

3411

EAA q v 1 Kq MaO q paT 1 Kq OAu1-111 108a 110 Apx1p1]011�" 4 Map't'io1> 2017

Qt;f!ll� f!lltl®l.�\i' ��t�V

npoPJ.riµa 1 . AiVtTat o;l>"(cOVlO Tpiyrovo ABC p t AB < AC < B C , t"("ftypapptvo at K6KM> c(O,R). 0 K6KM><; c1

( A,AC) Ttpvtt TOV K6tdo c(O,R) <YTO <n] pdo D Kat Tl]V npotKT«<n] TI]<;

n>.£upac; CB aTo <n]ptio E. Av 11 tl>8da AE Ttpvt1 Tov Ki>tdo c(O,R) aTo <n]ptio F Kat G d­

.vm To <Yl>pptTptKo TOl> E roe; npoc; TO B, va anood;tTt oTt To TtTpan>.£upo FEDG dvm ty­ ypa'l/tpo.

A\J<nl ( 1 o; Tporro"): To tctpcinAf:upo AFBC civm eyycypaµµtvo crwv ri>tl.o i

.

A

• .

(c), cipa:

F; = ACB = C .

• I • • I •

j cifA,AC)

• . . • '

' ' ' '

' ' •

1

:ExiJµa To tpiycovo AEC civm icrocrKcMi; {0t AE Km AC civm aK-tivci; wu ri>tlou (c 1 )) cipa:

E 1 = AC B = C . Ano tti; tcrOt11tci; tcov ycovuov npori>ntct ott F1 = E 1 , onotc w tpiycovo BEF Eivm icrocrKcMi; Km ( ). BE=BF Kata cruvtncm: Ovoµci�ouµc cl = ECD x KCll ano tOV KUKAO (c 1 ) ea txouµc Ott EAD = 2x ' ( coi; cniKcvtp11), onotc EAB +BAD = 2x (2) (3 ) EmnMov, ano wv ri>tl.o (c) txouµc ott: BAD = C 1 = x Ano tti; (2) Km (3 ) txouµc ott EAB = BAD = x , onotc 11 AB civm �txotoµoi; crw tcrocrKcMi; tpiycovo EAD. :Euvcnroi; civm µccroKci0ctoi; t11i; ED, cipa BE=BD. (4) Ano tti; tcrOt11tci; ( 1 ) Km ( 4), Ka0roi; Km ano TllV npocpaviJ (/..6yco cruµµctpiai;) tcroTilta BE=BG , cruµncpaivouµc Ott BE = BF = BG = BD, onotc to tctpcinl..cupo DEFG civm cyypci\j/tµo crc ri>­ tlo µc Ktvtpo to B. 2 °; Tporro". To tctpcint..cupo AFBC civm cyycypaµµtvo crtov ri>tlo (c), cipa: F1 = AC B = C . To tpiycovo AEC civm tcrocrKcMi; (ot AE Km AC civm aKrivci; tou ri>tl.ou (c2)) cipa: E 1 = ACB C . Ano tti; tcrot11tci; tcov ycovtrov npori>ntct ott F; = E 1 , onotc w tpiycovo BEF Eivm tcrocrKcMi; Km B E = BF Kata cruvtncm: (5 ) . Ano w eyycypaµµtvo tctpcinAf:upo ABDC txouµc: I\ = ABC = B . Ano to tcrocrKcMi; tpiycovo =

1

A

A

A

A

=

EYKAEIAH� B ' 104 't.4/14


------

ADC sxouµt: 1\

Ma911pa'tiKo{ Aiayrovurpoi - Ma911pa'tiKt� 01..'ll pnulo� ------

ACD Ano tt<; ouo ttA.tutait<; tcrOtT)tE<; yrovirov, sxouµt Ott ACD B Km Kata cruvsntta cl B - c . Ano to tpiyrovo ABE sxouµt: Al =B El B - C ' onott: Al cl B - C Km tnttOT} Ot yrovit<; BD = BF Al ' cl tivm eyytypaµµEvt<; crtov Kl'.>tlo (c ), ea tcrx;Utt: (6). Ano tt<; icrotrJtt<; (5) Km (6), Ka0ro<; Km ano tTJV npoq>avf) p..oyro cruµµetpia<;) tcrOtT)ta BE=BG cruµntpaivouµe ott BE = BF = BG = BD, onott to tttpanAf:upo DEFG tivm tyypa\jftµo crt Kl'.>­ tlo µe Ktvtpo to B. =

-

=

=

=

=

=

,

rl pb fD.•uw 2 . 0t:ropoi>µt: a11µEio A

'TOt> E1tUtEOOt> Kat TpE� Et>9t:U:� 1t0l>

1tt:pvoi>v U1t0 Ul>'TO Kat zropi�Ot>V 'TO E1tl1tEOO GE

6 ToµEi�. I:t: Kcl9E Toµta 5 <J11 -

t>1tapzot>V <J'TO E<JCO'TEptKO 'TOt>

µEia. Yno9tTot>µt: O'Tt Ta 3 0 <J11 µEia

1t0t> fJpi<JKOV'Tat <J'TOt>�

6

TOµEi� Ei­

Vat ava Tpia µ11 <Jt>VEt>Ot:taKa. Na anooEi;t:'TE O'Tl \)1tclPXOt>V 'TOt>A.axi­

<J'TOV 1000 Tpiyrova µt KOpt> <p t� 'T(l

6

<J11 µEia «t>Ta (Trov

Toµtrov) TO o­

noia nt:ptizot>v TO A EiTt mo taro­ TtptKo 'TOt>� Ei'Tt <J'Tl� 7t>..£t> pt� 'TOl>�. i\ i> cn1 :

IlapatrJpouµt ap:xtKa ott yia onoiaoftnott tnU..oyft 6 <Jflµtirov, tva ano Ka0t toµsa, OT}µioupytitm tva t;ayrovo (KUpto it µT} KUpto) to onoio ntpIB:;(tt to <Jflµdo A. Ano ta 6 auta <Jflµtia OT}µioupyou-

(�)

vtai

=

20

l:xf1µa 2

tpiyrova cr< m\voAo.

0a unoA.oyicrouµt nocra toUAa:;(t<:rtOV ano auta ntpis:xouv to <rflµdo A. Av S:;(OO OUO <Jflµtia ano Kata KOpUq>it toµti<;, tott napatrJpro ott sxro tm­ A.oyft yia tTJV tpitT) Kopuq>ft tOU tpt­ yrovou ano ouo toµti<;. fia napaotiy­ µa, yia ta <Jflµtia B, C tou napaKatro crxf1µatO<;, OnOtO <JflµEto Km napouµt ano tov KOKKtvo it tov npamvo toµSa S:;(OUµt tpiyrovo nou ntptS:;(Et to <Jfl­ µtio A. Ynap:xOUV 3 �tl>yT} Kata KOpuq>it tO­ µSrov, tnoµSvro<; Km £:xouµe 5 5 E1ttAo­ ys<; yia tTJ �a<Jfl BC Km Tl tpitTJ Kopu­ q>ft tm.Myttm µe 2 5 tponou<;. Eno­ µSvro<; E:;(OUµt <:rUVOAtKa tOUAa:;(tcrtOV 3 2 5 3 = 6 5 3 tt'toia tpiyrova nou 1tE­ pt£xouv to A. Av tropa sxro KOpUq>E<; crt evaua; ·

·

·

·

·

EYKAEIAHE B ' 104 T.4/15

c


------

Mu6qµuT\Koi Aiuyroviaµoi - Mu6qµuT\Kt; 0/..llµnull>t;

-------­

wµti<; ( 01tCJ)<; q>CltVttm CrtO axitµa 4), tOtt 1tUAt txro tpiyrovo 1tOU 1ttPIBXtt 'tO a1iµtio A. Auta µnopti va tivm titt aav to CBD tht aav 'tO EFG. :Eav 'tO CBD unapxouv 5 . 5 . 5 = 5 3 tpiyrova 1tOU 1ttpttxouv 'tO <TI)µtto A Kat aav to EFG unap­

xouv t1tt<TIJ<; 5 · 5 · 5 = 5 3 tpiyrova nou ntpttxouv w <TI)µtio A. :EuvoA.tKa at autft TI)V ntpintro<TI) txouµt 2 · 5 3 tpiyrova nou ntpitxouv w <TI)µtio A. A0poil;ovta<;, txouµt wuA.axtawv

6·53 +2·53 =8·53 =lCXX> tpiyrova ta onoia ntpttxouv w A titt aw tarottptKo wu<; titt navro an<;

nA.tupt<; tou<;.

IlpoPJ...ri µa 3. Na fJp1:80'6v oA.E; Ol TplcIOE; aKEpairov

8pourpa foo pE p11otv Kai o api8po; N paio'U.

=

3

( a., b, c ) 3

3

pE a. >

0 > b > c, 1t01) qo'UV a-

2017 - a. b - b c - c a. dvai TtAf:io TE'Tpayrovo aKE­

Ai><JT) :

Aq>ou a + b + c = O , txouµt on 3 a b + b 3 c + c3 a = a3 b + b 3 (-a - b) + (-a - b ) 3 a = -b 4 - 2b 3 a - 3a 2 b 2 - 2a3 b - a4 = = -(a 2 + ab + b 2 ) 2 (1 ) 3 3 3 Enoµtvro<;, av 20 1 7 - a b - b c - c a = k 2 , tott 20 1 7 + (a 2 + ab + b 2 ) 2 = k 2 (k - a 2 - ab - b 2 )(k + a 2 + ab + b 2 ) = 20 1 7 (2)

{k - a22 - ab - b22 =

<=>

{

{

Aq>ou o 20 1 7 tivm npcino<;, 0a npf.ntt

2 2 2 2 1 <=> k - a - ab - b = 1 <=> a + ab + b = 1008 k = 1009 k + a + ab + b = 20 1 7 2k = 201 8 (3)

fta va tax(}tt a 2 + ab + b 2 = 1008 (4) 1tpE1ttt Ot a, b VCl tivm Kat Ot ouo apnot, OtClq>OptttKU, 'tO aptattpo µtA.o<; tivm 1ttpttt0<;. EmnA.Eov' txouµt Ott 9 1 1008 ' apa 9 1 a 2 + ab + b 2 ' 01tO'tt tUKOACl 1tpOKU1tttt Ott 1tpE1ttt 3 1 a Kat 3 1 b . Enoµtvro<;. ot a, b otmpouvtm µt w 6, onott ypaq>ouµt a = 6 m Km b = 6 n , onott ri (1) yivttm

m 2 + mn + n 2 = 28 (5) Oµoiro<;, Ot m, n npfatt VCl tivm apnot, 01t0tt m = 2x Km = 2y . Tott T) ( 7 ) yivttm x2 + xy + y 2 = 7 (6) fta va EXtt aKtpmt<; A.ucrtt<; TJ ttA.tutaia npfatt TJ OtaKpivoucra ro<; npo<; y va tivm µT) apvrinKi\ Kat tf.A.tto tttpayrovo. 'Oµro<; D.. = x 2 - 4( x 2 - 7) = 28 - 3 x 2 , onott: x2 = 1 it x2 = 4 it x2 = 9 . Enttoit, a 0 ea txouµt x 0 ' 01t0tt x E { 1 , 2 , 3 } . EnttOit y 0 ' naipvouµt 't(l l;tUyl') (x , y ) { (1 , -3), (2 , -3), (3, -2) , (3, - 1) } , onott, aq>ou a = 12x, b = 1 2y txouµt on ( a, b ) E { (1 2 , - 36) , (24 , -36, ) , ( 36, -24) , (3 6, - 1 2) } A6yro tou on a + b + c = 0 Km tou ntptoptcrµou a > O > b > c , txouµt TI'I µovaotKf\ A.u<TIJ ( a, b , c ) = (3 6, - 1 2 , - 24) . n

e

>

>

<

IlpoPJ...11 µa 4. 'ECf't'ro � 1) 8ETtK1] pi�a Tt); E�icJroa11; x 2 + x - 4 = 0 . To nol..'Urowpo l p x = a.D X 0 + a. n -1 x n - + + a.1 x + a.o ' 01t01) n 8ETtKo; aKtpaio;, EXEl G'UVTEUCf't't; Jlt) apVt)Tl-

( )

•••

Ko-6; aKtpaio'U; K«l api8pt)TlK1] TlJ11\ (i) Na anood�E'TE O'Tl: a.o + a., +

•••

P(;)

+ a.n

=

=

1

2017 .

(mod 2 )

(ii) Na fJpdTE Tt)V EMXlG'Tt) O'UVa'Tl\ TlJ11\ TO'U a8poicJpaTo;: Ai><JT) (i)

Enttoit o apt0µo<;

q = -l + .J0 2

ao + a. + ... + an .

tivm appT)tO<; Kat to noA.urovuµo EYKAEIAHI: B ' 104 T.4/16

F

( x) = P ( x ) - 20 1 7

EXtt


------ Ma0riµ.a-riKoi Aiaymvurµ.oi - Ma0riµ.a-riKt� 01.llµ.maot� -----, - I - JU ' 01to'tE prp;ou<; <J'\>V'tEAscr'tt<; Kat pi�a 'tOV apteµo ; ' ea EXEt pi�a Kat 'tOV cru�uY'l 'tO'U 2 2 ea (hmpEhat µE 'tO 1tOA'UcOVUµo 'P ( x) = x + x - 4 . Au-ro 1tpOKU1t'tEt aµEcra a1tO TIJV 't(l'U'tOTIJ'ta TIJ<; Sta.ipcmi<; F (x) = P(x) - 20I 7 = (x 2 + x - 4) Q (x) + Kx + A- , a1to TIJV o1toia yta. x = i; A.aµ�a­ vouµc /(; + A = 0 ' 01tO'tE 1tpOKU1t'tEt O'tt /( = A = 0 , mpou 0 apteµo<; ; Eivm UPPTIW<;. Apa 'U1tUp­ XEt 1toA.u©vuµo Q( x) -rfaoto ©cr-rE: F(x) = P(x) -20 I 7= (x2 +x-4)Q(x) an x n + an_1Xn-l + ... + a1x + a0 - 2017 = ( x2 + x - 4 )Q(x) (1) A1to 'tTJ crxsmi (1) yta. x = 1 A.aµ�avouµE: a0 + a1 + ... + an - 2017 = -2Q ( 1) a0 + a1 + .. . + an = 2017 - 2Q ( 1) 1 ( mod 2) (ii) 0EcopouµE 'tO crUVOAO { a0 , al ' ... , an } µE cr'tOtXEta µTI UpVTtnKOU<; aKtpatOU<; 1tO'U tK<lV01tOtOUV nl n 'ta 1tapaKa-rco: (a) ani; + an_ 1 i; - + ... + a1 i; + a0 = 2017 (p) 'tO aepotcrµa ao + al + . .. + an dvm 'tO EA.nxtcr'tO Suvmo. Ila.pa.TIJpOUµE 1tpcO'ta on aA.T1BEUEt TI crxsmi : 0 ::::;; ai ::::;; 3 , yta. Knee i = 1 , 2 , - 2. Ilpayµa.n, a.v 11-rav StmpopEnKa yta. Ka1tot0 i = 1 , 2 , - 2 , -ro-rE w crl>voA.o { a0, .. . , ai-1 ' a; - 4, a;+ i + I, a;+ 2 + 1 , a;+3 , ...an } <=>

=>

=

..., n

..., n

ea EtXE cr-rmxda. µTI apvrinKOU<; O.Ktpmou<;, ea. tKUV01totOUcrE TIJ crxsmi (a.), EVOO ea EtXE aepotcrµa crwtxdcov µtKpo-rEpo a1to amo wu cruvoA.ou { a0, a1 , , an } , 1tOU dvm U't01tO. • • •

'Ecr-rco -r©pa Q ( X ) = bn _ 2 x n-2 + bn _1X n-l + ... + b1 x + b0 • TOTE a1tO 'tTIV 'ta'U'tOTIJ't<l an xn + an_1Xn-l + ... + a1X + a0 - 2017 = (x2 + x - 4 )( b11_2 Xn-2 + bn_3 X n-J + ... + b1X + b0 ) 1tpOKU1t'tOUV ot tcrOTIJ'tE<;:

a0 - 2017 = -4b0 = -4b1 + b0 a1 = -4b2 + b1 + b0 a2 a3 = -4b3 + b2 + b1

<=>

= -4bn-2 + bn-3 + bn-4 = bn-2 + bn-3 = bn-2

a0 - 2017 al - bO a2 - bi - bo a3 - b2 - bi

an-2 - bn-3 - bn-4 = -4bn-2 = bn-3 an-I - bn-2 = bn-2

ai+2 - bi+ l - bi = -4bi+2 ' yta. Knee i = 0 , 1 , . .. , - 4 0 ::::;; a; ::::;; 3 , yta. Knee i = 1 , 2, - 2 , a1to TIJV 1tpcOTIJ E�icrcomi a1to n<; 1ta.pa1tavco a0 = 1 Km b0 = 504 . A1to TIJ SEUTEPTI E�icrcomi A.aµ�avouµc a1 = 0 Km b1 = 126 . n

rcvtKU tcrx\>Et on: E1tEtSil dvm 1tpOKU1t'tEt on

= -4bo - -4bI - -4b2 = -4b3

..., n

A1to TIJV -rphTI E�icrcomi A.aµ�avouµE cri>voA.a.

a2 = 2

Km

b2 = 1 57.

LUVEXi�ov-ra<; oµoico<; A.aµ�avouµE -ra

{b0 , bl ' b2 , ...b1 4 } = { 504, 126, 1 57, 70, 56, 3 1, 2 1, 13, 8, 5, 3, 2, l , O, O} { a0, ap a2 , . ..a1 4 } = {I, 0, 2, 3, 3, 2, 3, 0, 2 , I, I, 0, I, 3, I} E1toµtvco<; TI EA.nxtcrTIJ Suva-ril nµil wu aepoicrµaw<; a0 + a1 + . . . + an Eivm 23 . EYKAEIAHI: B ' 104 -r.4/17


-------

Ma011µaTtKoi Atayrovtaµoi - Ma011µaTtK� OA.'ll µnulo� -------

n poKp l f.I OT I KOS li 1 aywv 1 oµos 201 7 8

A11p 1Aiou

201 6

n po P hnw t Aivt:Tat �1rf©vto aKaA1JVO Tpiyrovo ABr qyt)'papptvo m: K6KA.o c(O,R) (JU: AB<Ar<Br ) Kat Ta (Jt)JU:W maqn]i; A,E,Z 'TO\l E"f'ft)'papptvoo K6KA.oo 'TO\l 'Tf>l"(IDVO\l JU: ni; n#.a>pti; Br, Ar, AB avria'rotxa. 0 1rEptyE­ ypapptvoi; K6KAoi; 'TO\l 'Tf>l"(IDVO\l AEZ (tcrrro (c l ) ) 'TEJlVEl 'TOV KUKAo c) crro (Jt)pEio 0 mptyt)'pappt-

( c 2 ) ) TEJlVEt TOV K6KA.o ( c) crro (Jt)JU:io B '. 0 ntptyt)'papptvoi; K6(tcrrro ( C 3 ) ) 'TEJlVEl 'TOV KUKAo ( c) crro (Jt)pEio r. Na MOOEig:TE On:

voi; K6KA.oi; TOO Tptyrovoo BAZ (tcrrro KAoi; 'TO\l 'Tf>l"(IDVO\l rAE

A '.

(

( fJ) To Tt:Tprut#.a>po AEA 'B, dvat E"fYPcl'lflJlO. (jl) Ot EUOE{Ei; M,' EB, Kfll zr cn>VTpqoov.

,'\ lJ(j'l

C1 ) )

I:xt1 µa 1 Ano to eyyeypaµµ£vo (cnov JC6tlo ( n:tpanAf:upo AA'IZ exouµe: AA ' l = AZl = 90° = TA ' I ( * ) . Ano to eyyeypaµµ£vo tEtpanAf:upo r �IE ( ecpocrov rI <>txotoµoi;), exouµe: t

�I = (1) 2 Ano to eyyeypaµµ£vo tEtpanAf:upo BMZ ( ecpocrov BI <>txotoµoi;), exouµe: B �2 = (2) 2 Ano to eyyeypaµµ£vo tEtpanAf:upo B�IB , exouµe: � = B I . 3 Ano to eyyeypaµµ£vo tEtpanAf:upo BB , A , A exouµe: B I = A; = 90° - A� .Apa eivat: � 3 + A� = 90° . Ano to eyyeypaµµ£vo tEtpanAf:upo AEIA , exouµe: A� = A . 2 Apa eivai: �1 + � 2 + � + �� + �� = 1 80°. Auto ITT} µaivet ott to tetpanAf:upo A 'E�B ' eivat eyypa'lftµo. 3 Dµota ano5eucv6ouµe ott Kat ta tetpanAf:upa �ZAT' Kat ZEr'B ' eivai eyypa'lftµa. Apa ot eu0dei; �A , ' EB , Kat zr , cruvtpexouv crtov pu;tKO K£vtpo trov JC6tlrov. A

A

'

n po pi.11 µu 2

Na anood;.:n OTt o aptOpoi; p ayoVTa 'TOV

2n+l .

A = ( 4n ) ! , ono'll n !· ( 2n ) !

n

OtTtKoi; aKtpmoi;, dvm aKtpmoi; Km fxtt na­

EYKAEIAID; B ' 104 T.4/18


------- Ma8qpa-r1Koi A1ayrov1apoi - Ma8qpa-r1Kt� 01.llpmao&� (J:J1µGiwm, : O apz8µ6� n ! yza n e N , opi(craz a'lt:o Trf axt<Yf/: n ! = 1 · 2 · ... · n , Kaz 0 ! = 1 .)

--------­

Aua11 ( I o.; Tporroc;)

(J

(J

M1topouµe va ypa\j/ouµe tll crxeITTJ A = ( 4 n ) ! = 3n · (3n + 1) (3n + 2) · · · ( 4n - 1) · 4n e Z, acpou 3n e Z . n !· ( 2n ) ! n n �TI') O'UVEXeta 1tapaTI')pOuµe Ott O'TI')V 1tapayoVt01t0l1lITTJ tOU n ! cre "(tVoµevo 1tp0)'t(J)V 1tapayoVt(J)V 0 eK0E-

exp ( n) =

l;J l; J l J

(1) + ... + : 2 o1tou m eivm o µeyaA.Utepoc; q>UcrtKoc; apt0µoc; µe triv t8toTI')ta 2m ::; n . Auto 1tpOKU1ttet a1to TI')V 1tapa­ Til P11ITTJ on ta 1tOAAa1tA.acrta tou 2 exouv 1tapayovta to 2. Ta 1tOMa1tAacrta tou 4 exouv µia aK0µ11 q>opa 1tapayovra to 2, ta 1tOMa1tAacrta toU 8 EXOUV µia aK0µ11 q>opa 1tapayovta to 2, K. o. K. µEXPt ta 1tOMa1tAaO'ta toU 2m ::; n . A1to Til O'XEITTJ (1) 1tpOKU1ttet on TI')<; tou 2 tcroutm µe

+

� ( �) ; ;; l J l : j l 2:� J l ; J l ; j l J l�J l��J l��J. l 2��2 J l J l j l J ( ) J exp ( n) ::; +

Me to i8to O"Ke1tnKo ppicrKouµe on: 2 2n exp (2n) = + + ... + 2

+ ... + : = 2 1 =n+

;

1 + + ... +

+

2

_1 = n -

.

(2)

+ ... + : = n + exp (n) 2

( 3)

= 2n + n + ; + ; + ... + : = 3n + exp (n) 2 E1toµEvroc;, 0 eK0ETI')<; tOU 2 O'TI')V 1tapayovt01t0l11ITTJ toU A ea eivm exp (4n) =

+

+

.+

3n + exp ( n ) - [exp ( n) + n + exp ( n) = 2n - exp ( n) ;::: 2n - n - : = n + : ;::: n + 1 , 2 2 n+I 01tOte 0 aKepmoc; A exet 1tapayovta to 2 . 2°' Tporroc;

, tOU (2 n ) ' exouµe , A = (2n + 1)(2n + 2) ... (4n - 1 )(4n) . Me TI')V a1t/\.01t0t11ITTJ Ott . , n! fiapaTI')pouµe Ott O''tOV apt0µ11Tft EXOUµ.£ n - 1 apnouc;, a1to 'tOV 2n + 2 Ero<; tOV 4n - 2 , 01tOte pyal;;oVta<; KOtVO 1tapayovta to 2 a1to Ka0e tEtota 1tapev0eITT] exouµe eva.v 1ta.payovta 2 n -l . TeA.oc;, pyal;;ovtac; Km tO 4 0.1t0 'tO 4n , exouµe Ott A = 2 n+ 1 n(n + l )(n + 2) ... (2n - 1) . (2n + 1)(2n + 3) ... (4n - 1 ) n! n(n + l )(n + 2) ... (2n - l ) 2n - l , 01tot A n +I 2n - l · Dµroc; = e =2 (2n + 1)(2n + 3) ... (4n - 1 ) , n! n-1 n-1 01tote o A eivm a.Kepmoc; Km Oimpeitm a.1to t0 2 n+I . '\

npoP"-11 µa 3

( J

( J

f : lR � lR Kat g : 1R � 1R 1t0'll lKaV01tOlOilv T1}V lGOT1}Ta f ( x - 3 f ( y)) = x f ( y ) - y f ( x ) + g ( x ) ' yta KaOt: x , y E lR Kat g ( 1) -8

Bpd·n: oA.&i; 01 J111 Jl.1}0&VlKEi; (fl)Vapn1at:1i;

=

Aua11 ( I o.; Tporroc;)

• .

E>a. a.1to8eil;ouµe 1tpc0ta Ott 11 cruvapTI')ITTJ f µ1topei va. 1tapet TI')V nµfi 0. Ilpayµa.n, a.v f ( 0 ) = 0 ' auto tcrxt)et. Av eivm f ( 0) = b -:t:. 0 , tote ettovtac; x = 0 crTI') 8e8oµtvri el;icrro<Jll f (x - 3 / (y )) = x f (y ) - y f (x) + g (x) , (1) A.a.µpavouµe: (2) f (-3 / (y)) = -by + g (O) . E1tet8fi w 8el>tepo µeA.oc; TI')<; (2) 1taipvet oA.ec; nc; 1tpa.yµa.nKec; nµec;, faetat on 11 cruvapTI')ITTJ f eivm e1ti EYKAEIAHI: B' 104 -r.4/19


Ma9rip«'TlKOi Aiayrovurpoi - Ma9qpa'TlKti; 0A\lf11tlUOEi;

------

-------­

tO'U lR , o1tote umipxei c e lR tetoio rocrte f ( c) = 0 . rta y = c O'trl crxemi ( 1) A.aµpavouµe f ( x) = -cf ( x) + g ( x) � g ( x) = ( c + 1) f ( x) , o1tote TI crxemi ( 1 ) yivetm (3) f ( x - 3/ (y)) = xf (y ) + ( c + 1 - y ) f ( x) f ( x - 3 f ( c + 1)) = xf ( c + 1) . ria y = c + 1 O'trl crxemi (3) A.aµpavouµe Av efoouµe I ( c + 1) = a ' t0t€ exouµe I ( x - 3a) = ax' a1tO tTlV 01tOta 1tpoidmt€t TI crxemi f ( x) = a ( x + 3a) , a E lR• Av fitav a = 0 ' t0t€ ea eixaµe I ( x) = 0, yta Kaee x E lR ' ato1t0. A1to tTl crxemi I ( c) = 0 1tpOK1.'>1tt€t Ott a ( c + 3a) = 0 � c = -3a . E7toµevro� exouµe g ( x) = a ( 1 - 3a) ( x + 3a) , a e lR • . A7to tTlV motrlta g (l) = -8 exouµe: a (l - 3a )(1 + 3a) = -8 <=> 9a3 - a - 8 = 0 <=> a = 1 . Apa eivm f (x) = x + 3, g (x) = -2(x + 3) . :Etrl O"Uvexeta euKoA.a €1taA.T1e €Uoµe ott f ( x - 3/ (y)) = x - 3y - 6 = x f (y ) - y f ( x) + g ( x ) . 2°� tporroi;

Av efoouµe o1tou x to y 1taipvouµe f ( x - 3 f ( x)) = g( x) , o1tote ava�Tltouµe o/...e� tt� O"Uvaptficre� rocrte I ( x - 3 I (y)) = xf (y) - yf ( x) + I ( x - 3 I ( x)) o ) KClt €1tt1tAEOV tO'xU€t Ott g(l) = -8 <=> /(1 - 3/(1)) = -8 . (2) Av /(1) = 0 , tote TI (2) oivet ott /(1) = -8 , ato1to. Apa eivm /(1) "# 0 . l <JZlJ fl l<Jµoi; 1 : H avvapr17U1] I dvaz 1 - 1 . A1t00€J4TI · Ilpayµatt, yta x = 1 TI (1) oivet /(1 - 3 I (y )) = f (y ) - yf (1) - 8 . (3) Av f(x1) = f(x2 ) , tote yta (l((>OU eivm /(1 - 3/(x1)) = /(1 - 3/(x2 )) , TI (3) oivet ott f ( l ) ""O

f(x1 ) - xJ(l) - 8 = /(x2 ) - x2 /(1) - 8 <=> xJ(l) = x2 /(1) <=> x1 = x2 , o1tote TI f eivm 1 - 1 . Tropa, yia x = 0 TI ( 1 ) oivet /(-3/(y)) = -yf( O) + /(-3/(0)) . Av /(0) = 0 ' t0t€ 1taipvouµe /(-3/(y)) = 0 = /(0) ' 01t0t€ (l((>OU TI I eivm 1 - 1 , ea exouµe Ott - 3I (y) = 0 <=> I (y) = 0 yta Knee y ' to 01t0l0 eivm at01tO, (l((>OU I (1) 0 . J c;xupt<Jµoi; 2 : Av f (0) 0, 11 avvapr1JU1J f dvaz E:7ri. Ilpayµatt, yta x = O T1 ( 1 ) oive1 /(-3/(y)) = -y/(O) + /(-3/(0)) . (4) ApKei va oei�ouµe Ott av eivm wxov 1tpayµattKO�, U1tapxet Xo ' cOO't€ I (xo ) = Ilpayµatt, fotro eivm wxov 1tpayµattKO�, t0t€ a1tO tTlV (4) PM1touµe Ott apKei va exei Mmi (I)� 1tp0� y TI e�icrromi - yf(O) + /(-3/(0)) = H teA.eutaia oµro� exei Mmi (l((>OU /(0) 0 , €1toµevro� O"U­ vaptrlmi f eivm e1ti. Acpou tcbpa TI O"Uvaptrlmi f eivm e1ti, u7tapxe1 c rocrte f ( c) = 0 . 0faouµe CJtTlV ( 1 ) 01tou x = c , 7taipvouµe f ( c - 3f (y)) = cf (y) Km acpou TI f eivm €1ti TI e�icrromi f(y) = x exei Mmi (I)� 1tp0� y yia Ka0e x ' 01t0t€ TI t€Ae'Utaia µa� oivet Ott yta Kaee 1tpayµattKO apteµo c2 c , c - x , 7tmpvouµe , , x , 1crxue1 ott I ( x ) = - - -x . , I ( c - 3 x ) = ex , o1tote yia x to 3 3 3 *

*

w

w

w.

w.

*

--

AvttKaetcrtcbvta� O"trl (2) 1taipvouµe ott f(l + c - c2 ) = -8 <=>

c2

-

3

-

AvttKaetcrtrovta� exouµe Ott tTlV aPXtKfi .

-3c (1 + c - c2 ) -8 c3 - c + 24 0 (c + 3)(c2 - 3c + 8) = 0 c = -3 f ( x) = x + 3 KClt apa g( x) = -2x - 6 ' Ot 01tOIB� PM1touµe Ott tKaV01tOtOUV =

<=>

=

<=>

EYKAEIAH.2:. B ' 104 -r.4/20

<=>


-------

MaOt)paTlKoi Alayrovlapoi - Ma011paTlKt� 0A1'J.11tUJOt� -------

npoPA.11 µa 4 I:.1'ov xivaKa &ivm ypaµ.µ.tvoi apxiKa Kaxowi 9t1'tKoi «Ktpmoi. Kavot>µt Ka9t q>opa µ.ia axo 1'tc; a­ KoA.ot>Otc; KtVl]atic; : (a) Av avaµ.taa <JTot>c; apiOµ.oi>c; t>xapxot>v oi>o oiaooxiKoi, t<JTro n, n + 1 , 1'01't µ.xopoi>µt va 1'ot>c;

ap1]aot>µ.t Km va ypcl'f/Ot>µ.t Tov apiOµ.o n - 2 . (p) Av &ivm ypaµ.µ.tvoi oi>o api9µ.oi xot> axtxot>v K«1'a 4, fo1'ro k , k + 4 , µ.xopoi>µ.t va 1'ot>c; ap1]aot>µ.t Km va ypcl'flot>µ.t Tov api9µ.o k - 1 . Ka1'a 1'tl oiapKtia 1'tlc; oiaoiKaaiac;, µ.xopoi>v va xpoKi>mot>v Km apvt)1'tKoi apiOµ.oi <JTov xivaKa. Av OEV µ.xopoi>µ.t va KclVOt>µ.t Kcl1t0l« «XO 1'tc; xapaxavro KlVl]<Jtlc;, " oiaoiKaaia 1'EAElcOVEl. Na xpoaowpiat1'E 1'tl µ.fyi<J1'fl Ot>V«1'1} 1'tµ.1} 1'0t> aKtpaiot> c µ.t 1'TIV aK6A.ot>9'1 10161"11'«: Avt;ap1'fl1'« µ.t 1'0 xoioi api9µ.oi &ivm ypaµµ.tvoi apxiKa, at oA.11 1'TI oiaoiKaaia, 61.oi 01. api9µ.oi xot> dvm ypaµ.­ µ.tvoi <J1'0V xivaKa va &ivm µtyaA.i>1'tpoi 1} iaoi axo c. A ua11

ea U1tOOeil;ouµe Ott TJ µfytcrni ttµfi tot> c eivat lcrlJ µc -3 . npayµatt, autfi TJ ttµfi e1ttWYXUVetat av l;eKt­ vficrouµc µe toui; apteµoui; 1, 2, 3, 4, 5 , tote aKoA.ouerovtai; niv otaOtKacria: a

P

a

a

1, 2, 3, 4, 5 � 0, l, 4, 5 � 0, 1, 2 �- 1, 0 �- 3 . (* ) ea a1tooeil;ouµe tropa ott 01tot0t Kat av eivm ot apxtKoi apteµoi Km µe o1tota cretpa Km av Kavouµe tti; Ktvficreti;, Kaveii; apteµoi; ocv dvm µtKpOtepoi; Cl1tO -3 . ea ppouµe µia avaUoironi rocrte Kaee <popa 1tOU e1tavaA.aµpavouµe µia a1tO tti; Ktvficreti; TJ 1tOcronita autii va 7tapaµtvet crtaeepfi. 'Ecrtro w 11 7tpayµattKfi pisa tou 7toA.urowµou P(x) x3 + x 2 - 1 . Tote tax1)et w3 + w2 = 1 � wn+I + wn = wn-2 . Ott (1) 5 E1ticrTJi; to P( x) Otatpei to 1toA.urovuµo Q( x) = x + x - 1 , 01tOte (2). Q( w) = 0 <::::> w5 + w 1 <::::> wk+4 + wk = wk -I A1to tti; ( 1) Km (2) PAi7touµc ott av eeropficrouµe f.vav oc\Jtepo 1tivaKa 1tou avti yta toui; apteµoui; EXet cre Kaee KiVTJcrTJ toui; apteµoui; crav eKe£ni tou w , tote cre eKcivo tov 1tivaKa to aepoicrµa trov crtotxeirov ei­ vm avaUoiroto avel;apnita µc to av ea e<papµocrouµe to a) cite to p). fta napaoetyµa yta tTJV aKoA.ou­ eia ( * ) o oc\Jtepoi; nivaKai; ea eiXe toui; apteµoui; P WI w2 w3 w4 w5 � WO WI w4 w5 � WO WI w2 � w-1 WO � w-3 Km yta napaoetyµa, µeta 'tTJV 1tpc0tTJ KlVTJcrlJ to aepotcrµa t(J)V apteµrov 1tapaµtvet to iOio a<pou =

=

'

'

'

'

a

'

'

'

a

'

a

'

'

w3 + w2 = wo .

E1toµtvroi;, apKei va l;eKtvficrouµe µe to eA.axtcrto owato aepotcrµa crniv apxiJ (yta to OeUtepo 1tiVaKa), W W 1tOU elVClt µeya/\.Utepo a1to, wI + w2 + w3 + w4 + . . = = = w-4 . '

'I '

.

--

-

1 - w w5

E7toµtvroi; crtov MA.o 1tivaKa Kaee apteµoi; eivm µcyaA.utepoi; a1to -4, 011A.aofi 2::: -3 . A47.

To 1t0AUIDVUµo P( x ) = x3 + px + q EXel tpcti; Ota,<popettKEi; µctal;u toui; 1tpayµattKEi; pisei;. Na a1tooeil;ete ott p < 0. N 4 1 . 'Ecrtro d ( n ) o apteµoi; trov eettKrov Otatpetrov tou eettKou aK£pmou n . Na a1toOeil;ete ott:

(! .!. !)

(

)

+ + ... + :::; d ( l) + d ( 2 ) + ... + d ( n ) :::; n l + ! + .!. + ... + ! . 2 3 n 2 3 n A20 . 'Ecrtro A a\JvoA.o µe n crtotxeia. Bpeite to µcyaA.Utepo owato apieµo t>1toauvoA.rov tou A 1tou eivm tfaota rocrte va µ11v u1tapxet Ka1toto a1to auta 1tou eivm t>7toa\JvoA.o Ka1totou aA.A.ou. n

EYKAEIAHI: B ' 104 T.4/21


HOMO MA THEMA TICUS H Homo Mathematicus c:ivm µHl oriJA.11 oto 1teptoOtK6 µ(l(;, µc: oKo1t6 TI']V avtaUaY'l a1t6\jleCOV Km tt]V avamu�11 1tpo�A.11µa·noµou 1tUV(l) Ota e�ii<; 0tµata: 1 ) Tt eivm ta Ma0f1µattKa, 2) Ilpfaet ii oxt va OtOUOKOV'tCll, 3) Ilotot c:ivat ot tlaoot tcov Ma011µattKffiv Kat 1toto to avttKeiµevo tou Ka0ev6c;, 4) Ilote<; c:ivm ot c:<papµoytc; tou c;, 5) Ilote<; c:m­ oriJµec; ii tlaoot c:mott]µffiv a1tattouv KaA.ii yvc0011 to>V Ma011µattKc0v yta va µ1topfoc:t Ka1toto<; va touc; o1touoaoc:t. crovraKTtKlj e1mp01clj : Kspauapii517c; I'zavv17c;, Maviar:olCOVAov AµaAia, M�).,zoc; I'zwpyoc;, M7Cpov(oc; ErtAzoc; I. n dvw

rn Ma.011µ0.nKO.;

To napaKa'tco Keiµevo eivm 0µ1A.ia nou €Kavs o Kcovcr'tav'tivo<; Kapa0so5copi]<; <JT11V EA.­ ATIVtKi] Ma0T1µanKi] E'tmpsia cr'tt<; 1 9/5/1 924, µs 0€µa TI'IV 51C>acrKaA.ia 'tCOV Ma0T)µa't1Krov <JTI'IV 8su'tspo­ pa0µm sKnai8sucrri . H 8aKruA.oypacpTl<JTI €y1vs an6 TI'IV Ilsp1081Ki] 'EK8o<JT) Ma0T1µm1Krov :Enoue>rov «E>saiTI'l'to<;». (OK'tropp10<; 1 987, Hpatls10 Kpi]T11 <;, EK86T11 <;-81su0uv'ti]<;: Mavd>A.T1<; MapayKUKT)<;). To Ksiµevo 8aKruA.oypacpiJ0T1KE an6 sµa<; (JS µoVO'tOVlK6, 8tCl'tTIPIDV'tCl<; TI'IV 1tpCO't6'tU1tT) op0oypacpia Km 'tO yA.cocrcrtK6 i8icoµa T11 <; snom<;.

7CpoJ.cyoµcvo.

Kwv(fro.vrivov Ko.po.01::0<5wp 1j «llcpi rw v Mo.OtfµO.TIK<bv cv 'TI/ Mimi EK7Co.1&v(j£1»

«E>' apxicrco TI'IV oµiAiav µou 'taUTilV µs 'to spd>T11 µa: «81Cl'tt 51McrKOV'tm 'ta Ma0TlµCl'ttKa st<; 'tCl crxoA.sia µa<;;» A€ycov 'ta «Ma0T1µm1Ka» 8ev evvoro m crw1xsia tTI<; ap10µT1'ttKi]<;, m onoia sivm pspaico<; anapaiTI'l'ta s1<; Ka0s av0pconov avi]Kovm Et<; ocrov8i]no'ts oA.iyov nsnoA.mcrµ€vov nsp1pat..A.ov, aUa TI'IV fscoµs'tpiav Km TI'IV AvaA.umv. EmcrKonrov n<; TI'IV Icrwpiav 'tcov noA.mcrµrov cruvav'ta A.aou<; tKava npoT1yµ€vou<;, oh1vs<;, co<; 01 A'ts€Km n.x. , s1 Km 61..co<; aµotpOl µa0TlµanKIDV '}'VID<JeCOV, e8T1µt0Up'}'T1crav Kpmma<; noA.t'teia<; Km crri µavnKi]v 'tEXVT)V. OU'tCO<; CVl<JxUe'tm TI t8fo 6n 'tCl Ma0TlµanKa 8ev eivm ocrov cpav'tas6µs0a anapaiTI'lm 8ta 'tTIV avanru�lV µm<; 1te1t0Al<J'tt<JµEVT)<; KOlVCOVia<;. Ilp0Ks1µ€vou A.01n6v nspi 'tTI<; ev 'tTI µ€crri EKna18sucrs1 818acrKaA.ia<; 0a T18uvaµs0a va cpavmcr0roµev ronov crxoA.eiou a1tT)Uayµ€vou Tll <; 818acrKaA.ia<; 'tCOV Ma0Tlµa'ttKrov, µa0i]µmo<; avnKa0tcr'taµevou 81 aUou avacpsp6µevou s1<; aA.A.ov tla8o Tll <; av0promvri<; yvrocrsco<;, co<; n.x. st<; TI'IV B10A.oyiav, 0scopouµEVT)v ev Tl1 KUpia au'ti]<; crri µacria co<; Emcr-riJµTIV Tll <; scoi]<;. Kata TI'IV sµi]v nsnoi0T1crriv o K1lp10<; Myo<; 8m tov onoiov m Ma0T1µanKa, oµou µsta Tll <; 818acrKaA.ia<; wu op0ou xs1p1crµou Tll <; µT1tp1Ki]<; J'AID<J<JT)<;, anotsA.ouv to K€vtpov papou<; Tll <; ev Tl1 µ€crri EKnm8sucrs1 818acrKaA.ia<; st<; 61..ou<; wu<; crUJ'XPOvou<; A.aou<; Tll <; EupronTI<; Km Tll <; Aµsp1Ki]<;, sivm anA.oucrtam TI napa8ocrt<; Km TI cruvi]0sm. �16n, co<; ano8s1ms1 TI nsipa, tinots ev Tl1 81anMcrs1 tTI<; av0promvTI<; Ko1vcovia<; 8ev sivm co<; EK Tll <; cpucrsco<; autou <JUVT11 PTl't1Krotspov wu crxoA.siou. EXPstacr0T1 n.x. 0MtlT1pO<; o tlovmµ6<; wv onoiov sn€cpspev s1<; TI'IV \j/UXtKiJv 81a0smv Km TI'IV vootponiav tcov

av0proncov µia raU1Ki] Enavacrmcrt<;, 6nco<; 5uvT10iJ va crmµancr0i] vfo<; rono<; crxoA.eiou co<; TI 1tPIDTl1 «Ecole Centrale» ppa8U'tspov µswvoµacr0eicra «Ecole Polytechnique» i] «Ecole des Ponts et Km 6crm aA.A.m t8pu0Tlcrav KCl'ta TI'IV snoxi]v sKsivriv un6 TI'IV sni8pacr1v 'tOU Monge, µaA.­ A.ov npocop1crµ€vm 8m TI'IV napacrKsui]v av0proncov 'tCOV scpT1pµocrµ€vcov smcrTI'lµrov. Ta npoypaµµma 61..cov 'tcov anavmxou avaMyou cpucrsco<; crxoA.sicov cp€pouv fat cri]µspov TI'IV crcppayi8a 'tCOV eK1tm8sun­ Krov wu'tcov t8puµa'tcov. Enicrri <; 5uvaµs0a, xcopi<; icrco<; va 1)1tUP�TI Kiv8uvo<; 81mvwcrsco<; U1t6 µ€Uo­ v'to<; tcr'top1Kou, va icrx;upm0roµev 6n 'ta Eupconai'.Ka crxoA.sia Tll <; µE<JT)<; EKnm8cicrsco<; avayov'tm acp' ev6<; 81a 'tcov crxoA.sicov Tll <; Avayevvi]crsco<; ev l'taA.i­ a, anva unfoTI'lcrav TI'IV sni8pacr1v 'tcov sK Kcovcr'ta­ vnvoun6A.sco<; EUT]vcov 8t8a<JKaA.cov au'trov, acp' s­ 't€pou 8s 8m 'tcov crxoA.sicov 'tou Busav'tiou s1<; 'ta crxoA.sia Tll <; AA.s�av8p1vi]<; snoxt1<;, 'tcov onoicov 8u­ vmm va 0scopT10d>cr1v an6yovo1 · sivm 8s cpucrtK6v 6n cl<; 'tCl teUAsutaia tauta 'ta Ma0T1µanKa 0a Ka­ teixov npcotsuoucrav 0fo1v, acpou TI rscoµstpia napa wt<; 'EUT1crtv s0scopsho, Km 81Kaico<;, co<; TI µ6VT) t6tE tEAslCl smcr-riJµTI · aAA.co<; te Km 'tO 6voµa au't6 wuw µaprupei 6n m Ma0TlµanKa anstsA.ouv TI'IV K1lp1av µa0T1crtV Km co<; sK 'touwu K1lp1ov µa0Tlµa. TsKµi]p1ov T11 <;, co<; s1pi]tm, µsyaA.TI<; <JUVT11 PT1ttK6Tll to<; tcov crxoA.sicov sivm Km to sni mrova<; aµsta­ PA.Tltov tcov npoypaµµatcov Tll <; 818aKtfo<; UAT1<;, napaT11 pouµevov navwu, i8ia 8s ev AyyA.ia, 6nou TI fscoµstpia 81aM<JKstm an' su0sia<; an6 w Keiµs­ vov wu Eutlsi8ou.

Chausses»,

EYKAEIAH:E B ' 104 T.4/22


f?W.1. tO l , 0: :IHVI:IV)(,\:il

-odu AC!JAD)ll AC!J1lt9nrf i\001 �)ltct Soo30<)."( Sltl mg umiA.13gndnu Jlt3 'Slp..nn S(,tXotd3lt Smrf l}. SnJd13rfoo3J Sltl noJD"(Dd>3)l S9A3 ADJ"(D)lDng1g Altl mg Alp.. lt9mi Ao1 l)IAXno t3J1)lrf1013 nA Slp.. W..Lt0n)l o oo]Jrf oA 01nAc;i.glt ne ·

·Aod31 -9001d3lt m)l i\Od31<}XD1 13J1)ldct0)l i\01 l)IW 'A<)lClD J310ltOAD)ll t\3g 'c;i.01lt9nrf no1 AOd?d>mgt\3 01 J3At)l t\3g SnJd0030 Sl)ldlt? Sltl StOC!JM Lt m)l S1oroA9rf ltArf -oun H ·Sndg?A."(V Sltl m)l Sn1d13rfoo3J Sltl nrflt91)lrf 01 S13 AC!J)ltmrf Lt0nw i\001 ADJ"!D)long1g Altl 1)11D)l c;i.01 -lt9nrf no1 S10�01)1 Lt So1ltl1ndnun mAJ3 u9 C!JAOd<J> "DJd0030 1)ldlt? U m)l 10lt -<).1 10 i\(\OA.JAltDlD)l St)ll)ITIOlt SC!JXCllong ADJOltO Altl 'A0011)lrfA.ndu Aoo1 n1ono Lt t3A.cpd>mg Di\ 310lt?gno 310 -C? Soo1c;i.o m1�01)lg1g Di\ U"!<). Lt A01ltlJndnun mAJ3 ·ltl1)11ono"lltD mAJ3 S1?13g9un Lt ClOJOltO ClOl '( O<).g A9rf 91dn i\01 1)111))1 AOA?rflt?nlt ClOl AC!Jrf)ln Aoo1 So0lJ."tu 01 Sodu m1c;i.001 c;i.01nn AC!Jdg3 Aoo1 So0lJ."tu 01 1)11D)l AoA?rf lt?nlt nodg?ct"!Olt 31ou

-l}.gno10 AC!Jd>ndo)l Aoo1 So0lJ."!lt 01) i�1n3 no1 nrfltd -(!)30 01 i\D}d13TI03d310 i\Ul St3 m13JJA01 Di\ Slt!>Jlt3 ·Aoo1lp.. -ooou AooA3rf 9]monodnu 310101)1)13 AOOl St3D1)110mg m m1AC!Jd0030 Di\ 'DJdm)lCl3 m13J1)110ClOdDlt Sl)ll)IOO '3101/\l)llt i\D}"tll)lOl)gtg Dl13lt?13rf Altl St3 m)l 'i\0030 -7)11omg i\001 Jlt3 c;i.01lt9nrf no1 l}.Xooodu Lt m1n10Jd>3 DA Sood?1tmg1 Soo"l9 nrf ltloc;i.o A<))l1d13rf 01 m13)1!)1)lg -tg ClOlt<) Cl0J3"l0Xo <).0)lli\UTI3 no1 <).OlctD ,ltD 13lt?dlt 31011\l)llt ·x ·v . AC!J1U0Drf i\001 l)ldDlt i\0011)lrfA.ndlt i\001 Soo31h.l}."l\1AD Snd?1ndn3 Sooltl)l)l ADJA.dnotrf ltg A<)lDt\(\g 01 1)11D)l Alll St3 DlAOTil)lgrf no m)l ndlp..)lndnX DAU A<))llt\3A. Dli\Od?d> Dl<)i\OA.3A. S13 ClOl SD}"(D)lOl)gtg Sltl Sod?rf A9)lultdoo39 01 1)11D)l Sood?11mg1 Su UA?rfm3 Di\ A3rfo]JrfoA Aorftlt<))lO ADJ"l AC!Jforfdnd>3 Aoo1 S91)l3

·norfD<))l oo?? no1 nA3rf9Amd> n1 t\(\Olt?tg torf -9A }O)lUDtilt9nrl u9 'Aod3rflj.D i\0101X1)l"!Cl01 'A3rlod> -?d1 ADJOltO Altl Soo3101u Sltl Jlt3 S91ADlt odu m13JJO -ng 'S3AOrllp..ollt3 10 i\Od3rll}.D A3TiOJJ1DrlltXo i\D}OltO Altl 'notiO<))l <).0)llt\3rl13)lllt\l) ClOl i\(!))113 Lt u9 A3TiOOlt -?"lgndnu DA t3Jt?du t\3g u91v ·Slj.oo] Slj.)lu)lndu Sltl m)l norlo9)l <).O)l1d3100?3 no1 nt\3rl9Amd> n1 Sodu S130 -(!JM no1 S1)l)lUDrf lt9nrl Sm UJJ13Xono Di\ S9AD)ll m1 -n1010n)l 'ADJonrf ltD Altl lt]Jrl0mo nA 3101/\l)llt Al0?0 S13 mA}3 t\3g AOO}OltO i\001 'S13DC!JM S1)l)lUUdoo39 SC?"tlt -n 1)11)lOltD , A JlAD 'Slp.. lt9nrl o Soou9 AOO?ti AOA<Jrf 01 mAJ3 SDJ"lll)l!>l)g1g Sltl Stoi\ne <).311))1 ltlc;i.mo1 mw ·m1J3"l31 ltlc;i.n OOJOltO 001 t\3 AOTI1)lgtd3lt 01 Sodu Aoot\3rf 9]otidnoodu A<JlDt\(\g 01 1)11D)l AC!Jforf dnd>3 , lg Alj.oo] Alj.)lu)lndu Altl Sodu lp..nn m1lt?gAno DA �,t -l)IAD C!JAOdd> mm101dnu 'DJ"(D)lODgtg Lt Sod9d>oudn)l AOTil)lrf ltAJngoun Soou9 'tg1)1TI3 t\3 SooA?rf1d)l3)lfo:s: ·1ndod>mg }D)llltOl m ltlh.9un A<).09d>lt"! DA A<)lDt\(\g mAJ3 t\3g n1d13rfoo3J Lt Soo Alj.d>dorl Altl noJA.nu 0091 Somrfl}.9nrl DJ"!D)l!)Dg1g ltl lp..nn t\3 1?TID 'nJd>ndA. -003J Lt AOJO Somrfl}.9nrl 1Xno nnn)long1g lt1 t\3 310(!) 'SnJXdnug: Sltnl)I Sltl l}. Sl)llrf Sltl i\<))ll"l(\ i\<))lUU0Drl 01 9un DJ3rf ltD no91 St3 A0030<)ltCllt\3 m)l i\00301)110 -ndnu Soo3Jh.9un 9un 13d?d>mg 'mAlJ.0V m mJO 'Soo -3"l<Jlt<tO"!DA.3rl Smrl A<))lt"ln A<))lUlt9nrl 01 u9 ntiA.13g -l)ldnu AoA?rf1d)l3)lA.no A3 A3rf oog1)1"! DA mg ·x ·u S?AD<I> -odu mi\}'3 ·Sn}"(D)l!)Dg1g Alj.d>dorl i\OltCll<)3d310 Alp. -nn Altl <).Oli\Dlt 13X?dDlt A3Ti0"!?0U 'i\0011)lrltindfodlt i\001 i\O}Dlt\3 01 i\0"!9 , dnlt AD 'S?gD"tgllt3 Oll}. D0 m)l JDl<tD m <).Oli\Dlt mi\}3 t\3g 'DJ"!ll)lODg1g U m1J3"l31 Sn , d>n 'm)ll}.eAno m 'Al!A?rln131)l3 <)."!Olt tX9 'Srna Lt ·X·u Soo 'ltti9)ln ADdC!JX St3 m)l So1AOTI1)lg1d3u no1

A1ondgJlt3 Altl SC!J)lUon)l,{,nAn m1n101d>n Slp..nn l}.,torl -dnd>3 ltl A3 DJ"!D)l!)Dg1g Lt '119 Su m1l}.rf net\3 DA mA -}3 �A.l)IAD S101c;i.01 Sodu ·c;i.01lt9nrl no1 A1oud1)11D)l ADd?1<t"!D)l A<)lDt\(\g 01 1)11D)l 01 Sodu SD}"(D)lODgtg Sltl So1nti<).3Alt no1 Jd3u Lt Slt"!<). Sn?1)lng1g Soow<).3g -mlt)l3 SltD?rf Sltl StOJ3"tOXo Sto1 A3 Sltl A0011)lrlrlnd,t -odu i\001 Jd3lt l}.9©3)10 Di\ <tOA?Til3)l0dlt 'i\<)TI"(D0 -d>o Odlt St1 ltX? Di\ AOTil"t?<f>OO ADJlti<)t\3 D0 SDJOltO Sm 'm?gl m SJnrlrlnd,t SJD)llt\3A. t\3 mAJ3 m1c;i.moi ·Ao -Jg A<))lU)lDdlt Ao1 mg AC!JAU AOOJgo<h3 Al,tXodnu Altl S13 ntil)I AOOlt?"tgoun 'S9)luood>dorl Soo}d(\)l mAJ3 Soo1 -c;i.o S9uo)lo o AOJlADAno .L ·nd?1<t''(DA.3rl 31oul}.gooouo mAJ3 nJA.o"tnAn Lt nou9 'm3)l<).V l)l)lU)lndu n1 Su llD?dm?3 AD '1)ld)l1ti ADJ"l mAJ3 'Aoo1 S130C!JM l)l)lUDti -Lt0nw m S13 Sn1 i\Od31<).gndg i\(\00l}.10ltOtiloltdX n0 S3AUJO 'i\001\}3)13 i\(!)1U0Drl i\001 DJfo"!DAD Lt ltti9)lD l}.1 -nn m)l . AC!J)lUntilt9nrl Aoo1A<JTI3rf lj.ro)londnu Lt mA -}3 A3g Soo30<).3gmu SlOJ3"tOXo S101 A3 Slt1 S9uo)l!) O ·Sltlc;i.n1 Sltrllp..o -mg: Sltl Soo3?<).lltDAD nod9d>oudn)l Sltl 'AC!J1lt9nrl i\001 Snpn"llt Sltl nodC!JD Sooltl)l)l no1 m)l noA9dX Soo -31h.J3TI3 Sltl )13 Soo 'AOlDA<).gn 01 mg c;i.orlo1A.oy <).O)l -uood13uy no1 Sl}.A.00A.no13 Slj.)lunrlltlono AOOJ3)lnv AC!J)lU)lndu Aoo1 S13?1?1 Sn1n1�31 Sn1 St3 A101)11 Altl C!Jd0030 i\Ot\(\gA})lllt3 AOTil)lf'\l . Al}.OOJ Alt9lj.i\no Altl S13 SC!JA1d3tilt9n)l Su 1)11/\DltD ADJouo Altl 'Soowlp.. -dnAno Sltl moAA? Lt ·X·u mAJ3 ltl<;imoi ·m1uo10A10)l i\}3lt13 A<)g3Xo i\Od3tilj.D i\DOltlAlp..D)l Dtilp..)l i\<)i\10)1 <).Od)lDti <)ltD mOl)llDDll))l S3i\U}D 'AC!JlOi\t\3 i\OOd?lOO -31\ i\D}"(D)l!)Dg1g Altl 1)11D)l l}.A.00A.no13 Lt 01}3lt0)1!)3ltl) 'Slj.1fo mAJ3 13d?rl A3 Sul}. 'Sltl<).Dl Soo3olj.i\Dt Sltl mv

{5oXg3J. 0(1.3rlgol.ltodJ/. OUJ 3rlYJ.O<J.3l.OOrllt9 aoJ/. vrl.OVW<JJ/.V OJ. J3() aOyO)IV1

·1o)lunrllt9nrl lOtiltD1)11g m)l An?1dlp..03un SDJOltO Sn1 'JD)luo1d31003A S1301)11 'DJ"l"!DJ m)l DJAnrfd3J A3 n1g1 'Anolt9l}.dltl3dnu ADJ13noo)l13 ADJD1�31 Altl 1)11D)I ------ SI13IJ.V:W3H.LV:W O:WOH

------


-------

HOMO MATHEMATICUS

PA.11µfrrrov crxenKcOV 7tPOs to ev Myro Ke<paA.cx.tov KCll ev avarKfl µe 'tflV ofooucra Poiieetav ii 'tflV cruvepya­ criav wu Kae11r11tou. AA.A.a oev mcrteU(J) on Mvatm va yivetm OtOaoKa­ A.ia trov Mae11µanKc0v rocpeA.tµos Km anoteA.eoµa­ nKiJ aveu 'tfls Moeros acpeovrov aoKiJcrerov Km Ka­ taUiiA.rov npoPA.11µatrov uno trov µae11tc0v. Eav oe o XPOVos ota tllv oioaoKaA.iav trov Mae11µattKrov eeropeitm OXt £7tapKfJs iva acrKcOVtCll Ot µae11"tai e7tapKcOs, ea iit0 (JJ(07ttµotepov Va eA.attroeei 11 7tp0s OtoacrKaA.iav 7tpooptsoµBvri uA.11 iva OtOaOKCOVtm oA.tyotepa µev eeropiiµma Km µtKpotepas eKtacre­ ros eecopia, aA.A.a apKetai acrKfJcrets. 'Exro a7tOKOµi­ cret 'tflV evronrocrtv ott ev EA.A.not napaµeA.eitm 11 acrKf1ots trov µae11trov ets w va A.oyap1asouv ano µviJµ11s KCll va Mvavrm va l':KteA.root anA.as apte­ µ11nKas npa�ets ano µviJµ11s · Km touw eivm voµi­ sro ev Ol>OlcOOes eMttroµa 'tfls OioacrKaA.ias. Ilpfaet va e�aCJKfleii o µa0fl"tfJs ano trov ta�ecov wu EA.A.11vtKou crxoA.eiou, 07t0l> OtOUCJKl':tCll 'tllV Ap1eµ11nKiJv, iva AO"(aptas11 ano µviJµ11S Km OXt Va ypa<pll anA.as acpmpfoets ii noUanA.cx.macrµous eni napaoeiyµan. Enetoii avecpepa 'tflV Apteµ11nKiJv, eupicrKro TilV eu­ Katpiav va cr� yvcopicrro on, cos enapa"tfJp11cra, to np6ypaµµa tcov Ma0flµanKrov eivm pepapuµevov noM µe w µae11µa 'tfls eerop11nidts Apteµ11"ttKTJs · Bepairos 11 Ap1eµ11nKiJ eive a<petfl pia trov µa911µa­ nKrov emcrtf1µrov · ota 'tfls eerop11ttKfJs Apteµ11"ttKTJs, ev euputepa crri µaoia nA.eov, ave1troxe11 Km 11 eero­ pia trov CJUVap"tfJcrecov, eivm oe 11 Ap1eµ11tt1CTJ 11 11yens trov µae11µanKrov tlaorov. A)..).JJ. wuw noM otacpepet ano w Kata nooov npe­ nei w µae11µa 'tfls eerop11nKiJs Apteµ11nidts va c5t­ McrKf1tm ets ta ruµvama. �ton nav o,n evvoei o µae11µanKOs oev eivm l':UKOAOV oute Ol>VCl'tOV va evvoiicret 0 µae11"tfJs 'tOl> ruµvaoiou, oev eivm oe Km OKomµos 11 OtOaotlia tOl> µa0iiµat0s tOO'O eu­

pecos, acpou eK tu)V µae11trov 'tOl> fuµvaoiou eA.ax1crt0t ioros ea CJ1t0l>Oacrouv Ma0flµanKa, aUa KCll autoi ea µopcpro0ouv ets t0 Ilavemcr"tfJµtov etOtKcOs. �ta 'tOUtO eiµm 'tfls yvc0µ11s Ott 7tpe7tet va 7t£ptopt­ oeii 11 uA.11, iitt� otoa(JJ(etat ano 'tflV eecop11nKiJv Apteµ11nKiJv e� ta A.iya anapm"tfJtros avayKaia µ8P11 au"tfJs, va ev1crxueii oe ot>tro 11 OtoaoKaA.ia trov µae11µanKcOV Til s reroµetpias Km 'tfls AA.yeppas acpou Km 11 UAll autrov 7t£ptopicre11 CJUµµetpros, ro­ ote va Mrovtat tKavai acrKiJcrets uno trov µae11trov. TeA.os eupicrKro A.iav pepapuµevov to 1tp6ypaµµa trov Mae11µattKcOV Ota ta AuKeta. Km auta oev npoKettm va napaoKeuaoouv µae11µanKous, voµi­ sco. AA.A.a 1Cl>piros npoKettm eKei va cpoi"tfJcrouv oi µeAAOVtl':s Va £1tlOoerootV et� £1ta'Y"fBAµata 11 e� e­ mo"tfJµas CJUvoeoµevas otevros µe ms eettKas em­ cr"tfJµas. �ta 'tOU'tO 11 uA.11 tCOV Mae11µanKcOV Ota ta crxoA.eia auta voµisro on 7tpi7tet va nepixet 7tOAAas ecpapµoras ainves eupicrKovtm ey"(Utepov µe tov piov 'tOl> avepro1tOl> Km 7tp0� tO µeAAOV £7tayyeA.µa 'tOl> µae11wu trov oxoA.eicov O.l>tcOV. Outro n.x., evro ea toxupiset0 KOVeis on ets 'ta AUKeta ea OtOaCJKfl­ tm 11 eerop11nKiJ Apteµ11nida euputepov, ey© voµi­ sro on £Ket aKpt�cOs ea 110UV't0 Va Ael'lf11 evteA.ffis 11 otoaoKaA.ia wu µaeiiµmos wuwu ro� eA.axmta crKomµos. Tauta 7tpe7tet VO excoµev l>7t0'1f11 11µrov, roote av o­ V'tffis ta npoypaµµma eivm empapuµeva ets pae­ µov roote v' a7tOKAet11tCll 11 <ruµ<pcOVIDs 7tPOs 'tO ill s avco nveuµa OtOa(JJ(aA.ia, npoteivco oncos 11 Etmpeia µas KataPaA.11 naoav napa t:Ots apµooiots 7tp0CJ7ta­ eetav 1tPOs anA.07toi11oiv autoov. Ev K11cptoia, Maios

1924»

{7C11Y �: w Keiµevo aVTO µac; w 1Capaxwprwav, ave�O.pTYJTa 0 ivac; a1C6 WV illo, Ol m]µavw.:oi uvva&A<pOl EaKYJc; A11COpt5t(YJc; (7tp6et5poc; wv "Movueiov KapaBwt5wp�") Kl o IlavayidJTYJc; Xpov61t'ov).oc; (yvwcrr6Tepoc; we; "Ilapµevi'5YJc;" 1j, Ka< 'illovc;, we; "NdJe TYJc; EvKki&1ac; frwµeTpia<;"))

II.

"EvKJ.d&ia TuuµeTpia, ayaTC'l µov "

Dnros 1tpoavaneiA.aµe (CJ'tO 7tp0fl'YOUµevo ), ano 'tO teUXOs 'tOU'tO, ea OtaKO'lfOUµe 7tpooropt­ va 'tfl 011µocrteuCJf1 yeroµetptKcOV evvotcOV Km avt' aut0u ea 011µooi£Uouµe cre tpe1ts CJUVBXEIBs, onouoaia eupiiµma ano 'tllV npcotoru1t11 epyacria, wu crri µavnKou CJUvaMA.cpou h,. Ap"(Up11 Kavteµip11, nou exet titA.o «Ilros µewtpenetat 11 Emnec5oµetpia cre :Etepeoµe� tpia» (Aeiiva ). :E11µetrovouµe on Otatflpouµe 'tfl crUVta�ll Km 'tO "(AroCJotKO t8iroµa a •Xl'ill• t r 'tO\) 7tprotO'tl>7tOl>, oµros "(ta tEXVtKOUs Myous oev Otatf1pouµe 'tflV opeoypacpia 'tOl>. A' 1CpoJ.ey6µeva

.

1971

0.1CO TOV 1CpoJ.oyo WV avyypa<pia : «l:K07t0s 'tfls 7tapOUCJfls epyacrias eivm 11 napouoiams Km 11 unooe�ts tp07t0l> anA.ou Km cracpous, Ota 'tOl> 07t0lol> nacra 7tpotaots 'tfls Emnec5ou reroµetpias OUVCl'tCll va anetKovtoeei Km otaronroeei cos avticrwixos

7tp6taots tlls fecoµetpias WU Xropou. EK wuwu Kaeicrtatm cra<pes, on 0Mtl11pos 11 E7ti7tEOOs reroµe­ tpia µeta trov �troµatrov. trov eerop11µatrov Km trov npoPA.11µa-

EYKAEIAHI:. B ' 104 -r.4/24

B

crx1'i11a

2

r


-------

HOMO MATHEMATICUS

1

--------­

'tCOV nii; ouvcmu va anEtKovtcred Eti; wv fEcoµE'tpt- 'tpia wu Xropou» Kov Xropov 'tcov 'tptrov 8tacr'tacrEcov coi; µia f ecoµE0.7CO rn; ,, Em:!;11 y1j aw; f(at l:vµpoJ,1apo1) c; ", ro v avyypa<pia :

epyco 'tOU'tCO EKneEµtvcov, 8i8oµev mi; KU'troei E1tE�T]yi]crE1i;: Dnou ava<pepoµEv "Eueuypaµµa 'tµTjµCl'ta" eEro­ pouµcv on mum ava ouo opisouv opeoyrovtov. o) Ta npicrµam eEropouv'tm roi; opea npicrµam, 'trov onoicov m aKµai ava ouo opisouv opeoyrovia Kai ot K'6A.tv8poi eEropouv'tat coi; "opeoi K'6A.tv8poi", 'trov 01tOlCOV Ot U�OVEi; ava OUO opisouv opeoyrovta. E) At e8pat 'tCOV 1tptcrµa'tCOV ovoµasovmt µE 'ta ypaµµam 'tCOV aKpcov µtai; 8taycoviou nii; e8pai;. To µfapov '!OU Eµpa8ou nii; e8pai; cruµpoA.isE'tat µE E Km Ka'tro 8E�ia 'tou E ypacpoµcv m ypaµµCl'ta µn; 8tayroviou nii; e8pai;.

«Ilpoi; nAT]pEcr'tepav KCl'tUVOT]O'lV 'tCOV ev '!CO

aT) �iE8pot yrovim wu npioµawi; eEropouvmt m OiEOpot 'tCOV napanl...EU pcov EOprov auwu . » TeA.oi;, o cruyypacpfoi; µai; Ef;T1YEi ncoi;, yta va naµe ano 'tTJ 81cr81acrmni Euilii8Eta fEcoµE'tpia npoi; 'tTlV tptcrOtUO''tCl'tll , apKd va avnKCl'tClO''!TjO'OUµE 'tTl Ae�TJ "crri µdo" µ& 'tTl Ae�TJ "rueEia", 'tTl Ae�TJ "EUeEi­ a" µE 'tTl Ae�T] 11E1tl1tEOo", 't11 Ae�T] 11E1tt1tEOO" µE 'tTl Ae�T] 11 0''tEpEo", 'tTl Ae�T] "µi] Koi;" µE 'tTl Ae�T] "Eµpa86", 'tTl Ae�T] "EµpaM " µE 'tTl Ae�T] "oyKoi;" , 'tTl Ae�T] "nl...Eupa" µE 'tTl M�TJ "e8pa" .

y)

..

7Capa&iypara

lo. c5urc5uiO'TaTI/ EV1clei&1a I'ewµerpia: «'tO a­ epotcrµa 't(J)V 'tE'tpaycOVCOV 't(J)V Kaee't©V 1tAEUpcOV opeoycoviou 'tptyrovou tcrou-rm npoi; w 'tE'tpayrovov 'tTli; U1tO'tEtVOUO'Tli; aU'tOU» (cr:x. l ) rp1ac5ui.O'rar'1 EV1cleic5e1a I'ewµerpia: «W a.epot­ crµa 'trov 'tE'tpayrovrov 'trov Kaefarov EOprov op0oyro­ viou npicrµmoi; tcrou'tat npoi; w 'tE'tpayrovov 'tTli; U1tO'tEtvOUO'T]i; e8pai; UU'tOU» (ax. 2) 2o. c510'c51aO"Tar'1 EvKkic5e1a I'ewµerpia: «'to 'tE­ 'tpayrovov nl...Eupai; 'tptyrovou, TJ onoia KEi'tm aneva­ vn O�Eiai; yroviai;, lO'OU'tat npoi; 'tO aepotcrµa 'tffiV 'tE'tpayrovrov 'tffiV OUO aUrov nl...f:uprov '!OU T]Aa't'tCO­ µevov KCl'ta w 81nA.amov ytvoµcvov 'tTli; µiai; EK 'trov nl...Eu prov au'trov Em 'tTlV npopoA.i]v 'tTli; UUT]i; nl...Eu­ pai; E1ti 'tClU'tTlV»( O".X· 3)

rp10'c5uforaT11 EvKleic5e1a I'ew­ µerpia: «'tO 'tE'tpayroVOV µtai; e­

111. A 11 n) ro !;i:p a n::

Ilocra OEK<lOtKa \jlT]q>ia '!OU 1t XPT]crtµonotd T] NASA;

I V. " 01 <Yv vr.p1<i.wc; r11 c; ar1jl,11 c; yp<i.<fwvv-ep w w v v " I" ()f:µa: flo.VO.)'UOTI/ 011<o vop<i.KOV

~

Opai; opeou 'tpt')'©VtKou npioµa­ wi;, TJ onoia KEi'tm anevavtt o­ �dai; 8tt8pou yroviai; auwu, t­ crou'tat npoi; 'tO aepotcrµa 't(J)V 'tE­ 'tpaycOV(J)V 't(J)V 860 UAA(J)V Ebprov ClU'tOU, T]Aanroµtvov KCl't6. 'tO 8nA.amov y1voµEVov 'tTli; µ1a;i; EK 'trov EOprov au'trov Eni 'tTlV npopo­ A.i]v 'tTli; aUT]i; eopai; E1t' auTftv» (cr:x.

A

I

I I I I

4)

A

[Iw ucoµevo Tevxor; 01 ano'5ei,e1r; Twv napanavw napab&17µaTWJJj

[Y/ mcavrrwrt

<no

OXl\l'G

3

r

I I I I I

�}.. 1 A

/,0, , �

,

'

- - - - - -

OXl\l'G

4

r

'l'BAOc;' 'l'Y/c;' ovj'A.ytr;]

OT]µocrrnuouµE to OEU'tEpo µtpoi; wu w µepoi; Ei:xaµ& OT]µocrrnuoEt crw npomouµevo cv8iacpepovwi; crri µEtroµawi; nou µai; fo'tEtAE o cpi- 'twxoi;). Iltcr'twouµe nroi; dvm :xpi]mµo va �avaod­ A.oi; 'tTli; cr'ti]A.T]i; Ilavaytffi'tT]i; OtKovoµaKoi; (w npro- 'tE m op1crµ1Ka crtot:XEia wu nprowu µepoui;. 7CpoJ.<701wva

c5evrepo µipor;: )..tjµµa 1 '

Ilavco cr'tti; aKµei; ox,oy,oz, 'tptcropeoyrovia� 'tpiE8pT]i; yroviai; o.xyz, naipvouµE 'ta crri µEia A,B,f av'ticr'tot:Xa. To'tE tcrx\>Et (ABf)2= (0Bf)2+(0Af)2+(0AB)2 (cr:x. 5) aTC0&1�'1 Ai; dvm M TJ opei] npopoA.i] wu 0 crw EninE8o (II) '!WV A,B,f. To'tE TJ AM npoEK'tEtvoµf:VTJ 'teµvE1 Ka9Em TIJV Bf crw M 1 (acpou TJ Bf Eivm opeoyrov1a crni; EUeEiEi; OA,OM wu Emne8ou OAM). ME Pacrri 'tO eE©pT]µa 't(J)V 'tptrov Ka9farov ea exouµE OM 1 .l Bf, apa T] � 01= � AM 1 0 ea dvm T] ClV'ttO''totXT) Ent1tEOT] 'tll i; oi­ EOpT]i; 'trov Emne8cov (A,B,f),(O,B,f). Ano w opeoyrovto, crw M, 'tpiyrovo M1MO e:xouµe EYKAEIAHI:. B ' 104 'T.4/25

A

x


-------- (--J (( ))

HOMO MATHEMATICUS

2 2 MM 1 MM 1 MM 1 2 auve1= i) auv e1= = 2 ( ) OM 1 OM 1 OM 1 Ano to opeoyrovio (crto 0) tpiyrovo M1MO, exouµE (OM1)2=(MM1).(AM1) naipvouµE 2 ( MM 1 ) (MM, ) 2 m>v e,= ( MM 1 }( AM 1 ) ( AM1 )

1

(2)

Ano (1),(2)

( )

5

Ano (3),(4),(5),auvexouµE 2 e1+ auv2 e2+ auv2 e3= _

EnEtoi) m ei. e1, e3 Eivm m avticrLOtXE<; EninEoEc; yroviEc; tOOV oiEoprov nou O'XT)µatisEl to EntnEOO (A,B,r) µE ta EninEoa (y,o,z),(x,o,z),(x,o,y) avti­ crtmxa Km ta tpiyrova OBr,oAr,OAB, Eivm npo­ poA.Ec; tou ABr crta EninEoa (y,o,z),(x,o,z),(x,o,y) tl'J<; oocrµEVT)c; tpIBOpT)<;, ea EXOUµE:

(3)

=

(MM1 ) + ( MM 2 ) + ( MM 3 ) ( AM 1 ) ( BM 2 ) ( rM3 )

( )

6

------

(OBr)=(ABr)auve1. Dµota (OAr)=(ABr)auve2 Km (OAB)=(ABr)auve3 Tic; tEA.EutaiEc; uwrovouµE crLO tEtpayrovo Km nc; npocintOUO'E<; tO'Otl'JtE<; npocreetouµE Kata µEAT) Kl EXOUµE: (OBr)2+(0Ar)2+(0AB)2 ( ) =(ABr)2(auv2e1 + auv2e2+auv2e3)

H(

7

)

7 , µE(0Br) pacrri triv (6), oivEt triv anooEtKtfa 2+ (0Ar)2+(0AB)2 =(ABr)2

V. "A 1Ca vr11a11 aw «A vro w �ipare;»

fao facebook, aA.id>craµE ma EVotmpepov O'TlµEiroµa tOU auvaoeA.cpou Xpi)crLOU Aotsou, µE to onoio a­ navta crto EprotlJµa auto. �riµocru;uouµE µepoc; au­ tou LOU O'TlµEtroµmoc;. « .... ApayE, nocra 'l'TJ<pia tou n XPTJcrtµonou;i TJ NASA crtouc; unoA.oymµouc; tl'J<;; To EprotlJµa auto teeTJKE crtov LOV EmKEq>aA.i) µrixavi­ Ko tTJ<; anocrLOA.i)c; Luµcprova µE tov TJ NASA yia tlJV otanA.avrinKT) nA.of1rTJO'TI t(J)V OtaO'tl'JµonA.oirov tl'J<; XPTJcriµonou;i ta nprota oEKaotKa 'l'TJ<pia tou n:

12750 xiAi6µEtpa. To crcpaA.µa nou npocintEt otav unoA.oyisouµE to µi)­ Koc; tl'J<; nEplq>EpEta<; LOU KUKAoU µE au'ti) tlJ otaµE­ tpo XPTJcrtµonoirovtac; µovo ta 15 nprota 8EKaotKa 'lfT)q>ia tOU n, tcroutm nEpinou µE oiaµEtpo EVO<; 2. H OiaµEtpoc; tT)<; rric; Eivm

Tl1

Marc Dawn. Rayman, µtKpou µopiou! Marc Rayman Kt ma tEpatrooEc; napaoEtyµa: av eEropi)crouµE 6n TJ aKtiva EV6c; EuKA.EioEiou O"Uµnavtoc; Eivm 46 otcrEKatoµµupta Etl'J cprot6c;, t6tE n6cra 'l'TJ<pia tou n 15 3.141592653589793 npEnEl va XPT)crtµonoti)crouµE yta va napouµE tl'JV Ilocro aKptP Eic; Eivm m uno�oyicrµoi µE au'ti) tlJV nEptq>EpEta LOU citlou µE aKtiva 46 otcrEKaLOµµu­ npOO'EyylO'TI; H anaVtlJO'TI OtVEtm µE 3 xapaKtlJpl­ pta Etl'J q>rotoc; µE crcpaA.µa 00'0 TJ otaµEtpoc; tOU a­ O'tlKa napaoEiyµata: toµou tOU uopoyovou; H anaVtlJO'TI Eivm Otl XPEta­ 1 . To mo anoµaKpucrµevo mto rri otacrtT)µtK6 sovtm µovo 39 i) 40 OEKaOtKa 'lfT)q>ia LOU n ! crKacpoc; Eivm to 1. BpicrKEtat 20 tptcrEKa­ IlotE 01 µaeriµanKoi unoMytcrav yia nprotlJ cpopa toµµupta xiAi6µEtpa µaKpta. Ac; eEropi)crouµE evav ta 15 nprota 'l'TJ<pia LOU n, nou XPTJcrtµonotEi ri citlo nou EXEl roe; aKtiva au'ti) tlJV anocrtaO'TI i) NASA crtouc; unoA.oyicrµouc; tlJ<;; OtaµEtpo 40 tptO'EKaLOµµupta XlAlOµStpa. Iloto Et­ Ilptv an6 423 XPOVta. To 1593 0Uav06c; µaeri­ Vm LO µi)Koc; tl'J<; nEptq>epEta<; autou LOU citlou; µattK6c; Adrianus Romanus Kataq>EpE va unoA.oyi­ IIoUanA.acrtasovtac; tl'JV oiaµEtpo LOU citlou Eni O'Et ym nprotri cpopa ta 15 oEKaotKa 'l'TJ<pia LOU n, tov apieµ6 n crtpoyyuA.onmriµevo crLO 150 'l'TJ<pio, XPTJcrtµonmrovtac; ma EyyEypaµµevo noA.uyrovo nou onroc; ypaq>Etm 1tl0 navro, TJ ttµi) tl'J<; otaµetpou nou EiXE navro an6 100 EKaLOµµupta nA.Eu pec;!» Voyager

3.

tlJ

o

ea npOKU'lfEl ea EXEl a7tOKAl0'11 mto tT)V nµi) nou ea npoeKUntE av µnopoucmµE va noUanA.amacrouµE µE tl'JV aKptPT) ttµi) tOU n ea T)tav EKatocrta! ME A.iya Myta to µi)Koc; tl'J<; nEptq>EpEta<; EVO<; citlou µE DtaµEtpo tplO'EKaLOµµupta XtAlOµEtpa ea i)­ taV Meoc; Kata EKatocrta, 6cro to µi)Koc; LOU µi­ Kpou oaKWAOU crac;.

40 4

4

[1t11ril :

https://liveyourmaths.com/2 0 1 7/02/04/%cfl>/o 80%cfl>/o 8c %cfl>/o 83%ce%b 1 %ce%b4%ce%b5%ce%ba%ce%b I %ce o/ob4o/oce%b9%ceo/oba%ceo/oac­ %cfl>/o 88%ce%b7%cfl>/o 86%ce%afl>/oce%b 1 %cfl>/o 84%ce%bfU/ocfU/o85-%cfl>/o 80%cfl>/o 87%cfl>/o8 l %ce%b7%cfl>/o 83%ce%b9%ce%bc%ce %bfl>/ocfl>lo 80%ce%bf%ce%b9%ce%b5-2/]

EYKAEIAHl: B ' 104 't'.4/26


��........ .. ..,,;,.,.,__ _ .

Ta�fi :

Ym;'60l>VOt

A' AYKEIOY

Ta;11�: Xp.

Aa<;:a12i811c;1 Xp. Tcrt<pUKH<;

r.

Ka!crouA.11c;

E11avaAn11r1 Kt<; AaKf\0£ 1 <; AAyE�pa<;

A'

AO'KflO'fl l : a) Av x + y + z = va mroodl;tTt oTt :

0

Kat

xyz * 0 TOTt

1 1 1 + 2 2 2 + 2 2 2 =0. 2 2 2 x +y -z y +z x z +x -y Av x · y · z = l , Ka\ l + x + xy * O TOTt va _

p) mroodl;tTt OT\:

x + y + z =1. 1 + x + xy 1 + y + yz 1 + z + zx 1 1 1 y) Av x · y · z * 0 Kat - + - + - = 0 , TOTt x y z y+ z z+ x x+ y . a1tOOttl;tTt OT\ : -- + = -3 . + z y x ----

--

va

--

: x + y + z = 0 => x + y = -z => (x + y) 2 = (-z) 2 => z 2 = (x + y) 2 => x 2 + y2 - z 2 = x 2 + y2 - (x + y ) 2 = -2xy :t: O Oµoiroi; y2 + z2 -x2 = -2yz :t: O, z2 + x2 -y2 =-2zx :t: O . Me avnKmacrracrri crro npffiro µEl..oi; TIJi; sTJtoUµf:Vll i; crxscrri i; sxouµe: 1 1 1 + 2 2 2+ 2 2 2= 2 2 2 x +y -z y +z -x z +x -y 1 1 1 1 x+y+z -+ -- + -- = · · · = - - · -2xy -2yz -2zx 2 xyz = - .!_ · _Q__ = 0 . 2 xyz 1 p) 'Exouµe : xyz = 1 => xy :t:. 0 Kat z = - . Apa xy 1 1 x xy l l + y + yz = l + y + y= l + y +- + + :;t O Km xy x x 1 xy l x l + z + zx = l + - + x = l + - + - = + + :;t O xy xy xy y xy Me avnKmacrmcrri crto npffiro µEl..oi; TIJi; s11touµf:V11 i; crxscrri i; sxouµe x y z = = + + 1 + x + xy 1 + y + yz 1 + z + zx x 1 x xy = + + =1. + yx + 1 + x + xy 1 + x + xy 1 + x + xy 1 + x + xy , : -1 + -1 + -1 = o => yz + xz + xy = o y) Icrxuei xyz x y z Aua11 : a) Icrxl)e1

----

---

Kovoµ11� ApTt

=> yz + xz + xy = 0 =>xz+xy= -zy=>x( z + y) = -zy => z+y = - � . (1) . Oµoiroi; an6 TIJV iota crxscrri x x z + x zx x + y xy , f3ptcrKouµe : -- = --2 (2) , -= --2 (3) . z z y y Me np6cr0ecrri Kata µEA.11 t(J)V crxfoerov (1), (2) Km y+z z+x x+y z:y zx xy , (3) exouµe: -- + -- + -- = --2 - -2 - x y z x y z2 3(z:y)(zx)(xy) (z:y) 3 + (zx) 3 + (xy) 3 = = 3 (xyz) (xyz) 2 3(xyz)2 = 3 . (Icrxl)et TJ np6tacrri : Av a+ f3+y = O, (xyz)2 tote a 3 + f33 + y 3 = 3af3y ). *

AO'KflO'fl 2: AivtTat f1 1tapacnmr11 :

2 A (x -6x+2 9)(x3 -81x) x - 3x

·

a) Na pptiTt yia 1t0lt� T\J1E� TOl> x opi�tTat 11 1tapacna0'1] A . p) Na a1tl..o1tot1)ant TflV 1tapaaTaO'fl A y) Na /..:6atTt TflV tl;iaro0'1] A = o) Na \)1t0Ao"(latTt TflV 1tapacna0'1] A av TO

0.

x = (-1)201 7 - (-1)2016 .

Aua11 : a) ria va

opisetm TJ napacrtacrri A npsnei 2 Km apKei: x - 3x * 0 . 'Exouµe: x 2 - 3x = 0 <=> . . . <=> x = 0 it x = 3 . Apa TJ napacrmcrri A opisetm yia Ka0e x e = IR - {0, 3} Km µ6vo · .. p) fta tTJV napacrtacr11 A iaxl)ei : 2 - 6x + 9)(x 3 - 8 1x) (x - 3) 2 x(x 2 - 8 1) A - (x x 2 - 3x x 2 - 3x = (x - 3)(x 2 - 92 ) = (x - 3)(x - 9)(x + 9) . y) fao sxouµe: A = O � (x - 3Xx -9)(x + 9) = 0 � x E {3, 9, -9} � x E {9, -9} . H nµit x= 3

D

-- �-'-----'--

D

Tipocrocrxfl cri; µta EKq>pacrwa'J AE1ttoµepi;ta. fta µta 'tO D, O'tClV Aiµi; O'tt opi�Etm ym Ka0i; x e A , EVVoouµi; 6tt A � , OllMIOi] ocv Eivm Kat' avayKllv A=D. Av 6µro<; 1touµi; 6r1 opi�i;rm ym Ka0i; x e A Km povo yt' auta, EVVoouµi; 6n A=D. •

(Jl)VUPTilcrrt µi; 01'.>vo/...c) optcrµou

EYKAEIAHI: B'

104 T.4/27

D


Ma811Jux'T1Ka y1a 'T'IV A' At>KEio\>

anoppimetm (oev eivm Mcrri ) mpou 3 ie D . &) YnoA.oyisco npoota TilV nµfi tou x. 'Exouµe: = -1 - 1 = -2 .Me x = ( -1 )2011 ( -1 )2016 avnKatacrtacrri tou x <Jt11V napcicrtacrri A txouµe : A = (-2 - 3)(-2 - 9)(-2 + 9) = ... = 385 . AaK11 a11 3 : AivovTm 01 t;1aroat� :

3x 2 + 2(A - 3)x - 2 = 0 (1) Km -2x 2 + 7x + µ - 1 = 0 (2) µE A,µ e 1R .H t;iaroa11 (1) fxt1 avTi8tTti; p�ti; Km 11 t;iaro<Jll (2) txt1

aV'Tia'TpO<pti; pisti;. p) Av

a) Na ppd'TE 'T� T1µti; Trov 7tapaµiTprov A. Km µ.

A. = 3

µ = -1 Kat X p Xz dvm 01 pi�ti; x 2 + (A + µ )x + µ - A = 0 'TOTE :

Kat

'T'li; t;iaro<Jll i; i) Na ppd'Tt 'T'IV 'T1J11\ 'T'l i; 7tapaaTa<Jll i;

A = (3x1 - 2)(3x 2 - 2)

ii) Na l..t>at'TE 'T'IV t;iaro<Jll :

4 4 X 1 + -) X2 I x - 3 + += 0 . (3) (x - 3)2 + (I Xz X 1 X1 Xz Aua11

)2 - 2X1X 2 (x = ... = -3 ' � + _i_ =4 (x1 +X2 ) = 1 + X2 X1X2 X1X2 X1 X 2 = ... = 2 . Me avttKatcicrtacrri tcov napancivco napacrtcicrecov <Jt11V e;icrcocrri (3) txouµe: (3) � (x - 3) 2 - 3 lx - 3l + 2 = 0 Ix - 31 2 - 3 Ix - 31 + 2 Ix - 3 1 = co Ix - 3 1 = co � co 2 - 3co + 2 = 0 co = 1 Ti co = 2 � lx - 31 = 1 Ti l x - 3 1 = 2 � x e {4, 2} fJ X E {5, 1} � X E {l, 2, 4, 5}

0 � }� } =

AaK11a11 4 : Aivnm 11 t;iaro<Jll

:

x 2 - 2(A. - l)x + A 2 - 3 = 0 , A. e JR (1) .

a) Na ppd'TE y1a 7towi; T1µti; 'T'li; 7tapaµi'Tpol> I..

11 t;iaro<Jll (1) EXEl ot>o pi�ti; 7tpayµa'T1Kii; K«l av1ati;. p) Av A < 2 K«l X 1 ,x2 01 OtlO pi�Ei;j 'T'IG; t;foro<Jll i;j (1) 'TOTE : i) Na EK<ppaat'TE roi; (J\)VUP'T'l<J'I To\> I.. 'T� 1tapaa'Taat�: x1 + x2 , x1 x , x + x i , x i + xi . 2 ii) Na ppd'TE y1a 7towi; T1µti; 'TO\> I.. 1axt>t1 :

Ene18fi 11 e;icrcocrri (1) txe1 avti0ew; pise� : icrx()et : 8 � 0 Km S O :Exouµe : � = [2(A. - 3)]2 - 4 · 3 · (-2) = ... = xi + x i = x1 + x 2 • (5) 2 4(A. - 3) + 24 > 0 nou icrx()et yta Kci0e A E lR . iii) Na 7tpoao1opiaE'TE 'Tli;j 'Tiµti; 'TO\) A roan va 1<JXVE1 : x1 (x1 + 2x2 ) + x 2 (x 2 - 2) > 2x1 • (6) -2(A. - 3) => A. = 3 . S = 0 => -� = => =0 Au cn1 : a) fta va txe1 11 e;icrcocrri (1) Mo pise� a 3 Enicrri � 11 e;icrrocrri (2) txei avticrtpoq>e� pise� npayµanKt� Km civicre� npfae_t Km apKd 8 > 0 ' Exouµe : � > O � [-2(A. - 1)] 2 - 4 · 1 · (A. 2 - 3) > 0 icrx()et : 8 � 0 Kat P 1 :Exouµe : 41 � 4(A. - 1) 2 - 4/... 2 + 1 2 > 0 . · � = 7 2 - 4(-2)(µ - 1) � 0 => . . . => µ � - 8 p) fta A. < 2 mo epooTilµa a) ano8ei;aµe 6n 11 µ-1 P = 1 => -- = 1 => ... => µ = - 1 nou enaA.110ei'.>et e;icrcocrri (1) txe1 Mo p\Se� x , x 2 npayµanKt� Km -2 civtcr�. i) 'Exouµe: x 1 + x 2 = -� = ... = 2(A. - I) ( 1 ) , 41 a µ � - - . n.pa µ = - 1 . ' Kat 'tTlV O.Vt<JCOITT) 8 x 1 x 2 = l_ = A. 2 - 3 (2) , x ; + x; = (x 1 + x 2 )2 - 2x 1 x 2 Jfopan't p11a11 : Av 11 avicrcocrri � � eivm McrKoA.o a va em.Au0ei, tote anA.oo� e;etcisouµe av enaA.112 2 2 0ei'.>etm ym TilV nµT) µ=- 1 nou ppT)Kaµe an6 TilV = [-2(A. - 1)] - 2(A. - 3) = ... = 2A. - 8A. + 1 0 (3) , x: + x; = (x 1 + x 2 )3 - 3x 1 x 2 (x 1 + x 2 ) P= l p) i) Me avttKatcicrtacrri tcov nµoov A. = 3 Km = [2(A. - 1)] 3 - 3(A. 2 - 3)[2(A. - 1)] µ = -1 11 e;icrcocrri yivetm x 2 + 2x - 4 = 0 Km = ... = 2(A. - l)(A. 2 - 8A. + 1 3) (4) x1 +Xz =-2 , x1 · Xz = -4 . 'Exouµe: A= (3x1 -2X3x2 -2) ii) Me avnKatcicrtacrri tcov napacrtcicrecov (1 ) Km = 9(x 1 x 2 ) - 6(x 1 + x 2 ) + 4 = = -20 ( 4) crTilv (5) txouµe: ( 5) �2(A.-1XA.2 -�+13)=2(A.-1) X2 X1 + .. y 1tO/\.oy1�ouµe 'Y n) ' npcota ' n� napacrtacret� � (A. - l)(A.2 - 8A. + 1 2) = 0 E {1,2, 6} � X 2 X1 A = l , ene18fi A < 2 . x; x; + 4 4 � � = iii) EKteA.oovta� n� npci;e1� crto npooto µtA.o� Til� = Km - + - . 'Exouµe: + (6) Km avnKa01crtoovta� n� ( 1 ),(3) naipvouµe: ( 6 ) � x; + x; - 2(x1 + x 2 ) + 2x 1 x 2 a)

=

0

.

=

1

'A

0

. . .

'I

EYKAEIAHI: B '

104 T.4/28

� . . �A >0


MaOriµaTtKO: yta TflV A ' AvKtiov

<::> 2A. 2 - 8A. + 1 0 - 2[2(A. - 1)] + 2(A- 2 - 3) > 0 <::> ... <::> A. 2 - 3A. + 2 > 0 <::> (A. - l) (A. - 2 ) > 0 �< 2 <::> A- - 1 < 0 <::> A. < l . A.aKq<nt

5:

AivETat fl <f1>VUf>Tfl<r11 f µE TiJJto:

f(x) =

�.

x - x-6

a) Na pptiTE TO 1tEOio optaµo'6 T1)i; <f1>VUf>T1)<J11 i; f. P) Na ppdTE Ta miµda Toµl]i; T1)i; ypmptKl]i;

1tap6:GTa<J11 i; T1)i; <f1>VUf>T1)<J11 i; f µE Tovi; O:l;ovti;. y) Na ppdTE yta Jtowi; Ttµii; T01> x 11 ypmptKl] ' 1tap6:oTa<J11 T1)i; f dvm KO:Tro a1t6 TOV O:l;ova x x. 0) Av X 1 = f(l) Kat X 2 = f(4) , Va ppdTE

tl;iaromi i-0u pa9µo'6 1t01> £xtt roi; p�ti; Tovi; apt9µo'6i; x1 Kat x2 e) Na vJtol..oyiaETE TflV Ttµl] TTti; 1tapaaTaarii; : •

A = f (2) + f (2) l + f(2) 1 - f(2)

fta va opisemt 11 mwaptrt<JTJ f npenet Km apKei : 5 - j x j � 0 Km x 2 - x - 6 * 0 . 'Exouµe: 5 - Ix! � o <=> . . . <=> -5 x x 2 - x - 6 = 0 <::> ... <::> x = -2 it x = 3 A.pa w m::8io optcrµou trt� eivm w cri>voA.o A = [- 5, -2 ) u (-2, 3 ) u (3, 5 ] . p) Ot ttµ11µEve� t(l)V cr11µeirov wµit� µe toV a�ova x'x enaA.110euouv trtV e�icrrocrri : f(x) = 0 . 'Exouµe Aua11 : a)

� �5

f

= 0 <=> �5 - lxl = 0 x -x-6 <=> x = -5 it x = 5 . A.pa ta crri µeia toµit� trt� ypaqnKT)� napacrmmi� trt� cruvaptrt<JTJ� f µe tov a�ova x'x eivm ta M 1 (-5, 0) , M 2 (5, 0) . H temyµEvfl to'U crri µeiou toµit� µe toV a�ova y'y

A.otnov f(x) = 0 <=>

eivm : y = f(0) = - J5 . �11A,a8it to crri µeio toµit� 6 trt� ypacptKT)� napacrmmi� trt� cruvaptrt<JTJ� trt� f µe tov a�ova y'y eivm to N(O, - J5 ) . 6 y ) H ypa<ptKT) napacrtacrri tll� f eivm Katro ano tov a�ova x 'x av Kat µovo tcrxf>et f ( x ) < 0 . l:to A exouµe: f(x) < O

<=>

<0 x -x-6 lxl < 5 <=> �5 - Ix! > 0 <=> <=> x2 - x - 6 < 0 x2 - x - 6 < 0 -5 < x < 5 <=> <=> -2 < x < 3 -2 < x < 3 o) YnoA.oyisouµe nprom tou� api0µou� x1 , x 2 •

}

}

}

'Exouµe .. X 1 - f(l) _- ••• _- - -1 Kat X 2 - f(4) 3 = ... = .!_ .To a0potcrµa s Kat to ytvoµevo p eivm : 6 1 1 S = x 1 + x 2 = = - - , P = x1x 2 = ... = -- . H 6 18 e�lcrOOITTJ 2-ou pa0µou 1tO'U EXet pise� to'U� apt0µou� x1 , x 2 eivm : x 2 - Sx + P = O <::> x 2 + .!... x _ __!._ = 0 6 18 2 <:::> 1 8x + 3x - 1 = 0 . e) YnoA.oyisouµe nprom trtv ttµit f(2 ) . 'Exouµe :

= . . . = - fj .Tote µe avttKatacrtacrri 2 -2-6 4 TTt� f (2) <>trtV napacrmmi A exouµe : - J3 - J3 J3 f(2) f(2) A = = 4 + 4 = ... = _8 . + l + f(2) 1 -f(2) 13 J3 1 + J3 1-4 4 f(2) =

A.aK11 a11 6 : Ot otaaTO:atti; x, y tvoi; op9oyroviov flETaPcilloVT(ll ' ETGl cOGTE fl 1tEpiµnpoi; T01> Va 1tapaµivtt aTa9tpl] Km dvm imi µE 24 (aE m). a) Na EK<pf>UGETE TO y roi; <f1>Vclf>TflG1l T01) x Kat GTfl G1>VEXEl(l va ppdTE TOV TiJ1tO E = f(x) 1t01) oivEt TO tµpaoov E T01> op9oyroviov roi; <f1>VUf>Tfl<J11 T01> x. p) Na aJtood/;ETE oTt To tµpaoov E Jtaipvtt Tfl µiytGTll Tlflll yta x = 6 K(ll va ppdTE Tfl µiytGTfl Tlflll T01>.

Aua11 : a) Av x, y eivm 0t 8mcrtacret� tou op0oyroviou tote 11 nepiµetpo� 11 Km to eµpaoov E 8ivovtm ano tt� crxfoet�: I1 = 2x + 2y (1) . E = xy (2 ) 'Exouµe: I1 = 24 <=> 2x + 2y = 24 <::> y = 12-x (3 ) . Me avttKatacrmmi tou y crtrtv crxecrri (2 ) naipvouµe: E=xy=x(12-x)= ... =-x2 +12x . Enet8it x, y eivm 8mcrtacret� tou op0oyroviou x O x O <=> 0 < x < 1 2 . A.pa icrxf>et : > <:::> > y>O 12 - x > O o wno� tou eµpa8ou tou op0oyroviou ro� cruvaptrt<JTJ tou x eivm E(x) = -x 2 + 12x µe cri>voA.o optcrµou to (0, 12) . p) H cruvaptll<JTJ E(x) = -x 2 + 12x eivm napapoA.it µe a = -1 Km naipvet trt µeyicrtrt ttµit yta

{

{

x = -P = ... = 6 . na x 6 ano trt crxecr11 (3) 2a ppicnwuµe y = 6 ' 811A.a8it to op0oyrovto exei to µeytcrto eµpaoov omv yivet tetpayrovo . H µeyicrtrt nµit wu eµpa8ou eivm: E(6) = -6 2 + 1 2 · 6 = ... = 36 (cre m2) .

EYKAEIAHI:. B'

=

104 T.4/29


MaOqµanKtl y1a TT)V A' Al>Ktio'U

E11avaAn11TI KE�

AaKtiatl�

rtWIJETp ia� Mixa>..11 � NaKo�

f\aKriari t ri . AivtTat TtTpaxJ..w p o ABrA Kat t.­ aTco M,N Ta µt.aa TCOV oiaycovicov Ar, BA «VTl­ <JToixco�. Av AA=4 Kat Br=6, va od�ETE OTl TO µ'l]KO� T01) TJ.l'l]Jl«TO� MN=x J11tOpd va xapel µ6vo 4 aKf.paw� Ttµf.�. A uari : 'Ecmo l) E>etro

Mf{Br . K to µfoo tOU AB. TOte MK = 3, NK = 2 (EUeuypaµµo tµftµa nou EVcOVEt ta µfoa Mo nl..Eupffiv tptyffivou) Kat an6 tptyrovtKft avtcr6tT1ta crt0 tpiyrovo MNK : 1 < x < 5 . Ot aKepmEi; tiµei; wu x crw (1, 5) Eivm ot 2 , 3, 4 .

Axo TO A q>tpvco Ka8tT11 xpo� TflV AB, xo1> Tt­ µvtt TflV Br aTo A. Av BA=2Ar, va ppeiTt Tfl

ycovia r = x A uari : Av M A

t0 µfoo 'tTli; B�, t6tE ea tcrx(>Et AM=BM=M�=Ar KCll a<pou MBA = MAB = 20° ea BXOUµE, ( roi; E�COtEptKft yrovia CJ'tO tpiyrovo ABM). Ano t0 tcrocrKE"Aei; tpiyrovo AMr naipvouµe x = AMr = 40° . �

"

..

..-...

A

r

2Q°40°x

B

6

M

r

ACJKflCJfl 4 '1• l:TO clKpO r Tfl� oiaycovio1> Ar, op8oycovio1> ABrA, q>tpco Ka8tTfl, 11 oxoia Ttµvti Tt� xpotKTaatt� Tcov AB,AA <JTa <JflJlEia l:,P a-

,,...

VTl<JToixco�. Ad�TE OTl: rBP = I:M" . ""

http://mathematica.gr/forum/viewtopic.php?f=40&t=52292&st art=660#p274952

A

K

8

'Ecrtro A!!,. I I Bf' . T6tE to ABf'!!,. Eivm tpane�to Km t0 Eivm t0 tµftµa nou EVcOVet ta µfoa 6 - 4 = 1 . TE11.tKa, � ' tOU. i\pa ' t(l)V utayrovtrov x = -ot 2 meavei; aKepam; nµBi; tou x i::ivm oi: 1, 2, 3, 4 . 2)

s:

AaKttari

ABr

2fl .

(A. = 90° )

AivtTat µt

op8oyrov10

AB < Ar

/\

/\

Eav r B P = 0 Kat L � r = co , t6tE acpou rB / /AP Kat r� / /AL , exouµE � P B = 0 Km � r B = co . ApKEi /..om6v va &Ei�ouµE 6n � P B = � L B ' 011/..a&ft 6n 'tO tEtpan/..EUpo �PrB Eivm EYYPU'l'tµo.

A uari : /\

/\

/\

/\

p

Tpiyrovo

Kai txi Tcov xJ..w­

prov Ar, Br xaipvo1>J1E avTtaToixco� <Jflpda A,E, TtTota cO<JTE �E = M = AB . Av, E TO µfoov Tfl� Br, va ppEiTE Tfl ycovia

,...

r=x Aum1 : Ta tpiyrova AEf, ME Eivm tcrOCJKEATt µE npocrKEiµEVEi; yroviEi; 'tTli; �acrri i; toui; icri::i; µe x . 'ExouµE E� = 2x ( roi; E�rotEptKft yrovia crt0 tpiyrovo A�E). Av M to µfoo 'tTli; Ar. �

A

~

B

E

r

T6tE t0 tpiyrovo �ME i::ivm opeoyffivto ( ME II AB ) AB �E µe ME = = . 'Etcrt, 2x = 30° ==} x = 1 5° . 2 2

,,...

f\aKriari 3fl. AivtTat Tpiycovo ABr µt B = 20° .

/\

/\

Ilpayµan: P L B = Ar B ( o�EiEi; yroviEi; µi:: nl..Eupei; Ka0EtEi;) Kat A r B = � A r = A � B ' acpou Ar= B� ==} OA = OB = or = o�. Apa p L B = A � B 01t0tE �PrB eyypa'l'tµo. f\aKtt<n1 sl] - l:To tacoTtpiKo u1oaKtJ..oi>� TP •rro/\

/\

/\

/\

V01) ABf (AB = Ar ) JlE

EYKAEIAHI: B ' 104 -r.4/30

/\

.....

A

=

96° ' 1>1tclPXEl <JflJlelO


P

PBr 1s· Km pfa

roaTt

yrovia BAP -.

=

=

x.

Ma&qpanKa r•a 'TllV A' At>Kf:iot>

=

30· . Na ppti1't Tl1

http://mathematica.gr/forum/viewtopic .php?f=20&t=57257 A

H ycovia BAr µnopi::i va 0i::cop110i::i i::niKi::-

Aua11

vtp11 crwv K6KA.o (A, R) µi:: R = AB = Ar .

A<JKll<Jll 7ri, AiV£1'(ll 1'piyrovo ABr Jl.f:

K«t

Ar =

11

OlX01'0Jl.O;

1'0t>

AA.

A -.

Av

AB + BA ' 1'01'£ va ppd1'£ Tl1 yrovia

=

0.

Aua11 : Ilpoi::Kti::ivco niv AB Kma BE = BLl -ro-ri:: AE = AB + BE AB + BLl = Ar . Ano TIJV tcrO'tT)'ta

=

f Ll = 3 =1 0 � = 40"

-rcov tptyrovcov Mf, ME (IT - - IT) txouµc Af AM B &: = 0 ' 01tO'tc AB 20 Km ano . w Tpiycovo ABr txouµc 60° + 0 8 ° 0 A

r

B

P Ll (156° ,12° ,12°) , BPLl =

Av o K6KA.oc; (A, R) -rµilcri::t TIJV f crw , tote cr:mµa-risov-rm m -rpiycova: To tcrocrKi::Aic; Ar� 'tO tcronAf:upo MB , 'tO tcrocrKi::Aic; (84° ,48° ,48° ) , onoti:: w -rpiycovo BAP i::ivm tcrocrKi::Aic; nic; µopq>ilc; 78° , 78° ) , cruvi::m:Oc; x 78° .

(24°,

f\aK11a11 6'1• Aivt1'«t tva looxAf:t>po Tpiyrovo ABr. Mia Et>Oda (t), 1} oxoia ottpxt1'«t axo 1'0 r Of:V £:xt1 KOlVcl Gt)µ.da Jl.f: TllV xl..f:t> p a AB. 'E­ (J1'(l) M 1'0 µ.iao T11 ; AB. Axo 1'� KOpt><pt; A K«t B <ptpvro Ka0t1't; xpo; TllV (t), 01 oxoit; T11V Tt­ µ.vovv G1'a A K«l E av1'iG1'01xa. Ati;1't 01'1 1'0 1'pi­ yrovo AME dv«t laoxl..f:t> p o. http://mathematica.gr/forum/viewtopic.php?f=20&t=5 72 1 8

fM .l

Eivm AB , µta nou w M i::ivm w µfoo nic; AB . Ano -ra i::yypli'l'tµa -ri::-rpanAf:upa BEIM(BH' +rMB=l80") Km MM'A(AM"'=Mf'=90°) npoK61ttct on Km MEr = MBf = 60° ELlM MAr 60° , 0111..aoil w -rpiycovo LlME civai tcronAf:upo. A uari :

A

.......

......

.....

=

60°

http://mathematica.gr/forum/viewtopic.php?f=20&t=57 l 3 2

Ll = =

.....

,.. r

=

l<JXVtl

--

r

E

f\aK11a11 sri. !:To £YY£Ypaµ.µ.tvo 1't1'paxl..f:t> p o

ABrA 1'0t> a:xfaµ.aTO;, Ta M, N dV«t 1'a µ.taa 1'(l)V AB, rA aV1'1G1'oixro;. Aivt1'«t 01'1 rBA ""

=

NMP . .-...

30°,

rA AP =

Na

ppd1't Tl1 yrovia

A

.....

=

http://mathematica.gr/forum/viewtopic.php?f=20&t=565 5 l

Av 0 TO Kmpo Tou K6KA.ou, TOTE OM .l AB apa KCll 'tO <l or i::ivm tcr01tMropo. Apa Km onon: w -ri::-rpanAf:upo 0a i::ivm i::yypli'l'tµo A 6011 :

A

A

A

fOLl = 2fBLl = 60° ON .l fLl , Ll OLlP=120° �LlOP=OPLl=30° NOP=60°, OMPN /\

EYKAEIAHE B' 104 T.4/31

/\

/\

/\


Ma9flµaT1Ka y1a TTIV A' At1Kdot1

/\

/\

/\

NMP """

/\

B L1 r = Ar K = ro (o�Ei.Ei;; µE Ka0Em;; nAf:up&<;). AKoµJJ: ro + cp = ro + e = 45 ° => cp = s => Kr = Ar

yuui O M P + ONP = 90° + 90° = 1 80° . Apa = NOP = 60° . ,..._

.

B , •porro<;

B

<l>epvro to U'f'O<; /\

AZ

tou •ptyffivou AB..1 .

/\

'Ex.ouµE: Z A K = AK H = ro co<; EVT6<; EVaAAa�. E1tt<IT)<; ZAE = EAr = ro an6 'tJJ yvrocrTJ1 np6m<ITJ U'f'OU<;-OtX,OTOµou-otaµETpou 1tEptKUKAOU, 1tOU ayo­ V't<lt an6 'TJJV ilita Kopu<pi) (Eoffi 'TJJV A). A

,,/

----

/,.,.--�-------

AaKJJ<Hl l OJJ.

Aivt:'Tat opOoyrovto ABrA. 'E<nco K TO 0'1]µdo "

T0µ1\� 'T'll � OlXOTOJ101> 'T'll � ycovia� A Kat 'T'll � mro To r KaO&To'V <n11v BA. At:i;Tt: 6T1 BA=rK. A

B

\

\

Apa to Tpiyrovo rAK EtVat tO'OO'KEAE<; Kat rK = Ar = B..1 A6yro TT)<; tcr6'tl)Ta<; Trov &tayrovirov tou op0oyroviou. r •porro<;

\

\ \

·

<l>epvro an6 to K 1tapaAA11A11 O''tl) rL1 1t0U TEµVEt m; Br,M crm E, H avncrtoix.ro<;. B

a http://www.mathematica.gr/forum/viewtopic.php?f=40&t=522 92&start=20

A6aJJ.

A H

E

K

To Tpiyrovo AHK Eivm op0oyffivt0 Kat tcrocrKEAE<;, on6TE BE = AH = HK . Ta Tpiyrova B�E , KrH tx.ouv ..1E = rH , BE = KH Km �BE = rKH ( o�EiE<; ycoviE<; µE 7tArupE<; KU0ETE<;), 07tO'tE ea EtVat ro = <p ii ro + <p + 20 = 1 80° (Aµ<piBoA.11 nEpinTroCITJ tcr6•11m<; Tptyffivrov - 4o KptTJ1pto ). L'TJJV l 11 7tEpi7tTWCITJ 't(l Tpiyrova EtVat icra, 01tO'tE B..1 = rK . OWTEP11 L'TJJ nEptnTWCITJ Eivm ° e 90° + 28 = 180° => = 45 , 011A.aoiJ to ABr� Eivm 'TE'tpaycovo Kat to r Eivat µfoo toU AK 01tO'tE Kat naA.t Ar = I"'K -

----

K

ApKEi va &Ei�OUµE 6n Ar = rK . 'Ex.ouµE 6n EYKAEIAH.l:

'

B' 104 T.4/32


B' AYKEIOY '

Taf" :

An. KaKKa

EnavaArtnTI KE� A a Ktiat 1 �

B'

AAfEBPA

KtlfnaKoxo'6Aotl K©vcnavriva

AO'KT)O'T) 1 11

'E«JT(J) 1tOA'll cOV'll J10 P(x) TtTOlO rocnt T O a0polaµa T(J)V (J'l)V'rtAt«JTIDV TO'll va tivm iao µt 6 Kat 1) oiaipt<Jl) TO'll µt TO x -4 vu oiVt\ tl1t0Ao\1t0 18. a) Na Ppt0ti TO tl1tOAo\1tO Tl)� Olaipt<Jl)� TO'll P(x) µt TO x2 -Sx+4. p) Na Ppt0ti TO 1tOA'll IDV'll J10 P(x) av tmxJ...tov yv©pi�o'll µt oTl txt• paeµo 3, o cna0tpo� TO'll Opo� \«JOVTat µt 6 Kat 1) apl0J11)TlK1\ Tlftll TO'll P(x) yla x= -1 l«JOVTat µt -12.

f(x) -3f(x -l)=Sf( -x)+50f( -x -2). (iii) Na A'll 0ti 1) t;ia©Gl) f(1)J1X -2)-�. 3x + 2 3Y = 171 (iv)Na A'll 0ti TO a6a'Tl)µa: E

{

t s x+ .

= 5 625� . _!_ SY ·

A Cf=:>f(-2)�25 =:>5-2a-4=5-2=:> -2a=2=:>a=-l. x. H f eivm yvricriros fia a= -1 dvm f(x)=5 au�oucra cruvaptT)crT). 'Etm -� �...fi =>f( -�) <f(�)5 <f(.../7). 5 f(x)-3f(x-1)=8f( ii)x _'Exouµe: -x)+5· 0f(x -x-2)<=> x x x x -l · . · -Z <=> 5 3 105 =8 5 +50 5 5 5 5 = � <=> 5 . 5x_5x <=>52x=52<=>-x=1 l . 11JJX - -1 iii) Eivm· f(n µx -2) 5 <=>5 2=5 <=>riµx= 1 <=>x=2K1t�,K 'Exowu::: { + � A\HJ1) : a)

p) i)

5 o(x)=x2 Enet8t1 o x+4tTJseivm OiatpEtTJs noA.urovuµo oeuttpou to un6A.oino paeµou, oiaipecrTJs tOUtTJsP(x)µop<J>µetltos u(x)=ax+p x2 -5x+4 eaµeeivm noA.urovuµo a, p ' 5 Enl1tl.£ov --4). Enaipvouµe: tm an6 tTJV x2tTJs-EuKA.tiOetas x+4=(x -l)(xoiaipecrf)s taut6tT)taP(x)=(x -l)(x --4)n(x)+ax+p (1). dvm icro Tµeo P(l) aepoicrµa trov cruvteA.ecrtrov tOU P(x) Km to U1tOAOl1tO tTJs omipecrf)s µe (x--4) ea eivm icrov µe P(4). Apa: {PP(4(l))==186 =:> { + { + { + {O·O·n(l)n(4)+a+P=6 a=4 =:>u ( x) =4x + 2. { + { =:> +4a+P = 18 P = 2 { { {199 A<pou to P(x) eivm noA.urovuµo 3°\J an6 paeµou tTJnoA.urovuµo V (1) cruµnepaivouµe 6n to n(x) dvm 1 paeµouµe oriA. aot1 Kat K =t:O. 5 r<x>= (i3 r+ G:r-1. n(x)=KX+A. K, A 'Exouµe P(x)=(x -l)(x --4)(KX+A.)+4x+2. f(2016) f(2017). 0 maeep6s6PQS tou P(x) eivm icros P(O), 01t6te: 5x + 12x=1 3 x. (-4)A.+2 =6) +4(-1) +2=-12 {PP(-1(0)=) =-16 2 {-l-2(-5)(-K+A. Eivm Oi cruvapti]cre� ( 5 )x ( 12 )x = x) ( A.=l ii , ( x) = ii eivm YVTJcriros => {K=2 =:>n(x)=2x+l=:> crt0 on6te Kat =:>P(x)=(x-l)(x--4)(2x+ 1)+4x+2=2x3 -9x2+7x+6. <p0ivoucres f ( x) = (i53 J c� J -1 dvm yvricriros <peivoucra f(x)=(sa+z t , x crto Enoµevros: 20165 <2017�f(2016)>f(2017). =t: 2. 5x+12x=13x (i3r+c:r -1 =0 f(x)=O. 1 -2, ) f. IlapatrJpouµe 6n f(2)=0, oriA.aot1 x0 =2 dvm 25 tTJs oev f(x)=OSa EXet Km aUri a<poupi�a.ri f(x) eivm rvricriros µov6t0VT) Au<Jl) : a)

E �.

8

8

-�

'I

11:

3x

2

E

z.

3Y =

sx sx

171

5 x + i . 62 5 . .!. = 5 <=>

iv)

·

3x 3x 2 3Y = 1 7 1 2 3Y = 1 7 1 5x- y +3 = 5 1 <=> <=> 5 x + l 2 5 5 -y = 5 <=> 3x 2 3Y = 1 7 1 3 y- Z 2 3Y = 1 7 1 <=> <=> <=> x = y- 2 x = y- 2 4 3Y = 1 7 1 3Y = 3 Y = 4 SY

·

·

·

·

·

==>

p)

<=>

ou

<=> x = y - 2 <=> x = 2 .

x = y- 2

AGKT)GT) 311

E�

AivtTat 1) (J'l)Vllp'Tl)Gl)

a) Na (Jl)YJCpivtTt TO'll � apl0µo'6�

µe

Aua11 : a)

DF�.

g1

g2

lR

A«JKT)O'T) 211

AivtTm 11 (J1)vapT1JG1J µt e � Km a a) Na Ppt0ti TO a, av tivm yv©aTO OT\ TO Gl)µtio A( avqKtl (JT1) ypaqnKl\ xapacna<Jl) Tl)� p) Av a= -1, TOTt: (i)Na O\aTa;tTt KUT ' av;otlaa «Jtlpa TO'll �

��),� i), f(../7). -

(ii) Nu Atl0ti 1) t;ia©Gl) :

TJ

+

lR .

-

ap•0µo'6�:

Kat

P) Na AV«Jt'Tt Tl)V t;ia©Gl) :

·

p)

<=>

p«;a

:.\.O'KT) O'T) 411

AivtT at 1) (J'l)Vap'Tl)Gl) EYKAEIAHl: B ' 104 T.4/33

TJ

<=>

f(x)=311µ2 x+3 auv2 x -5.


Ma9f1JUl'TtKa yia 'TflV B ' Al>Ktio\l

u) Nu t;tTciO'tTt uv 11 f dvm cipTta ft ni:: ptTTft. p) Na l..:u 6d 11 1::;iaroa11 f(x)= -1. DF �. � Ai>O'll : u) 2 2 -x)=3'1 µ (- x) +3 <JtJv (- x) �. 2 2 3 TJ µ x + 3 <JtJv x 2 2 p) (::::> 311µ x+ 3 0-vv x (::::> 2 2 2 311µ x + 31-17µ x 3 217 µ x 2 2 2 311µ x - 1) = 0 311µ x+3=0 (:> ( 311µ x 2 2 it (::::> ( 311µ x = 3 � 311µ x it it (::::> ( (::::> ·

fta µ=3 Km A.-� civm f(x)=511µ(� nx). Eivm fta Kcl0€ x E tcrxQ€t 6tt­ A=25 -25 11µ2 G n�) =25 -2511µ2� =25(1-iiµ2 �) = x E E1ticr11<; f( -5 2; (1 + cruv :) = 2: ( 2 + �) = -5=f(x). A.pa 11 f civm apna. ) 25cruv = 2 ( ; -4=0 Eivm: f(x)= -1 (::> y) 'Exouµc: 5 1t 5 1t 51t 51t 51t -4=0 -4· -3)( B = 4 ( 21iµ-cruv- ) cruv-= 4ri µ-cruv-= 24 24 12 12 12 (::>(11 µ2x=l =1) 11µ2x=O) �11µx= 1 11µx=3 -1 11µx=O) 5 n cruv 5n ) = 2ri µ 5n = 2ri µ ( n- n ) = 2 ( 2 1iµ 2Kn , it x=2Kn+ n, it x=Kn, K E 12 12 6 6 1t 2· -1 =1 =2ri µ-= AiVETat 11 O't>VclPTll O'fl 6 2 f(x)=avv3(6n -x)+flp(i -x)·O'l>v2("i+x). µ -81t = ri µ -81t7_ = ri-�7Na unood;tTE OTt f(x)=O'\lVX. Na O'l>'YKPiVtTE TOt><;j aptOpoi><; r(zo�J Kat 2ri µ -41t7 � �) y) Na od;tTt OTt: O't>Vl5° -11p1 s0-v;. Eivm cruv(6n -x)=cruv( -x)=cruvx, 11µ(� -x)=cruvx Km cruv(� +x)= -11µx. A.pa f(x)=cruv3x+cruvx·11 µ2x=cruvx(cruv2x+11µ2x)=cruvx. H f(x)=cruvx civm yvricriro<; cp0ivoucra crto [O,�]. on6tc: O< < � >f( 5° 5° -11µ15°=cruv(45° -30°)-11 -30°)= cruvl (4 µ =auv45° · cruv30°+11µ45°· 11µ30° -11µ45°· cruv30° +T)µ30°· cruv45° - · · - · · (x

+

=

2

p)

Z) .

2

AO'Kll(HI 5'1

u) p)

_ _

20 7

Afan1 :

.

u)

2

p)

y)

2

-2!:_ 2017

AaKq cn1 6'1 :

-2!:_ 2016

<

2

2017

,,/2 '13 1 ,,/2 2

2

-2!:_) .

=:>f (-2!:_)

2

.!. 2

2016

,,/2 '13 I ,,/2 2

2

2

.!. ,,/2. 2

2

'E aTro 11 O'\lvcipTflO'fl f(x)=(p+2) ·11p(/...nx), onot> p,1... OtTtKoi npaypaTtKoi aptOpoi. u) Av 11 piytO"T11 Ttpft Tfl<;j f(x) dvm 5 Kat 11 paatKft ni:: piooo<; Tfl<;i dvm 6, va anood;i::Tt oTt n=J KUt J...=­31 ' p) rta p=3 Kat va t>1tOAO'YlO'TEl 11 Ttpft Tfl<;j napciaTaa11<; A=25 -f y) Na t>1tO/...oytO'TOi>v Ot Ttpi<; T(l)V napaO'TclO'E(l)V: Sn 511' O'VV2 511' - qµ2 511' Kat 8=811p-O'l>V24 24 24 24 4 1t 1t 21t r = Scruv - cruv - cruv ,.

1..,-�

(

7

(�}

)

7

7

()) I;t Tpiyrovo ABr oivi::Tat oTt ot i::q>B, i::q>r dvm pi�E<; Tfl<;j i::;iaroari<;: 6x2 -5x+l=O. Na ppi::Od 11 yrovia A. Ai>ari : 1 I

{

{

a) 'Exouµc max f ( x) = µ + 2 =µ + 2 Km µ +2= 5 µ=3 21t 2 01t0t€: ' T =-=-, 2 => A. = -1 A.n A. -=6 A. 3

P) Av (xo,Yo) 11 AUO'fl TOt> O'\lO'TltJlaTO<;j yta TflV onoia tO"Xi>Et Xo<yo, va t>nol...oytO"Td 11 Ttpft Tfl<;j 11' , 2x 411' Y napaaTaari<;: K- ;0'\lv 8 - ; 0'\lv2� 1. 2 1 5 (L) Aual) :

a) fta va opi�ctm to cri>crtT)µ« npfact T Kat apKci x>O,· y>O. 6t€ exouµc: (.!')

{

(::::>

{

logx logy

=1

( )

log � 2

·

1000

logx logy

=

6

� [Iog(xy) - log10 3 ]

{logx · (5 - logx)

6log10 =

=

(::::>

1 1

(::::>

{ Iogx · logy

=

6 logx + logy = 5

= 6 (::::> logx + logy = 5 log 2 x - Slogx + 6 = 0 logx = 2 , 11 (::::> logx + logy = 5 logx + logy = 5 logx = 2 , logx = 3 logx = 3 (::::> (::::> logy = 3 logy = 2 logx + logy = 5 X = 100 , X = 1000 ( , , A ) y = 1000 y = 100 1000 4 1l' Rp ) K-2 · 10 0

(::::>

{ { {

{

{

11 { u€Kt€<; nµc<; 11 { 1l'-'- 1 --- · cruv - --cruv2--. ·

25

EYKAEIAHI: B ' 104 'T.4/34

8

125

8

·


Ma6ttJ1«TtKa yta TtJV B ' AuKdoll

4D2+9+Dx2=4D -6Dx -1 (1) K«t D/ -4Dy+8D=O (2). a) Na ppt9o'6v ot Ttpti; Trov D,Dx,Dy .

=8cruv2�cruv2!!. - n1)+ 1 = -8 cruv2� 11µ2� + 1 = =l _2 11µ2� = �v2 _0· 8

8

8

p) Na At>9ti TO m>a'f11 p a:

4

A<JKTt<Jfl 811

AivtT«t oTt 'I 1tOAt>rovt>ptK11 (J\)VcJP'f11 <Jfl J1E a, P E IRl. P(x)=4x4+(a -l)x3+2Px2+(1 -P)x tlVCll apTta yta 'f11V 01toia l<JXVEl: P(l)= -1. a) Na 1tpoaowpiatn Tot>i; a,p fl) Na At>9tt fl aviaro(Jfl P(v. r::;. x) ::;; x3 +2x 2 -3x -l(l).

-7

q>ou 11 P(x) eivat aptta 0a tcrx;Uet: P(-1)=P(1 ), onote: {P(P(-t)=-11) =-1=i44-a.+a.-1++1+2132f3-1+1-+PP-7=-l -7 =-1 =>a.=P=l fta a= P=l eivm P(x)=4x4+2x2-7. fta va opi�etm 11 avicrro<Jll (1) npfaet Kat apKei x20. Tote txouµe: (1) <=> 4x2+2x-7::;; x3+2x2 -3x-l <=> 5x+ 5 0 <=> x3-2x20 <=>x3 -x2 -(x2+ x-6) 6� � x2(x-l)-(x+6)(x-l)�O<=>(x-l)(x2-x-6) �O <=> (x-l)(x-3)(x+2) + 0 <=> x E [ -2,l]U[3, � oo)� xE[O, 1 ]U[3,+oo). Auaf1 :

a) A

p)

A<JKfl<J'I 911

; - ln(lne) -ln(Sve)= -i 17 "2 1 2logffi Iog(flp�)=loglS-l ii) log 4 2 fl ) Na At>9ti aviaro(Jfl : ln x+In-\+2<0 (1). y) Na At>9ti t;iaro<Jll : ( ) = ·2x (2) a) Na oti;tTt oTt: i) In 1

'I

'I 6 -x 2 fil-"'10

a) i)

1 1 +.JilO

x

8

In� - ln(lne)-ln(5ve)= ln5 -lne -ln l ln5 -l21 ne=-1 --=21 --.2 . lo 17"2 2logffi�l 17"2 +log:;:;+l og(11µ-)=log--:og-:;-=2 17 17 17 -17 · -2 )= log-=2 =log(-· 15 =log-=logl5-log10=log15-1 . 10 fta Va EXet vo11µa 11 aVtcr(l)<J11 1tpfaet Kat apKei: x>O. Me x>O exouµe: (1) <=>ln2x-l nx3+2<0<=>ln2x-3lt nx+2<0<=> t {t2 - 3t 2 <=> { 1 t 2 <=> e<x<e2· 2( 2 ) = 22 +162"120 ·2x y) Eivm: (2) <=> ( <=> ( v'IO) =( v'IO)-22 2x <=> <=> ( v'IO) . ( v'IO) 24-x= 1 <=> <=> (2v'TI 2 v'IO) =l<=>x=4. Aua11 :

11) � 4 '12

4

e

6

3

'12

7r

4

6

4

3

'12

f})

lnx

=

+

m+

m+

<

0

lnx

=

6x "12 +� 6-x m+ 6 -x m+ 4 -x <

<

.

.

-4

+ A<JKfl<J11 1 011 l:;f tva m)<J'f11 pa OVO ypapplKIDV t;taroatrov J1E ayvroaTot>i; x KCll y l<JXVO\lV Ol <JXEaE�:

{

5J.x+Ay : 5 2x-1 6y 5x . SAY

= 62 5 I; ( 52-2y

=

)

!Rl.. (1)::::> 4D2-41 D+ l +Dx:2+6DAEx+9=0::::> (2D -1)2 + (Dx+3)2=0 ::::} D-2 Kat Dx= -3. E�allou: (2)::::> D/ -4Dy+4=0::::>(DY -2) =0::::>Dy=2. Aq>ou D=FO, to <JUcrtll µa exei µovaotKfi AU<Jll tllV Kat y - = 4 o,yo) l'""' - 2)x+0..+ 16)y 54 { 50..5x+(A+2)y 52 { -

yta T� otaq>opti; Ttpti; 't'11 i; 1tapapfapot> Auari :

a) 'Exouµe:

(I)

2

D

(X

1 1 i:- XO� D

fl) (I:) <=>

Dy

O

=

D

=

(.A 2)x + (.A + 1 6)y = <=> x + (.A + 2)y = 2 'Exouµe·. D= "- -1 2 "-A.+ 1 6 +2 4 ii. + 16 =(/.. 5)(/..+4 ) D =

I

12

l

4

=

1

A.2 J.. 2 0= -

-

1

4 =2/.. 2 4 D I ii. 2 il. + 2 1 2 =2A -8 . Av tote 0 aoii av crU<Jtllµa exet µovaotKfi DAU<Jll tllV (Xo,Yo), 01tOU Dx 2 A.- 2 4 - Dy - A. - 8 Av A Kat xo- D - A.-s) o Y (A.+4) ( (A.-s) (A +4) ' tote Kat apa to (I:) eivm aouvato. Av tote Kat apa to (I:) eivm -

'

x

-

,

y

-

=

A.e !Rl.- {-4,5 }, ro 2 =-4 D=O A.=5 D, x= -32::FO, aouvato. D=O Dx=-14=FO, D=FO 111..

A <JKfl<J11 1 1 11 AivtT«t 'I (Jt>VclP'f11 <Jfl f(x)= logllog(x -5)1. a) Na ppt9ti TO 1t£Oio optapot> 't'11 i; f. J1E Tot>i; fl) Na ppt9ot>v Ta (Jflptia TOplii; 't'11 i; a;ovti;. y) Na ppt9ti o pa9poi; Tot> 1tOAt>rov'6pot> P(x)=f(A)x5-(lf(A)-41)x3+2x+l yta otaq>opti; Ttpti; Tot> A

Cr

Ea)!Rl.r. ta va op�etm 11 f npfaet Km apKei: log(x (x> -5)5=FO), (x0111..aoii (x>5 Km x 5::F+oo).5>0 Kat x::F6). Apa DF(5 , 6 )U(6, l), KatKatteAtKa Eneiliii to 0 oev avi]Ket ITTO 1te0l0 optcrµou tllc; <ruVclPtll<Jllc;, 11 Cr oev teµvet tOV y 'y. H Cr teµvet tOV 'x Kat µovo av 11 �icrro<Jll x'Exouµe: f(x)=O exet AU<Jll . 5 f(x)=O<=> llog(x- )l= l<=>log(x -5)=1-5 1 ii 5 ii x 10). log(x-5)=-l<=>(x-5=10 ii x-5�)<=>(x=l 10 Onote 11 Crteµvet tov x ' x ma K(l 5 , 0) Kat A(��,0). y) Av f(A.)=FO, 0111..aoii av 1 1 5 5 AE ( 5 , 10 ) u ( 10 , 6 )U(6,1 5 ) U(l 5 ,+ oo ) tote 0 pa0µoc; tou P(x) eivm icroc; µe 5 . Av f(A.)=O, tote A.= 1 5 ii A.-��· Km crttc; ouo nepumocretc; eivm P(x)=-4x3+2x+ 1, 0111..aoii np0Ke1tm yta noA.urovuµo 3°u pa0µou. At>ari :

p)

av

EYKAEIAHl: B ' 104 T.4/35


Ma011paTt.Ka yia 'f'IV B' A1>Kti01>

EnavaAf1trTI KC� AaKtia&I � r&WIJ&Tpia�

Xpl]o"to� n. Taup 0.K1)�

AcpIBproµtvo crniv µviJµri tou aymtritou cpiAou 0roµa P mKocp-rcraA.ri H f:1ttAOyTJ 'f(l)V acrid)O"f:(l)V eytvf: ano to j31j3A.io «feroµeTpia B ' AUKf:lOU» toU A . I. :EKtaOa (1983) Ka0ro<; apKete<; ano au-re<; npocrcpepov-rm Km y1a µta Oel>TepT) touA.ax1crtov avnµe-rromcrri . /\<JK11 <Jtt 1 11 :

Kr => . zr · E>A KM 1 => zr = -1 · -· = ZA E>M Kr ZA 2 KM EB + zr = .!. . KB + Kr = .!. . 2KM = 1 EA ZA 2 KM 2 KM AB + Ar = J . KB + Kr AE AZ ' Acpou:' M µecrov wu Br KM = ---Ai><Jtt : <l>epvouµe niv 2 BH I /EE>Z Km niv rA I IEE>Z To-re ano 0eropriµa 0aA.ft exouµe a, AB Ar AM 3 Av EZ//Bf, toTf: Ar AA AB AH , vncrto1xa = AE AZ AE> 2 Km = AE AE> AZ AE> /\<JKt} <J'I 211 : AivtTut TtTpaycovo ABrA 1t#.£vpa� AivtTut Tpiycovo ABr Kut 0 1'0 Pu­ pi>KtvTpo Tov. A1to 1'0 0 <ptpvovµt tvOdu (t) 1t01> U<pl]Vtl Tl� KOp1><pE� B Kttl r OTO lOlO 11J1lt1tl1tt00 Kut Ttµvti T� 1tA&upt� AB Kut Ar OTu <n)µdu E Kut Z uVTiaTotxu. Nu oti;tn 01't

-

--

-

--

A

- = - = -- = - .

u. A1to T11V Kopv<pl] A <ptpvovµt tvOda (t) 1t01> 1'tµvtt T"lv 1tl.&upa Ar OTo z Kut T"lv 1tpotKTU<n) T"l� Br OTO E. Na od;tn OT\

� + � = -;.. . AE

AZ

a

fvropi�ouµe on O"f: Ka0e op0oyc0v10 -rpiyrovo 1 1 1 , ABf µe U1t0Tf:1VOUO"U Bf 10"'.Xll, f:l: -2 +-2 -2 AU<Jt} :

13

Ilpocr0faovm<; Kma µeA.ri

AB + Ar = AH + AA = AH + AA AE AZ AE> AE> AE> -

----

Ta -rpiyrova BHM Km fMA eivm icra (y1mi;) onoTf:

HM = MA . AH + AA = ( AM - HM ) + ( AM + MA ) =

= 2AM = 2 . l AE> = 3AE> . 2 AB + Ar = -3AE> = 3 , Apa . AE AZ AE>

'Y

=

U CL

ApKei A.01nov va Oei�ouµe on unapxe1 op0oyc0v10 -rpiyrovo µe U\j/O<; AB=a Km Ka0f:Te<; nA.supe<; icre<; µe AE, AZ. Av OT)AUOyt T) Ka0e'tT) crniv AE O"TO A TEµVel niv Bf O"TO N, TO'Tf: apKei va Oei�ouµe on AZ=AN . Ilpayµan Ta -rpiyrova ANB Km A/!:J.Z eivm icra (EA

A

A

A

xouv AB = M = a , B = � = 90° , N AB = Z A � o�eie<; yrovie<; µe nA.eupe<; Ka0f:Te<;). Apa

AN = AZ .

B ' Tp07t0�

s: ;�

ApKel, va uf:..._,ouµe on ,

AE + EB + AZ + Zr = 3 , AZ AE ·

, EB + zr = l . TI EA ZA

B

Av 01 EZ, Bf -reµvoVTm crto K TOTf: crl>µcprova µe w 0eropriµa MeveA.aou cr-ra -rpiyrova ABM Km

EB · E>A · KM = 1 => , ArM exouµe: EA E>M KB EB · 2 · KM = 1 => EB = -1 · KB Km EA KB EA 2 KM -

-

-

--

-

--

-

r

E

/\aK11 <Jtt 3 11 : AivtTut 1'npaycovo ABrA qyqpu­ µtvo (Jt Ki>.U..0 A1t0 Tl� KOp1><pt� A, B, r,

( O,R ) .

A <ptpvo'Uµt Tt� AA ' , BB ' , , KaOtTt� (Jt µiu t<pU1tTOJ1tvll TO'U Ki>.U..01>. Nu od;t1't

rr' M' (S I ) OTl AA'· ff'+ BB '· M' = R2

Ano to Ktv-rpo tou Kl>tlou 0 cpepvouµe niv su0eia (o) napnAAT)AT) crniv ecpamoµtvT) (e) Km fo-rro N, :E, A Km H Ta crri µeia toµi}<; 'tT)<; µe T�

Al><Jtt :

EYKAEIAm B ' 104 T.4/36


AA' ,

Ma011panKcl yia Tt)V B ' A1>Ktio1>

BB', !:!.!:!.. ' Km rr' avticnoixa. Tote exouµe:

AA '· rr · = ( R AN ) ( R + rH ) (1). -

.

tva op1aptvo (O'Ta8tpo) O'l}JltlO p O'TO &O'O>T&plKO Ano TO p q>tpvoupt TIJ:Xaia tu8tia (t) 1t01> Ttpvtt TflV nl.tupa Ox aTo 0'11 Jl&io B Kat TflV nA&upa Oy O'TO O'l}Jl&io r. Na Ot\;&T& OTl

TTI�·

1

(0)

N

Ta tpiyrova ANO Kat /\

/\

/\

E

/\

/\

/\

2 AE 2 , rr ' = rE . (Anocrtac:rri 2R 2R

'Exouµe: AA ' =

PZ

Ox.

(E)

/\

OB = Or = R , L = H = 9 0° , H O r = r B O O�SIB� yrovie� µE 1tAeupe� Ku0sts�) upa B r = OH . 'Etcrt rH 2 + BL 2 = rH 2 + OH 2 = or 2 = R 2 Apa AA '· rr '+ BB '· �� ' = 2R 2 - R 2 = R 2 . B ' tpo1to�

Ano to c:rri µEio <pepvouµs tt� Ku0sts� PE Km crtt� nA.eupe� Km Oy avticrtoixa Km ano to c:rri µsio r Tl'IV rH KU0ST11 O'Tl'IV Tots: Auaq :

OfH sivm icra (ytati exouv

B�O Kat OHf sivm icra (ytati exouv /\

P Ox

(E)

r

N = H = 9 0° , N O A = H O r , OA = Or = R ) 01t0tS AN = rH Kat tots AA '· rr ' = R 2 - rH 2 (2). Dµota �picrKouµe ott BB '· M ' = R 2 - BL 2 (3). Ilpocr0farovta� KatU µEATt tt (2),(3) EXOUµE AA '· rr '+ BB '· �d' = 2R 2 - ( rH 2 + Br 2 ) . Ta tpiyrova

1 = cna0tpo + ( OBP ) ( orp )

--

c:rri µsiou ritlou mto xopofi ft s<pantoµEvri tou. rsroµetpia OtKOVOµtKOU ritlou, T . KaA.onic:rri - r. TacrcronouA.ou crsA. 279, eKooc:rri 1 977).

1 - ( OBP ) + ( OrP ) 1 ( OBP ) ( OrP ) ( OBP ) · ( OrP )

--- + =

f ·9B·rH (OBr) (OBP)·(OfP) 1 · 9If ·PE · � · Of ·PZ =

=

rH 2rH - = ---- = = ---PE · Or · PZ ! . PE · Or · PZ 2 = 2 · 1 · rH . A<pou, to c:rri µsto stvm crtaPE · PZ or

P

,

-

0spo, exouµs Ott PE Kat

,

PZ sivmrHyvrocrtu µiJKTt Kat /\

' OfH SXOUµS ' Ott' Or = l']µ 0 (yvro1 1 spo . O'Tll, ) . npa ( OBP ) ( orp ) O'to tptyrovo 'A

+

=

<Ha 0

'

B ' Tpono�: 'Exouµs:

( OBr) 1 --- + 1 ( OBP ) ( orP ) ( OBP ) . ( OrP ) -1 OB · or · l']µ(co + <p) =2 - �·------ = 1- OB . OP • l']µco . -1 or . OP · l']µ<p 2 2 2n· µ ( CO + <p) = crta0spo, . OP 2 l']µco · l']µ<p -

) (E� ..e.____.i.....i.__..;. .. ....��� B' A' E ll' r

_

Apa M'- IT' =

( ��IBJ (2��J =

= EA'

'Oµota BB '· rr = EK 2 Apa I

AA'· rr '+ BB '· rr · = EA2 + EK 2 = 0E2 = R2 •

A O'Klf O'lf

411 :

0tropoi>pt KUpn} yrovia xOy Kat

__

'

---

EYKAEIAlll: B' 104 t.4/37


Ma&qµa'T1Ka y1a ntv B' At1Ktiot1

AaK11a11 5 11 : 0tropoi>µt Tpiyrovo ABr, T'lV 016:­

µtao AM KU\ T'lV 01x0Toµo T01> AA. 0 ntptyt­ ypaµµtvo<; Ki>KA.o<; O'TO Tpiyrovo AAM TtµvE\ T'lV 1tAEvpa AB O'TO E KU\ T'lV Ar O'TO z. Na od;ETE OT\ TU Tpiyrova BAE KU\ rAZ ElVU\ \O'OOi>vaµa, 011Mio1l : =

(BdE) (rdZ) .

R2 2

€xouµe KA 2 + K0 2 = 2U 2 + - =>

2 K0 2 = 2u 2 + R - KA 2 . 2

Ilpo<pa.vro� ta. U'l'TI �H, �e trov tpiyrovrov �BE, �rz eivm icm (t<ho'tT)ta. oixotoµou) onote a.pKei va. oe�ouµe ott BE=rz. Ilpayµa.tt a.no ou­ va.µTI CTT) µeiou co� npo� K'6tlo €xouµe:

Ava11 :

B� · BM ( 1 ) BE · BA = B� · BM => BE = BA r� Km rz . rA = rM . r� => rz = - . rM (2). rA

Alla a.no to 0effipT1µa. ecrrotepucft� oixotoµou €­

xouµe:

B� r� - = - (3). BA rA

ApKei A.omov va. oei;ouµe ott

2 R2 2�2 + = R2 - 2KA2 TI, R = u 2 + KA 2 ' 2 4 ' A A2 2 2 ' + KA , nou tcrXUet. TI l"\.L.l = '

v A 1".L.l

AaK11a11 7'1 : 0tropoi>µE tva nupull11Mypuµµo

ABrA µE tµpaoo K 2 :El>votol>µt To µtaov T'l<; Ka8t 1tAEvpa<; µt Tl<; U1tfvUVT\ KOp1><pE<; 01tOTE O'Xl)µ«Tl�ETE tva OKTa"(<OVO. Na 1>1tOAo"flaETE TO tµpaoov T01> OKTU"(cOV01> Ul>TOi> O'l>V«PTllO'E\ T01> Eµpaooi> T01> ABrA ( •

H I::.

M

A1to ( 1 ),(2),(3) npoK'6ntet BE = rz .

AO'KflO"l 6 11 : Tpiyrovo ABr ElVU\ E"("(E"(p«µµtvo

at Ki>KA.o (O,R). H «KTiva OA 01xoToµdTUl ano /\

K2 ).

Ava11 : Ot KM

/\

1 3

T'lV 1tAEvpa Br. Na od;tTE OT\ E<p B . E<p r = -

Km NA oiEpovtm a.no to KEvtpo 0 toU na.pa.llT1A.oypaµµou Km OlXOtoµouvtm.To

A�AN eivm na.pa.A/µµo, apa. OZ = ZK =

OK (1 ) . 2

:Eto tpiyrovo ONK to E eivm to pa.puKevtpo, apa.

OE = _!_ OA (2). ApxiKa a.nooetKV'6etm ott A > 90° . IIpay­ 3 µa.tt a.<pou ta. A, O eivm eKa.t€pro0ev 'tTJ� Bf ea. ei( OZE ) OE · OZ 1 - , , = = (3). vm BAr < BAB =18D° onote Etcrt exouµe ( OAK ) OA . OK 6 3&' -M'> 1ro> =>A>W' . (Me PO.<JrJ avnj r17v irapanjp17<JrJ <ITO revxo<; 1 03 - Alla ( OAK ) = _!_ ( ONAK ) = _!_ _!_ ( ABMK ) = Ava11 :

I'swµerpia B AvKeiov-<56817Ke µza rp1yovwµerp1K� AV<Jr/. llapa8i:rovµe <IT11 avvexeia KW µza Ka8ap0. yswµerpzK� AV<JrJ)

KA ' , ecpr = KA , onote: Kr KB KA2 ecpB · ecpr = . ApKei A.omov va. oei;ouµe KB · Kr ott: KB · Kr = 3KA 2 , ii R 2 - OK 2 = 3KA 2

'Exouµe: ecpB =

(Mva.µTI CTT) µeiou co� npo� K'6tlo), ii

OK 2 = R 2 - 3KA2 .

Ano to 1° 0effipTlµa. oia.µforov crto tpiyrovo AKO

2

2 2 •

_!_ _!_ · _!_( ABr � ) = _!_ · K 2 . 2 2 2 8 ·

B

M

r

1 Apa. ( OZE ) = - K2 . Dµoia. ppicrKouµe ( CYZII) , 48

EYKAEIAHI: B' 104 'T.4/38

·


Ma911po:ttKa yia TflV B ' Al>Ktiol>

( OHE> ) . . . KA1t. Km teA.uca EXOUµ.£ on ( EZHE>I <l>PXE ) = 8 · -1 . K2 = .!. . K2 • 48

A. a K11 cn1

/\

6

811 : AivtTm Tpiyrovo ABr £'Y'Y£YPaµ.µ.tvo

CJ£ rildo

( 0, R)

Km BH =

R.J2

TO V'f'O� Tot>.

Ano TO H <ptpot>µ.£ HA l. AB Ka\ HE l. Br Na od;tT£ OT\ OB l. AE Ka\ OT\ Ta CJtt pda A, O,E dvm (Jt)Vtt>OtiaKa. •

At>a11 :

Bi\ . BA = BH2 = BE . Br => ArEL'.'.\ eyypa'lftµo, => A = E 1 . NJ..a A = B 1 (ycovia U1t0 xopot1i; /\

·/\

/\

/\

/\

ocooeKaycovo exouµe Ott A OJ\ = .... =J\2 0A =3if . 'Etcrt crto op0oyrovto tpiycovo A10B 1 txouµe ott

A1 B1 =

OAI R Rf3 . -= - Km OB1 = R · cruv30 = -2 2 2 0

'Oµota O'tO op0oyrovto tpiycovo Bz OB I exouµe OB 3R OB B I B 2 = 1 = R f3 B B3 = 2 = . . . KA.1t . 2 2 8 2 4

'

Km ecpanttoµEvrii;).

+

A7

B B 3 + ... = 2 R + J3 + = .... = +i 2 l 2 4 ····

'Etcrt txouµe S = A 1 B 1 B 1 B

R + R J3 + 3R + 2 4 8

/\

/\

Apa E 1 = B 1 => L'.'.\E I l(t) => L'.'.\E l. OB crto K acpou (t) l. OA . ApKei nA.Eov va eivm BK=BO. Ta tpiycova BL'.'.\E Km BAr eivm oµota, onote

BK = Bi\ . AA.A.a: BH Br BH2 Bi\ - = BA = BH2 = BH2 = BH Br Br BA · Br 2R · BH 2R BK = BH => = BH2 ( R� r = R = A a BK BO BH 2R 2R 2R

--

P

(:Ero reiJxo� 1 03 -I'ewµt:rpia B Ama:iov- mr'ffpxe Km eva� &vrepo� rp fnro � AV<Yff � r17�) . .AaKttatt

9 11 :

AivtTm Kavov1Ko orootKayrovo £"f'Ytypaµ.µ.tvo CJ£ Kt>ldo 0,

.

(

2

+

]

To a0potcrµa µfoa O"TTJ napev0e0'11 eivm a0potcrµa aneipcov opcov cp0ivoucrai; yecoµ£tptKt1i; npoo8ou µe fj = Myo /... =

2

Apa

S

=

�·

f\ a K 11 a11 1 011 :

(L �J. 1 - /...

( J3 ) .

l = R· 2+ fj

1-2

Aiv£Tm T£Tpayrovo ABrA nl..et> pa� a Ka\ 0 TO KivTpo TOO. Mt KivTpo T� KOpt><p� A,B,r,A Km aKTiva OA=OB=Or=OA <ptpvot>µ.£ oiaoox1Ka T£TaPTorildm not> Tiµ.vovv T� nl..et> p� AB, Br, rA, AA CJTa att µ.tia A, 0, z, M, K, E, H, I. Na t>no/..oyiCJ£T£ TTtV ntpiµ.tTpo Km To tµ.paoov TOO CJTat>pot> HEOKMOZ00AIOH not> <JX11 JlaTi­ �£Tm.

Ar = a Ji H 8tayrovioi; Ar2 = 2 · a 2 Km aKtiva tcov tetapt0KUKA.icov eivm , ta tµT)µata , �E, �H, Al, AA, R = a · Ji , onote 2

Aua11 :

A 1 A 2 A 3 A 12 ( R) . 'ECJTro B 1 11 npopo!..1] TOt> A 1 CJTllV OA 2 , B 2 11 npopo!..1] Tot> B 1 CJTTt V OA3 , B3 11 npopo!..1] Tot> eivm icra µ£ B 2 CJTTtV OA4 , Km ot>Tro Ka0 ' t;l]�. Na ppdTt Be, BZ, fK, fM TO a9pOlCJJla a - R = a - a!!- = � · ( 2 - Ji ) Kat ta tµt1µas = A I B I + B 1 B 2 + B 2 B3 + ... (A.E.I. 1964) ••.•

TJ

EYKAEIAHI:. B ' 104 T.4/39


m EH = IA=

EH = fiE

Ma011pa'nKO. yia TI}V B' AllKEio\J

-1) = fn af-a.{./2-1) =

E>Z = MK £xouv µftKo�

J2 = � ( 2 J2 ) J2 = a ( J2 -

·

·

·

'Erm ri m::piµe-rpo� wu cnaupou tcrou-rm µe

IT = 2nR + 4 · EH

= a { nJ2 - J2 + 1 ) . ·

A-B

1:µpaoov Tov K'VKAtKou Tµ1lµaTOc; Auari : i) <l>f.pvouµe 'tO U\j/O� rM CHO tcr6nA.eupo

AB = ' ABf . TO'tB ' AM = l 'tptyffiVO

a J3 = ( J6 - J2 ) . J3 rM = 2 2

J6 -2 J2 Kat

.

H Mf dvm µecroKa9ew� 'tl'J� xop8ft� 8tf.pxe-rm an6 w Kf.v-rpo wu K'6KA.ou 0.

AB,

apa

H

A

e

f\

fm w eµpaoov £xouµe:

B

0

( fiEEoZsfi ) = ( firB) - ( K'toµr, Ei ) = a2

- -

2

1t

R2

· -

4

A.pa £xouµe

a2

a2

a2

( 4 rt ) 2 8 8 E = 4 ( fiEOOZBfi ) 4 ( fiEH) =

=

- -

1t

· -

=

- ·

·

-

.

-

a2

2 J2 ) a2 ( 4 = 4 ( 4 rt ) 4 = -g 2 a2 a2 a2 = 2 ( 4 n) 2 ( 6- ifi ) = 2 ( W. -n-2) . 1

·

·

·

-

-

-

-

-

·

·

·

AO'Kl'JO'l'J 1 l '1 :l:TO napaKaTro ax1lµa dvm

AB = Br = rA = Or = J6 - J2 . B

A

'E-rcrt O"'tO opeoyc.Ovto -rpiyffiVO OMA an6 rrue . E>eropriµa £xouµe: OA 2 = R 2 = AM 2 + OM 2 =

AM 2 + (Or + rM) 2 = AM 2 + or 2 + 2or . rM + rM 2 = Ar 2 + or 2 + 2or . rM = 2or 2 + 2or . rM = 2or (or + rM ) = 2or . 0M .

J6 ) ( ( -; J3 } l\pn R' = 2 J6 - h {J6 -h +

{1 �) = ("6-h)' (2

2 ( v'6-h )' + A.pa R = 2 .

0

·

ii)

+ ,/3 ) = 4

0 KUtltK6� wµfo� 0 , AB av-rtcr-rotxei cre -r6�o 3 0° . 'Ernt w eµpaoov wu KUtltKou -rµftµaw� AB

(

)

(

dvm: E = K.'toµ OAB - O A B Na vnoMryionE Tl}V aKTiva R TO'V Ki>tlov (A. 0apallio11c;, n1:piootK6 AnoA.Ml>vioc;) Km To

rt · R 2 . 3 00 _!_ , R 2 · 11µ300 360 2

EYKAEIAHl: B ' 104 T.4/40

_

= rt3

)

=

-1.


Ma&r)µaTtKa yia 'fTIV B ' AllKtioll

Ta�":

B"

E11'avaAf111'TI KE� AaKt\at 1� TipoaavaToAIOlJOU K«f11tOi>KO� Kl>plclKO�

AOK'IO'I 1 .

Na ppdTE T� t;1aroat� TO>v Ki>tlrov no\l OtipX,OVT«l U1t0 TO A(-1,0) K«l E<pcl1tTOVT«l T CoV t1>0ElcOV SI : 2x - y - 2 = 0 K«l 8 2 : 2 x - y + 1 8 = 0 .

Ilpocpavroi;; 01 cu0Eici;; E1 , E 2 Eivm napUAATJAEi;;, Kata <JUVEnEla 'I aKtiva cv6i;; K'l'.>tlou

Aua11 :

1tOU E<pU1ttEtCll cmi;; E1 ' E 2 Eivm p _!. d( E1 ' E 2 ) . 'Ecmo OT)µ£io tTJi;; E1 . T6tE

=2 A(x0,y0) 2xo -yo + 181 j2 +1 8I =4J5 . d(EpE2 ) = d(A,E2 ) l �i +(-1)2 J5 Apa aKtiva trov �TJtouµcvrov K'l'.>tlrov Eivm JS = 2 . To K( x0, y0) Eivm Kevtpo cv6i;; an6 to0i;; �TJtouµcvoui;; K'l'.>tloui;; av Km µ6vov av (AK)= d(K, E1 ) = d(K, E2 ) 'ExouµE d(K, E1 ) = d(K, E 2 ) -21 = l 2x0 -y0 + 181 l 2x0 -y0 JS JS 2x0 -y0 -2 = 2x0 -y0 + 18 t1 2x0 -y0 -2 = = -2x0 + Yo -18 4x0 -2y 0 + 18-2 = 0 2x0 - Yo + 8 = 0 y0 = 2x0 + 8 EniOT)i;; AK = d(K, E1 ) <::::> �(Xo +1) 2 + Yo 2 =2JS (x0 + 1)2 + y02 =20 <::::> (x0 + 1)2 +(2x0 + 8)2 =20 <::::> x0 2 +2x0 + 1 +4x02 +32x0 + 64=20<::::> 5x02 +34x0 +45 =0 <::::> x0 =-5 t1 x0 =- 25 fta Xo = -5 exouµE Yo = -2 KCll yta Xo = _2 5 , ,cxouµE 0 = 22 . n.pa unapxouv , uuo, KUIV\,01 µ£ S ( S9 )2 + (y - S22 )2 = 20 KCll E�lO'cOO'Eli;; X + (x+ 5 )2 +(y+2)2 =20 p

11

<=>

<=>

<=>

<=>

<=>

<=>

<=>

<=>

y

AOK1)0'1 2 .

' A

S:

•• �

Aivamn 'I nupapol11' y 2 = 4 x K«t 'I t1>0da y = A(x - 1), A '* 0 'I 01t0la Tif1VEl 'f'IV mxpapo/..fa OT« <J'lf1El« A,B. Na od;ETE OTl Ol E<pU1tTOf1EVE�

't'I� nupupol..1\ � OT« <J'lf1El« A,B Ttf1vovTm Kcl0ET«K«l 1tclV(I) OT'll Ott1>0ETOi>O'«.

01 ouvtEtayµevci;; trov OTJµ£irov toµili;; A,B Eivm 01 Mcrc1i;; tou oucrtilµatoi;;

2 = 4x {yy=A(x-1)

Ai>a11 :

(1)

(2)

H (2) µc tTJ Poi10cta tTJi;; (1) ypacpEtm

y=A (� - 1 ) 4y=Ay2 -4A Ay2 -4y-4A=0 (3) 01 tEtayµevci;; toui;; Yi . Y 2 Eivm Mcrc1i;; tTJi;; (3) , 01tOtE y, . Y 2 = -4 01 E�lO'cOO'Eti;; t(l)V E<pantoµevrov E1 : yy1 =2(x + 1) } , crta ElVCll E 2 : yy 2 =2(x+x 2 ) Km exouv <JUvtEAEO'tEi;; 81EU0uvOT)i;; A, = 2 KCll 1.,2 = 2 avt1crtoixroi;;. Apa A1 A 2 = Yi Y 2 =-1=> E1 .l c 2 4 fta va teµvovtm 01 E1 , E 2 npenE1 Km apKEi to {yyyy1 == 2x2x ++ 2x12x (L) va EXEl AUOTJ O'UcrtlJµa 2 2 'ExouµE: ( ) { yy, = 2x + 2x1 ( 4) aUa: L y(y2 -y1)=2x2 -2x 1 ( 5) ( 5 )<=>y(y2 - Y1 )= Y{ _ Y�2 <::::> y= Y1 � Y2 , acpou y1 y2 (Ola<popEtlKU 0a EtXClµ£ X1 = 42 = 42 = X2 OTJAaoil , npayµa atono ). Enoµevroi;; 2 ( 4) <::::> 21._2 + Yi2Y2 = 2x + 2x1 <::::> 2x = -2 x =-1 Apa E1 , E 2 tEµvovtm crto OTJµ£io (-1, y, � y2 ) to onoio avilKEl crtlJ 81su0Etoucra 8 : x = -1 <=>

<=>

x

A,B

2l.

22

<=>

21:. 2L_

"#

A

=

B

<=>

'I

M

'• OKTIO'I 3 . .-t.

.Sa od�£1'E OTl OEV \l1tclpX,El 1t«p«ll11 /..0yp«f1f10 TO\> 01toiou Ol KOptl<pt� «vfaKO\lV O'f'IV 1t«papol..1\

EYKAEIAlll:. B ' 104 T.4/41


x 2 = 2py Iax-6.:i To ioio x 3 = 2py ; •

yu1

Ma91JJUlTtKa yia TflV B ' A1>K£lo1>

TflV K«JUWATJ

To cµpaoov rou tptyrovou OAB civm

1

1

A(x1, y1) B(x 2 , y2 ) r(x3 , y3 ) avflKouv CJTilV napapoA.fi x 2 = 2 y Km civm oiaooxiKe� Kopucpe� napaU11A.oypaµµou. = 21 2 4x 2 1- y 2 2 4x 2 - y 2 2 Tote ta tµfiµata Ar,B� exouv KOlVO µfoo. Ano auto nporintct avc�apT11t0 rou <JT)µciou M (xp y1 ) . {y,X1 ++ yx3 == yX2 ++ yx4 =S (2){l) Eni<JT)� 3 2 42 + --Eni<JT)� exouµc X; = 2 y yia Ka0c i= l, 2, 3, 4. + x8 4 x 1 - 2 y1 4x 1 + 2 y1 2 2 Apa ( 2) x1 2 + x/ = x/ + x/ civm Oµoiro� ppicrKouµc y A + y B = y apa ( x , + x3 )2 -2x1x3 = ( x 2 + x 4 )2 -2x 2 x 4 � 2 µfoov rou AB . x1x3 = x 2 x 4 = P (3) Na ppc0ouv Ol Kopucpe� r, � tctpayrovou ABr� A6yro trov (1), ( 3) oi api0µoi (x1 ,x 3 ) Ka0ro� Km otav A(2, -1) KmB(5, 3 ). 1')0t ( x 2 , X 4 ) civm pi�c� Tll � c�icrrocrct� A-601) : 'Exouµc: 2t - St + P = 0 . Apa (x,X ==Xx2 ) Ti (xX, ==Xx4 ) , onotc AB=(5-2, 3+1)= (3,4), onotc I ABl = ·h2 +42 =5. AA.A.a: sr .l AB � Br =A.· (-4, 3 ) Km j B � = I AB I 3 4 3 2 ta <JT)µcia A, B cruµninrouv Ti ta <JT)µcia A, � � I A, I · 5 =5 � I A, I =l �A.=±1. cruµninrouv, npayµa arono. rta TllV Kaµm)A,1') X 3 = 2 y OCV tcrxf>ct tO tOlO. Ilpayµan av 0cropficrouµc ouo <JT)µcia Tll � Kaµm>A.11� A(x" y1) B(x 2 , y2 ) tote ta cruµµctptKa tOU� r(-x1,- y 1) �(-x 2 ,- y 2 ) 00� npo� ro 0(0, 0) avflKouv crTilv Kaµm>A.11, acpou EnaA.110cl>ouv T11V c�icrrocrfi Tll � · To ABr� oµro� civm napill11Mypaµµo, OlO'tt Ol otayroviE� tOU . oixotoµouvtm. B� A'6a11 :

Yno0etouµc on ta <JT)µcia

p

I

p

i

XA

_

I

I

I

---

(I)

'tO M

M

p

B(S,3)

\

Ar,

\

A<JK'l<JT) 4.

AiVETat 1) 1>1ttppolfa c : 4x 2 - y 2 = 1 . Na od;tTE oTl To tf.1Paoov Tot> Tplyrovot> 1tot> CJXTJfl«Ti�tl Tt>XOUO(l E(j)(l1tTOJ.1tvTJ flE n; ao'6J.11tT©TE� ElVat ma9tpo Km tm1t/..tov TO 01JJ.1do t1taq>fa� dvm JlEoOV TOl> Et>9t>"(ptlf.1J.10l> TJ.1Taf.1«TO� 1t0l> CJXT)Jl«T�El 1) Eq>«1tTOJ.1tvl) flE T� ao'6J.11tT©TE�.

\ \

\

\

\

\

\

\

\

\

\

\

\

__ ,,,,.. ,,,,..

\

\

'

r'

Av A.= l, tote: Bf=(-4,3 ) � 'Ecrtro M(x" y 1 ) ruxov <JT)µcio Tll � X r -X B : -4} X r : -4 + x � = -4 �5 = l } . uncppoA.fi� c :4x 2 - y 2 = I . H c�icrro<JT) Tll � Yr - yB - 3 Yr - 3 + y - 3 + 3 - 6 c<pantoµ£vri� crro M(x" y 1) civm 4xx1 -yy 1 = 1 Km autfi teµvct n� acrl>µntrotc� y = 2 x Km Av A.=-1, tote: y = -2x crta <JT)µcia A( 4x1 -l 2y1 , 2x1 l- y1 ) Km Br=(4,-3) � = 4 + x 8 = 9 } = -3 + y 8 = 0 A'6a11 :

_

8

Xr

Yr

EvrcA.ro� oµota unoA.oyi�ovtm oi cruvtctayµevc� tOU �.

EYKAEIAHI:. B � 104 T.4/42


YnE'UOt>voi Ta1;11 � : ti.

r ' AYKEIOY

ApyuQ<i!,CTlc;, N. Avrcov6nou/..,o<;, K. BaKa.A.6nou/..,o<;, I. AouQii>a<;

AaKt1at1 � TI10avoTt1Twv TO>V Baail.;q KapKav11, '1>payKiGKO'll Mm:paiµ11, Ilavayt<l>'f1l Avopt01tO'llAO'll AGK'lG'l I 'l

Avo <potT11Ti:i; Oa nai;ovv i:va online video game napall11J..a, Km G'll fl<provovv v1K11ti)i; va dvm tKdvoi; 1tO'll npcl>Toi; Oa Ktpoiatt Tpta nmxviota µt 'f1lV npovno9t<J11 OTt otv Oa 1tai;ovv 1t0.vro ano 4 nmxviota. I:t K0.9t O.ll11 1ttpi1tTO><J11 Oa t>1tap;1:1 iaonal..ia. Av a dvm TO anoTi:l..taµa va Ktpoiatt o npcl>Toi; <pOt'f1lti)i; i:va nmxviot Kat p dvm TO anoTi:l..taµa va Ktpoiatt o OEVTtpoi; <po1T11nti; i:va nmxvioi, va ypa<pd o 01:1yµaTtKoi; xropoi; TO'll 1tttp0.µaToi; µt T1l pol)Otta Otvopootaypaµµawi;. Ilota dvm 11 m9aVOT11T« iaonal..iai;;

Aua11

Kat av dvm aa<pa/..1aµi:vo1 txot>v «KO>OtKO» 1 Kat aVJl<pO>Va fll: TllV t>yda TOt>i; xapaKT11P�OVTat fll: (a) av dvm Kal..1) , (p) av dvm µi:Tpta, (y) av tivm aopapl) Kat (o) av dvm Kpia1µ11. Na t>1tOAo"flGTOUV: a) 0 OttyµaTtKoi; xropoi; n TO'l> 1tttp0.µaToi; P) H m9avOT11T« TOt> 1:vo1:xoµtvot> A: «11 K«TUGT«a11 TOt> aaOtvovi; dvm aopapl) 1) Kpia1µ11 Kat dvm avaa<pO.l..taTOi;>> y) H n18av6'f1lTa TOt> tvotxoµtvot> B: «O aaOtvl)i; dvm aa<pal..taµi:voi;>> o) H mOaVO'f1lTU TO'\) £V0£XOf1£VO'l> r: «11 KUTclGT«Gll TO'l> aaOtvovi; dvat Kal..1) 1) µi:Tpta» Aua11 a) 0

'tOl>

Tnmxvt8tffi 8styµattK6i:; Xffipoi:; 7tetpaµatoi:; elVat: o 8ev8po8uiypaµµa nou Ka0opi�st tTJ crstpa roN v sivm: Q= (1,8{)}(O,a), (O,p), (O,y), (0,8), (1,a), ( l ,p), ( 1 ,y), To ev8sx6µevo A sivm A { ( 0, y ) , ( 0, 5)} on6rs N{A) � _!_ ( A) N(Q) 8 4 To ev8sx6µevo B sivm B={(l,a), (l,p), ( 1 ,y), N(B ) = _± = _!_ (1 '8)}on6rs: P(B) = N(n ) 8 2 <> ) EniO'll i:; r { ( O, a) , ( O, p) ,( 1 ,a),( 1 , p) } on6ts =

P)

P

=

=

=

y)

N(r) = � .!.. P (r) = N(n ) 8 4 w

=

=

dvm: = { aaa,Paap,aapa,papp,aapp,papa,apaa,ppaa,apap,ppap,appa,PPP appp, Qpaaa, T o }. ev8sx6µevo tTJi:; tcronaA.iai:; µs avaypacp� sivm aK6A.ou0o: I= { aapp, appa, opicrµ6 apap, Paap, papa, Ano rov tlacrcrtK6 n1i:; ppaa}. m0av6tllt(l(;, ym tTJV 7tt0av6r11m r11i:; tcronaA.iai:; (I) = 6 3 sxouµs: P(I) = NN(O) =14 7 w

A GK'l Gfl 2 'l

H apxl) tvoi; VOGOKOfll:lo'll dvm va KO>OlK01tOltl Tot>i; aaOtvdi; al)µ<prova µt 'f1lV aa<pal..£16. Tot>i; KUl aVµ<prova µt TllV KUTclGTa<J11 Tlli; t>ydai; TOt>i;. Av dvm avaa<pclAlGTOl i:xot>V «KO>OlKO» 0

A GKfl CJfl 3 1J

Em/..i:ytTat Tt>Xaia 1 01Koyi:v1:1a µt 2 at>T0Kiv11Ta. To xproµa Trov «t>ToKtvl)Trov µnopd va dvm l..tt>Ko (A) 1) µavpo (M) 1) a<J11 µi (A). E;tTcl�O'l>fll: Ta «t>TOKlVflT« roi; npoi; TO xv roµa Kat 'f1lV GttpO. nal..atO'f1lT«i; TOt>i; (TO 1° «t>TOKlVllTO dvat TO 1tUAat0Ttpo). a) Na npoaotoptaTd 0 OttyµaTtKoi; xropoi; n TO'l> a<pov nttpaµawi; KaTO.ll11J..o yiv1:1 otvopoo16.ypaµµa. P) Na napaaTaOovv µt avaypa<pl) TO>V aT01xdrov ' TOu.; Ta tvo1:xoµtva 1tot> npoaowpi�ovTm ano Tti; avtiGTOlXti; l0lO'f1lTti;: B=«To 1° avT0Kiv11To va dvm «<J11 µi» r=<<O aptOµoi; TO>V Att>KIDV a'l)TOKtVl)TO>V va dvm µl:"(aJ..v Ttpoi; 1) iaoi; TO>V µavprov

EYKAEIAH:E B' 104 T.4/43

·


Ma011J1«T1K6. 'Y•« TflV B · AllKEio\J

a1>1'0KlVl]1'roV» A=«Ta 2 a1>1'0KiV111'a va txo1>v To ioto :xproµa» y) Yxo9t1'01>µE 01'l 0 0Etyµa1'lKOc;j xropoc;; n ax01'tl.Ei1'm axo taoxiOava axMI tvotxoµ.:va. Na 1>1tOAoyia1'El TI m.Oav01'fl1'a Trov xapaKa1'ro EVOEJ(Oµtvrov: E == B n r' z == B u E, H = z - E c)) Na 1>7tol..oytCJ1'Ei TI m9av61'Tl1'a Trov EVOEJ(oµtvrov: 0:«0EV xpayµa1'oxowi1'm Kavtva ax6 Ta B, E» l:«xpayµaToxowi1'm aKptproc;; tva ax6 Ta B, r» AuaTI

a) To oevopoouiypaµµa nou Ka0opiset TIJ cretpa na.Aat6TI)T(l(; Km w XPffiµa eivm w aK6A.ou0o:

1 ° auto1dvrrro 2 ° autoldVT]tO AEUKO Acriiµi Mal>po AEU KO Acrriµi Acrri µi Mau po AEUKO Acrri µi Mal>po Mau po

AEuK6 � � -<::::

f\ O'KTj O'TI 4 '1

'Eva aµEp0ATl1t1'0 «�clpl» CJE CJJ(l]µa KaVOVlKOU 1'E1'pclEOp01> txt1 1tclV(l) CJ1'lc;j toptc;; 1'01> 1'lc;j .:voEil;tic;; 1,2,3 Km 4 av1'ia1'mxa. Pixvo1>µt To �clpl oi>o q>optc;;. a) Na ypaq>Ei 0 0Etyµa1'lKOc;j xropoc;; 1'01> xttpaµaTOc;; Km va pptOd To xA.l]Ooc;; Trov CJ1'0l)(El(l)V 1'01>. p) Na ypaq>Ei 1'0 EVOEJ(OµEVO A: «1'0 aOpolaµa 1'(l)V EVOEil;trov 1'(l)V oi>o Pl\JIE{l)V va Eivm µtKp01'Epo l] iao 1'01> 4» Km va PptOEi 1'0 xA.l]Ooc;; 1'(l)V CJ1'0l)(El(l)V 1'01>. y) Na ypaq>Ei 1'0 EVOEJ(OµEVO B: «Kal Ol oi>o .:vodl;ttc;; Eivm iowc;;» Km va PptOd 1'0 xA.l]Ooc;; 1'(l)V CJ1'0l)(El(l)V 1'01>. o) Na pptOouv Ta xapaKa1'ro .:votxoµ.:va Kat va PptOEi 1'0 xA.l]Ooc;; Trov CJ1'0l)(Eirov 1'01>c;j 1 . r : «1'0 (J1)µ7tA.T1proµa1'lKO 1'01> A» 2. E : «1'0 A l] 1'0 B» 3. H: «1'0 A Kat 1'0 B»

n

Auall

EnoµE\lro�, 0 OEtyµmtKO� xropo� 'tOU 7tEtpciµmo� eivm: Q= {AA, AA, AM, AA, AA, AM, MA, MA, MM} p) Me P ami 'tO OEtyµmtKO xropo n 'tOU 7tEtpaµaw� 'ta evoexoµeva A, B, r µe avaypaqrr) 'tCOV crwtxEirov 'tOU� Eivm 't(l napaKU'tffi: B= {AA, AA, AM} , f={AA,AA,AM, AA, AA, MA} , �={AA, AA, MM} y) Ta evoexoµeva E, z KClt H µe avaypacpi] 'tCOV cnmxEirov wu� eivm •a napaKa•ro: E= {AA,AA}, Z= {AA, AA, AM} , H={AM} , Apa an6 wv tlacrmK6 optcrµ6 TIJ� m0av6n1m� N (E) -2 exouµe: P(E) = = N (n) 9

P(Z) =

5 9

N (Z) 3 1 N (H) 1 = - = - P(H) = =N (n) 9 3 ' N (n) 9

()) ME TI) P ofi0eta 't(l)V cruv6A.rov, 'ta evoexoµeva E> KClt I cruµpoA.isOV'tClt ro� E�i]�: e = (B U E) ' Km 1 = ( B - r) U (r - B) . TOTE: P(E>) = P [ (B U E)' ] = l - P (B U E) = 1 1 - P(B) = 1 - - = -2 KClt 3 3

P (I) = P( (B - r) U (r - B ) ) = P ( B -r) + P(r-B ) = P( B ) + P(r) - 2P ( Bnr )

a) Q OEtyµanKO� XOOPO� 'tOU 7tEtpaµa'tO� <j>atVE'tClt <r'tOV napaKU'tffi 7ttVUKU omA.ij� EtcrOOOU:

1 2 3 4

1,1 2, 1 3,1 4, 1

2 1 ,2 2,2 3,2 4,2

3 1 ,3 2,3 3,3 4,3

4 1 ,4 2,4 3,4 4,4

n = {(1 , 1 ), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4) } Km N(Q) = 16

p)

E>a 7tpE7tEt (1 '1 pi'JITJ +2'1 pi'JITJ)�4, 07tO'tE: A = { ( 1 , 1), ( 1 , 2), ( 1 , 3), (2, 1), (2, 2), (3, 1 ) } Km N(A) = 6 y) E>a 7tpE7tEt l '1 pi'JflJ=2'1 pi'JITJ, 07tO'tE: B = { ( l , 1), (2, 2), (3, 3), (4, 4)} Kat N(B ) = 4. o)

fta 'ta evoexoµeva r, � KClt H txouµE 'ta E�ij�: .1 r = A' = { ( 1 ,4), (2,3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 1 ), (4, 2), (4, 3), (4 , 4) } Kat N(A') = 1 0. 2. E = AuB = {( 1 , 1), ( 1, 2), ( 1, 3), (2, 1), (2, 2), (3, 1), (3, 3), (4, 4)} Km 1'(E) = 8 3 . H = A n B = { ( 1 , 1 ), (2, 2)} Km N (H) = 2

EYKAEIAHI: B ' 104 T.4/44


Ma&qµaTlKU yiu 'ft)V r ' At>Ktiou

_\ O'KTJ O'TJ 51 o 01:1yµanK6.;

xropo-.; n nt1paµaTo� Tl)x11� µt not1 O"To1xdrov nH180.; 7tt7ttpaaµb·o ntpU..O µ p«vo Ta MM 1:voqoµ£Va ro., ro2, 0>3, 0>4, ros Kat ro6 µ1: n18av0Tl)T£�: P( 0>1)=0,22,

P(ro2)=0,1 4, P(ro4)=0,l6, P(ros)=0,25, P(ro6)=0,15 . 'EO"Tro T« m>v8na evoqoµtv« A={ro ., 0>4}, B={ro2, ros}, r={roi,0>3,0>6} Kat A={ro2, 0>3, ros, ro6} . Na ppe8oi>v 01 m8avoT1)T£� Trov tvoqoµtvrov A, B, r, A. Aua11

Ano tov a�troµanKo optcrµo yia ta EV&txoµEVa ClUta icrxt'.m :P( ro , )+P(ro2)+P(ro3 )+P(ro4)+P(ros )+P(ro6)= 1 , apa P(ro3 )=0,08. Enimi<;: P(A)=P(ro1)+P(ro,22+0, 1 6=0,38 P(B)=P(ro2)+P(ro5 )=0, 4+ 0,25=0,39 P(f)=P(ro1)+P(ro3)+P(ro6)=0,22+0,08+0, 5=0,45 P(L\)=P(ro2)+P(ro3 )+P(ro s )+P(ro6)=0,62 •

l

l

A O' K'l<Jll 611

Av A, B evoexoµeva evo� 01:1yµaT1Koi> xropov n � P ( A u B ) = , P( B ') = _! , P( A (I B) = _!_ , 4 3 4

Kat

vu pp1:8oi>v Ot 1tl8UVOT1)T£�: a) P(B ) p) P(A) y) P (A - B ) o)

t) P(A '(I B ' )

<JT)

P(B - A) P [(A - B ) u (B - A) )

A6<J'l

«) fta avti.0ttCl EVbEXOµEVCl lCJxQEl on:

P(B) = 1 - P(B ') tnoµtvro<; P(B) = 1 - � = _!_

3 3 Ano tov npocr0tttKO voµo tcrxi)tt on:

p)

P(A u B)

=

&riA..

!

=

P (A) +

P (A) + P (B) - P ( A n B)

� - : � P (A) = ! + : -�

TtA.tKa P (A) = � 3 y) EniITT) <; tcrxi)tt on:

P(A - B)

A ElVCll acruµ�i�acrm, apa P[ (A - B) u (B - A)] = P( A - B) + P(B - A) = 5 1 6 1 ' + - = - = - A.oyro trov y) ' &).

O'T )

Ta A - B KCll B

-

12 12 12 2

A<JK'IO'll 711

AivoVTat TU £VO£XOJ1EV« 0£l"(JlUTlKOi> xropotl

P{ A U B ) = 0,4 , P{A n B ) = 0,1 5 , P(A') = 0,75 , P(r U �) = 0,8 P(r n A ') = O,S ,

�i�� +

1tl8UVOT1)T£� TO>V tvoqoµtvrov

P ( A) - P (A n B) 1 5 2 L\riA.a&i) P(A - B) = 3 4 U o) Oµoiro<;: P(B - A) = P (B) - P ( A n B) 1 1 1 L\riA.a&i) P(B - A) = 3 4 12 t) P( A 'n B ') = P((A u B) '] = 1 - P(A u B) 3 1 L\riA«&i) P(A ' n B ') = 1 - = 4 4 =

=

••

vu ppdloi>v

A, B, r Kat A.

AU <J TJ •

fta ta cruµnA.riproµanKa EV&txoµEVa A Km A' tcrxi)tt: P( A) = 1 - P( A ') = 1 - 0 , 75 = 0 , 25 rm Mo EV&cxoµEVa A KCll B EVO<; &ttyµattKOU xropou Q . 'Exouµt:

P(A U B) = P(A) + P(B) - P(A n B) � P(B) = P(A U B) + P(A n B) - P(A) � P(B) = 0 , 4 + 0, 1 5 - 0, 25 = 0 , 3 rm Mo EV&cxoµEVa r KCll L\ EVO<; &ttyµattKOU

xropou n, exouµc: P(r n � ·) = P(r - �) = P ( r) - P ( r n �) � P(r n �) = P(r) - P(r n � ·) = P(r) - o, 5 (1) (I)

EniITT) <; P(r u L\ ) = P(r ) + P ( L\) - P(r 11 L\) � 0, 8 = P(r) + P( L\ ) - P( r ) + 0, 5 � P( L\) = 0, 3 . , 5 AKoµri ' P(r) = - � P(L\) 7 --

'

P(r) = _?_ P( L\ ) = _?_ 0 3 = _!2_ = ]_ 7 7 7 14 ·

=

A, B, r Kat A £VO� n. Av urxi>ot1v:

A<JK'l<Jll g11

:Et tva \jltl"(tio t11tapxot1v 40 J11tOtlKUAt« UVU\jltlKTlKcOV U1t0 TU 01tOi« TU 20 tlVat AttJ KQ TU 10 dvat "(Kpl Kat TU tl1tOAol1tU tivat 1tpac:nva Kat po�. Em/..tyot1µ£ tvu J11tOtlKUAl O'Tl)V Tl)X11· 'EO"Tro OTl tl1tUPX£l A. E 1R c00'1'£ 1) 1tt8UVOT1)T« TO

, , po-,r £lVat: ·� VU £lVat J11tOtlKU11.l

, , 1tpmnvo ttvat:

A. - 1 9A. + 2

A.

J

A,

,

+ 4 , VU ElVUl

;.. R , 1tu0'« po.,r Na .,pt 8 ovv

Kat 1t0(J(l 1tpU<rlVU J11tOtlKUAl(l tl1tUPXOtlV 0'1'0 \jltl"(tio.

EYKAEIAHI: B' 104 T.4/45


Ma9ttf1«TiKa yia T1JV B ' AuKtiou

At>mi

E>eropouµe ta. evoexoµeva. A: «to µnouK6.At eiva.t M:.uKo» µe P(A) 20 , r : «to µnouKa.11.t etvm yKpt» 'I � -

= 40

,

,

' '\

-

= 4010 , II : «to µnouKa.11.t etva.t npa.cnvo» µe P(II) = _!:__:_!__ Ka.t Z: «to µnouK6.'At eivm po�» µe 9/... + 2 P ( Z) = A, , 'A e 9? .Enicni� P ( IIuZ ) =.!Q_40 3'A + 4 a.<pou ta. npacnva. Ka.t po� µnouK6.'Ata. µa.�i eivm 1 0. EnetMl evoexoµeva. II, P eiva.t a.cruµpipa.cna. ea. txouµe: P(II u Z) = P (II ) + P(Z) => µe

P(f)

' '\

-

,

,

--

ta.

10 'A - 1 + 'A => ... => A = - 4 T1, 'A = 2 . ' 40 9'A + 2 3'A + 4 7 fta. A = _i txouµe: P ( ) _!._ < 0 , onote TI nµij 4 7 4 A, = a.noppintetm. fta. 2 eivm: 7 P( = 2 = _3_ (1 ) v x eivm to n'Aijeo� 3 · 2 + 4 10 trov po� µnouKa.'Atrov, tote = � (2). Ano n� 40 ( 1 ), (2) ppicrKouµe: � = _3_ , OT1'Aa.oij x 8 , onote 40 1 0 -=

--

--

_

Z)

Z=

_

A, =

A P(Z)

=

po� µnouK6.'Ata. eivm 8 Ka.t enoµevro� ta. npacnva. eivm 2.

ta.

f\. O'KTI O'TI 9

I:t: tva m>Vt:pyt:io l>1tclf>XOVV OXllµ«T« 1tf>O� t:1ttO'K£l)ll 1tov <it:v Af:tTovpyo'6v K«vov1Ka. Axo T« ox11µ«T« fll)Tcl TO 65% BX£l µrixavol..oytKO

1 4

1tpoPJ..ri µ«, TO -

fll)TOOV txt:t flUKTpoA.oytKO

xpoPJ..ri µa, £Vro To 10% avTrov xapova1a�t:1 µrixavoA.oytKo K«t flUKTf>OAoytKo xpoPA.riµ«. Eml..tyovµt: nxaia tva fll)TOKlVflTO. Na ppt:9o'6v Ol 1tl9UVO'Tfl'T£� TO>V t:V0£XOµtvrov: a) «Na xapova1a�t:1 µrixavoA.oytKo 11 flUKTpol..oytKO xpopA.riµ«» p) «Na µriv xapova1a�t:1 µrixavol..oytKo 11 flUKTf>OAoylKO xpopJ..ri µ«» y ) «Na xapova1a�t:1 µovo tva t:ioo� pA.aPri�» A-Uari

A

'Ecrtro to evoexoµevo «to O.UtOKlVTjtO va. na.poucr16.�e1 µT1xa.vo'Aoy1Ko npo P'ATlµa.» µe P( )=0, 65 . 'Ecrtro to evoexoµevo «to O.UtOKlVTjtO va. na.poucn6.�e1 T1AeKtpoA.oy1Ko npoP'AT1µa.» µe P( )=0,2 5 . Enicni�, icrxt>eiP(A n B) =0, 1 0. a) To evoexoµevo «Na. na.poucr16.�et µT1xa.voA.oy1Ko

A B

B

Ti TtAeKtpoA.oytKo npoP'ATlµa.» eivm to A u B onote P( A U B) = P(A) + P(B) - P(A n B) 0.80 p) To evoexoµevo «To O.UtOKlVTjtO va. µTIV na.poucn6.�e1 µT1xa.vo'Aoy1Ko ii T1AeKtpo'Aoy1Ko npo P'ATlµa.» eivm to (A u B) ' onote : P ( ( A U B ) ' ) 1 - P(A U B) = 1 - 0.80 0.20 y) To evoexoµevo <<Va. txei to omµa. µovo µta. PA.6.PT1» eivm to (A - B) U ( B - A) enoµevro�, yta. tTJV a.vticrtoixTI n19a.votrita. txouµe: =

=

=

=

P ( (A - B) LJ (B - A) ) P(A - B) + P(B - A) = P(A) + P(B) - 2P(A n B) = . .. 0, 70 . =

f\. O'Kll O'TI 1 0 '1

f(x) 4x3 - 5x2 + x ln K + 2017 , x e 9t,K > 0 . a) Av f '(l) = 4 , vu ot:t;nt: OTl K = e 2 • =

'EaTro

p) 'EaTro n o ot:1yµaT1Ko� xropo� £Vo� xt:ipaµaTO� rixri�. Av A, B £V<it:xoµ£Va Tov n µt: A c B Km In K = 2 vu vxol..oytaTo'6v 01 1tt9avoTflT£� P (A) , P ( 8), P (A n 8), P (A LJ B) ,

P ( A n B') ,

oxov

P(A), P(B)

01 9fot:� T01ttKrov

Tfl� f.

Aua11

Eivm: f ' ( x ) l 2x2 - I Ox + In K onote: f ' ( 1) = 4 =::} 1 2 - 1 0 - In K = 4 =::} K = e2 =

a)

p) fta. ln1r-2,

txouµe: f ( x ) = 4x3 - 5x2 + 2x + 20 1 7 . Onote:

f '(x) = 12x2 - I Ox + 2 = 2(6x2 - 5x + 1 ) Kat .

• • •

f '(x)

=

o

x _!_ � x .!.. 2 3 =

=

( ) (� ,+oo) 0 � x e ( ± , �)

f'(x) > O � x e -oo, ± u f'(x) <

A pa.,

TI

f

'r na.poucna.-,e1 tomKo µeyicrto yta. x = -1 3 ,

,

Kat tomKo eA.axicrto yia. x _!_ . Enetoij ea. eivat

P (A) � P (B) .

=

2

A

cB,

Onote P(A) = _!_ Ka.t 3

P(B) = _!_ Enicni� A c B => (A n B) = A Kat 2

EYKAEIAHI:. B ' 1 04 T.4/46


Ma011JUlTtK0: yia 'TtlV r AllKtlOtl

1 P(A n B) = P(A) = - , 3

'Etcn

(A u B) = B .

P(A u B) = P(B) = _!_. T€A.oi; 2 P ( B n A ' ) = P ( B ) - P ( B n A ) = _!_ _!_ = .!.. . 2 3 6 _

AGKT)Cfl) 1 1 1]

A,

r..a Ta "EV0£XOJ1EVa B EVO<; 0£l"(JlaTlKOV xropov iaxvovv: P(A) = o, 76 Km P(B ' ) = o,65 . a) Na .:;tTaatTt av Ta B dvm aCf'l>µpipaaTa. p) Na mrood;tTt OTl: P(A u B) � 0, 76 . y) Na anood;£Tt OTt: 0, 1 1 ::;; P(A f1 B) ::;; 0,35 . o) Na anood;tT£ OTl: 0,41 ::;; P(A - B) ::;; 0, 65 .

n

Aua11 a) 'Ecmo

A,

A, B

6tt ta eivm acruµpipacrta t6te A n B = 0 o1t6te P(A u B ) = P(A) + P(B) = 0, 7 6 + 1 - P(B ') = 0, 7 6 + 1 - 0, 65 = 1, 1 1 ato1to, apa ta oev eivm acruµpipacrta.

>1

A, B

p) foxi)et:

A c (A u B ) => P(A) ::;; P(A u B) => P(A u B) � 0, 76 .

y) Eivm P(B) = 1 - P(B ') = 1 - 0, 65 = 0, 35 . E7ttcrl)i;: (Ar1 B) s;; B => P r1B :::; P(B) => P r1B :::; P(A u B) $ l => P(A) + P(B) - P(A n B) $ l => 0, 76 + 0, 35 - 1 :::; P(A n B) => 0, 1 1 :::; P(A n B apa teAtKa 0a tcrxi)et: 0, 1 1 $ P(A n B) $ 0, 35 .

(A )

o) lcrxi)et:

(A ) 0,35

f1

(I)

AGKT)Cfl) 1 2'1

A,

r..a Ta EV0£XOJ1EVa B EVO<; 0£l"(Jl«TlKOV xropov !l l<JXVO'l>v: P(A ' ) $ 0, 2 Km P(B ' ) ::;; P(A f1 B) . a) Na od;tT£ OTl: P(B) � 0, 5 p) Na .:;tTaatTt av Ta B dvm aCf'l>µpipaaTa. s: :i: P(A ' ) 2 y) N a ut...,£T£ OTl: -- ::;; P(B) 5

,

Aua11

a) 'Exouµe:

p)

A,

P(B)::;; P(Ar1B)=> 1-P(B)sP(AnB).

(l )

Dµroi; P(A ') $ 0, 2 => 1 - P(A) $ 0, 2 <::::> P(A) � 0, 8 Km Myro tou a) P(B) � 0, 5 Km µe 7tp6cr0ecrl) Kata µ€A.ri: P(A) + P(B ) � l, 3 o1t6te Myro trii; 1taipvouµe P( A u B) � 1, 1tOU eivm ato1to o1t6te ta oev eivm acruµpipacrta.

(1)

3>1 A,B U1t60ecrl) exouµe P(A ') $ 0, 2 (2) Km

y) A1t6 tTJV ' P(B) � 0, 5 => ' tou a) etvm Myro

1 1 $ - (3). P(B) 0, 5 Me 7toUa7tA.acnacrµ6 trov Kata µeA.ri , P A ) 0, 2 P(A ') 2 7tmpvouµe: ( $ - => $- . P(B) 0, 5 P(B) 5 --

(2),(3)

--

AGKT)Cfl) 13'1 a) 'EaTro 11 avvapTT)GlJ

f(x) = x2 - x3 , x e [o ,1]

Na J1EAETT)8d ro<; npo<; TT) µovoTovia Km Ta aKpOT«Ta. EVO<; 0£l"(Jl«TlKOV p) nu Ka8t EVO£XOJ1EVO

A

xropov n vu otLX8d oTL: P 2 (A) · P( A ') ::;; AUGT) a) H

o7t6te, •

("'\

P(A-B) = P(A)-P(A B) = 0, 76 -P(A B) (1) . A6yro tou y) eivm: 0,11::;; P(A r1B):::; 0,3 5 =>-0,35 $-P(Ar1B) $-0,11 => 0, 76-0,35 s 0, 76-P(A r1B):::; 0, 76-0,11 => 0,41s0, 76-P(A n B):::; 0,65 =>0,41$P(A-B)s0,65 .

s;;

An B B => P(A n B)::;; P(B) o1t6te 1-P(B)::;; P(B) => P(B);;::: 0,5 'Ecrtro 6tt ta A, B eivm acruµpipacrta t6te A n B = 0 o1t6te P(A u B) = P(A) + P(B)

Dµroi; 1taipvouµe:

• • A

f '(x) = 2x -3x2 f'(x)=0<:::> 2x-3x 2 =O <:::> x =O i] x = �3 f '(x) 0 0 x 23 f '( x) 0 -23 x $ 1 2

f eivm 1tapayroyicnµri µe

n.pa ri f crto '

2

>

<=>

<

<

<=>

<

-3

<-

' = 7tmpvet tTJ µeytcrtri nµri trii;.

x 0

x E

�riA.aoi] yta Ka0e

'

[ 0, 1 ] 0a tcrxi)et

'

f(x) s r (%)

f ( x ) s _i_27 . Av 0foouµe P(A)=x t6te P(A') =l-x µe 0 $ $ 1 , t6te apKei va Oe�ouµe 6tt: x 1 -x) ::;; 247 ' x2 -x $ 247 ' f ( x ) s 274

oriA.aofi p)

x

2

(

'

Tl

3

1tou tcrx6et a7t6 to eprotrJµa a).

EYKAEIAm B ' 104 T.4/47

'

Tl


MaOflflU'tlKQ y1a TflV r AuKtiou

e,..avaAr\1rTI KE� AaKr\0£1 � - AvaAuan A<JK'l<Jll

a, p

1.

Na ppti-n: TO'l>� apt9µot>� e lR , hat IDOT£ va dvm 1tapayroyiatf.l'I 'I avvup'T'l a11 :

f(x) x l x - a l l x - 13 1 +

=

cr6voA.o opmµo TIJ� £ivm w lR . 1 ) 'Ecmo ott yia Mo ap10µou� a, J3 e IR TI crov6.pTIJCfl'l dvm napayooyicrtµTI ow lR 'Eotoo on a < p. Tot£ At>ari . To

f

f

f(P)= PI P - aJ = P(P-a) . 'Etm exouµe: f ' (P )=f;( P)= lim f(x)-f(p) = x-p = lim x(x-a)+(x-x-pP)-p(j3-a) (yianx> ,_. > a) = = II.m (x-p)(xx +P- P -a+l) Im (x+,_.-a+l) = =2P -a + 1 Dµma ppicrKoµm on: f' = (p) = . . = 2J3 -a -1 . 'Etot exouµ£: 2P -a + 1 =2P -a-1 Km 6.pa 1 -1 , 6.t01tO. 'Eotoo on a > p. Tot£, oµota cp06.vouµ£ 0£ 6.Tono. :Euv£m:0�: a = p, onot£ : f(x) = x l x -al+ I x -al = (x + l) l x -al . f(x)-f(a) = 'Etoi, exouµe: f '( a)=f;(a)= lim x-a x -a (x+l) - I'm x-al l Im (x+l)(x-a) =a+ 1 . x-a Dµoia: f '(a) = (a) = -a - :Euv£m:0�: a + 1 = -a -1 Km 6.pa: a = -1. Ilot£, av crovO.pTIJCfl'l f £ivm napayooyicrtµTI oto , tot£ : a = p = -1. 2 ) AVTl<JTpoq>ro�. 'Eotoo on: a= p = -1. Tot£: 2 ,6.v x�-1 f(x)=xl x +�+ l x +ll =(x +l)l x +ll = {(x+l) -(x + 1)2 , , x<-1 'EoToo on x > -1. Tot£: f (x) = (x + ) 2 Km 6.pa f'(x) = 2 ( x + I) . 'Eotoo on: x < -1. Tot£ f(x)=-(x+l) 2 Km 6.pa f'(x) = -2(x + 1). E�£T6.�ouµ£ TIJV napayooyo oTo -1. 'Exouµ£: (x +l)2 = lim (x +l)=O. li m f:(-l)= lim f(x)-f(-1) x+l x+l Dµma: C(-1)= ... =0. :Euv£1tcO�, TI crovO.pTIJCfl'l f dvm napayooyicrtµTI Km Km 6.pa £ivm napayooyicrtµTI OTO x -+ P.

,

x�

1.

x -+P+

x -+P+

(J3)

A

A

C

=

x -+a+

C

x -+a•

1.

x -+a+

l.

lR

u:v

I

x -+-1+

oto -1

x-+- 1+

X-+- 1+

lR .

-:Euµn£paivouµ£ on 01 �TltO'UµEVOt ap10µoi £ivm: Km f\.<JKfl<Jfl 2. Mia avvup'T'l «Yfl f dvm optaµtv11 Kat

a = -1 p = -1 .

6'60 <popt� 1tapayroyiatf.l'I OTO lR Km 'I avvup'T'l«Yfl dvm avvtx1}� OTO lR . Na a1to6d;tT£ OTt 'I avvupT'IOfl dvm upTta av Kat f.lOVO av 11 (J'l)VUP'T'IO'I : = dvm upTta. A\J<Jfl. 1) 'Ecrtoo 6n TI civm 6.pna. T6t£, yt.a. K6.0£ e lR Ex,ouµe f(-x) = f(x) Kat cruv�:

f"

f g(x) 2f(x) - xf'(x)

f x -f'(-x) = f'(x) Kat f'(-x) - (-x)' = f'(x) , cl.pa TI f' civm 1t£PtniJ. 'Etm Ex,ouµE, Ka.0£ x : = = 2f x) x) = 2f -x) x) xf' (-x) (x). + x f '(- ( ( g ( g Apa, TI g civat 6.pna. 2) VTl<JTpocpro�. 'EoTOO on TI g £ivm 6.pna. E>a a1t006�ouµe on Km TI f £ivm 6.pna. 'Exouµ£ yia Ka0£ x e g(-x) = g(x) � 2f(-x) + xf'(-x) = 2f(x)-xf'(x) � x [ f'(x) + f' (-x)] - 2 [ f(x) - f(-x) ] = O (1). TIJV Tffipa crovO.pTIJcni: E>Eoopouµe q>(X) = f(x)-f(-X) (2). 'facrt a1tO TIJV (1 ), EXOUµ£ yia K6.0£ x e : xcp' ( x) -2cp( x) = 0 . Ano autiJ exouµ£ , yta Ka0£ X2cp'(x)-2xcp(x) = 0 � ' cp(x) 0 � ( cp( x) )' 0 x2 cp'(x)-(x-2 )-----4 - x x cp( ) l:uµn£p6.vouµ£ on: : =A., yia Ka0£ x e (0, +oo) x cp( ) Km : = µ , yta Ka0£ X (-oo,0), 01tOU µ, A, JR . x {A.xµx22 ,av,av x<Ox>O . :EUV£1tro�: 'Etcrt exouµe: cp(x) = { 2A., av x>O , {2µx, 2A.x, av x>O <p ( X) = Km <p " ( X) = 2µ, av x<O av x<O E�6Mou, rnm()ft TI cp" £ivm cruv£Xll� mo ( yia.Ti;) Ex,ouµe: limcp"(x) = limcp"(x) , OTIAMTt 21..=2µ Kat cl.pa A. = µ. A6yoo auTou Km 67t6t0ft cp(O)=O, Ex,ouµe: 2 cp{x)=AX , yt.a. K6.0£x e!R . Ano 'tTjV (2) Ex,ouµeyia K6.0£ x e !R : cp(-x) = f(-x) - f(x) = -<p( x) �cp(-x)=-q>(x) �A.x 2 =-A.x 2 � 2A.x 2 =0 . :Euvrnro� A,(=µ)=O . 'ETm, yia. K6.0£ x e , Ex,ouµe : cp(x)=O Kat �:f{x)=f{-x). Apa TI f civm 6.pna. &JA.a&i

E lR

yt.a.

A

lR :

lR

X E JR* : _

2

_

.

E

E

lR

·

X-+ o

EYKAEIAH:E B ' 104 T.4/48

crovrnffi

X-+ o

-

lR


Ma011paTtKa yta 't'IV r' At>Kdot>

A<JKTJ <nJ 3 . Ai>o auvapn}atK; Kat g tivm optaptvt� Kat 7tapayoryiatpt� <J'rO lR pt Km yia Kci9t e lR iaxi>ovv:

f f(O)= l f 2 (x) - g2 (x) = 1

x (1) Km f(x) = g' (x) (2).

l) Na a7tooti�tTt oTt: g( x) = f' ( x) , yta Kci9t

x

E

IR .

q>=f+g Km h=f-g

2 ) Na pptiTt Tt)� avcipTt)<Jt)�: K«l fl&Tcl 1'K; K«l A tl <JTJ. I )

f

g.

( 1 ), na.pa.ycoyisovta.�, txouµc ato 2f(x)f'( x)-2g(x)g'(x) = 0 ( 2) f(x)f'(x)- g(x)f(x) =0 => f(x) [f'(x)-g(x)] = 0(3) 'Eatco Ott yta eva.v a.pt0µo t<JxUEt f(a.)=0. Ano tllV ( 1) µE x=a �ptaKOµE Ka.t apa. g 2 = -1 . 'Etcrt ano ' atono. A.pa: f(x)-:;:. 0, yta KCt0E x tllV (3) txouµc yia Ka0E x e f'(x)- g(x) = 0 Km cruvEmo�: g (x) = f ' ( x) (4). 2) 'ExouµE ato R : cp'(x) = f'(x) + g'(x) g(x) + f(x) = cp(x) => cp ' ( x) = cp(x) cp ' ( x)e-x -e-xcp(x) = 0 => ( cp(x)e-x )' =0 =>cp(x)e-x =c (ce!R) Ano tllV (1) µE x=O �piaKouµE f 2 (0) - g 2 (0) 1 Ka.t E1tEt8i) f(O) = 1, EnE't'a.t ott g(O) = O . 'E't'at txouµE: cp(O) = f (0) + g(O) = 1. E�aUou: cp(O) =c. LUVE1tCO�: c=l Ka.t apa, a.no tllV : <p(x) =ex (5). h'(x) = f'(x) - g'(x) = g(x) - f(x) = -h(x) + 0 h'(x) = -h(x) Ano tllV

lR :

E lR

=>

(a)

E lR

lR :

=

=:> cp(x) = c · e x .

=

=>

(

=> h (x)e x

)

'

:::::>

h ' (x)e x

e xh (x) =

=0. 'Exouµc: Ka.t h(O) = f( 0) - g(O) = 1 Ka.t apa. c' 1 . LUVEmo�: h (x) = e- x (6). Ano tt� (5) Km (6), txouµE aw !R :

h(O) = c'

=

f(x) = <p(x) +2 h(x) = ex +2e-x Ka.t g(x) = cp(x)-2 f(x) = ex -2e-x

;\<JK11 m1 4 .

Km

y + 1 ,ye!R. f(x)=2vx + -;-1 - 2,xe(O, +oo) Ka.t g(y)=7 'Ernt a.no (2), txouµE: f(x)=g(y). (3) - H OUVCtPtllITTJ f EiVa.t na.pa.ycoyimµri CHO ( 0, 0, av. x> 1 ..., 1 1 1 xµE: f ' ( x ) = 2 2vx - -x 2 = x2 = 0,0, 6.va.v' Ox=<x1< l r

t11

T

f'

Na pptiTt TO'\l� api9µoi>�

y e JR , tTa• roaTt va iaxi>ti: (2x.Jx + 1 - 2x)eY = (y + l )x .

xl

<

-

+

:r

.

f f(l )=xe(O, 1. oo), +

:EuµnEpa.ivouµE ott rt cruvaptll ITTJ EXEt EA.axtatll ttµi) aw iITTJ µc :EuvEmo�: yta Ka0E µE t0 µovo yia H cruvaptll art Eivm napa.ycoyicrtµT] aw lR µt: a.v �. a.v y=O < a.v •

-

f(x)�lx= 1,, = x=l. g 0, y<O Y Y -(�: e l)e g'(y) = e = - e = 0, 0, y>O

{>

0 g

/

-x

I

0

g g(O)= 1. ye

:EuµnEpa.ivouµt ott rt cruvaptllITTJ EXEt µEytatll ttµi) cno iITTJ µE :EuvEmo�: yta Ka0E lR , µt w=µovo yta. 'ExouµE A.otn6v A.Oyco Ka.t tll � (3): f (x) = 1 x=1 :::::> 1 ::; f(x) = g(y) ::; 1 :::::> y=O g(y) = 1 Avtta't'pocpco�. Dncos �piaKouv Ka.t . EUKoA.a. µE TJ taxUEt. A.pa., ot sTJtOUµEVTJ a.pt0µoi Eivm: KClt •

y=O, g(y):::; 1,

{

y=O ( 1)

{

Y"".0.

x= 1 x= 1 y=O.

A<J KTJ O"TJ 5. Na PptiTt Tt)� 7tapay0>yiaipt� auvapn}atK; : IR --+ IR ' tT<Jl ro<J'rt "(l« Kci9t E IR va l<JJ(i>tt:

f x ( x2 +1)[r(x)-ln�x2 +1 J= x[x-( x2 + l)f'(x)J (1)

f ( 1) ( x2 + l) f(x) + x ( x2 + l) f'(x) = ( x2 + t) In �x2 + 1 + x2 x2 :::> f(x)+xf'(x)=ln .._ix- + 1 + -x2+1 => (x)'f(x)+xf'(x)=(x)' ln �x2 + 1 +x ( ln �x2 + 1 )'

'Ea't'co ott µta. cruvaptll ITTJ nA.11poi 't'tS OEOOµEvEs cruv0i)KEs. Ano tllV txouµE yta KCt0E xeR: Au<JlJ .

x ( O,+oo) e

(1)

x>O y e ( 1) 2� + _!_ - 2= ye+lY . (2)

'Ea't'co ott yta Mo apt0µou� Ka.t TJ taOtll't'U taxUEt, onotE �a. txouµt: A (lm1 .

/

-

+oo )

{>

r:l

·

:::::>

Cl

E>EcopouµE tt� cruva.pTI)crnt�:

lR

=>

X

EYKAEIAHE B ' 104 T.4/49

=>

:::::>


' => (x f ( x ))1 = ( x ln � ) =>

O < a < P =>

xf(x) = x ln .Jx 2 + 1 + c (c e JR.) (2). =0 C = 0. e R : xf ( x) In .J 2 x [ f(x) - ln .Jx 2 + 1 ] = 0

Ano t'lV (2) µe ' X ppicrKOUµe Etcrt, U7t0 t'lV (2) exouµe yia Ka0e x x x + 1 Km (J1)Vem:O�: (3). Ano t'lv (3) µex * O , exouµe: f(x) = ln-1x2 + 1 (4). E�aUou, e7tet0fi TJ f eivm (J1)VeXfi� crto 0, exouµe: f(O) = lim f (x) � limln � = 0 . Luµnepavouµe ott: f(x) = In .Jx2 + 1 , ta Ka0e x Dnco� ppicrKouµe eUKoA.a, TJ (J1)VUPtTJOlJ nou ppi]Kaµe: f(x) = ln .Jx2 +1 nA.ripoi tt� OeOoµeve� (J1)V0i]Ke� Km apa eivm TJ µovaotKi] sT}touµevri. =

X->0

X->0

e

R .

A (j KTJOlJ 6. Mia Gl>VUPTTJ<rll tivm opt.a�, napayroyiat.pl) Km KVp'Tfa mo lR . l:To 0 F:x,ti T07t1.KO dciXt.<JTO, 1) dvm Gl>V£Xfa� <JTO O · Km yt.a Ka9t x E lR t.<JXl}ti: > 0 . Na a7tOOti;£Tt O'Ti: 1 ) H Gl>VUPT1J<rll mo 0 f:/.tt. oA.t.KO tMX,1.aTO. 2) H Gl>VUPT1)<J11 : dvm KVp'Tfa mo lR 1 .\ lJ(j 'l · ) f 1R f fI ! R .

f

f

ff(x)'

g(x) = f2 (x)

Enetoi] TJ (J1)VUPtTJOlJ eivm KUptfi crto ' E1tetm Ott: E7tet0fi TJ ex.et to7tlKO elaxicrto crto 0, faetm on: f'(O) = 0 . 'Etcrt exouµe: x < 0 => f'(x) < f'(O) = O ::::> f'(x) < 0 . x > 0 => f'(x) > f'(O) = O ::::> f'(x) > 0 . Apa: f J ( 0] Km f ![ 0, +oo) . Luµnepaivouµe Ott TJ (J1)VUP't'lalJ f O"tO 0 exel OAlKO eAUXtcrtO. -oo ,

�1 -x .L � -x �

g eivm optcrµ� Km (J1)VUP't'lalJ 7tUpaycoyicrtµTJ O"tO R ' µe: g'(x) = 2f(x)f'(x) . ea anooei�ouµe ott: g' ! R . E>ecopouµe ouo apt0µou� a,p R . 'Exouµe: 2)

H

e

a < P < O =>

> f( P) {f(a) f'(a) < f'(P) < f'(O) = O

{-f'(a) f(a) > f(p)(> 0) => > -f'(p)(> 0)

=> f(a)f'(a) < f(P)f'(P) => g '(a) < g '(P) . g'!(O,+oo) . ' TI g ! ( -oo, 0) g' 0, TI g' ! R g R.

Luµm:paivouµe ott: Km e7tetofi Km (J1)VUPtTJOlJ eivm (J1)VeXfi� crto faetm ott: .Apa (J1)VUPtTJOlJ eivm KUptfi crto A (j K'l (j'l 7. Na l>7toA.oyiatTt TO oJ.orl.fapropa:

n'2 aT) µx + Pcruvx I= J dx , o7tov 'Y1l µx + ocruvx 0

yo>O. A lJ(j 'l ·

a,

13, .y, o e R

pt

(J1)VUP't'lalJ f ( x) = rri µx + ocruvx Otatllpei crta0epo to npoariµo t'l� crto [0, ;] , a<pou yo>O Km 11 µx 0, cruvx 0 , xcopi� va icrxt)ouv Km ot ouo tcrO't'lte� (J1)yx.povco�. Apa TJ + pcruvx eivm (J'\)Vexil� crto [o, 7t] h ( x) = mi µx yT}µx + ocruvx 2 E�etasouµe av unapxouv npayµattKoi. api0µoi A. , , Km µ tetoiot cocrte, yia Ka, ee x [o , 2"n ] , va l<JXUet:, ariµx+p(J'\)vx=A.(rri µx+O(J1)VX)+µ(yriµx+O(J1)VX) ' (1) Ilpo� touto, apKei yia Ka0e x [0, ;J , va icrxt'>si: ariµx+p(J1)vx = (A.y-µo)riµx (A.O+µy)(J1)vx, apKei: {pa=='Ao"Ay +- µyµo ' apKet.'· ( 'I -_ ayy2 ++ opo ' µ_ pyy -+ aoo ) 'Etcri, A.Oyco Km t'l� (1),exouµe: l = AT dx + µT (YTJ µx + OO'uvx)'dX = YTJ µx + "-2 + µ[lnlYTJ µx + OO'uvxl]� = = ayy2 ++ 0po2 . 2:2 + py12 -aO + 02 A7tepv t7ta=-o, tote exouµe t'lV(YTJµU7tx+O(J1)VX) AoUcrtepTJ' ' p=y'ariµx+p(J1) t V X = COOl) npoK\Jntet Oe Km ano t'lV yeviKfi2 7tepimcoari, mpou, tote, . 'A = -0y12 ++oy2o = 0, µ- 1y2 ++ o022 = I H

e

e

+

"'

1t

o

i

i

i

.

OOuVX

o

lt

. 1nr

A (j K 'l (j 'l 8. Na l>7tO#.oyiatTt TO oJ.orl.fapropa: I

=> -f( a)f'(a) > -f( P)f'(P) => g '( a) < g '(P) . g' !(-oo, 0)

LUµ7tepaivouµe Ott:

{(O(O <)f(a) < f(p) = f'(O) <)f'(a) < f'(p)

Ma9ru1anKO. y1a 'TflV r A1lK£lo1)

.Eniari� exouµe: EYKAEIAH� B '

A \J(j11.

l = J �x l+x 0

h t'lV (J1)VUP't'lalJ nou eivm crto oA.oKA.fiOvoµasoµe pcoµa. Ilapat'lpouµe ott: 104 T.4/50


Ma911pa1'tKa yta 'tllV r ' AllKtioll

I

I = J 2(1 +1 x 2 ) (1 + x 2 )' dx . 0

g

Eivm cpaw:p6 6n, 0Ecoprovtm; ni:; cruvaptiicmi:;:

.J3

.J3

0

0

I = J h (x)dx = J f (g(x) )g '(x)dx

Apa:

t

f

f(

1 · tx = . 1 ( f(x)dx = �x = x - 1 + -Km f(x) = , tcrxUEt: = g(O) X + 1r X+1 I I 2x 2 h(x) = f (g(x) ) g'(x) ym Ka0E x e L'l . EmnA.tov x2 1 3 = - - x + ln ( x + l) = ... = - + ln2 2 icrxuouv 6Af:i:; ot uno0focti:; tou 0Ecopilµatoi:; 2 I avnKatacrtacrri i:;, 8T1A.a8il TI g Eivm optcrµtvTJ Km ACJKTJCJTJ 1 0. Na t1nol.oyiat1'E Ta oJ.oKJ.riproµa1'a: napaycoyicrtµTI crto L'l, TI g'(x) =2x, optcrµtvTJ Km 4 l cruvcxili:; crto L'l Km TI f Eivm optcrµtvr, Km cruvcxili:; I J£ dx Kat L = J .Je• + ldx X+1 crto g(L'l)= [ l , 2 ]. ea E<papµ6crouµc, AOt1tOV, to g(x) = l + x2 l [O,l] = Ll

[

=

0EffipTlµa avnKatacrmcrri i:;, 0Ecoprovtai:; to 8ocrµevo oA.otlilpcoµa coi:; to nproto µeA.oi:; tou 0Ecopilµatoi:; autou. 'ExouµE:

I g( I ) I 2 1 = I = Jh(x)dx = Jf ( g(x))g'(x)dx = J f(x)dx = J� 2X

0

I

g(O)

0

= .!.[lnx)2I = _!_ ln2 = In J2 2 2

B 'tporroi; (Xropii; TO 6 Eropri µa av1'tKa1'a<J1'amii;) 'ExouµE: on6tE

[

(1 + X ) 1 = -ln(l + x2 ) , h(x) = 1 2 l + x2 2 l

[�

I

l

]'

l = 1n(l + x2 ) = ln J2

ACJKll CJTI 9 .

Na t1nol.oyiat1'E 1'0 ol.oKl.1lproµa: .J3

x +1 x� I = J ...; - 1 dx . 1 + .Jx 2 + 1

:EKonEuouµE va E<papµ6crouµE to 0EffipTlµa avnKatacnacrri i:; Km µaA.tcna va 0Ecopil<muµE to 8ocrµevo oA.otlilpcoµa coi:; to nproto µEA.oi:; tou 0Ecopilµatoi:; <lUtOU. OvoµasouµE h tTJV cruvaptTIITTJ nou Eivm crto oA.otlilpcoµa. ea npfaEt va ppouµE Mo cruvaptiicrcti:; g I 1, = a = l, p = Km f, ot onoiEi:; va 1tATlpouv ni:; uno0focti:; tou 0Ecopilµatoi:; autou Km EmnA.tov va tcrx;\>Et: h(x) = f(g(x) )g'(x) , ym Ka0E x e L'l . :EtT1V nEpintcocn1 µai:; ev8EiKVUtm, npoKEtµevou va anaUayouµE an6 ta ptstKa, va 0EcopilcmuµE tTJ AUCJTJ .

[ .J3] L1(

cruv<iptTJITTJ

�x) �, on6tE g'(x)

cruvcxili:; crto L'l Km

.J3 )

=� 2 x2 +1 vx2 +1

h( x) = x.Jx2 + 1 .Jx2 + 1 = ( .Jx2 + 1 f = f(g(x)) = g ' (x) 1 + .Jx2 + 1 x 1 + .Jx2 + 1 = gz (x) ) 8T1A.a8T1, f ( x) = x2 , nou Eivm l + g(x l+x cruvcxili:; crto g ( L'l) = [ l, 2] . ·

'

-

ln8

o

ln3

1)

:EKonEl>ouµE va E<papµ6crouµE to 0EffipT1µa avnKatacrtacrri i:; Km µaA.tcrta va 0Ecopilcrouµc to 8ocrµEvo oA.otlilpcoµa coi:; to OEUtEpo µEA.oi:; tou 0Ecopilµatoi:; autou. 'Exouµc:

AUCJTJ .

1 . H cruvaptTJITTJ f( x ) = --CautTJ Etvm optcrµEVTJ , vx + 1 Km cruvcxili:; crto OtUcrtlJµa [ 0, 4] . ea 1tpEnEl va ppouµE µta cruv<iptTJITTJ g optcrµtvTJ crE eva KAf:tcrt6 OtUcrtlJµa µE aKpa a,p tEtOta cOCJtE g(a)=2 , g( p )=3 Km TI onoia µasi µc tTJV f va 1tATlpouv ni:; uno0focti:; ,

,

,

tou 0Ecopilµatoi:; avnKatacrtacrri i:;. fta va a1tA01tOtTJ0Ei to p�tKO 0Ecopouµc tTJV cruvaptlJITTJ : g(x) = x2 I [ 0, 2 ) . Dncoi:; ppicrKouµE EUKoA.a 1tATIPOUVtm 6Af:i:; ot uno0foEti:; tOU 0Ecopilµatoi:;.

I= g(J2) f(x)dx = J20 f (g(x) )g '(x)dx 2( 2 x 1 } = =2J 1-- x = =Jo2 N1 + l ·2xdx = 2J�x x+l 0x+l 0

'Exouµc A.otn6v:

o

]

g(O)

2[ x - ln ( x + l )J: = ... = 4 - ln9

2) Dncoi:; 1tpOTJYOUµevcoi:; ea E<papµ6crouµE to 0EffipTlµa avnKatacrtacrri i:; 0Ecoprovtai:; Km n<iAt to oocrµevo oA.otlilpcova coi:; to OEUtEpO µEA.oi:; tOU 0Ecopilµatoi:; autou. 'ExouµE: f(x) =Jex + 1 1 [1n3,ln8], optcrµtvr, Km cruvcxili:;. Tropa, ym va anA.onotT10Ei to ptstKO, 0EcopouµE tTJV cruvaptlJITTJ : g( x) = ln( x 2 - 1) I [ 2, 3) , TI onoia 6ncoi:; ppi<JKouµc Ei>KoA.a µasi µE tTJV f nA.T1pouv tti:; uno0foEti:; tou 0Ecopilµatoi:;. 'ExouµE A.om6v:

J f ( x ) d x = J2 f ( g ( x ) )g '( x ) dx g(2) x2 ( 1 + -x2-1- 1 x = 2x dx=2f-T-dx=2f = fvelr(• -ll +l· 1 x x-1 J 2 2 l } [ ]� f ( 1- - x= 1 x + l x [ In ( I ) In ( x l ) ]� = . . = 2 + f g(J)

L

3

2

=

=

3

=

2

2

I

3

'

x

-

+

+

EYKAEIAHI:. B ' 1 04 T.4/5 1

3

1

-

x -

-

+

3

In


Ma9qpa'ttK0: yia 'tflV r AtlKtiotl

A� 1oaru.Jc iwTt� EK0tT1 Kt� Kai /\oyap 1 0 1-11 Kt� av1a6Tt'\Tt� Ilanao11 µ11Tpiot> BaaiM:ioc; - Avi:monot>l..o c; KrovaTav-rivoc; A<JKTt<Hl 1

Av

a,

IJ, x E (0, +oo)

A u a11 :

Km a * f3 , TOTE 1.CJXVEi:

(;::r >(;J.

0eropouµt

f: [O, +oo)

( x) = [

-+

napayroyo f'

IR,

f(x) a ( l}+x) tn( +x ) j}+x e µe

(a+x) l3 +x

niv

]=

=

m.>Vapnicr11

I Hx

KCll

= (:::r {( P + x) ' m(:::) + ( � + x) [m(:::)J}

f(x , ) > f(x2 ) � f(x2 )-f(x 1 ) < 0 � f(x , ) < 1 � f(x 1 ) < f(x 2 ), 1tpayµa � f(x 2) KCll

e f( x , ) f( x , l

<1� at01tO.

Apa f(x1) < f(x 2 ), 011A.aofl 11 O"UvapniO'TJ €tVCll 'YVT)O't(J)� au�O'UO'Cl O'tO [0, +oo ) B'

Tpo7toc;

fta g

ni

g( x) =

O"UvapniO'TJ

! [ 0, +oo ) = �'

g

'

f

.

xe

x

txouµe

( X ) ex ( X + 1 ) =

>

= =( :: : r H:: : ) + �::} ym Ka9e x . E�aUou ·· x 1 = g ( f(x , ) ) , x 2 = g ( f(x 2 ) ) , on6te: fta Ka9e t>O txouµe: 0:5:x1 < Xz �g( f(x, )) < g( f( Xz )) �f( x, ) < f( Xz ) . � 1 1 1 , t:5:--l�J t�l n µt lO'OV Jn-:5:--l�-J n --, t t t t yvrocrt6v ! � , t6te Ka9e y" y 2 Ll µ6vo ym t= 1 , µe t = -a+ x -:;:. 1, onote a+ x tcrx\>et: y, < y2 �g( y, ) < g( y2 ) avrurr a -:;:. � -fta Ka9e x 0, txouµe: P+x P+x -x- � a+ x ) >l - p + x � 1n a+ x ) > a- P � = >O f{x)ef( x ) =x�f x) ( txouµt: 1n( f(x) P + x a+x ( P + x a+x x ) + P -a >0 � In ef(x) = In r(x) � f(x)=lnx-lnf(x)� � ln ( a+ p + x a +. x � lnf ( x)+f ( x ) = lnx (2) �l')A.aM1 txouµe / ( x ) > ym Ka9e x ;::: 0, AUa: t > 0 � In t :5: t - 1 < t . Apa.: 01t0t€ l') <n.>VaptTIO'T) f €lVCll 'YVTJO'l(J)� ClU�O'UO'Cl crto [ 0, +oo) . Apa: lnf( x) < f( x )� lnf( x ) + f ( x) < 2f(x )�(2) lnx x > 0 => ( x) > f ( 0)=> (::: r >(; )' lnx < 2f(x) � f ( x) > T f : [O,+oo ) � JR , lnx=� on6te KCll f(x) =-+<xl foxl>et f( ) I

'tO

A 'l 'I � : .rvvw.

av

mpol>

�o

g

yia

e

po<p roc;.

Km

A 1-1

H.

0,

>

Km e f

( x)

o

A<JKTt<JTt 2 : Av 11 (Jl)Vclp"t'l<J'I

1.KQV01f01.Ei T'IV CJXE<J'I f (x)e

x ;::: 0, va oi:ixOEi 6n:

x

=

x, yw.

Kcl9E

I. H (Jl)VclPT'l<Y'I f dvm 'YV'IITTO>c; av�ooaa,

I I . lim

x -++«>

f {x) = +oo

Km

Aua11 I.

I l l . Jim

x -++oo

0, µt X1 <

f ( x, ) < f ( x2 )

'Ecrtro Xv Xz ;::: 0€t�O'Uµt on:

f {x) In X

= 1.

Xz .

ApKei va 'Exouµe: •

f(x1)e f(x i ) x1 KCll f(x 2 )e f(xz ) x 2 . ( 1 )

X2 > X1 � 0 .

µt Av f(x1) at01tO.

=

=

f(x2 ), tote x1

=

=

x 2 , npayµa.

EYKAEIAHI:

III.

Jim

X-++00

rm Ka9e x

l im

x-++oo f ( x ) = +oo lim (ln t ) ' lim -1 = 0 , 1-++oo ( t ) ' 1-++oo t

f(x) x In

_

In

> 1,

Jim

1 f(x) f(x) + f(x) 1 +

txouµe

Km µt

___

=

In f(x) • f(x)

X-+t«>

AUa,

t>O txouµe:

ln t(:)= 0, l1-++oo t

on6te im

crl>µ<powa. µe tov Kav6va de L' Apa:

l im

x-++oo

B ' 104 't.4/52

Hospital

lnf(x) = 0 � lim -f(x) = -1 = 1 j( ) X 1+0 X

x-+ + oo In


Ma011paTtKO: yta Tl}V r At>Kf:lo\) •

·

fevtKO'ttpa, Ka'tatdl'Youµc cr'ta ifoa cru µntpacrµma av f { x)er( xl =Ax <TIO [0,-+oo) , 6nou A. 0t'tud1 cr'ta.0tpa (ytmi;). Mia <JXETtKI\ avmpopci <JTO np01rro'6µEV0 TE'6xo� Ano TOV r1ropyo Ta<J<J07tO'\lW

Ero

Bljµa WV EvKA.ei<511 revxoc; 1 03 od 75, ava<pep81jKaµe <Je '!rap6µozo fJtµa we; µza aK6µ11 mfJavlj '!rape<:'1Y11<J1'/ · Me r11 &vrep11 avvj eVKmpia 88Aovµe va e'lrl<J11Wivovµe 6rz &v fJa v'lrljpxe Kav Kiv<5vvoc; '!rape<:1jy11<J11 <; av &v aA.A.a(aµe (o'!rmc; KaKdJc; yiveraz) TY/ µerafJA.11v].

iJ

x(v'1 + x2 + 1) + 1 + x2 - l :::; x, + 1 + x 2: 1, iJ J1 + x2 + x 2 0,

iJ J1 + x2

1tOU tcrxl>tt ( 0.1tOOtix0rtKt CT'tl'IV a.pm). fta X > 0 , apKti VO. Otl�OUµt on:

M--1

1n ( x + v'1 + x2 ) ;::: J1 + xx2 - I , iJ x + v'l + x2 2 e x

2 -t + 1 ::::> __!__ ;::: 1 - t, yta Ka0t t E lR . e' 1 Av 6µco� t< l , 'tO'tt e1 :::; -- . Acpou x>O 0a 1-t ln x A.oz'!rov txovµe lim g(x) =O J1+i -l <Jl+i+2x-l �( l+x)2 -1 - l+x-1 =� Me g ( x) = t tivm: X-+f<O X x x x x M--1 (Kav6vac; de L ' Hospital) Km a<pov x < e = lim f{ x) = +oo Ba eivaz Km on6'tt . x -++«> _ � - 1 x + l - v'l + x2 1 In ( x ) x lim g ( f { x)) = 0 , <511A.a<51j lim =O. X-H«> ( X) Apa x + l - v'I + x2 > 0, on6'tt apKti va E<:illov &v Atµe 6rz 1'/ avvapf1'/<J11 'lr.X. xr:----:; :::; x +vl+x' r:---2 , 6n 11 h{ x) = riµ.fx' eivm a6v8e<J11 g o f rmv l+x-v1+x· = =ri f { x) .fx' Kaz g( y) µy, alla ww x:::; x +�l+x2 +x2 -(1+x2) , iJ 'ttAtKa 1 :::; J1 + x2 f{ x) =J;. Kaz g(x) =riµx . I'evzKa hpe'!re va 1tOU tcrx(>tt. X-Ha:>

'

f f

ypa<povµe:

g ( f { x) ) = f, g ( x) = f ::::> Xlim lim f { x) = k, lim x-+k �Xo o'!rov <pvmKa f ( x) ;;; k Kovra ow x x-»<o

0

AO'KTJ O'll 3 : r1a Kcl9E 7tpayµaT\KO ap19µo x l<JX'6E1:

1 + x ln ( x + J1 + x 2 ) ;::: J1 + x 2 •

Aucn1 Ilpocpavro�

�l+x2 > N =lxl 2-x ::::> x +�l+x2 >0,

on6Tt txtt voriµa o "A.oyapt0µ6� mu. fta x = 0, tcrx(>tt co� tcrO'trt'tO.. fta apKti va oti�ouµt 6n:

x < 0,

J1 + x2 - 1 . Av cr'tl'IV In t :::; t - 1 In ( x + '1' 1 + x2 ) :::; x µt t > 0 , 0£crouµt t x + .Ji + x 2 > 0 , txouµc ln(x + .Ji + x 2 ) ::; x + .Ji + xz - i,

A<JKT)O'TJ 4 : Av O<a< p , TOTE l<JX'6Et: A U0"11 :

01tO'tt apKti v a oti�ouµt 6n

X + '1'l,.--+ x· ---:; - l :::; J1 + x2 - 1 , x

, rt

(

l + x2 - l x + '1'lr;--:i + x- - 1 $ ,.------:; x '1'1 + x 2 + 1

Ti x + � - 1 $

Q , 1 + x2 + 1

ApKti va oti�ouµt 6n

1

[ ]

()

( )

I

Bamcrt1lKaµc

crtrJ

yvcocrril

avtcr6nrm

6nou 'tO icrov tcrxl>st µ6vo

yta t=l . BtPA.toypa<pia I)

2)

3) '

·

2 I2 + t1 2: 2 · 1 · t1 , D.

S.

D.

S.

Mitrinovic,

"Elementary

inequalities",

P.

Noordhoff ( l 964). Mitrinovic

inequalities",

)

�<.f!�. a a I}

Inx2 < x _ _!_, yta x =� > 1 'Exouµt: x a x xl x 1 x ln x2 = 2ln x = 2J-dt < J 1 + 2 dt = Jdt + Jc2dt = t I t I I I x = [ t ] x + -tl = X - 1 - �1 + 1 = X - �1

,.-----::;

=

e -t

'Exouµc:

and

P.

M.

Springer-Verlag,

Vasic Berlin,

,

"Analytic

New

York,

( 1 970).

G. V. Milovanovic, D . S . Mitrinovic and Th. M. Rassias,

"Topics

in

Polynomials:

Extremal

Problems,

Inequalities, Zeros" World Scientific Publishing Co.,

-I 1

3)

Inc., River Edge, NJ, ( 1 994).

L Neype1t6V't'Tl�. l:. ruoT61touA.o�, E. rt.awaKoi>A.ta�,

A1tEtpocmK6� Aoyicrµ6�, l:uµµe•pia, A0i)va( 1 987)

II . E . TcraofooyA.ou, "Avmoni•e�", Eurograph A.E.,

A0i)va,

EYKAEIAHI: B' 104 T.4/53

( 1 993).


Ma9'qpaTtKa yia TTIV r · Al>Ktio\J

Tiapayouac� 1. a )

r ( x) = x

Aivt:-rm tt <n>vapTt)<Jt)

pt: x e lR .

i) Na ppt:Od tt f' . ii) Na ppt:Od

cruv

( 3x + 1)

p(a napayovaa -rqi; x = X T) µ 3x + 1 GTO JR . Aivt:Tm <n>vapTt)<Jt) t) p) · T) µ x = , x e o , 1t . cruv x 4 i) Na IJpt:Od tt f' . ii) Na ppt:Od p(a napayovaa Tt)i;

g( )

(

r( )

:

g ( X) =

l

cruv

4

x

)

[ ] [

GTO o ,

y) A(vt:-rm 11 <n>vapTt)<Jt)

(

)

g ( x)

1 x 20 7

=

AU<1ll a) i) fta Ka0E

4

]•

f ( x ) = x 201 8 In x ,

x e O , + oo .

i) Na IJpt:Od 11 f' . ii) Na ppt:Od

1t

pia napayovaa In x a-ro 0 , + oo .

x f' (x) = cruv( 3 x + 1) - 3 x ri µ (3 x + 1) . ii) 'ExouµE f'(x ) = cruv( 3 x + 1) - 3 g( x ) . e

lR :

Apa, g ( x ) = .!. cruv ( 3x 3 Mia napfryoucm TT)�

G (x) =

p)

i)

+ 1 ) .!. f ' ( x ) . -

g

3

<HO

lR

i- 11 µ ( 3x + 1 ) - � x cmv ( 3x fta Ka0E x [ 0 , :]

+

e

y)

fta

Eivm 1) . Eivm

TT)�

Ka0E

x

E

( 0 , + oo )

TT) �

2.

f : lR ...+ lR

'Ea-rro

pt: rino

1

f ( x ) = ( 3 x 2 + 2 x + 1 ) ( x - 1 ) 2° 1 •

Na ppt:Od pia napayovaa Tt)i;. Al><1l)

x-1 =y. TO'tE x=y+ 1 Km f( x) = [3(y+ 1)2 +2(y + 1) + 1} 2011 = (3y2 +8y +6)?11 = = 3Y°19 +8y2018 + 6y2011 = 3(x-1}2°'9 +8( x-1}2°'8 + 6(x-1t11 Mia napayoucra f crw A.om6v Eivm cruvapnicrri : 20 018 2 ( x ( x -1 ) ( x -1 ) 1 9 -1) F( x) = 3 · 2020 + 8 · 2019 + 6 · ---'--20-18� lR

l)

f ( x ) = x2 � ,

Aivt:T«l t) <n>VUpTt)<Jt)

f'( x) = 2018 x 2017 ln x + x 2018 -x1 = 2018x 2017 ln x + x 2017 • i)

on6'tE

2020

g ( x ) cr'to [ 0 , : ] Eivm G ( x ) = .!.3 f ( x) + 3.3 E<pX =.!.3 cruvri µ�x + 3.3 E<pX .

Mia 1tapayoucra

Apa

ni�

µ 2 x · 3 cruv 2 x 3 cruv 2 x -2cruv 4 x = f, ( x) O'l.N 4x + ricruv6x = cruv6x = cruv3 4 x - cruv2 2 x = 3 g( x) - cruv2 2 x ·

2 1 i i) Apa, g ( x ) = .!. f ' ( x ) + 3 3 cmv 2 x

1 f ' ( x ) = 20 1 8 g ( x ) + x 20 7 ,

1 f' ( x ) - -1 x 20 1 1 . g( x ) = -2018 2018 Mia napayoucra g cr'to ( 0 , + oo ) Eivm: G ( x) = 20181 f ( x) - (2x018201 8)2 = 1 x 20 1 8 lnx - --x 20 1 8 =-2018 ( 2018 ) 2 ii)

'Ecr'tro Tt)i;

)

(

pt

Iroavvqi; T aapnaA.l]i;

Eivm

x � 1.

pt:

Na anood�t:Tt: o-ri tt f txti pia napayovaa F Tt)i; onov P( x popq>l]i; F ( x = P( x 1tOA\>(l)V\)ptK1] <n>VUpTt)Gt) TpiTOt> paOpou, Tt)V onoia Km va ppd-rt:. E t<1UyroytKO l:xoA.to :

)

) F"=1 ,

)

·

A<pov rt f(x) eivaz (JVVeXff<; OTO

� = [ 1, +oo),

Bo. txez

G '(x) = f (x) KO.Be x � '!t:.X. G 0 ( x) = J t 2 .Jt=ldt, x ;::: l . E�illov e'!t:e1Jff F ( x ) = P ( x ) � eivaz (JVVeXff<; OTO L1, yzo. vo. eivaz o.vrff '!t:o.payovao. VJ<;f(x) OTO L1, Jyt/..o.Jff yzo. vo. urxvez F ( x ) = G ( x )+c • yzo. 1eO.Be x � , o.pKei vo. txovµe: F'( x ) = G' ( x ) , Jyt/..o.Jff F'( x ) = f ( x ) , OTO eawreplKO wv L1, Jyt/..o.Jff OTO ( 1, +oo) ( 1) . '!t:o.payovao. G(x) OTO L1, J11/..o.Jff (J1)vapVJ<J11 G(x) rtrozo. WOTe E

x

rt

Bo. v'!t:apxez yzo. ·

I

rt

·

e

F (I) G 0 (I) = 0, 0a tivm F(x) = G0 (x) yta Ka0t x e [l, +oo) .

Entt8ft µaA.to"ta

811A.a8ft EYKAEIAH:E

B ' 104 T.4/54

=

c= O,


Ma9qµaT1KQ y1a 'T'IV r AllKtto\l AuaTI

napayroyiaip11 pt

(0 , +

fta va tcrxl}tt TI ( 1) apKEi

= x2 � , 2 x-1 ti � P'( x ) + P (x) = x 2 .Jx - l, 2( x - 1 ) (X fi P' ( X ) + ) = X 2 , yta Kaee X E ( 1, +oo) . 2 x - 1) fta va tcrxl}Et TI 1tapa1t6.vro tO'OTil'ta apKti 'tO P ( x ) va ElVCll TI'l� µop<pfi�: P( x ) =( x-1 ) ( ax2 + Px +y ) KCll ( ax2 + Px+ y ) +( x - 1 ) (2ax+ P) + ax2 + Px +y =x2 , TI, 2 3y 7a 5P , 2 x 2 + 2 - 2a x + 2 - p = x 2 , y1a Kaet x>1. 3 5 ApKEi A011tOV 7 a = 1 ' P - 2a = 0 ' r - p = 0 ' 2 2 2 8 16 2 n, a -- A -- ' y 7 , p 35 105 P'( x ) · � +

(

r

(

'I

)

(

)

)

Cf

KUl

1tClf)QO'TCl<rq.

J

·

00

f' ( x ) * o

Til e; v 'I £<pCl1tTOJ1tV'I O'f: 01t0l0

A

1)

yia Ka9t <JTo "f f)Cl<j)lKll

( )

{

M x0 , f x0)

ol]noTE aqpdo

A,

Ttpvti TOV Ox at aqpdo

Til e; C ,

Cl1t00£\;tTt T11V lO'OO'VV«pia. «To

OA f ( x ) = a , onov a * 0 x

dvm ptao TO'V

TOTt va

( X o , O)

av Km povo av

».

Auari

)

'Ecr'tro ( x 0 , 0 'to µfoo 'tou weuypaµµou 'tµfiµaw� OA ea a1tOOEi�ouµE O'tl f ( x) = a yta Kaee

x

x e ( 0, +oo) µt a # 0 . H

'

(

E<pa1twµEvri cr'to M x 0 , f ( x 0 ) ) Eivm

= f' ( x o ) ( x - X o ) · - f ( X 0 ) = f' ( X o ) ( X

(E): y - f ( x o ) A E ( E ) => y

A

A

- Xo) �

TI

O- f { x 0 ) = f' { x 0 ) · { x A - x 0 ) => => X 0 · f' ( X 0 ) - f ( X 0 ) = f' ( X o ) · X A => f{ X o ) => XA = X o B 'Tp01tOc; f' ( x 0 ) 'Ecr'tro .Jx - 1 = y � 0 (1) T6'tE A<pou 'tO ( x 0 ' 0 ) ElVCll 'tO µfoo 'tOU OA, ea ( 1) => x - 1 = y2 => x = y2 + 1 => f(x 0 ) . 2 x 0 = XA => 2x 0 = X 0 f ( x) = ( y2 + 1 r y = ( y4 + 2 y2 + 1) y = y5 + 2y3 + y = EXOUµt: => ( ) x f' 0 I 3 = (x - 1)25 + 2(x - 1)2 + (x - 1)2 Mia 1tap6.youcra => X · f' ( X ) + f ( X 0 ) = 0 , Kaec yta o o TI'l� f A.ot1t6v tivm TI cruv6.pTI'lO'fl: x 0 e (O , + oo) . 3 7 5 ) (x - 1)2 (x - 1)2 (x - 1)2 Apa, x · f' ( x) + f ( x ) = 0 , ym F(x 7 +2 5 + 3 2 2 2 x e ( 0 , + oo) =>( xf ( x ) ) ' = O => xf ( x ) = a => f ( x ) = a x = 3.J(x - 1 } 7 + �J(x - 1) 5 + 3.J(x - 1 } 3 = yta Knee X E ( 0 , + ) . 7 7 3 Ilpo<pavro� a * 0 OlO'tl Ota<poptnK6. ea EixaµE = 3.(x - 1) 3 + �(x - 1) 2 + 3.(x - l) rx=J. = f ( X ) = 0 yta Kaec X E ( 0 , + oo) 01tO'tE f' ( X ) = 0 7 5 3 ym Kaee x E ( 0 ' + ) 1tp6.yµa 6.'t01tO. = (x - 1) 3.(x - 1) 2 + �(x - 1) + 3. rx=t = AVTl<JTpO<pffic;: 7 3 5 a = (x - 1) 3.x 2 + !_x + � rx=J. . Apa Av f ( x) = x yia Kaet x e ( 0 , + oo) , µE a # 0 , 7 105 35 'tO'tE TI E<pa1t'tOµEvrJ TI'l� c O''tO M ( x 0 ' f ( x 0 ) ) p ( x) = ( x - 1) 3. x 2 + !_ x + 7 35 105 Eivm TI ( E ) : y A - � = - --;.. ( x A - x 0 ) , 01tO'tE Emf3ef3auhure OT'f/ avvexeza µe /30.<Jr/ WV opuJµo Tf/<; 'lT:apaychyov 6rz 17 F(x) 'lT:apaywyi(eraz KW uro x0= 1, J17A.aJ� 6rz F ' ( 1) = 0 = f ( 1) yza tvav a.Mo rp6'1T:o A.ixl17<;.

_

_

-

[

[ (

3. 'E<JTro

(

pia

)

J

]

00

00

�)

cruvapT11 <rf1

'

f

f: ( 0 , + oo ) --+ 1R

EYKAEIAID: B ' 1 04 T.4/55

Xo

Xo


Xo

Xo

= XA - X o XA = 2 xo . Apa, A ( 2x 0 , 0) , 011/...aoft 'tO (x 0 ,0) eivm t0

Xo

µfoo 'tou OA. 4.

a)

'Eo·tco F 11 napayo\loa TI}� f( x) =

Na anootix8d OTl F ( O) = O .

�)

'I

� OTO l+x

1R .

F dvm ntpiTn\ Km

'EOTro h (x) = F(x) + F

( �}

f.1£ x > 0 . Na

anood;tT£ OTl 'I h dvm <JTa8tpl] (J1.)VclPTIJ<J'I Km va ppt8d TO lim F ( x) x -+ + oo

y)

'EOTro

( ; ;) ( ; ;)

ppt8ti F(t) , F

'I

1t .

( }J)

q> ' ,

( ../3) , F

b( x ) = 2

Km

g (x) = eq>x , x e - ,

q>( x) = (Fo g )(x) - x , µt x e - , va

h ( x) = c , 6nou c ma0epa, 811/...a8ft

Apa,

A e (e) � 0 - � = -� (x A - x 0 ) �

.

Na

1.l1toA.oyiotT£

Ta

Km va anood;tTt OTl

F (x ) + F

( � ) =c

Ene18ft 11 F eivm napaycoyi01µ11 cr'to 1R 0a eivm O'UVf:Xlt� O''tO JR , apa Kat O''tO X 0 = 0 , 811/...a8ft

lim F (x) = F(O) = O . x --+0

y) � X--++<xl lim F (.!.) = 0,

lim _!_ = 0 Kat limF( AUa X--++<xl =0 y...+0 X onb'te

()

F( x ) = c - F _!_ X

:::::>

X

X lim --+ + oo F( x) = c .

y ) 'Exouµe cp'(x) = F' ( g(x) ) · g'(x) - 1 =

1 -1= 1 . 1 -1 = cruv 2 x 1 + ecp 2 x cruv 2 x = cruv 2 x · 1 2 - 1 = 1 - 1 = 0 . cruv x =f ( g( x ) ) .

Apa, cp( x) = c , 6nou c crm0epa. Dµco� cp(O) = 0 �c=O .

o)

Na anooti;tTt OTl 'I £1.l8da y = 21t dvm Enoµtvco�, (Fog)( x) = x , 811/...a8ft F( ecpx) = x, op1�0VT1a ariµ1t'T©TIJ Tll� C F oTav x � + oo yta Ka0e x e Apa: F(l) = F ecp = , Km va ppt8d 'I t;ioro<Jll Tll� t<panToµtvq� Tll� C F OTO x = O . = F ecp = F ( = F ecp = F

( � �J ( :) : ( �) � , (�) ( �) � . ·

J3)

Auari

a:) 'Ecr'tco P( x) = F( x) + F(- x) , µe x e 1R 'tO'te

.

P ( x) = F'( x) + ( F(- x ) )' =f(x) + F'(-x)(-x) ' = fta x = 1 11 crxeO'll (1) yive'tm: h (l ) .= F(l) + F(l) = 2 41t = l1t . 1 1 = f(x) - f(-x) = =0 l + x2 l + x2 n Apa, P ( x) = c , 6nou c, crm0epa. Apa, c = � , ono'te h ( x) = yta Ka0e x>O. 2 2 Dµco� P(O) =F(O) + F(-0) = 0 . Apa, yta Ka0e x e JR , icrx0e1 P ( x) = O , ono'te n o) Ene18ft lim F( x) = c = 11 eu0eia = n . F(- x) = - F( x) , 811/...aoft 11 F eivm nept't'tft. X --+ + oo 2 2 Eivm op1�6vna acrl>µn'tCO'tll 'tll � C F crt0 + oo . = H e�icrCOO'll 'tll � ecpaITTo �� crt0 x 0 = 0 eivm: x) =f( x) + P l Cxouµ< : Ii( x} - F ( 0) = F' ( 0 ) { x - 0) , 011A.aoft - 0 = l · x Kat 1 f 1 = 1 - 1 · 1 f(x) - � � l + x2 � 'tf:AtKa x. 1 1+­ x2 1 =0 1 - -= -l + x2 l + x2

= F( {��)) F(�H) ()

y

y

y

y

=

EYKAEIAHI: B ' 104 T.4/56


Ma811pa1't.KO. yia 1'1}V r ' A1>Kdo'U

Tei�" :

Auo EiravaArtirTI Ka et�aTa

f'

0tµ a l

'Ecnro <n>VUPTll aTI f : R � R 1ia T11V onoia l<JXVE\ f 5(x) + f3(x) + f(x) = x ( 1 ) "(Ul Ka9 t:

xeR Na od;t:TE OT\ 11 f dvm "(V11 Giro� av;ovaa GTO R

a)

p) Na ppdTt: T11V avTiaTpo<p11 Tll� f, 011>..ao'll T11V

f

-1

y) Na od;t:TE OT\ 11 f t:ivm <n>Vf:Xll� cno o)

Xo

=0

Na ot:\;t:Tt: OT\ oi 1pa<piKt� napaaTaat:� Trov auvapT'll at:rov f KU\ f txovv flOVaO\KO KO\VO OTl flEio , TO 0(0,0) t) Na ot:\;t:Tt: 6Ti oi 1pa<piKt� napacnaat:� Trov f Km f £<pcl1tTOVTCll. �) Na flEAETllGETE T11V K1>pTOT11Ta Tll� f GT) Na ppdTt: TO Eflpaoov TO'l> xropiol> 1t01> nt:pimit:Tm ano T� 1pa<piKt� napacnaat:� Trov auvapT'll at:rov f Km f Km T11V t:vOda -l

-l

"' = -x

-l

+4 .

A7TUVTfl<J'I

-l

g(x) = x5 + x3 + x g' (x) = 5x4 +3x2 + 1 > 0 ri g

0ecopouµe TI'} crovapTI'}<JT) µe x Tote yia Ka0e x . :Euvenro� dvm yvricrico� Clu;oucrCl crt0 Ka.t (l)�x 1=g(f(x1)), x2=g(f(x2)), on6te x 1<x2�g(f(x1 ))<g(f(x2)) � f(x 1 )<f(x2). ApCl f eivm yvricrico� Clu;oucrCl crto Ot f, g sivm yvricrico� Clu;oucrs� crto . ApCl Eivm ClVttcrtpeq>stm. 3 lim g(x) = lim (x5 + x + x) = lim x5 = Ka.t lim g(x) = lim (x5 + x3 + x) = lim x5 = +oo Km mpou crovsxfl� co� noA.ucovuµucr1 Ka.t yvricrico� Clu;oucrCl crto Ag = R 0Cl dvm g(Ag) = ( lim g(x), lim g(x)) = R , 01t0te KCll Ag_, = g(Ag) = R . 'Etcrt yta Ka0s x icr;(l}tt g(f(x) = x � f(x) = g- 1 (x) ,0Cl sivm g-1 (Ag) =Ag =R Ka.t f(Ar) = g-1 (Ag)= R . 'Exouµe f( x) = "' � x = r-1 ("') µe x,"' e 9t onote ClPXtKiJ crxt<TI'l yivtta.t 'I' 5 +\j/3 +'I' =3 r-1 ytCl Kcl0e 9t Ol'JAC18fi r-1 (x) = x5 + x + x µe x 9t a)

e

9l

E 9l

9l .

ri

9l .

IR

P)

X-+ -«>

X-+ -«>

X-+ -«>

X-+ +oo

X-++oo

X-++oo

g

X-+-00

l'l

"' E

X-++oo

-oo

e

9l

('1'),

E

ApKd VCl 8si;ouµe Ott limf(x) = f(O) . ftCl x = 0 Cl1t6 TI'} 8ocrµtvr] <JXE<JT) 1tClipvouµs 3 f5(0) + f (0) + f(O) = 0 � f(O) · (f4 (0) + f2 (0) + 1) = O � f (0) = ,mpou f4 (0) + f2 (0) + 1 0. ftCl x 0 txouµe: f4 (x) + f2 (x) + 1 � 1 � 0 < f4 (x) + 1f2 (x) + l < 1 Km

y)

x -+0

�h�

o

*

f(x) · (f4 (x) + f2 (x) + 1) = x � f(x) = x · f4 (x) + 1f2 (x) + l , on6tt lf(x)l = l x · f4 (x) + 1f2 (x) + l I = l x l ·I f4 (x) + 1f2 (x) + l I s l x l , €tcrt 0Cl sivm - l x l s f(x) s l xl . Enei8fi lim(-l x l ) = liml x l = 0 Cl1tO Kpttfipto 1tClpsµpoA.fi� 0Cl sivm Km limf(x) = 0. :Euvsnro� f crovsxfi� crto x = 0 . o) fao Ar n Ar_ =Rn R = R, 01 s;icrrocrs� f\x)=x Ka.t f(x)1 = x eivm tcro8UvClµe� mpou I1(X)=X�X=f(x) 01t0te A.i>VOvtCl� TI'}V f"1 (x)=X, ppicrKouµe: x5 +x3 +x=x�x3(x2 + l)=O�x=O ApCl ot Cr Ka.t Cg txouv TI'}V 'I' = x evCl µovo Koiv6 <JT)µdo to (0,0). 'Ecrtco on txouv Ka.t Kotvo <JT)µtio eKto� Til� = x , tots 0Cl unapxs1 p e 9t f(p) = r-1 (p) KCll r-I (p) < p Ti r-1 (p) > p . AMCl l'J f sivm yvricrico� Clu;oucrCl mo R, onote r-1 (p) <p�f((f-1 p)) < f(p)� � p < f(p) p < r-1 ( p) atono. Oµoico� fi r-1 (p)> p �f((r1p))>f(p)� p > f(p)� p > r-1 ( P ) x -+0

x -+0

X -+0

ri

0

µe

aA.A.o

"'

µe

atono. ClApCl 01 Cr Ka.t 8ev txouv <JTI'}KotvoV <JT)µtio eKtO� 1t0 ClUtcl 1tOU CgppicrKOVtCll = ttA.tKa txouv µovCl8tKo K01v6 <JT)µtio to (0,0). 1 8riA.Cl8fi f(0) = r- (0) = 0 'Exouµe: (r 1 )' (x) = 5 x 4 +3x 2 + 1,x e9t l/f

X ,

1 (0) l�lim r-1 (x) = r �(!1 )° (0)=1 �lim r-1 (x)x x-0 . Em<JT)� mpou f crovexfi� crt0 x = O 0Cl dvm lim f(x) = f(O) = 0 Cl1t6 TI'}V un60e<JT)

t)

x -+0

x -+ 0

EYKAEIAllI: B ' 104 T.4/57

x -+O

AMcl

0

l


Ma9qµa'TtK6. yta TttV r · A\lKtlO\l

npoidmtet 6n

C1-•

x * 0 => f ( x )[ f4 ( x) + f 2 ( x) + 1 J * 0 => f{ x) * 0 Kovta crto x 0 = O A.01n6v, 0a exouµe: f(x) f(x) = 1 A.(x) = f(x) - f(O) = = x x r-' (f (x)) r- 1 ( f { x)) ' f { x) aUa limf(x) = O Km C 1 -( y-) = 1 => lim C 1 (f( x)) = 1 => limy-+0 y x -+0 f(x) X-+O

=! = 1 => f'{O) = 1 => limA.(x) 1 x -+o 0tµa 2 . 'Exouµe A.om6v ( (0) = (C 1 )' (0) = O Km 'Enro tt napayroyiaiptt G\JVUP'f11 att f : R. -+ R. , tt f(0) = r- 1 (0) = 0 . Apa 01 cf Kat Cg exouv Kotvft 01tO{« 1.KUV01tot.d T� «JXfot�: eq>amoµEvr) crto (0,0) T11V eu0da f(O) = l \jl - 0 = l · ( X - 0), 011 J.aoi) tTIV \jl = X f(x) > 0 yia KU8£ x E R. /;) 'Exouµe: (r1 )"(x) =20x.3 +6x= 2x(l0x2 + 3),x e91, , (l + e• )f(x) on6te (r')"(x) >O<::>x >O KUt (r1 )"(x)<O<::>x <O yia .Ka8t x e R. ( 1 ) f (x) f( ) + x 1 Apa 11 f- 1 eivat KOiA.11 <JtO ( -oo, 0] Kat KUptTJ <JtO ((. Na anoodl;nt OT1. f (x) = ex , x E 1R K«l vu (O,+oo) • • •

x

-00

-too

=

flpdT£ T� UaV J11tT©T£� 'f11 ; yp mp1JC1\; napanaatt � ni� G\JVUP'f11 att � g(x) = x f

( �)

1 (/- ) " (x) 1 KoiATJ KU PTil a +32f3 < In ea +32e� 1�· Na anood!;£T£ OT1. <JT) 01 Bt>0dec; 'I' = x Kat \j/=-x+4 eivm Ka0etec;. yia KU8£ a, 13 e R pt a<fl. E�illou r- 1 ( x) � x ' yta Ka0e x E [O, +oo) 016t1 11 y. Na t>1tOMyia£T£ TO tpfl«OO TOt> xropiot> 1t0t> 1 f - eivat KUptTJ Kat 11 \jl = X eivat Eq>a1ttOµf:Vll ntpud.dnm ano ni yp mpiK'I\ napanaatt ni� Tile;. To «=» 1crx\m µ6vo y1a x= 0. G\JVUP'f11 att � f ,niv napaflo�;q y = x2 + 1 Km 0

CJ.K.

+

A6yro Tile; cruµµetpiac; trov cf Kat Cg roe; 1tpoc; tTIV 'I' = x to �11w6µevo eµpaoov 0a dvm icro µe to 011tAa<JtO tOU eµpaoou tOU xropiou 1tOU 1tEptKA.f:if:tat a1tO tTIV Cf- I tTIV \jl = X Kat tTIV "' = -x + 4 . fao [0,2] exouµe:

r- 1 (x) = -x + 4 <=> x 5 + x 3 + x = -x + 4 <=> <=> x 5 + x 3 + 2x - 4 = 0 <=> <=> (x - l)(x4 + x 3 + 2x 2 + 2x + l) = 0 <=> x = l Kat -X + 4 � X (ytati;) I 2 Apa E=2 J (C 1 (x) - x)dx + 2 J (-x + 4 - x)dx I 0 I 2 = 2 J ( x 5 + x 3 )dx + 2 J (4 - 2x) = I 0 I 17 x6 4 X = 2·[ 6+4 l o + 2 · [4x-x 2 Ji2 = 6

(

·

)

X=1. AmiVTfl<JTJ a) { l) => f ' (x) + f(x) f '(x) = f (x)( l + e x ) =>

'f11V £t>8da

f'(x) + f , (x) = l + ex => (ln f(x) + f( x )), = (x + e x ), -f (x) => ln(f(x)) + f(x) = x + e x + c. (2) fta. x=O txouµe f (0) + f(O) = 1 + c => 0 = c

In

I:uvemoc;

( 2) => 1n f(x) + f(x) = x+ex => lnf(x)+f(x) = ln ex +ex => h { f(x)) = h(e x ) (3), 6nou h(x) = ln x + x

AXAa

h' (x) = _!_x + 1 >

o

yia Ka0e x>O, on6te 11 h

eivm 'YVTJcriroc; a.u�oucra., cruvemoc; Km « 1-1 ». Apa. (3) => f(x) = ex yta. Ka0e x e lR . •

KaT«Kopt>q>t� aa6p1tTroTt;

EYKAEIAHI: B ' 104 T.4/58


I

Ma811pa'TtK6: yta 'T'IV r ' AVKElo\l

x 1 < x 2 � (( x , ) < (( x 2 ) an6 6nou npoK61t'ttt on f( a ;2p) -f(a) 3 f(p) - 3 f( a ; 2p ) p-a>o 3 --=---� < 2 -a -a P P x --.o- x a + 2 PA ) < f(a) + 2f(P) � 3 e a+32P < ea + 2e13 1 3f( . lim =0. 3 x1--+im0+ -X = +oo Km x --.o- g(x) a+2 p a+2P e a + 2eP lim eY = l i m g ( x) = +oo . Apa TI tuetia +oo on6tt e 3 < lne 3 < � � y--+-+«> x --.o• 3 x=O tivm KataKopU<pT) acri>µ1ttCO'TT) 'TT) i; Cf npoi; ta a a ln( e + 2e13 ) � a + 2 P < ln( e + 2e13 ) . mivro Km an6 aptcrttpa 'TT) i; . 3 3 3 Acr6p.mroTE� Tll� p.opqn\ � y=>..x+p E>tropouµt O"UvaptT) O'TJ 'tTJV y) (x) g � x 'Exouµt: = e . Alla X--++<X> lim .!... = O Km Eivm h(x) = f(x) - x 2 - l = e - x 2 - l, x e !R. X X x x h(O) = 0 Km h(x)=e -2x,h' (x)=e -2, h<3> (x)=ex > 0 g(x) = l � A. = 1 � limeY = lim l � yia Knee x E :JR . Apa T) tivm yvricriroi; au�oucra y--.o x x Icrto :JR . EniO'T)i; h" (ln 2) = 0 Km to np60'T)µo 'TT) i; -I e x --1 = (Mop<pfi h ( x) Kaeroi; Km TI µovotovia TTJi; h' = A.x (x) (xe (x) g x - x) = <p 1 a1tElKOVitOVtal O'tOV napaKatro nivaKa x x +oo ln 2 O , ,r + 0 _ opiou ). E<papµo�ttm 1Wt1tov o Kavovai; e h " (x) 0 '\i ?' e ; - 1 e; l x ' e; . H h napoucr1ai;e1 0A.1K6 eA.axicrto mo ln 2 to Ho sp ital.'E<nro <p, ( x) = = 1 1 ' = 2(1 1n 2) > 0,0"Uvenroi; h (x) > O yia Kaet h'(1n2) 2 x x X E :JR ,01tOtE T) h yvricriroi; au�oucra O'to :JR . 0 Tott X-++«l lim <p1 ( x) = e = 1 � X-++«> lim <J>( x) 1 � p 1 Enoµ£vroi;: Apa TI wetia y=x+ 1 tivm nA.fryia acrl'.>µ1ttCO'tTJ crto x > 0 � h(x) > h(O) � h(x) > 0 � f(x) > x 2 + 1 (+ oo ),oµoiroi; ppicrKouµe 6tt tivm Km crto ( oo ). Km x < O � h(x) < h(O) � h(x) < O � f(x) < x 2 + 1 . x p) 'Exouµt: f'(x) ( (x) = e > O;yia Knee MovaOtKO Aol1tOV KOlVO O'T)µtio t(l)V cf Km 'tT)i; x e :JR ,O"Uvemoi; TI f tivm KUptfi Km TI f yvricriroi; napapoA.fii; eivm to (0,1). To /;T)touµtvo tµpaoov 'Exouµt A = IR * Km g ( x) = xe� , on6tt µovaoucft nieavft KataK6pu<pT) acri>µntro'TT) tivm TI x=O. 'Exouµt lim .!... = -oo Km lim eY = 0 . Apa g

--

h

-++a:>

''

·

, D

,

'I -

( } ( ) () _

_

=

I

=

- 00

h'

-

0.£.

'

=

-

=

·

au�oucra O'to :JR . e.M. T. yia 'tT)V f O'ta oiacrtfiµata [a, a + 2 P ] Km

(

)

3 a + 2 a + 2 , P Km [ --P p ] ea U1tapxouv X 1 E a, 3 3 a + 2 P pA tEtota , COO'tE , X 2 E --, 3 f( a + 2P ) - f(a) 3 f( a + 2P ) - f(a) 3 = f '(x , ) = a 3+ 2 P -a 1 · p-a 3 f(P) - f( a + 2p ) 3f(P) -3f( a+ 2P ) 3 Km f ' ( x2 ) = � 2 a P � P- 3

(

,

)

ea tcroutm µt to

E = J� (f(x) - x 2 - l)dx = J� (e x - x 2 - l)dx = - x I = 3e; 7 < +

___ _ _

EYKAE.IAfil

-3

B' 104 -r.4/59

x -1


Ma&r)µanKa '}'\O ntV r· At>Ktiot>

Ta�" :

f' KroCY'Ta BaKaMno1>1.ov

(

1 (A + B = 0 Km A - B = 1) , it ( 2A = 1 Km B = -A) , L\(vnat 'I m>VUpTl)aq f( x ) = -2-1 x 07t6ts: it A = Km B = A) Na ppt:Od 'TO nt:ofo opiapo-6 TI)� Ar . B) Na ppt:Oo'6v ap10poi A Kat B roan, 1 = -A + -B = + f(x) = ,1 = -l x l x l x -1 x2 - 1 x - 1 x + l 1 1 r) Av A = - Kat B = -- va p pt:('Tt: pia apx1KT1' r) Mta apx1Kft tTI<; f crto ouicrtTlµa ( -1, 1) Eivm 11 2 2 cruv<iptT1cr.., F µs t'67to: TI)� f CY'TO 01.UCJ'T'lpa ( -1, 1 ) . F(x) = ! [1n (l - x) - ln (x + 1)] + 2017 011A.aoit 11 : A) Na ppd'Tt: 'TO t:ppaoov 'TO'l> xropfov n 1tO'l> 2 1tt:puddt:'Tat ano T1) ypaqmo\ napaa'Taaq F ( x) = ! In l - x + 201 7 1 2 x+l ' x = -2 TI)� f 'TOV «;ova x 'x Kat 'T� w0£1£� A) fta Ka0s xe · ( -1,1) , f(x)<O to �11touKai x = -1 . 2 E) Na ppt:l'Tt: 'Ta nt:o(a opiapo-6 'TIDV 2 I =-[F(x µsvo sµ�aoov eivm: E fl ) = -f x dt J 2 { ) = J ( ) avvapn\at:rov: F1 (x) f(t)dt , 2 I

A<JKTt<JTt I :

=

Z) 0)

=

1

2

f:

I2+2

=

e'2 +I

Na l..vOd 'I av(aroaq:

x2 + x+ 2

f f(t)dt 0 <

x1 + 2 x+4

Na od;t:'Tt: O'Tl 01 1::;1aroat:1�: ax 2 - a - 1 = 0 Kat f(x) = a txovv 'TO ioio a'6vol..o l..'6at:rov, (npo<pavro� KaOt: pia t:n1>..v op£V11 CY'TO a'6vol.o opiapo-6 TI)�) Kat va ppd'Tt: 'TO nl..l} Oo� Kat 'TO npoaqpo 'TIDV l..'6at:rov TI)� 1::;iaroaq�: ax 2 - a - 1 = 0 , y1a 'T� oiu<popt:� 'Tipt� TI)� napapt'Tpov a e lR Na o>.otl11proat:'Tt: T1) pt:liTI) TI)� avvapTl)aq� f Kat va KUVt:'TE T1) ypa<p1Kl} TI)� napaa'Taaq.

I)

Au<J11 :

A)

!j =� �( � � )

( ) [� �};;

f f(t)dt Kat F3 (x) = [/(t)dt . l:T) Na l..'6at:'T£ Tl)V t:;iaroaq: f f (t)dt 0 F2 (x)

-�) .

To 7tsoio opmµou trt <; f Eivm:

1

2

-

[� H ��� )) + 201 { =

=-

[ (� �) im

-

+

2

+ )Off

-im

(�;:} ]

)Off =

= - !�! + !� 3 = !� 3 + !� 3 = � 3 �� 2 3 2 2 2

�e K<i0e 7tepi7ttcocr.., 7tpfae1 Km apKei to x Km to «K<itco <iKpo» tou o/..otl11proµatoc; va avftKouv crto iOio 01<icrtT1µa tou 7tEOiou optcrµou tTI<; f 011/...aoit crta : ( -oo, -1) it (-1, 1) it ( 1, +oo) . 'Etm sxouµs : A F, = ( -1, 1) A F2 = ( 1, +oo) A F3 = ( -1) l:T) E7tEtOit e x 2 + 1 > 1 yta K<i0e x E IR Km x 2 + 2 > 1 y1a Ka0s x e IR to crl>voA.o optcrµou tTI<; x2+ 2 e�icrcocr.., c; aUa Km trt<; cruv<iPtrtcr.., c; J f ( t )dt 2 +I Eivm to IR . E7ticr.., c; f(t) > 0 y1a Ka0s t > 1 o7t6ts: E)

'

'

-oo ,

e"

Ar = IR - {-1,1} = (-oo,-l) U (-1,1) U (1,+oo) B) ApKsi va �ps0ouv ap10µoi A, B rocrts va 1crx;Ue1: -/- = � + � , it l = ( A+B)x +(A-B) , x -1 x-1 x +l E7tEtOit 11 cruv<iptrtcr.., g (x) = e x eivm KUptft crto IR (A B) , it it O · x + l = (A + B)x + Km 11 s�icrcocr.., tTI<; Eq>Cl7tt6µf:V11 c; crto cr.., µEio EYKAEIAHI: B ' 104 T.4/60


MafhtJLCX't'lKU yw 't't'IV r AllKtlO\J

A ( 0, 1) exei e�icrcoerri : y = x + 1 TJ e�iocoerri : ex = x + 1 exei µovaotid] A.uerri TllV x = 0 . Dµco�: 2 ex2 = X2 +l <:::> y=x <=> y = X2 <:::> X2 =0 <::::> X = 0 . eY = y+l y=O Apa Merri Tll � e�iocoerri � eivm 1'J nµii x = 0 . Z) E7moii x 2 + x + 2 > 1 yia Kci0e x e R Kat x 2 + 2x + 4 > I yia K<i0e x e R to O"UvoA.o opioµou Tll � aviocoerri � allci Km Tll � cruv<iptTlerri � x2+ x +2 G(x) = J f(t)dt eivm t0 R . Dµco� f(t) > 0 x2+2 x +4 yia Kci0e t > 1 . On6te µe clt01t0 anooetKVUetm on: x2+x+2 J 4 f(t)dt < O <:::> x2 + 2x + 4 > x2 + x + 2 <:::> x > -2 . x2+2x+

{

{

Apa Moe� Tll � avicrcoerri � eivm to O"UvoA.o: {-2,� H)

f'(x) = -2x 2 yia Kci0e x e Ar . Dµco�: ( x2 - 1 ) f'(x) > O <:::> x < -l ii - l < x < O . Apa TJ f eivm yvrioico� au�ouoa ota oiaotfiµata: A 1 = ( -oo, -1) Kat ota A 2 = ( -1, 0) f'(x) < 0 <::::> 0 < x < 1 ii x > 1 . Apa ri f eivm yvrioico� <p0ivouoa ota: A3 [ 0, 1) Kat A4 = ( 1, +oo) . 'Etcrt exouµe: ,/ f{A 1 ) = C ii� f(x), ��_ f(x) ) = (O, +oo) Otott: x llin -21- =0, xfun -1- = fun -1- ,_1_ =+oo x-+oo -+-1x -1 x2 -1 x-+-1- x-1 x + 1 ./ f{A 2 ) = c��J (x), f(O) J = (-oo, -1) ot6n: litn -1- = lim -1- · -1- = -oo , f(O) = - I X-+- 1 + x2 -1 X-+- 1 + X -1 X + 1 ./ f(A3 ) = ( X--+I lill! f(x), f(O) ] = (-oo, -1) ot6tt 1 - = lim -1- · -1- = -oo , f(O) = - I --+1- 2 xlim x - 1 x --+1- x + 1 x - I ./ f{A4 ) = ( xlim -++oo f(x), xlim -+l+ f(x) ) = (O,+oo) oion: fun-21- = Xfun1 -1- . _1_ = +oo llin-1- =0, X--+I+ X-H<O x2 -1 x -1 -+- - X + 1 X -1 Apa: to O"UvoA.o nµrov Tll � cruv<ipT11 erri � f eivm: f (A r ) = f (A 1 ) U f{ A 2 ) U f ( A3 ) U f (A4 ) = (-co,-l] U (O,+oo) . 0) fao R - {1,-1} exouµe: •

ax 2 - a - 1 = 0 <::::> a ( x 2 - 1) = 1 <::::> -/- = a . x -1 H teA.eutaia npo<pavro� yia x E { 1, -1} oev exei voriµa. H 1tPc0tTI yia x E { 1, -1} oev enaA.ri0eUetm, oion a · 1 2 - a - h � 0 Kat a ( -1 ) 2 - a - 1 :;e 0 . Apa exouv to ioio crUVOAO Moecov' Otci<popo ii µri ·

tOU KeYOU cruvoA.ou. fta T11V ei)peerri tou nA.ii0ou� Kat wu npocriJµou tCOV Moecov Tll � e�iocoerri � : --1- a oriA.aoii Tll � :

x2 - 1

f(x) = a ea XPTJO"tµonotiioouµe ta cruµnepcioµata

wu epcotfiµato� (H). 'Etm: ,/ Av a < -1 exei Mo aKpt�cO� etepoerri µe� Moe�, µia ow O"UvoA.o ( -1, 0) Km µia oto crUVOAO ( 0, 1) . Av a = -1 exei µia Merri tTIV x = 0 ,/ ./ Av -1 < a ::;; 0 eivm aMvatTI ./ Av a > 0 exei Mo etepoerri µe� A.uoet� µia ot0 crUVOAo ( -oo, -1) Kat µia OtO crUVOAO ( 1, +oo) . I)

=

(

(

(

)

)

(

)

)

=

I:uvexisouµe Tl1 µeA.ETll Tll � cruv<iptTlerri � µe ta aKpotata, T11V KUptOTllta, ta erri µeia Kaµnfi� Km n� aO"Uµntcote� (optaKe� nµe�): H cruv<iptTlerri f napoum<isei tomKo µEyioto OtO 0 tO f (0) = -1 .

2( 3x 2 + 1) , yia Kci0e x e Ar . 'Exouµe: ( x 2 - 1)3 f" ( x) > 0 <::::> x < -1 ii x < 1 . Apa ri f eivm KUptTJ ota oiaotfiµata: ( -oo, -1) Km ( 1, +oo) f" (x) < 0 <::::> -1 < x < 1 . Apa ri f eivm KoiA.ri ow ( -1, 1) . f"(x) =

H O'UVclPTll erri

f oev napoum<iset erri µeia Kaµnfi�.

Ano ta 6pia wu epcotfiµato� (H) nporintet on oi eu0eie� x = -1 Kat x = 1 eivm KataKopu<pe� aO"Uµntcote� Kat ri eu0eia y = 0 eivm opisovna aO"Uµ1ttCOT11 Kat Oto Kat Oto +oo . -00

x

f'(x) f"(x) f

EYKAEIAHI: B ' 104 't'.4/61

-00

+ +

-1

au�oucra

Kut KU Pnl

+ -

0

-

au�oucra

<p0ivoucra

Kut KOlATJ

Kut KOlATJ

T.M. :

f(O)= - l

1

+oo + <p0ivoucra

Kat KU ptfi


- - -

' _}

-

MaOtipa-ruca yia TflV r At1Ktiot1

i - -- -i 1

--� I

-

' - - -2 - - - - - It - I - - j

,-•

- -

:,

-

-

, .3

-

, - :-

:-2

- - - -

-

:

-

-

-

r

- -

-1 -

-

-i I I

,1

r

I - - - ·

- - ii - - - 2' - - - - 1I I I : ;, - - - - -�: - - -- �: - - - · Ir - --3 - - - - Ir - -- '� ·

-

- - -

,-1

I -

-

:

- - - - - - - ·

;

-

'

>

'

-

'

I

-

-

-

: ., j '

i

--- ------

--

. 5-

·----

(ft)V£X1l<; Km 1ttpl'TTI} 01'0 [

- -

I

-

, : : -: - - - - - � -

:2

- - - ·:- '

-

-

:

- _, - -

,

- - - -·- -

f' -

I - i

,

Li)

'3

- - -

- -

- - -

''

;

' 5

:

- - - - - - - - - -

- -

- -

;--· ,_

- -

,

- ---

- - ---

-

'

--

:

-

'

-

:

- - ;

-

-

-

Evowq>tpov azoA.w

Me a<popµ� ro spdnYfµa (8) rYf<; 'lt:p OYf"/OVµevYf<; a(fl('/aYf<; ava<ptpovµe Ta 'lt:apaKa1:CJJ :

To yf:'(ov6i; 6tt Mo el;tcrrocre1i; sxouv to i.810 cri>voA.o A:Ucrerov (entA.uoµevri Ka0e µia crto cri>voA.o op1crµou 'tTIC;) oev ITT) µaive1 6tt eivm tcroMvaµei;, yev1Kroi;. fta va 1touµe 6tt ouo el;tcrrocre1i; eivm tcroMvaµei; npfae1 1tpomouµSvroi; va sxouµe Ka0opicre1 cre 1toto cri>voA.o avaq>ep6µacrte, cSrtA.aoi] 1tps1tet va ava<pep6µacrte cre eva cri>voA.o nou sxouv Km 01 ouo v6rtµa. �ta<popettKa <JUyKpivouµe Katt U1tapKt0 µe Katt aW1tapKto. Ilpoq>avroi; 1tpfae1 va avaq>ep6µacrte cr'tllv toµi] trov cruv6A.rov op1crµou trov Mo el;tcrrocrerov, Ti cre Ka1to10 u1tocri>voA.6 'tTIC; · n. X· 01 el;1crrocre1i;: -1- = 1 ' -1- = x + 1 , x2 - l x-1

1 = x - 1 , x 2 - I = I 1tpoq>avroi; sxouv to io10 -x+l cri>voA.o A:Ucrerov L = { Ji, -Ji } , e1ttA.u6µevrt Ka0e

µia crto avticrw1xo cri>voA.o op1crµou: D I = IR - {1,-1} , D 2 = IR - {l} , 0 3 = lR - {-1} , D1 = lR . fta va 1touµe 6µroi; 6t1 ouo a1t' autsi; eivm moouvaµei; 1t.x. rt 211 Kat rt 311, 1tps1tet va sxouv v6rtµa Km 01 Mo, cSrtA.aoi] va 0eroprt0ouv op1crµevei; crto 0 2 n o3 = IR - {1,-1} .., cre Ka7t010 cri>voA.o A � D2 n D3 •

ACiKl}Cil} 2 :

Aiv£Tm 'I at>VUP'f11 CJl1

f (x) =

In{ x + .Jx2 + 1 )

A) Na ppt6d TO ntoio opiaµ.oi> Tll <; f Km va fl.£U'f11 6d 'I f roe; npo<; 'f'I fl.OVOTOV{a Ta aKpOTaTa 'f11V Kl>pTO'f11Ta Km Ta CJl}Jl.da Kaµ.n'll <;· B) Na ppt6oi>v Ol p�t<; 'f11 <;, TO 1tpOCJ11 Jl.O Km TO O'i>voA.o Tlfl.IDV 'f'I<; at>VUP'f11 CJl1 <; f. f) Na anootixOd 6Ti av µ.ia at>v6:p'f11 CJ11 f dvm

-

, J 'TOTE i<JX(>ti:

a a

fu f(x)dx = O Na Ppt6d TO oA.otl-qproµ.a: f-2°0117 ln ( x + �x2 + 1 ) dx 2 7

J:17µdwm,.-

@a µnopovaaTe va ppeiTe TO oloK):tjpwµa avTo xwpiq va XP11mµono11jaew TO ep<hTtjµa (I');

E)

Anood;Tt On TO tµ.paoov TO'l> xropioo n, 1t0l> ntpitltif:Tm ano T11 ypaqnK'll napa«naCJll Tll<; g(x) = Tov «;ova x'x Kai n<; w6dt<; x2 + 1 X = -1 K«l X = 1 UJOVT«l µ.£ 2 ln 1 + T.µ.. l:T) Na Ppt6d 'I t;iaroCJll T11 <; t<pa1tTOJl.f:V'I<; £ T11<; ypa<piK'll<; napa«naCJll<; Tll<; f mo 0 ( 0, O) Km 01"fl at>Vqf:la TO tµ.paoov TOl> xropiov '2 2 µ.£Ta;u Tll<; £<p«1tTOJl.f:V'I<; Tll<; ypa<piK'll<; napa«naCJll<; T11<; f Tll<; w6d«<; £ Km Tll<; w6da<; x = 1 . Z) Na xapa;tTt T11 ypa<piK'll napa01'aCJl1 Tll<; at>v6:p'f11 CJ11 f. Auari :

�,

A)

( .Ji)

f1a Ka0e x e 1R 1crxt)e1:

)x 2 + 1 > N = l x j ;::: - x � x + � > 0 .

Apa to 1te&io opmµou TilC; cruvap'tll crTJ i; f eivm to 1R . H f cruvexili; Kat 1tapayroyimµrt crto IR µe

J x + 0t ( x + �x2 + 1 )' =

f(x)= [1n( x+ �x2 +1 ) =

(

)

1 1 . x+� l+ x x + �x2 + 1 �x 2 + 1 x + �x2 + 1 �x2 + 1 l > 0 . Apa rt cruvap'tll ' crTJ f etvm ' rvrtcrtroi; ' = � '\/X 2 + 1 aul;oucra crto IR Kat oev 1tapouma1;e1 aKp6tata crto IR . E1ticrTJi; ' - ( � )' 1 -x = 2 = f"(x) = x +l �x 2 + 1 (x 2 + l ) �x 2 + 1 f" ( x) > O <=> x < 0 . Apa rt cruvap'tll crTJ f eivm •

( )

KUp'fi] crto (-oo , O] f" ( x) < 0 <=> x > 0 . Apa rt cruvap'tll crTJ f eivm KOiA.rt crto [ 0, +oo) To ITT) µeio ( 0, f (0)) eivm ITT) µeio Kaµ1ti]i; TilC; ypaq>1tji; 1tapacrtacrT)i; TilC; f . B) Ilapa'tll pouµe 6tt f ( 0) =0. E7teilifi rt cruvaptrtcrTJ f etVat rvrtcrtroC; aui;oucra , eivat Kat « 1-1 » 01t0tf: Tl pil;a x = 0 eivm µova&ttj. E1ticrT)i; 1CJX6e1 yta •

EYKAEIAHI; B ' 104 -r.4/62


Maeq,.unuca "(\U 'TilV r A\lKtlO\l

x<O�f(x)<f(O)=O K<l1 ')'1a x>O�f(x)>f(O)=O. fta to cruvoA.o ttµrov f (A) exouµe: f (A)= ( }�� f ( x ), }�1! f ( x)) . Dµroc;: 2 +1 )] �(=MiMi) lim f{x)= lim [In( x+vx,-.,--; = U-+0+ lim In u = . (Y7t0'1'11 ott: ( ..Jx2;if u0 = hm ( x+'\/x-�+1 ) = hm X2X--"X 2 +1 = = 0 µe x + .Jx2 +1 > 0). Enicrri c; : lim X - � X2 +1 [ !?-:)] Mt lim f ( x) = lim In ( x + "x 2 + 1 (= Mt) = lim In u = (Y7tO'VT} ott: u 0 = lim (x + .Jx2 +1) = Apa: f (A)= ( ) Aq>ou 11 f eivm crovexi\c; Km neptttil tote ym Kcl0E a. > 0 Km ym Kci0E x E [-a., a.] tcrxl)et: f(-x)=-f{x) � rJ (-x) dx =-r/(x)dx ( 1) Dµroc;, J: f{-x )dx d:::J:a f(u){-du) = f/(x)dx . 'Etcrt (l) �J: f(x)dx=-J: f(x)dx�2J: f(x)dx=O � � ra f(x)dx =0. fta Ka0E XEJR exouµe: f{-x)+f(x)= 1n (-x+ �(-x)2 +1)+1n{x+.Jx2 +1)= 1n[{-x + ..Jx2;i)( x + ..Jx2;i )J = In [( .Jx2 +1 r -x 2] = lnl = 0. Apa 11 crovaptTlO'l} f 01 eivm nepttTJ1. Onote, J-2 0117 1n (x+.Jx 2 + l )dx =0 2 J-22010117 1n(x+.Jx2 + l )dx=J-22010117 f(x)dx = f 201 7 ( x )' 017 -[ 2017 f(x)dxf [xf(x)]2-0120177 - f-22017 x · f'(x)dx = x ,....,----:- dx xf(x) ] 2017 . f (2017)-(-2017) f(-2017)- [.Jx2 +1 ]_20120177 u=x+

x->-«>

x->-«>

u.=,

-oo

-eo+oo

X--+-<O

!?-:

X--+-<O

X--+-<O

x --++oo

x+

u=x+

x --++oo

u0 = lim

X -+ +«>

+oo

+oo )

x --++oo

-oo, +oo

r)

x+

1� )

l:lfpdwm, . - 8a µ7ropovaaµe va V1CoA.oyiaovµe

'!rapami.vOJ oA.ocl�pOJµa Kaz XOJp fr; OJ<; e��<;:

201 7 _20 1 7

-

=

20 1 7

-20 1 7

·

1

"\/ X 2 + 1

·

w

w

epchrrJµ a (I')

= 2017 · [f(2017)+ f(-2017)]-0 = 2017 · O = 0 To �l}touµevo eµpaoov eivm: ' I 1 f E{01 )= J J;!;i x2 + 1 dx= x2+1 dx= -1 � [1n(x+�x2+1 )l =f(l)-f(-1)=2f(1)=2ln(l+v'2) t.µ. Eneioi) f(O) = 0 Km f'(O) = 1 11 e�icrroO'T} tl}<; eq>antoµEVT}<; e eivm: -0 = 1 ( x -0) 011A.aoi) = x . EniO'T}<; 11 crovaptT)OT) f eivm KOlAl} O'tO [ 0, ) onote ym Ka0e x [ 0, 1] tcrxl)ei: f ( x) ::; x 011A.aoi) f(x)- 0. 'Etcn 'to �l}touµcvo eµpaoov eivm: E ( n )= J�l f (x)-xl dx =J�(x-f(x) ) dx = J: xrlx -J; r(x)dx = [ � 1 - ([ xf(x)J: -J: Xr'(x)dx ) = �- (f(l)- (g� dxH -m(1+J2)+ [N+11 = �-ln (1+../2)+h-1=J2-�-In (1+../2) t.µ. E)

}

-1

I:T) y

y

+oo

e

x ::;

2

Z)

Ano ta opm nou unoA.oyicraµe crt0 eprotT)µa (B) npol<Umet on 11 ypa.q>tKT) napacrtaO'T} tT}<; crovaptT)O'T}<; oev exei KataKopuq>ec; OUtE opt�OVtlE<; acruµntrotec;. E1ttO'T}<; oev exei OUtE 1tAaytE<; acruµntrotE<; U<J>OU:

f

±oo

lim f(x) � lim f '( x) = Jim 1 = 0 aUa 1 X .JX2 + 1 Jim [f(x)-0 · x] = Km Jim [f(x)-0 · x] = x--+±oo

x--+±x>

x--+±oo

+oo

X -++oo

-oo

X -+ --«>

7tpOKU1ttEl o

na aKatro nivaKa

xf' f"f

-00

+

+

+ l:.K. :

i

+oo

f (0) = 0

- - - ··· - .- •· - - - - · .. - - -: - - - - � - ·- - - - > - - - - -: · ·· - - - _- - - - - , !· - - - "- - - - - -- -

'

.� .

'

'

.

} • • .. • • L • • • • • • •. ..

.

. - --

;-3

-4

=

' /

- - _, _ /

··2

/

/ :

' / · - ; · "' -· ·-

/

.. -

EYKAEIAHI: B ' 104 T.4/63

.

;,. '

_ _ _ _

' : ' '

- -- - -- - - - � - .

/

/

·· - - .

;.

· / ?'·· ··

/

-/..,. /.

/

·�

.. 1 .

.

'

/

·?

. .c�

..� . . . . . c

.

.. . . . .

. . . .. . .

..


lluo awAt� awol> c i � c 1 � y1a T I � av1ai>TflTt�

Jensen Avto:6TT)TU Jensen: Av TJ _

'·

.

(

Arr6oi:t�11 :

.

Herm ite - Hadamard .

Ano Tov Kt>ptclKo K. KaJ1no'6Ko 2° IletpaµattK6 Ai>Keto A0T)vffiv

)

-

01.)VclPTTJOTJ f eivm KUptft <HO foacrtT)µa �=[a,p] Km xi e [a,p], �>O yta Ka0e

A X + A 2 + . . . . . + A. v x v 1-1 ,2, . . . ,v tote.. r 1 1 2 X .

Ka i .

A 1 + A 2 + . . . . . + AV

Ei>KoA.a oianunrovouµe on:

<

A 1 f(x 1 ) + A.2f(x2 ) + . . . . . + A.J(xv )

_

-------

A. I + A 2 + . . . . . + AV

A 1 X 1 + A 2 X 2 + . . . . . + A. v x v A. I + A 2 + . . . . . + AV

y E � (ytati;).

H ecpantoµffit TT)c; Cr crto OT)µEio M(y ,f(y)) dvm T) (i:): y=f (y)(x - y) + f(y). Acpou T) f dvm KUp'tiJ 0a exouµe: f(x) �f (y)(x -y) + f(y), yta Ka0e XE � => f(xi) �f (y)(xi-y) + f(y) => �· f(xi) �f (y)( �· xi-A.rr) + �· f(y), yia Ka0e i=l ,2, . . . ,v, OTJA.aoft:

A 1 · f(x 1 ) � f ( y )( A 1 · X 1 - A 1 · y) + A. 1 · f( y ) A. 2 · f(x 2 ) � f ( y} ( A 2 · X 2 - A 2 · y) + A. 2 · f(y)

Me np6cr0eOTJ Ka-ta µeA.T) ppicrKouµe:

A v · f(x v ) � f{y} ( A v · X v - A v · y) + A v · f {y} A1 · f(x1)+ A2 · f(x2) + . . . + A-v· f(xv) � f (y)[ A1 ·X 1 + A2·X2 + . . . + Av·Xv - (A.1 + A.2+ . . . +A.v) ·y] + (A.1 + A.2+ . . ... +A.v) · f(y) => A1 · f(x1)+ A2 · f(x2) + . . . . . . + A-v · f(xv) � f (y) · O + (A.1 + A.2+ . . . .. +A.v) · f(y) => A

+

+

+

1 f(x 1 ) A.2 f(x 2 ) . . . . . A.J(x v ) -'------'- ------ � f(y)= A. I + A 2 + . . . . . + AV

r

(

A 1 X 1 + A 2 X 2 + . . . . . + A. v x v A. I + A 2 + . . . . . + AV

EtotKft nepintcoOTJ (01)vft0TJc;), yia: A 1 = A 2 = ... = A v = 1 .

Avu16tT)tU Hermite-Hadamard.

( P ) _p -1_ 2 ( ; P ) <p - a) 2 f

).

Av ri 01.)VUPTTJOTJ f eivm KUp'tft crto otacrtT)µa [a,p] µe a<p, tote: a+

r

s

2

Arr60tt�T) :

r

rt3r dx f( a } + f( (x) s

2 Ja ApKei va oi:i;ouµe on: a

a

s

fCx) dx s

P)

.

[f(a)+f(P)J ( P - a)' .

= f: r (Ilp6Kettm yia Mo 01.)Vap'tftcrttc; f ( x), ( x) = f ( + P- x) 01.)µµetptKec; npoc; tT)V eu0eia x=A., 6nou A = a + p to µfoov tou [a,p], acpou f{A + x) = g( A - x ), yta Ka0e x e [a- P , p - J .

fta TT) 01.)Vexfi crto (a,p] 01.)VclptT)OT) f eUKOAa anooetKVi>etm g

Tj

a

crxeOTJ:

roe;

f(a + � X) dx -

a

2 2 fta tT)V 01.)VclptT)OTJ h(x) = f(x) + f(a+ p - X) AOtnOV, nou opi�etm <JtO (a, p] (ytati;), 0a exouµe: h(x)dx = 2 f(x) dx ' on6te apKd va oei;ouµe O'tl: 2

r

2

r

r( ; ) <P - a) a

p

s f.h(x)dx s [ f(a)+ f(P) J ( P - a), �

• Etvm 6lKaLoA.ovriµtvrptA.tov 'l ava<t>opci cnri axfori 2

On:

f: f(x)dx

=

.

f[ f ( x ) + f(a + 13 - x) ] dx (l

EYKAEIAHI:. B ' 1 04 T.4/64

f(X) dx


2

(;) ( ;P) s

r. f

2f

Ma011µa't1Ka yia 'T1}V r At>Ktio\J

f

p dx $ h(x)dx $ 1: [f (a)

a

a

+ f (/J ) ) dx, � T£AtKci 6n:

h(x)s f(a)+f(f3) (1).

Ilpfryµan: 'ExouµE h'(x) = f(x) - f(a+f3 - x) Kat €1t€toi) f -!'

@a BXOUµE: h'(x) >0 <=> f(x) > f(a+f3 - x) <=> x>a+f3 - X <=> X E

(; ] 11

a f3 , f3

Kat

a+� ). 2 , . a+� a+� a+� a+� Apa: mmh(x) = h( -- ) = ( -- ) f(a+f3 - -- )= 2 ( -- ) Kat a<pou h(a) = h(f3) = (a) 2 2 2 2 ea Eivat: max h(x) = f(a)+ (f3). H oxemi ( 1 ) €tVat 1tAEOV npo<pavi)�. v TI cruvcipTIJITTJ f(x) Eivm KOtAT) oto [a,f3], t6t€ ot avto6TI)t€� aute� tcrxj>ouv µE avEotpaµtvri <popa Kat anoo€tKV'6ovtm €Vt€A©� av{J)..oya. AKoA.ou0ouv Mo E<papµoye�, µta 0€ Ka0€ avto6TI)ta h'(x) < 0 <::>x e [a,

f

A

1 '1

E<papµoyt} :

211 E<papµoyft :

+

f

f

f + f(f3)

ABf toxj>Et: T)µAT) µBT) µr s 3J32 . 2. Na od�€t€ 6n: J2 s J .J1 + 8x 3 k€ Ka0€ tpiyrovo

I

dx

0

<

In( l] µAl]µB ljµr) $ In ( � J, � In ( T1µA) + In ( T1µB)+In( T1µr) s 3In � , In( T1µA) +In (�µB)+ln( T1µr) s � , ln('A)+ln( T1µ--r)....;... s ln ( T) µ-n3 ) , T), --' ---'-11µ -'- --'--11µ3--B)+ln( -- ----' ln(T) µA)+ln( 11µB)+In ( 11µr) (11µ A+B +r ) T)' f(A)+f(B)+f (r) - f ( A + B +r ) ' 3 3 3 3 6nou f( x ) In( 11 µx ) x e ( O, n ) . ft' auto apKEi f(x ) va Eivm KOtAT) ow (O,n). Ilpayµan f"( x ) --\- O mo (O,n). T) µ x EvtEAffi� avUA.oya µnopEi va anoo€tX0Ei Kat avto6TI)ta cruvAcruvBcmvB s .!. , 0€ o�uyrovto 8 Aucn:t� :

I ' E fj)a pµ O"fl] :

ApKBi

in

--

-

-

_

Jn

<

'

µE

=

TI

<

=

<

TI

f ( x ) .Jt + 8x3 , a=O Kat f3=1 , 24x ( 1 + 2 x 3 ) acpou f(x) cruvExi)� ow [0, 1 ] Kat, f "( x ) 0, yta Ka0€ x e ( 0, 1 ) , OT)A.aoi) f(x) ( 1 + 8x 3 )vl + 8x3 f (a) ; f( � ) .[I �-19 2 . KU pnj cno [O, t ] K t f ( ; � ) � +s(H ..fi. ,

tpiyrovo (k€ µT) o�uyrovto dvm npo<pavi)�). 211 E<pap µoyft : IlpoK'61tt€t aµEoa an6 TI)V OWt€pT) avtcr6TI)ta µ€ =

«

"

!

/

EYKAEIAm B ' 104 't.4/65

=

>


ettJaTa TiaAa10Ttpwv Ewoxwv EmµtM:ia:

rtropyoc; Ta.crcr61touA;oc;

E.M.Il. 193 1 EII:ArnrIKEI: EEETAI:EII: Ano to rrueayopeto 0erop11µa crw opeoyrovto IlOAITIKnN MHXANIKON tpiycovo HAf npoKl>n'tet Ott Af' 2 = Hf' 2 + HA 2 = 4 2 + 2 2 = 20 Km etcrt 3 o 0EMA TPirnNOMETPIAI: T11 Atf1axo� Mnal.:taafha� Af' = 2 J5 . Ma0T)µawc6<; ow fuµvamo Ktpaµetffiv Ktq>a/..ovta<;.

Ot nl.zupt<; unoA.oyicrtT)Kav, o unoA.oyicrµoi; tcov To etµa 'fttav to e�'fti;: ycovtrov µnopei nA.Eov va yivet µe neptcrcr6tepoui; Na enV..ueei rpiymvov ABI' 6o8d<J1'f� rr/� 1CAevpa� ano evav 'tponoui;. A<; 8ouµe evav . . . rov BI'=3m, rr/� 6zxor6µov rov ALJ = 2 J2 m Kaz Ano to opeoyrovto tpiycovo HAf �picrKet Kanoto<; yvmowv 6vro� orz 11 61xor6µ0� ALJ ux11µari(e1 µe AH 2 rrJV 7rJ..wpav BI' ol;dav ymviav 45° . euKoA.a Ott Eq>f' = = = 0, 5 . I:uvenroi; Hf' 4 H wpecrri tCOV ouo nl.zuprov ea yivet xcopi<; va 'Etcrt Aol1tOV XP11crtµonot11eei tptycovoµetpia, µovo µe yvrocret<; r = roi;o &rpO, 5 = 26°33 54 Eutlei8eta<; fecoµetpiai;. B= 90° + f' = 90° + 26°33 ' 54 " = 1 1 6°33 ' 54 " . A EuKoA.a nA.Eov µnopei va �peeei ott A = 1 80° -B - f' = 1 80° - 1 16°33 '54"-26°33 '54" = = 36°52'12" H eniA.ucrri teA.etrovet Kanou eoro. Na tovicrouµe Ott to 1 93 1 ot unO'lfftq>tot 'fttav ecpo8tacrµEvot µe nivaKe<; tptycovoµetptKrov apteµrov. Ot nivaKe<; autoi 'fttav unepnoMttµot Km t6vot µeA.aVT)<; eixav 8 I H 6 XP11crtµon0111eei yta va eKruncoeouv. Av etA.ouµe !::.ev �Mmetm 11 yevtKOtT)ta av unoefoouµe Ott Va xapaKtT)ptcrouµe tT)V npocrnaeeta tCOV B > t . Av cptpouµe tote to U'lfO<; AH tou µae11µattKrov yta tov unoA.oyicrµ6 'tCOV 6crcov tptyrovou, to B ea eivm µeta�U H,r Km to tpiycovo un'ftpxav crtoui; nivaKe<; autoui;, µnopouµe va HM ea eivm opeoyrovto Km tcrOcrKeA.Ei;. Acpou ypa'lfOUµe ott 'fttav avvntpfU.l)Ta Komam1K1] Kat <n>vaJla 11pro1K1] A!::.= 2 J2 , tcrx6et ott AH=H!::.=2. Ilapa6tTro Jlta aKOf11J A.i>Gl], npo<pavro� fao tpiycovo ABf tcrx6et ott B6,; = A + f' . <n>V6&TOT&p1) U1t0 &KelVfl TO\l <n>vaotl..<pot>. A A fao tpiycovo AB!::. tcrx6et ott B sr; = + 45° . A ucn r 'Exouµe: 45 ° = A Li B = - + f' Km 135 ° = 2 2 A A I:uvenroi; tcrx6et ott A + f' = + 45° � A � r = + B . ApKei A.ol1t6v va unoA.oyicrouµe 2 2 0-B-r 1 80 0 � 1 80 - B = + 45 o � B - f' = 90o . A 2 tT)V ycovia A ' Otott tote r = 45 ° - - Km B =135 ° 2 t::.11 /..ao'ft to tpiycovo ABf eivm 'V£Uooop6oyrov10 A tpiycovo. ea anooei�ouµe ott HB Hf' = AH 2 . (eivat Be npocpavij<; ttm Km 11 crxtcrTJ B t =90° Ta opeoyrovta 'tpiycova HAB, HrA eivm oµota. 2 H ano8et�11 aKoA.oueei aµEcrcoi;. CftTJV onoia �a�etm 11 npo11yol>µeVTJ MCTTJ) . ycovHBA=A+f. 'E'tcrt mo opeoyrovto tpiycovo LtT) cruvtxeta an6 to voµo 11µtt6vcov unoA.oyil.;ouµe HAB tcrx6et ott ycovHAB=90° - ycovHBA= tt<; �. y. AA.Ml a=3m, on6te apKei va unoA.oyicrouµe =90°-(A+f)= 90°-( 1 80°-B)=B-90°=r. __ , 811/..ao'ft to 2R (cre m). I:uvem:Oi; HB Hf' = AH 2 = 2 2 = 4 Km enicrri i; to A.Oyo _!!_ µA 17 Hf' - HB = Bf = 3 . H OtXOtoµo<; A!::. 8..tpxetm ano to µEcro M tou Ano eoro npoKl>ntet Ott Hf' = 4 Km HB = 1 . Ano w .nueayopeto 0erop11µa crto opeoyrovto to�ou Bf' . Av MN =2R, t6te MNJ.Bf crto µEcro tpiycovo HAB npoKl>ntet ott tT)<; K Km M A N = 90° = !::. K N = M t N. Apa AB2 = HB2 + Hf'2 � AB2 = I 2 + 22 � AB = J5 . All.KN M!::. ·MA= onote: eyyp<l'lftµo, I

II

• • •

A

A

A

A

A

A

A

A

A

·

-

·

("'\

EYKAEIAm B ' 104 T.4/66


-------

@tµa'Ta Ilal..<uo'Ttprov Enoxrov

MK- MN=Mf2 . Av A.01nov MK=x, ton: �=x Km M/!i=x fi. , onote: N

A

-------­

svBda�, KW P) Na mr:oloylaBovv ra µ�Kr/ BE /\

= x KW LJZ /\

=

y.

Enetofi eivm A B r = A l!i r = 90 ° , roe; eyyeypaµµevec; cre K'6tlo nou �aivouv cre 11µtK'6tlt0 µe to Ilu0ayopew E>erop11µa naipvouµe: Br = R Km rl!i = R fi. , onote A 2 = 3 0 ° Km A \J(j'l :

/\

/\

/\

/\

AK0µ11

r1 = A1 = 45 ° .

E1 = Z1 = 1 5 ° (1).

/\

r2 = 75 ° Kat

eivm

A

M

M/!i·MA=Mf2 6 x fi. ( x fi. + 2 fi. )=x2 + Kr2 9 9 => 2x(x+2)= x2 + - => x2 +4x - - =0 => 4 4 1 1 9 1 . x= - . E�aUou MK-MN = Mf2 => - 2R = - + 2 2 4 4 3 => R= � . Apa: _!!___ =2R => - =5 => 2 17µ A 17µ A 3 11µA= - K.A.n. 'Etcrt B ' r yvrocrtec; Kat �=2R11µB, 5 y=2R11µr yvrocrtec;. Il UpU Tll P 'l (j 'l : :EtT)V iota E�lcrffiCTTJ µac; 0011yei 11 npoq>avi}c; tcrOtT)ta /!iA·�M=/!iB · /!if ( 1 ). Ilpciyµatt: (1 )=> 2 fi. · x fi. = (KB x )(Kf + x) 3 9 3 => 4x = ( - -x)( - +x)=> 4x= - -x2 => 2 2 4 -

A

-

x2 +4x - 2 =0. 0 unoA.oyicrµoc; tou x µnopei va 4 0011yi)cret Kat cre aneu0eiac; unoA.oyicrµo tTJ<; 1 A x 2 1 A aq>ou Eq> =ecpB A M=ecpB r M= Kr = 3 = . 2 3 2 A

A

.

A

I\

A

A

1 956 E.M.n. noA.tnKoi M11xav1Koi (el;E'T«an\� K. Ilmrmroavvot>)

rEOMETPIA:

El� KiJKlov mcrivo� R Bswpovµsv cyyeypaµµtvov rsrpa:!!kvpo v ABI'LJ, wv 01r:oiov '1 Jzaymvw� AI' dvw JuJ.µsrpo� wv KiJclov KW dvw

I\

/\

/\

/\

Stott E B Z = E /!i Z = 90° ' apa B1 = Z1 + Z2 (2) /\

/\

aUci Kat B1 = r1 crav eyyeypaµµevec; cre K'6tlo /\

nou �aivouv crto iow to�o, 011A.aofi B1 = 45 ° (3). Ano nc; (1), (2) Km (3) naipvouµe: 45 ° = 1 5 2 + Z2 , t1 Z2 = 3 0 ° . Ano to op0orrovt0 /\

/\

/\

/\

/\

tpiyrovo fHZ exouµe: r3 = 'Xf -Z2 , t1 r3 = 60 ° . /\

/\

/\

T0 a0poicrµa t(l)V yrovtc.Ov r I ' r 2 ' r 3 eivm /\

/\

/\

r1 + r2 + r3 = 45 ° + 75 ° + 60 ° = 1 80 ° , apa ta CfTJµEia A, r, H avi}KOUV crtr)V iSta eu0eia. p) Ano ta 0µ01a op0oyrovia tpiyrova A/!iE Km R .fi. + y R Jii . . ABZ exouµe: = r:; � , 11 · Rv3 + x Rv 2 y.J2 = R + x (4) Km ano ta 0µ01a tpiyrova Rf2 EBf Kat f/!iZ naipvouµe: 2'. = , fJ y = xJ2 ( 5).

.J3

R

AB = R .J3 , Ano ttc; (4) Km (5) �picrKouµe x = R ( 2 + .J3 ) Km

M = R fi. . ea 1rapa�awµsv Jza E KW z m Uf!µda wµ�� rwv wrtvavrl 'll'Asvpmv AB, JI' KW ALJ, BI'. eswpovµsv KW m� 'll'Spupspda� Jw.µhpwv I'E KW I'Z W O'll'OfW 6Kr0� WV I' reµvovrw KW Sl� n Uf!µsiov H Z17wvvrw: u) Na JszxB� 6rl m Uf/µda A, I', H KEivrw 6'/l' '

x

( .J3 ) . 'H µe tptyrovoµetpia x = R · 11µ75 ° = R · 11µ ( 45 ° +30° ) = R ( 2 + .J3 ) Kat y = R .fi. · 11µ75° = R .J2 · ( 2 + .J3) . y = R .J2 2 +

EYKAEIAID; B ' 104 'T.4/67


-------

0tpaTa IlaMitoT£p<r>v Enoxrov

2o<; Tp07t0<; (MO 'tO otl:rio eeµciTCOV TOI) Ap. IlaM.a) a) a<pou E� j_ AZ l((ll ZB j_ AE ' TO r ea eivm TO opeoKevtpo TOU tptyrovou AEZ, onOT€ 11 At ea eivm KaeeTll crTllv EZ mo H'. AUa TOT€ T(l TetpanA.eupa BfH'E l((ll �fH'Z ea eivm eyypa'l'tµa, 011A.aoi} to H'ea eivm to oei>tepo KOtvO CJ11 µeto TCOV KUKACOV µe Otaµfapou<; fE, fZ. 1\pa TO H H 011A.aoi} T(l CJll µEia A, r ' H eivm cruveueetaKa. LTll cruvexeta ano M = R J2 = A4 ' =

l((ll AB = R /\

J3 = A3 npoKi>mouv OTt Ot f = 45 ° ' /\

/\

B r A = 60 ° , A 2 = 30 ° , A 1 = 45 ° /\

/\

E1 = Z1 = 90 °

-

/\

Km

-------

XP11crtµonoi11eei eivm:

0 AOyO<; Of10lOT1)Ta<; OVO opoirov Tptyrovrov dvat iao<; pt: TO AOyO OVO «VTlaTO(X(l)V ypapplKIDV aTotxeirov Tov<;. 1 '1 ecpappoyi} Tou napmravco 0ecopi}µaTO<;.

L'ta oµota tpiyrova AE>H, A�E o eyyeypaµµevo<; Ki>tlo<; tou tptyrovou ABf eivm Kotvo<; napeyyeypaµµ£vo<; Ki>tlo<; nou avncrtoixei crtt<; Kopucpe<; A, A. Li>µcprova µe o,tt ypacp11Ke , o Myo<; oµotOTllta<; TCOV tptyrovrov aUTcOV eivm icro<; µe 1 . IlpOK€tT(ll yta icra tpiyrova. LUVenro<; �E=E>H. 2'1 ecpapµoyt1 TOU napmravco 0ecopt1µaTo<;.

Lta oµota tpiyrova ABf, A�E, ZBH, IE>f o Myo<; oµotOTllta<; eivm icro<; µe to Myo trov neptyeypaµµ£vrov Ki>tlrov tou<;. LUV€1tcO<; µnopei

A = 1 5° .

p) 0 unoA.oyicrµo<; TCOV x, y yiveT(ll onro<; npomQuµ£vro<; ano n<; 0µ0t0Tllte<; trov tptyrovrov ' ' Br �E BH er va ypa<pet on - = - = -- = - = ABZ ' A�E l((ll BfE, �rz. R R, Ri � M I KPO noA YTEXNEIO

2° 9EMA EIEArnnKnN EEETAl:E!lN 1 963 l:TH rE!lMETPIA. Tql..t paxo<; Mnal.Ta«Pta<; Ma0TJµmuc6� ato fuµvaaio Kepaµmov Ke<paA.ovta�.

Zi}Tllµa 2°v :

L1i&raz rpiywvov ABI' KW w sv8dw LJE, ZH KW eJ irap<iJJ.'fA.01 avrunoixw<; irpo<; ra<; trkvpa<; BI', rA, AB KW e<pamoµsvw "f<; 81<; ro rpiywvov cyycypaµµtv'f<; irspz<pspda<;. Eav R, , R2 , R3 KW R dvw 01 aKrivs<; rwv irsprycypaµµtvwv KVKA.wv irspi ra rpiywva ALJE, BZH, ref, KW ABT, rore va &1x8d ,, U70"f<;

R, + Ri + R3 = R .

=

� + BH + E>r � +� +�

Ano eoro 11 �llTOUµeYll tcrOTllta eivm npocpavi}<;. To KaM µe auTi}v TllV anooei;11 eivm on anooioet l((ll OTUV exouµe aUa avtimoixa ypaµµtKU crtoixeia trov tptyrovrov A�E, BZH, fE>I, ABf. A<; ypa'l'ouµe eva µovo napaoetyµa: Av 01 aKrivs<; rwv cyycypaµµtvwv KVKA.wv rwv rpzywvwv ALJE , BZH, reL ABI' dvw p" p2 , p3 , p row zax,vs1 p, + p2 + p3 = p . B 'Tpono<;

Ano TO �eA.tio E>eµatrov Aptcrteioou

naua 'Ecrtro AN u , l((ll AM ua ta avticrtoixa U'l'll trov oµoirov tptyrovrov A�E, ABf. Tote E 2 ,&_ � U a - 2 p l 2 p l _l l 2E R ua ua ua 'tU a ua

A

=

=

=

=

,.

a

Br E>H + BH + E>r = ---� +� +� � +� +�

A

ea yivet XPii CTll €VO<; eeropi}µmo<; nou oev ypacp€T(ll crto crxoA.tKO �t�A.io. H an60et;i} tou rocrtocro eivm noA.i> anl..i} Km µnopei va yivet ano eva µae11Ti} µe evotacpepov yta T1l feroµetpia. To eerop11µa eivm to mxpaKatro: Av ot nM:l>pt<; oi>o Tptycl>vrov dvm napallriu<; , TOT£ T« Tpiyrova «l>Ta dvm opota.

'Etcrt ta tpiyrova ABf, A�E, ZBH, IE>f, AE>H eivm oµota. To A eivm TO CJ11 µeio TOµi}<; trov ZH, 10. 'Eva aMo eerop11µa, µaUov npocpave<; , nou ea EYKAEIAHI: B ' 104 T.4/68

=

-

=

-

=

-

=


Xpt\altJCC e A.c;Kllo'I 2. AivE'fm tvac; aptOµoc; a

Ka9& v 0 e

e

R.

oru.1avac1

-

Na anoo&\;&T& 0Tt unapxt1 aptOµoc; t>O, TiToto<; ro(J't't, yia ' , ux0. pX£l v e ff µ£ v ;;:: v0 Kat ( -t v 2 + v - a ;;:: £ .

l )

l

Ai>o'I. ea epyacnouµe µe t11 µ€eooo Tll <; ei<; frto1to a1taycoyft<;. �11A.aoi}, ea a1toOe�ouµe on 11 UPVTI CITJ Tll <; 1tpOtacni<; auti}<; eivm 'lf€U8i}<;. AJJ.,a. yta va crmµaticrouµe TllV UPVTICITJ Tll <; 1tapamivco 1tpotacni<;, ea 1tp€1tet 1tpona va T11V ypa'lfouµe <J'tl'JV au<JTll PTt µae11µantj µopcpi} T11 <;, 11 01toia eivm: e. 3e > 0, V'v E r f ' 3v E N* , v t\ Tropa, yvcop�ovta<; toU<; voµou<; Kat toU<; Kav6ve<; t1l<; Ma011µantj<; AoytKiJ<;, ppie>Kouµe eUKOAa on 11 apVllCITJ Tll <; eivm: V'e > 0, 3v0 e f f , V'v e N. , (2) ::::> 'Ecrtco A.omov on 11 1tpOtaCITJ (2) eivm aA.11ei}<;. eecopouµe €vav apt0µo e>O. Tote ea U1tapxei apieµo<; v e N. t€t0to<; rocrte va tcrx\>et: I 1 v I e yia Kaee v e N• µe v ;;:: v 'Etm, a1t6 t1l crx€cni auti}, µe v v 0 Kat v v 0 1 , ppi<JKoµe: Km Ilpocrefaovta<; Kata µ€A.11 ppicrKoµe: 2e > (V o �

;;:: Vo l < -1 r v2 + v -ex.I ;;::

( 1) v ;;:: v0 l <-1rv 2 + v-al < e. (- r v 2 + -ex. < 0 = = + l <-1r0v� +v0 -cx.l < e l <-1r0+1 (v0 + 1)2 + (v 0 + 1)-cx.l < e . l <-1r0 v� +Vo -ex.I+ l <-1ro+I (Vo + 1)2 + + 1) -ex.I ;;:: l ( -lf°+1 (v0 +1)2 + (v0 +1)-cx.-(-lf°v� - v0 + ex.I =1 (-lf°+t (2v� + 2v0 ) 1 ;;::: �.1 (-lf°+1 ( 2v� 2v0 )l - 1 = 2v� 2v0 ;;:: 4 => 2s > 4 => e > 2 . Etlfyovta<;, yta 1tapa<ietyµa, s=l , ea €xouµe to ato1t0 1>2. Apa 11 1tpotacni (2) eivm \jf€U8i}<; Kat E1toµ€vco<; 11 apVll CITJ T11 <;, 811A.aoi} 11 1tpotacni ( 1) sivm aA.110i}<;. o

0 .

+

+

+

+

t

1

+

1

cx.v = (-tr v2 + v,v =1,2, 3

I:Tllv AvaA.ucni, 11 1tapa1tavco Merri , eivm 11 a1to8ei�11, µe tov optcrµo tou opiou aKoA.ou0ia<;, on 11 aKoA.oueia: ... 8ev mryKA.ivet ae 1tpayµanKo apieµo.

:r.xoA.to .

AOKTl 011 3. Na «1tOO&\;&'t'£ O't'l 'YUl Kcl9& apt9µo £>0, 'U1tclPX£l aptOµoi><; o>o, 't'E't'OlO<; WO't'& vu l<JXVEl:

l x2 - x - 21 < & ' 'Yl« Kcl9& x

E

lR µt 0 < Ix -

21 < a

tva<; apieµo<; e>O. ea a1to8si�ouµe on U1tapxei 8>0, t€tot0 cO<JtE, yta Kaes x E R ' va tcrx(>et 11 cruve1taycoyit : O <I x - 2 1< o =>I x - x - 2 1< e M1topouµe va aval;11ti}crouµe €vav t€toto apieµo 8 crs €va 8tacrt1lµa (0, a), 01tOU a>O, yia 1tapaoeiyµa crto 8tacrt1lµa (0, 1), o1tote 0<8<1 :Ecrtco tropa o'tt yia €vav apieµo x e R icrx(>ei: O<lx-21 < 8 (<1). Tote, €1t€t8i}: Kat x ( x - 2) + 3 � x 2 3 1 + 3 4 ' ea €xouµe: x 2 - x 2 4 x - 2 . I:uve1tro<;, yta va tcrx(>ei: x 2 - x - 2 e , apKei va t<Jx6.et: 4 x - 2 � s , apKei Ai>o'I. 'Ecrtco

j

l x 2 -x-21 =l x -2ll x +11 - 1< l 1

Ix - 21

2

(1 ).

I + 11 = j

: . 'Etcrt, av 0ecopi}crouµe €vav apt0µo 8

I x2

-

µe:

x - 2 1< e

x

=

l 1

< < min { 1, �}, tote, yia Kaes

0 8

(1). Ilpayµatt ' fotco on yta €va apieµo x 1tapa1tavco ppi<JKouµe: I x 2 - x - 2 1< 4 1 - 2 1

<JUV€1taycoyft o1tco<;

1<

l

1 l - 1+ <

x

ER

tcrx(>si 11

t<Jx6et: O<lx-21<8. E1tet8i} 0 < 1 Kat O < � ' 4 Kat e1tet8�: 4 1 x - 2 1< 43 e , €1tetm ott

E lR

.

X2

A1to8ei�aµe on: V'e > 0, 30 > 0, V'x E IR, O <I x - 2 1< 0 =>I - x - 2 1< e . Auto <JT11V AvaA.ucni eivm 11 a1to8ei�11. µe tov e---0 optcrµo tou opiou cruvapt11CITJ<; , ott: :r.xoJ.to .

EYKAEIAlll: B ' 103 -r.3/69

<

lim(x 2 - x) = 2. x --+ 2


------ Xpl]at.pti; Ent.a11 J1UVatt.i;

Aata] att.i;

1\A.yt�po. A ' AUKtiou

A(JKfl <Hl 1 .

-

-------

0tcopoi>µt oi>o ap16µoi>� a Km p Km l>1to6t1'0l>J1£ 01'l l<JXi>t1: a+x>p, yia K0:6t ap16µ0 x>O. Na anood;t1'£ 01'1 a ;;:: p •

on a < 13. Ton: fHx>O. 'Etm, ano tflV uno0eO'T) µe x=J3-a, 13picrKouµe: a+(f3-a)>l3 Kat O'UVenffii; 13 > 13, atono. A.pa: a ;;::: � .

J\U(Jfl . 'Ecrtro

x2 + x + ria ouo ap16µoi>� a, p e 1R , l<JXi>t1: -1 � 2a p � 2 , y1a Ka6t x +1 01'1: l a l � 2J2 . �\.(JKfl(j'l 2 .

Au(jri. 'Exouµe, yia Ka0e x e lR LUVe7tcOt;:

{

:

1

-x2 - l � x2 + ax + l3 :$; 2x2 + 2

a2 13 2::: -_-_8 a2 - 8(13 + 1) :$; 0 8 � a2 - 4(2 - 13) -< 0 -a2 + 8 13 :$; -4

___._ _,,.

{

x e 1R .

Na anood;nt

2x2 + ax + 13 + 1 2::: 0 x2 - ax - 13 + 2 2::: 0

a2 - 8 -a2 + 8 � -- :$; -4 8

Na ppd1'£ 1'a nol..'Ucl>Vl>µa A(x), B(x) Km r(x), t1'01 roa1'£ va l<JXi>t1: (1) A(x) + (x - 1) 2 B(x) + (x - 1) 2 x3 r(x) = x6 - x5 - x3 + 5x - 3 av dvm yvco01"0 01'l 1'0 A(x) 1\ dvm 1'0 µ11otv1Ko nol..'Ucl>Vl>µo 1\ pa6. A(x) <2 Km 1'0 B(x) 1\ dvm 1'0 J1110£VlKO 1tOA'UcOV'UJ10 1\ pao. B(x) <3 . A<iKfl<ifl 1

Afo11. 'Exouµe:

[

(1 ) � x6 - x5 - x3 + 5x - 3 = (x - 1)2 B(x) + x3r(x) J + A(x) (2). Aoyro trov uno0foerov, 11

(2) eivm 11 tautotrita tflt; OiaipeO'T)t; ( x6 - x5 - x3 + 5x - 3 ) : (x2 - 2x + 1) . EKteA.c>uµe tflV oiaipeO'T) autfi Kat 13piO'Kouµe 1tl1AiKo: x4 + x3 + x2 - 1 Kat unoA.c>tno: 3x - 2 . A.pa: A(x) 3x - 2 Kat B(x) + x 3r(x) x4 + x3 + x2 - 1 . EniO'T)t; exouµe: x4 + x3 + x2 - 1 = x3r{x) + B(x) (3). Aoyro trov uno0foerov, 11 (3) eivm 11 tautotrita trit; OtaipeO'TJt; ( x 4 + x 3 + x 2 - 1) : x 3 • EKteA.ouµe tflV otaipeO'TJ autfi Kat 13piO'KOUµe 1tl1AlKO: x + 1 Kat U7tOAOt7tO: x2 - 1 . A.pa: B(x) = x2 - 1 Kat r(x) = x + 1 . 'Onroi; 13picrKouµe eiJKoA.a, ta noA.urovuµa auta: A(x) = 3x - 2 , B(x) = x2 - 1 Km r(x) x + 1 nA.11pouv ni; Oo0'µ€vei; crxfoeti; Kat apa eivat ta µovaOtKU l;11to1'.>µeva. =

=

=

A(JK'l <i'l 2

( 9t1'lKoi> npoaava1'ol..1aµoi>). 'E01'co 11 t;iaco011 : (1 - 1..) x + 21..y - 41.. - 2 = 0 (1). Na anood;t1'£ 01'1: I ) rta Ka6£ A e lR , 11 t;iacoa11 (1) 1tap101"aV£l µia £'U6da £;,. 2) Ynapxt1 tva µovaOlKO OTIJ1£io 1'0'\) (Kap1'£0lavoi> £1tmtoo'U), 1'0'\) 01tOio'U 11 a1t001'a<J11 ano 1'� £'U6dt� £;,. dvm 01"a6tp1] (avt;ap1'1)1'1) 1'0l> /..). •

J\U(Jfl . I ) H e;icrroO'T) ( 1 ) eivm tflt; µopq>J1i;: Ax+By+f=O, onou A=l-A., B=2A. Kat r= -4A.-2. 'Ecrtro Ott yta evav apt0µo A. E IR lO'x()ouv: A=O Kat B=O. Tote ea eixaµe: A.=1 Kat A.=O Km O'UVe7tcOt;: 1 =0, Ut01t0. A.pa, yta KU0e A E IR ' exouµe: A "# 0 11 B "# 0 . LUVe7tcOt;, yta KU0e A e IR ' 11 e;icrroO'T) ( 1 ) naptcrtavet µta eu0eia e i. . 2) o.) 'Ecrtro on 11 anocrtaO'T) d evoi; O'T)µeiou M(a, 13) ano ni; eu0eiei; e i. eivm ave;aptfltfl tou A.. 'Exouµe : i. I (1 - A.2 )a + 21..13 - 41.. - 2 1 I (1 - t..2 )a + 21..13 - 41.. - 2 1 d i. = l + A.2 �(l - A.2 )2 + 4A.2 I 2A - 6 1 = l -2A + 2 1 'Etm, exouµe: d + I = d_ I � "' � ... � 13 2 . EniO'T)t; exouµe: 2 =

=

EYKAEIAHI: B' 104 T.4/70


------ Xp1lalpt:; EmcntµO:va&� - AaKftm:�

--------­

d+1 = d0 => I 2 P - 6 I =I a - 2 1 =>I a - 2 1= 1 => ... (a = 3 it a=l) . 2

Apa, tote: (a = 3 Km 13=2) it (a= l Km 13=2). �) A \'Tl<npo<prn.;. i)

ave�aPtrttTI tou

'Ecmo on a=3 Km 13=2. Tote, onro� 13picrKoµm d>Kol-a: d

A. e lR .

ii) 'Ecrtro

11 fta napa8etyµa d0 = 1, d 2 = . 5

d A = 1 , ave�aPtrttTI tou A.

lR .

e

A

=

1 31-2 - 1 1 ' 5ev eivm l + A2

ott: a=l Km 13=2.Tote, 13picrKoµm on:

'I:uµnepaivouv on unapxet tva µova8tKo tetoto crri µeio Km eivm to M(l ,2). r · ,-\ u Kdou

(

M u.O tj µ flT t K {t 0 tT l K TJ S K m Tr,zv o /,oytKit i;

Xp1'1 mµi;i; n u. p UTfl fH1 <>ui;.

Ko:rr,uOuv<>rii;)

Av µta cruvaptrtcrTJ f eivm opicrµSvti cre tva m'.>vol-o A � lR Km t<Jx6et f3 (x) = A. , yta Ka0e x e A ( A. e lR ), tote 11 f eivm crta0epit crto A ( ano8e�11:). 2) Av µta cruvaptrtcrTJ f eivm optcrµSvti cre tva m'.>vow A � lR Km t<Jx6et f 2 ( x) = A , yta Ka0e x e A ( A. e 1R • ), tote 11 f 8ev eivm avaYKairo� crta0epit crto A (ano8et�11). 2 3 ) Av µta cruvaptrtcrTJ f eivm optcrµtv.., Km cruvexfl� cre tva 8tacrt11µa � c 1R Km tcrxl}et f (x) A. yta Ka0e x e t:i. ( A > 0) ), tote 11 f eivm crta0epit crto !:!.. ( ano8et�11;) !\ c; K ri o· 11 t . Mia m>VU f>Tfl GTI f dvm m>VEX,1\<; <r'TO oia<JTl)µa [a, PJ (a < p) µt: l)

=

f(a) = -a,

r( ; ) a

13

=-

;

a 13

Kut f(l3)

=

,

-13 . AKoµa, 1) f dV«t 'Tpt:� q>opt<; 1tapaycoyicn µ11 <J'TO (a, P>

µt: f "' ( x) < 0 , yia Ka8t: x e (a,p) . Na aitoot:i;t:n O'Tt: I)

H Cr fxt:i aKptPcl><; tva iti8avo miµt:io Kaµ1t1]<;.

2) H Cr txu aKptPcl><; tva Gt)µt:io Kaµ1t1]<;. 3) Av -P < a < 0 , 'TO'Tt: 11 f txt:i 'TO itoA.i> 'Tpt:i<; pi�t:<; mo oui<JTl)µa (a, p) , t:K 'T<OV oitoirov 11 µia

'TO'VAUXl<r'TOV dvm JllKpO'Tt:pt) 'TO'V \ 1 1 cr q .

I)

[ a 2+ 13 , ,.,] R

a + 13 2

[

Ano to 0erop11µa µecrri� nµit� yta trtV f cre Ka0tva ano ta 8tacrtitµata a ' '

enetat

Ott

unapxouv

apt0µoi

;

,

E

( a, ·a + 13 ) -

a + 13 2

] µe:

2

Ilpoq>avro�: a < ;, < ;2 < 13 . Ano to 0erop11µa tOU Rolle yta trtV f ' crto 8tacrtrtµa [ ; ' ; 2 ] ' enetat Ott unapxet apt0µo� ; e ( ;, , ; 2 ) µe f " ( ;) 0 . Apa, to crriµeio M ( ;, f(;)) eivm nt0avo crriµeio KaµJtit� trt� =

,

Km enet5it f" l (a, 13) ' acpou f"' ( x ) < 0 yta Ka0e x E (a, 13) ' enetat Ott to crriµeio auto M eivm to µova8tKO nt0avo CJT)µeio KaµJtit� (11 f " 8ev µnopei va µ118evi�etm cre aUo CJT)µeio). cf .

2)

Enet8it f " l (a, 13) , exouµe: a < ;, < x < ; < 13 => f"(x) > f"(;) = 0 => [ f KU ptit crto (;, , ;)] Kat a < ; < x < ;2 < 13 => f"(x) < f"(;} = 0 => [ f KoiAri crto (;, ; 2 )] . EYKAEIAID; B ' 104 'T.4171


------ Xp1\atµt� Enurqµavat� - AaKl\at� ------:Euµm:pcivouµ£ ott to <rr) µ£io M ( i;, f(i;)) dvm t0 µova<itKO <rr) µ£io Kaµ1ti)c; TIJc; Cr . 3) 'Ecmo

J3 > 0

ott -13 < a < 0 . Ton: a < 0,

Km a + 13 > O . 'Ecrtco ott TI <JUvciptTJ<rrJ f txet tfocrepec; pil;ec; 2

<JtO (a, 13), ttc; P1 < P2 < p3 < p4 . 'Etm, a1to to eeropT)µa tOU Rolle ' T) <Jl>VclPTIJ<ITI f ' ea txet tOUAclXt<JtOV tpeic; pil;ec; <JtO (a, 13), ttc; 11 1 E ( P P 2 ) ' 11 2 e (p2 , p3 ) Km 11 3 E (p3 , p4 ) . D µota, T) <Jl>VclPTIJ<ITI f" ea txet wut..cixtcrtov <ii>o pil;ec; crto (a, 13), µia crto <itcicrtTJµa ( 11P 11 2 ) Km µia crto (11 2 , 113 ) . Auto oµcoc; eivm P

f" J (a, 13) . Apa <JUvciptTJ<rrJ f txei t0 noM tpetc; pil;ec; crw <itcicrtTJµa (a, 13). a a E1tet<if] f(a)f ( ; 13 ) = a · ; 13 < 0, ano to eeropT)µa tou Bolzano yta TIJV f crto <itcicrtTJµa [ a, a ; 13 ] , TI

cit01to, ytati

, , , 'I

(

)

a + 13 Kut apa , , , , ElVm , µtKpOtEpT) , a +-13 . tOU :r a TIJc; f EtVat (Jt0 uta<JTIJµa a,-E1tEtat Ott µta tOU11.axtcrtOV p"::l s:

A<JKT) <JT) 2 . Mta cn>vO.pTl)Ot)

j f(x)dx 0

x

=

2 (1). Na mrol>E\;ETE OTl:

.!..2

1 f(x)

Auari. 'Exouµ£, yta Kciee e [O , l] : 1 � f(x) � 2 � -- ;?:

I 1 1I 'Etm txouµ£: J --dx ;?: - J dx

f(x)

El;ciUou, yta Kciee

2

f dvai optaf.1£vri Kat crovql]� ato &tO.aT1)11a [O, 1 ], ot TlflE� Tl)� avl]K01>V

G'TO OUl(JTl)Jla [ 1 , 2] Kat urxi>Et:

0

2

I 1 ;?: -1 (3). J --dx f(x) 2

::::>

20

j �x f(x) 0

=

.!. 2

(2).

0

x E [O, l] , txouµ£:

2 � 0 � -2- � 3 - f(x) . :Euve1troc;: [f(x) - l ] [f(x) - 2] � 0 � f 2 (x) - 3f(x) + 2 � 0 � f(x) - 3 + f (x) f (x)

I I 2 J-=--<lx � J 3dx -J f(x dx I

0

f( x )

(2).

)

0

0

I

g

}

2 J--=---<Ix � 3 - 2 I

f( x )

0

=>

}

J--dx f( x) I

0

}

-

2

(4).

A1to ttc; (3) Km (4) faetm TI

A<JK'l<J'l 3. Na fJpEiTE Tt� cn>vap'rl]aE� f, ot o1to�� dvai optafll:vE� Kat cn>VEXE� ato &tO.(JTl)Jla [O, 1 ], I

I

J f (x)dx -3l + J f 2 (x 2 )dx

i:Tat cl>att va tcrxi>Et:

=

0

0

A6aT). 'Ecrtco ott µta <JUvciptTJ<rrJ f 1tAT)poi tic; <iocrµtvec; <JUvei]Kec;. E>ecopoi>µe tTJ <JUvciptTJcrri : g(x) x 2 , x e [0,1] . 'Exouµe: g(O)=O Km g(l)=l . Et..trxouµe ei>Ko/..a ott mx(>ouv ot u1toefoetc; tou eecopf]µatoc; avttKatcicrtacrri c;, yta ttc; <JUvapti]cretc; f Km g crto <itcicrtTJµa [O, 1 :Ewt, cri>µ<pcova µ£ to eeropT)µa auto (a1to to <iei>tepo µt/..oc; crto 1tproto) , txouµe: =

g(l)

J f(x)dx = J f(x)dx = J f (g(x) )g '(x) dx = J !( x2 ) 2xdx . I

Km E1tEt<ifi: .!..

3

=

I

0

g ( O)

I

I

0

0

J x 2 dx , ano TIJV <iocrµtvl) t<JOTIJta, txouµe: 0

I I 2 2 J /(x ) 2xdx = J x dx + J f2 (x2 ) dx I

0

0

0

=>

J ( f(x2 ) - x )2 dx = 0 . 1

0

Tropa, <JUµnepcivouµ£ Ei>Ko/..a ott y1a Knee x e [0,1] tcrx(>et f(x 2 ) = x Km µ£tci ott f(x) = v'x (1troc;;). Avnatp6cp@;. D1tcoc; 13picrKoµm ei>Ko/..a T) <JUVclPTIJ<ITI auti] 1tAT)poi ttc; <iocrµtvec; <JUvei]Kec; Kat cipa eivm T) µova<itKi] /;T)toi>µEVT) EYKAEIAHI; B' 104 T.4172


To Bti1Ja Tou EuKAtie5n Mt9ooo� l:up1t/...l] promi� Tou TtTpayrovou

AtOv6CJ11 i; ruJ.vvapoi; ..;,. Ilupyoc;

H µt0oC>os tTJs «<n>µ7tA.ftprocrTJs wu tci:payrovou» civm yvrocr'tft, mpou avmpepctm t6cro crtrJv AA.yc�pa A' AuKciou 6cro Km crta Ma0riµattK6. 0cttKfts Km TcxvoA.oytKfts Katc'60uvcrTJs -B ' AuKciou. fta 1tap6.C>ctyµa ri c�icrrocrT) : yp6.cpctat C>tabOX.tK6.

x2 + y2 -4x + 6y + 12 = 0 (x2 -4x)+(y2 +6y) =-12 �(x2 -2·2x+22 )+(y2 +2·3y+32 ) =-12+22 +32 <=>(x-2)2 +(y+3)2 = 1

:EtTJ <n>VeX,ctCl 1tClpOUcrta�ouµc µta O'ctpa Cl1t0 1tClpClbctyµatCl O'tCl 01t0la <pCllVctClt 0 crT)µClVttKOs p6A.os au'tfts tTJs µc06C>ou. Ila p a�Etyµa 1 °

Na EK<p pa<JTEt CO� a9p0taµa TETpayroVO>V 1) 1tapa<JTa<Jt) A 1UJ.Vi1J <11/

f ( x,y) = 3x2 + 14y2 - 12xy + 6x- 20y + ll

x, f (x,y) = (3x2 -12.xy+ 6x)+ 14/ -20y+ 11=3( x2 -4.xy+ 2x)+ 14y2 -20y+11 L1evwpo p1jµa: f ( x,y) = 3(x2 -4.xy + 2x)+ 14y2 -20y+11 = = 3[x2 -2(2y- l )x+(2y-1)2 ]-3(2y-1)2 +14y2 -20y+11=3(x-2y+ 1)2 + 2y2 -8y+8 Tpfro pljµa: f (x,y ) =3(x-2y+ l)2 +2(y2 -4y+4)<=> f (x,y)=3(x-2y+ l)2 +2(y-2 )2 llpdno pljµa: Ba�ouµc crc µta oµO.C>a t0us 6pous µc 1tap6.yovta to

<>riA.aC>ft

:Euµ1tA.riprovouµc tous 6pous tTJs 1tapev0ccrTJs rocrtc va <>riµtoupyficrouµc av6.1ttuyµa tctpayrovou

Ecpapµ6�ouµc tTJV iota µt0oC>o O'tOUs tpc� tcA.cutaious 6pous KClt ex.ouµc:

Ila p a�Etyµa 2°: Na 1Jp i:9o'6v 01 npayµaTtKt� A.t> ai:� Tt)� i:l;ia co<Jt)�

8x 2 + 44y 2 + 15z 2 - 32xy + 16xz - 44yz - 16x + 56y - 60z + 84 = 0

x' (8x2 -32.xy+16xz-16x)+44y2 +15z2 -44yz+56y-60z+84=0<=> <=> 8(x2 -4.xy+2xz-2x)+44y2 +15z2 -44yz+56y-60z+84=0<=> <=> 8[x2 -2x(2y-z+1)] +44y2 +15z2 -44yz+ 56y-60z+84 = 0 s[x2 -2x(2y-z+1)+ (2y-z+ 1)2 ]-8 (2y-z+ 1)2 +44y2 +15z2 -44yz + 56y-60z+84 = 0 <=> <=>8(x-2y+z-1 )2 +12y2 +7z2 -12yz+24y-44z+76=0 y 8 (x-2y+z-1 )2 +(12y2 - I 2yz+24y)+7z2 -44z+76=0 8 (x-2y + z-1 )2 +12(y2 -yz + 2y) + 7z2 -44z + 76 = 0 <=> 8 (x-2y+ z-1)' 12 [y' -2y(� -l)+ (� -1)' ] -12(� -lJ +7z' -44z + 76 0

A 1UJ.Vill<T1J :

Ba�ouµc O'tTJV iC>ta oµO.C>a tOUs 6pous µc 1tClp6.yovta to

01t0tc ex.ouµc:

Ecpapµ6�ouµc tTJV µe0oC>o cruµ1tA.ftprocrT)s tctpayrovou KClt ex.ouµc:

Ecpapµ6�ouµc tcbpa tTJV iC>ta btabtKacria yta tOUs 6pous µc 1tClp6.yovta to

KClt ex.ouµc:

Mc av6.A.orri cpyacria <o>

+

EYKAEIAH 8 '

104 T.4173

<o>


----�8(x-2y+z-1)2 +12(y- +1J +4z2 -32z+64=0�8(x-2y+z-1)2 +12(y- +1J +4(z2 -8z+16)=0� ! x -2y+z-1=0 �8(x-2y+z-1)2 +12(y- + 1J +4(z-4)2 =0 y- + 1=0 To

P1\µa TO'll Emtl.Eio11

-------­

exouµe

A1t6 autftv mxipvouµt:

z-4=0

x=-1,y= l, z=4

Tiapa<>t1yµa 3 ° : Na ppt9t:i 11 d.ax1a'T1] T1J.l1\ T11� 1tapama<r11 �

x 2 + 6xy + lOy 2 - l2y - 4x

Ka9ro� Kat 01 T1µt� T(l)V x, y yia Tl� 01tOit� Clt>TO (J\)µpaivt:1.

A mi. VT1/<J'IF

Km 'teAtKa

EK<ppa�ouµe TllV 8ocrµEvr} 1tapacr-racrri ©<; a0po1crµa n:-rpayrovrov. 'Exouµe

J(x,y) =x2 + 6xy +10y-12y-4x = (x2 +6xy -4x) +10y -12y=[x2 + 2x(3y-2) + (3y-2)2 ] -(3y-2)2 +10y -12y= = (x+3y-2)2 -9y2 +12y-4+10y -12y= (x+3y-2)2 +y -4 y ( x+3y-2)2 + y2 ;?: 0 ( x+ 3y-2)2 + y2 -4;?: x2 +6xy+10y2 -12y-4x x + 3y -2 = 0 , , x 2 {y=O O

E1tet8t1

-4

ea eivm

'I

s::

uT}r.auT} o-rav

=

Km y =

Ilott:� t:ivm a' at>Tft TflV 1tt:pi1tT(l)<r1} 01 T1µt� Trov x, y,

A1t6 TllV crxecrri

x +.

E lR .

A.pa 11

.

Ilapci<>t1yµa 4°: Na ppt:9t:i 11 t:l..ax1a'T1] T1µ1\ Tfl� 1tapama<r11 �

A mi.VTl/<llf :

x,

tivm icrri µt -4 Km cruµpaivs1 6-rav

tA.ax1cr-r11 nµt1 Tll <; 1tapacr-racrri<; s::

ym Ka0e nµt1 't(l)V

z ;

x 2 + y2 + z2

oTav x + y + z = 1 .

y + z = 1 1taipvouµe 6n z = 1 - x - y t1toµevro<; 11 1tapacr-racrri

x2 + y2 +z2 =x2 + y2 +(1-x-y)2 =2x2 +2y2 +2xy-2x-2y+l 2x2 +2y2 +2xy -2x-2y+1=2 (x+-y 2-1-)2 + 23 (y- 31 )2 + 31 . , 2 (x+-y 2-1-)2 + 23 (y- 31 )2 ;?:0 x, ye 2 (x + Y 2- l )2 + �2 (Y .!.3 )2 + .!.3 ;?: .!.3 .!. 3 x + Y 2- I = O � x = .!.3 z = 1-x -y z = .!.3 . 1 1 y--=0 y=-3 3 AKoA.ou0rov-ra<;

T11V

i8m

8m81Kacria 11 -rsA.eu-raia 1tapacr-racrri ypacps-rm 8m8ox1Ka:

Etvm

lR

Ka0s

Km

cruµpaivs1 6-rav

{

{

_

. A.pa 11 sA.ax1crT11 nµt1 sivm icrri

Km a1t6 T11V

Ilapci<>t1yµa 5° : Na ppt:9o'6v 01 T1µt� Trov 1tapaµtTprov Trov 1:;1aroat:rov at>Tft 11 l..'6 <r11 . A 1Ca V Tl/<11f : •

{

µt:

ym Km

A.aµpavouµt 6n Km

a Kat fJ

yia T� 01toi£� TO a'6GT1]µa

x2 + 2y 2 - 2(a - 2/J) x - 4/Jy + a 2 + 6/3 2 - 4afJ 0 3x 2 + y 2 - 12x + 2 ( a + fJ ) y + a 2 + /3 2 + 2a/J + 1 2 0 =

=

tx.:1 J..'6 <r11 Km va

pp.:9t:i

01 s�1crrocrt1<; wu crucrtftµaw<; µt T11V µE0o8o cruµ1tA.t1procrri <; -rs-rpayrovou yivov-rm:

x2 -2(a-2,B)x+2y2 -4,By+a2 +6,82 -4a,B=(x-a+2,8)2 +2(y-,8)2 =0 3x2 + y2 -12x+2(a + ,B)y+a2 + ,82 +2a,8+12 = = (y2 + 2( a+ ,B) y + a2 + ,82 + 2a,8) + 3x2 -12x+12 = (y +a+ ,8)2 + 3( x-2 )2 = 0 EYKAEIAH B' 104 T.4174


�������

,

,

,

, ,

E1toµEVco� to apx1Ko crucrtrJµa ctvm icroouvaµo µc to

icroouvaµo µc to

{(x-a+2/J)2 2 +2(y-/J)2 2 =0

To p�µa Tov EvKM:io�

��������-

,,

Km auto ctvm

(y+a+fJ) +3(x-2) =0 x-a+2/J=O x=2 x=2a-2 y-/J=O <=> y=/J <=> 2 1 ,a= 1, = - -1 . = x =y 2, y+a+/J=O a-2/J=2 a= l 2 2 x-2=0 2/J+a=O y=/J P=

Il a p ciottyµa 6 ° : Na ppt9Ei 11 µtyun11 Ttpl] TO'U lKUV01tOt0'6V 'TTIV E;foroaq

p

a1t6 61tou

z

yia 'TTIV onoia 'U1tapxo'Uv apt9poi x,y no'U

2x 2 + 2y2 + z 2 + xy + xz + yz

=

4

2[x' + ix. y;z +( y;z )' -( y ;zJ] +2y' +z' + ]" =4 <> 2(x+ y; z J- (y' + z:+z' ) +2y' +z' + ]" = 4 <> 6yz ) + 7 z2 =4�2 (x+y+z-)2 + g-15 [y2 +2y153z + (5z )2 - (5z )2] + g7 z2 =4<=> <=>2(x+-y+z4-)2 + S15 (y2 + 15 4 S y+z )2 + -15 [(y+ -z )2 - -z2 ] + -7 z2 = 4<=>2(x+ -y+z )2 + -15 (y+ -z )2 - -3 z2 + -7 z2 =4<=> <=>2(x+ -4 8 5 25 8 4 8 5 8

A 7UI VT11U1f ."

.

40

Il a p cioctyµa 7 ° : Ot apt9poi x, y,

z

Eivm TETotot cOO'TE

JlEytO"TTI Ttpl] Tll � napamaaq� 2x + y - z .

x2 + 3y 2 + z 2 2 =

Na ppE9Ei 11

2x + y-z =a:::=> z = 2x + y-a x2 + 3y2 + z2 = 2 x2 +3y2 +(2x+ y-a)2 =2 <::::> x2 +3y2 +4x2 + y2 +a2 +4xy-4at-2ay = 2<=> <> Sx' +4y' +a' +4xy-4xa-2ay 2 <> s[x' + 4 ( Y5-a ) x] + 4y' +a' -2ya = 2 <> <> 5 [x' +2x (2y � 2a ) + ( 2y � 2a J - ( 2y � 2a J ] +4y' +a' -2ya=2 <> [ 2 2 2 2y-2a 16 2ya a 2y-2a 16 a + (-a )2 - (-a )2 + -a2 =2 2 2 <::::> 5 (x+ 5 ) + 5 y --+-=2<=>5 x+ + y -2y ) ( 5 5 5 5 16 16 16 J 5 2) + 16 (y a )2 16 a2 + a2 = 2 <=> 5 (x + 2y-2a )2 + 16 (y a )2 + 15 2 = 2 <=> <=> 5 ( x + 2y-2a 5 S ( - 16 )2- 5 162 S 5 S - 16 80 ( 2 + -16 y- -a 2--a 15 2 0 , a2 --::; 32 ; O <=>- -32 ::;a:::; -32 , <=> 5 x+ 2y-2a ) 5 5 16 80 3 J¥3 J¥3 a = V{323 x= �8 V{323' y= -161 V{323 .

A1C<i.VT1f(llf." 'Ecrtco

Km avttKa0tcrtrovta� tr)V ttµil tou crtrJV

1taipvouµE

=

a

=

max

oriA.aori

1 1 S' r"

EYKAEIAH B' 104 T.4/75

. E1tOµEVCO�


� 0 �

« H Kapc5ui twv µa9riµanKwv Elvat Ta

E u KAci 6 n <:

n p o-.: c i vc 1 . . .

µ

Ta KQl Ol Auaeu; Kal

0

npo�Mµa­

KUplO<; Myoc; unap�ric; tOU

µa9ri µanKou Eivat va MvEl npopA� µata» . P. R. HALM OS

1a : r. K. TPIANTO:E - N. 0. ANTQNOilOYAO.E - 0. A. TZIQTZIO.E A.EKH.EH 268 (TEYXOY.E 98 ) crov2ro 1 = Na. a.1tooe1x0ei 6n yia. Ka0e a., p , y e R µe 4crov2 2ro - 1 3 (a. + p)(p + y)(y + a.) * 0 , icrx6ei ri a.vicr6tT}ta.: (�riµrr rpios Kaprcratlfis - Aypivio ) AY.EH (E>roµas TcraKac; - IIatpa. ) 1 1 1 9 1 � + Eivm: = B - ro, B, r = B + ro Km l a. + PI IP + rl + lr + a.I 2 · l a.I + IPI + l r l 1t (Hpatlfis EuayyeA.1v6s - fA.ucpaoa. ). 3B = 1t <=> B = A + B + f = 1t o1t6ts 3 AY.EH 1" ( fu.Opyos �eA.ricrta0ris K. IIa.tt1cria.) 1t 1t A = - ro, f = + ro . E1tstoi) E1tetoi) ( x + y + z )(_!_ + _!_ + _!_) � 9 , yta. Ka.0e ' ta. T}µitova. tmv 813 3 x y z 1tAa.crimv trov ymvirov tou tpiyrovou ABf sivm oia.­ x, y, z > 0 , yia. x = la. + Pl , y = IP + r l , z = lr + a.I ooxiKoi Opot a.pµovtKfis 1tpOOOoU, EXOUµe: 1 1 > 9 1 2 1 1 � -= -, UT}M..l.UT} .,... --,. .-. .. .,. -. ....,. ..,. .-..-.,. -+ + + la. + PI IP + rl lr + al l a. + PI + IP + rl + lr + al T}µ2B T}µ2A riµ2f Km Myro Tils tpiyroviKfis a.vicr6tT}ta.s: 1 1 2 9 9 � = la.I + IPI + IPI + l r l + l r l + l a. I 2(la.I + IPI + lrl > H icr6tT}ta. i<Jx6ei 6ta.v Ka.t µ6vov 6ta.v : la. + PI IP + rl = lr + a.I Ka.t a., p ,y oµocrri µoi, <>riA.a­ oi), 6ta.v a.=p=y. AY.EH 28 (:Eircriavri DA.ya 0€pµri E>ecr/viKTt s) 2� 1 1 <=> + --=,.....Me ecpa.pµoyt1 Tils a.vicr6tT}ta.s B - C - S exouµe: 3 �O'\.)v2ro - ri µ2ro �O'\.)v2ro - ri µ 2ro I2 1 1 1 I2 I2 = -- + -- + -- >crov2ro 1 2 .J3crov2m 2 J3 ---+ + <=> -<=> - = l a. + PI IP + rl lr + a.I la + PI IP + rl lr + a.1 2 3 3crov2 2m - riµ 2ro 3 4crov2 2ro - 1 9 (1 + 1 + 1)2 -> A6c:rq ECJTElA«V : Imawri s Av8pfis - A0fiva., Po­ l a. + PI + IP + rl + lr + a.I l a. + PI + IP + rl + lr + a. 1 �acpvri, IIavos f1awa.K61touA.os OOA<f>Os Mnopris E;arxsia, nawris Tcr61tsA.as Aµa.A1aoa., ftrop­ 9 9 ros TmroA.ris - Tpi1toA.ri, Krocrtas Nspourcros la.I + IPI + IPI + lrl + l r l + l a.I 2(1a.1 + IPI + l r l > rA.ucpaoa., �iowcrris riawapos - IIupyos, ftropyos A6c:rq tcrrt:1A«v: �iovl>crri s fiawapos IIupyos, AnocrtoA61touA.os MscroA.Ont, AvtffiVT}s Imawiftawris Tcr6m:A.m; - Aµa.A1aoa., �ri µfitPTJs Mavm­ 8ris - XoA.a.py6s" ftropros �sA.ricrta0ris Katro A61touA.os - Ka.tepivri, PoMA.q>os Mnopris - �acp­ Ilatt1ma., O µa8a npo PA.riµatmv 18u:onKou AuKsiou VT}, Avrrovris Imawi<>ris - XoA.a.py6s, ftropros AIlavayia Ilpoucrironcrcra - Aypiv10. 1tocrtoMnouA.os - MecroMni, �riµfitPTJs A.EKH.EH 270 (TEYXOY.E 100) Kapap6tas - AoucriKa Axa.ia.s, Xpi)crtos KupUl�tls Na osix0si Otl O"S Ka.0s tpiyrovo ABr Ka.t yta. Ka0s IIsipmas, fu.Opros TmroA.ris - Tpi1toA.ri, �fiµos v e N• i<Jx6si 6n: Ifo1ta.861touA.os - 'Eoscrcra., ftawris HA.16nouA.os A B CJUV cruv B f CJUV f A Ka.A.a.µata., E>mµas TcraKas - IIatpa, riawris :Eta­ 2 + 2 ;:::: 3 . 2 ----=2'--- + µmoyuivvri s - �poma, O µa8a npo PA.ri µfrr rov 181m­ f B A ri µ ri µ T} µ ttKou AuKsiou Ilavayia. Ilpoumcimcrcra - Aypivio. 2 2 2 A.EKH.EH 269 (TEYXOY.E 100) ( fU.Opyos NtKT}tO.KT} s - l:ritsia ) Tpiyrovou ABf 01 yroviss A,B,f sivm oia.0ox1K6t AY.EH 1" ( �iovl>crri s fuiwap0<; - Ilupyo� ) 6poi a.pi0µrinKfis 1tpo6oou µe oia.cpopa ro Km ta. A-B r A-B cruv -- 2cruv - cruv riµitova. trov a.vncrtoixrov Ot1tA.a.crirov ymvirov tou 2 2 = 2 = Eivm: a.pµoviKT) 1tp6o<io. Na. osix0si 6tt : r r r 2cruv 2 ri µ 2 TJ µ 2 Em SA.e

A

-

--

--

\;':

--

-

'1 - 1;': '

·

=

-

---

-

-

-

-

-

-

-

v

-

--

v

-

v

-

--

v

v

-

--

v

--

EYKAEIAHI: B ' 104 T.4/76

v


------- 0 E1ltdti0ttc; IlpoTdvtt . . . -------

A+B A-B 2 1'} µ -- cruv -- T}µA + T}µB a + 2 --�� 2 = --� = p 0T} µf T} µf y B-f f-A cruv -cruv -2 = y + a !:u2 = p+y µoiroi;, B A a p T}µT}µ2 2 venroi;, apKei va anooetx0Ei TI avtcronita a P a P+ ( + r + ( r r + ( Y + r ;;:: 3 . 2v . IIpayµatt, a p Y ano Tl'l yvroatit avtcronita tOU Cauchy exouµe: a+P r + a ;;:: �+r r < y r +( a r +( � ;;:: 3 · 3 ( a + � . � + r . r + a r = a y � a f af = 3( + � . � + y . y + ) ;;:: 3 · ( 8a�y ) = 3 · 2v onou a y � a�y fytve XPtl<JTt nii; : (a + � )(� + y)(y + a) ;;:: 8a �y , µe niv t<JOtT}ta va t<JX(>et µovo yta a=�=y. AYl:.H 28 (ftffi pyoc; AnomoA61tou/uJi; - MeaoA.Oyyt) . r A+B A-B Eivm: T}µ- = cruv-- Kat cruv -- > 0 . 2 2 2 A-B A B A B cruv -cruv - cruv - + T}µ-T}µ2 r =< 2 2 2 2r= ( A B A B f T}µ cruv -cruv- - T}µ-T}µ 2 2 2 2 2 A B l + E<p -E<p 2 2 =( A Br 1 - E<p-E<p2 2 B-r B r 1 + e<p-E<p cruv-2 2 f Kat 2 r =( oµoiroi;, ( A B r T}µ1 - E<p-E<p 2 2 2 r A r A cruv -1 + e<p -e<p f= f , onote T} anooetT}µ1 - E<p - E<p 2 2 2 Ktfo ypacpetm taoouvaµroi; ani µopcpfi: A B B r 1 + E<p- E<p 1 + E<p -E<p 2 2r+ 2 2 r +< ( A B B r 1 - E<p- E<p 1 - E<p - E<p 2 2 2 2 r A l + E<p-E<pr ;;:: 3 . 2 v (1) +( 1 - E<p-E<p 2 2

(

i

: i

(

; i

E>eropouµe

Tl'l

TI

0 < u < 1 , Kat

f(e<p E<p

l+u f µe 1-u ( 1 ) naipvet ni µop<pfi: f(u) = (

cruvapni <JTt

�) + f(e<p � E<p �) + f(e<p � E<p �);;:: 3 · 2v

Enetofi ae Ka0e tpiyrovo ABf tcrx;Uet TI taonita: A B B r r A E<p-E<p- + E<p - E<p- + E<p-E<p- = 1 Kat Ot npo2 2 2 2 2 2 a0etfot eivat o/uJt 0ettKoi, npo<pavroi; tcrx;Uouv: B r A B Kat 0 < E<p-E<p- < 1, 0 < E<p-E<p- < 1, 2 2 2 2 r A 0 < e<p-e<p- < 1 onote T} teAf:utaia ypa<pfi nii; 2 2 anooetKtfoi; EXEt voT}µa µforo tT}i; f. Eni<JT}i;, eivm: 1+u . 1 , )v µe uEUtEpT} napayroyo f'(u) 2v( 1 - u (1 - u)2 1 l + ur f"(u) = 4v · -2 · (v + u) > O , nou 4 ·( (1 - u) 1 - u <JT}µaivet 6Tt 11 f dvm K1>pn\ G1'0 (0,1 ). Ano niv avtcrOTl'Jta tou JENSEN exouµe ani cruvexeta Ott: A B B r r A f ( E<p-E<p-) + f ( E<p-E<p-) + f(E<p-E<p-) ;;:: 2 2 2 2 2 2 A B B r E<p r E<pA E<p -E<p- + E<p -E<p - + 2 2 2 2 )= 3 . f( 2 2 3 1+! 3 f = 3 · 2v = 3 · f(!) = 3 · (! 3 13 Ai>mi tG1'£tA.uv : ftropyoi; Tme0A:r1i; - TpinoA.T}, Po­ MA.cpoi; Mnoprii; - da<pVT}, lwaVVT}i; Avopi]i; - A0fi­ va, ftaVVTJi; Tcr6neA.ai; - AµaA.taoa, O µa8a npo­ _

s:

_

,

..

PA.11 µ6.trov IOtrottKou AuKeiou Ilavayia Ilpoumro­

ttcrcra - Aypivto AI:KH:EH

Av a, b, c, d

271 (TEYXOYl:. 100)

eivm 0ettKoi npayµattKoi apt0µoi tote va Oetx0ei Ott <JtO <JUvoA.o c t(l)V µtyaOtKcOV apt0�· ' a b c d µrov T} e..,taro<JT}: -- + -- + -- + -- = 0 z+a z+b z+c z+d µe z * -a, -b, -c, -d £xet µovo npuyp.«TtK� pi­ �£c; . (A eutEpT}i; TmA.taKoi; - faMtm) AYl:.H ( I16.voi; ftawaKonouA.oi; - E�<iPXEta) H oo0eiaa E�laCO<JT} eivat tpitou p a0µou µe npay­ µanKoui; cruvtEAE<Jtei; Kat apa OEXEtat touA.axt­ <JtOV µia pil;a npayµanKfi. Av oex0ouµe Ott T} E�i­ <JCO<JT} EXEt pil;a tov µtyaotKO apt0µ6 z0 e C - R tote 0a sxet pisa Kat tov crusurt1 tOU Zo E c - R . !:uvenroi;, tcrx;Uouv:

EYKAEIAHI: B' 104 T.4177


------- o Et1KM:io11� rrpo'Ttiv£i -- + --. + -- + -- = 0 a

b d c ( l ) KCll z0 + a z0 + b z0 + c z0 + d a c b d + =--- + + = 0 (2). z0 + a z0 + b z0 + c z0 + d Me acpaipeITTJ T11 i; (1) an:o T11V (2) n:aipvouµe : 1 1 1 1 a (=-- - -. ) + b(=-- - -- ) + z0 + a. z0 + a z0 + b z0 + b 1 1 1 1 +C(=--- - --) + d(=-- - --) = 0 � z0 + c z0 + c z0 + d z0 + d =---

=---

=---

d zo-Zo"o00 a + b + c )=0 � l zo + di 2 l zo + al 2 l zo + b i 2 l zo + cl 2 d =0 (3) + zl o + d l 2 Aton:o, mpou ot n:pocr0etfot tou n:ponou µEf..oui; ei­ vm 0ettKOi. Apa TI e�icrcocrri OBXe'tClt µovo pi�ei; n:parµattK€i;. Ai>Cfll t<rrt:iA.uv: Iwawrii; Av&pfi i; - A0t1va, Po­ MA.<poi; MnopT1 i; - 1'.acpv..,, ew µai; Tcr aK ai; - Ila­ tpa, 1'.wwcrrii; f tawapoi; - Ilupyoi;, f tc.Oproi; Ano­ crrnA6rrouA_oi; - MecroMrri, ftc.Opyoi; 1'.ef...ri crta8rii; Kfrrco Ila'ttl ma, O µa&a rrpoPA.T1 µcitwv l&twnKou AuKeiou Tiavayia Tipoumc.Oncrcra - Arpivto. +

AI:KHI:H 272 (TEYXO� 100 )

• • .

--------­

tp = �t(t - a)(t - P)('r - r) � tp 2 = (t - a)(t - P)(t - r) � tp 2 = t3 - (a + P + r)t2 + (ap + Pr + ra)t - aPr = t 3 - 2t3 + (ap + Pr + ra)t -4Rpt ·� p 2 = -t2 + (ap + py + ra) - 4Rp � aP + Pr + ra = t 2 + p 2 + 4Rp (4) H crxecrri (1) pacret tCOV (2),(3),(4) rpacpetm: x 3 - 2tx 2 + (p 2 + t2 + 4Rp)x - 4Rpt = O (5). Apa, TI (5) exet pi�ei; toui; apt0µoui; a,p,r. Av te0ei f(x) = x 3 - 2tx 2 + (p 2 + t 2 + 4Rp)x - 4Rpt tote TI f exei tpeii; omcpopettK€i; µeta�u toui; pi�ei; on:ote cri>µcpwva µe to 0effipT1µa tou Rolle TI n:aparcoroi; T11 i; f'(x) = 3x 2 - 4tx + p2 + t 2 + 4Rp EXet aKptPc.Oi; ouo avtcrsi; pi�ei; µe an:ot€A.ecrµa TI OtaKpivoucra T11 i; Va eiVCll 0etttj. 1'.T1AaOtl eivm: 1'. > 0 � 16t 2 - 12(p 2 + t 2 + 4Rp > 0 � 4t2 - 3(p 2 + t2 + 4Rp > 0 � t 2 > 3p(p + 4R) AYI.H 28 ( ftciwT1 i; TcroneA.ai; - AµaA.taoa ) A

B

K

r

An:o tov voµo tcov Tlµttovcov crto tpirwvo ABf €A A xouµe: a = 2RTlµA � 4RT1µ CTUV = a (1). An:o 2 2

Na an:ooeix0ei ott m µt1Kl1 a,p, r twv n:A.euprov tpirrovou ABf µe a < p < r eivm p�ei; T11 i; s�icrwcrri i; : x3 -2tx2 +(r +p2 +4Rp)x -4tRp =O (1) , on:ou to tpircovo AM n:aipvouµe: crcpco = M 11'. , OTIA t TI Tlµtn:epiµetpoi; tou tpirrovou Km p, R ot aKtivei; A tcov eyyeypaµµevou, n:eptrerpaµµEvou Ki>tlcov tou CTUV A t-a t-a 2 = -tpirrovou avttcrtoixcoi;. :ET11 CTUvexsia, va an:o&et- crcpMe (2). = -- � -A p 2 p 2 x0ei ott t<JXl)et TI avmoT11 ta: t > 3p( 4 R + p) . TIµ 2 (Avi:c.Ovri i; Iwawi&rii; - XoA.aproi;). n:oA/macrµo Kata µ€A.TI tcov (1),(2) n:aipvouµe: A�H 1 8 (O µa&a Tipo P"-Tl µai:wv I&iwnKou Au­ A a(t - a) A a(t - a) Ksiou Tiavayia Tipoumc.Oncrcra - Arpivio.) � CTUV 2 = 4RCTUv 2 = (3) 2 4Rp 2 p H e�fococrri µe pi�ei; toui; apt0µoui; a,P,r eivm (x - a)(x - P)(x - r) = 0 KCll moouvaµei µe T11V ap A evro µe OtaipeITTJ Kata µEA.TI: Tlµ 2 = (4) x 3 - (a + P + r)x2 + (aP + Pr "+ ra)x - aPr = O (1). 2 4R(t - a) (2). Eivm a + p + r = 2t A A En:etOtl TIµ 2 + CTUV 2 = 1 an:o tti; (3 ),(4) exouµe: aPr 2 2 = pt � aPr = 4Rpt E = pt � (3). 4R ap a(t - a) � ap 2 + a(t - a) 2 = l =l + E = �t(t - a)(t - P)(t - r) � 4Rp(t - a) 4R(t - a) 4Rp � ap 2 + a(t - a) 2 = 4Rp(t - a) � ap 2 + at2 EYKAEIAH� B ' 104 'T.4/78


-------

o E1>Kl..tio11 <; IlpoTtivti

-2o.2t + o.3 = 4Rpt - 4Rpo. <=> a.no o.3 - 2to.2 + (t2 + p2 + 4Rp)o. - 4Rpt = 0 (5) TI'IV (5) cruvayouµt Ott 0 a eivm pll;o. TI'I� 3 x - 2tx2 + ( t2 + p2 + 4Rp) x - 4tRp = 0 . Oµoico� o.noC>etKV'Uetm ott Ko.t ot apt0µoi p,y eivm pi�e<; TI'I<; e�iCJCOOT)� autTi�. To C>f:Utepo CJKEAo� TI'I� o.noC>et�rt� eivm ioto µt auto nou eµq>o.vi�etm CJTI'IV 1 TJ AUOTJ. Avent ttn£lMiv: atovucrri i; ftawapoi; - Ilupyoi;, ftwpyoi; AnomoA6nouA-oi; - MecroA.Oyyt, 0ro µai; TcraKai; Ilatpo., Iroawrii; Av8pi] i; - A0ftvo., rra­ voi; ftawaKonouA-oi; E�arxeio., Kwcrrni; Ncpou­ rnoi; fA.uq>aoa, Po86A-<poi; Mn6prii; - .:laq>VTJ, ftwpyoi; �eA-rima8rii; - Katco IIo.tTicna. AI:KHI:H 273 (TEYXOYI: 100) .:livetm tcro<JKeM� op0oyrovto tpiycovo ABf ( A = 90° ) U'lfOU� AM = 2a Ko.t 0 to µfoov tou AM 0 K'61<Ao� Oto.µ&tpou AM teµvet TI'IV Of crto OT)µtio .:l Ko.t rt B.:l TI'IV OM crto OT)µeio E. Na C>et, OE = <l> = 1 + .J5 x0 et, ott: 2 EM ( ftwpyoi; T p1avwi; - A0ftva ). -

-

-

/\

.

--

AYI:H (

Iroawri i; Av8p i] i;

- A0i}vo. )

Aµo.A.1aoo.,

-

E�apxeio.,

-

rA.ucpa8o.,

rravoi;

O µa8a IlpoPA-ri µa­

trov 181ronKou AuKtiou Ilavayia Ilpoumwncrcra

-

Aypivto.

IIPOTEINOMENA 0EMATA

298.Av a,p,y eivm to. µftKrt tcov nA.wpwv tptyrovou ABf Ko.t R, p ot O.Ktive� tou neptyeypaµµtvou, ey­ yeypaµµtvou K'Utlcov tou tptyrovou ABr avncrtoi­ xcoi;, tote VO. o.no8eix0ei Ott tCJXl}et : R p+y y+a a+p + + �3 (1 ). a. + p - y p + y - a y + a - p p ( ftci:>pyoi; AnocrtoA-6nouA-oi; - MecroA.Oyyt ) 299. Av yto. tou<; 0ettKOU<; npayµo.ttKOU<; o.pt0� a,p,y mx;Uet on: a. + p + y = 3 , tote vo. C>etx0ci 6n: 5 - o. t3 - 5 - P pJ - 5 - y 1i ) ( ( ( ) � S (l) . 3 -P 3-y 3 - o. ( ftwpyoi;

AnomoA6nouA-oi; - M�

300 . .:livetm tpie8po<; yrovia

)OXYZ µt £()puc&; r&

vie<; YOZ = a, ZOX = p,XOY = y JCm cmivavn npo<; aut&<; 8t&opoui; A,B,r avrurroqm;. Na wto­ oeix0d Otl tcrx;Uouv Ot no.pO.KQt(l) \(J� flµo. 11µP 11µy I) = = (1) /\

/\

{

'

Kwcrrni; Ncpoutcroi;

ftawaK6nouA.oi;

11 µA

....

-------

• • •

11 µB

/\

11 µ[

cruvo. = cruvpcruvy + 11 µ�11µycruvA (2) II) cruvp = cruvycruva + 11µrriµacruvB cruvy = cruvacruvp + riµariµPcruvf (rtwpyoi; Tptavtoi; - A0ftva) 301 . An6 TI'IV Kopucpft M tpiyrovou KAM cpepouµe to U'lfO<; A0 µi}Kou<; h , 'tTl C>taµecro MP Ko.t 'tTl C>t­ xotoµo MN To OT)µeio N dvm to µfoov tou 0P. H anocrtaOT) TI'I<; Kopucpi}<; M a.no to op0oKevtpo H tou tptyrovou autou eivm d. Na unoA.oym0ei to U'lfO<; TI'I<; <>ixotoµou MN ( ftwpyoi; T ptavtoi; A0ftva ) 302. Av 01. apt0µoi a,p,y µt a < p < y dvm pil;e<; TI'I<; e�icrroOTJ<; x 3 3x + 1 = 0 tote va unoA.oytcr0ei 11 ttµf} tOU a0poicrµato<; S = 0. + � + J_ . p 'Y a ( �towcrrii; ftawapoi; - Ilupyo<;)

Ano to tpiycovo OMr Ko.t to 8£<bp1)JUl Tot> M£V£Mot> µt foo.teµvoucro. TI'IV BE.:l exouµe: BM . .:lf . EO Bf . ao = 1 <=> EO = Bf .:10 EM EM BM .:lf EO .:10 EO 2 � <=> EM = 2 .:lf <=> EM = .:lf (1) Ano to IBto tpiycovo no.ipvouµt on: rM2 = Or2 - 0M2 � 4o.2 = (a. + af)2 - a.2 � 40.2 = .:lr2 + 20..:lr � .:lr2 + 20..:lr - 4a.2 = o � .:lf = a.(JS - 1) (2) 303. l:e KUpto tetpanA.wpo ABra to a0poicrµo. a.no TI'IV ( 1) MryCO TI'I� (2) EXOUµt teAtKa: tcov tetpo.yrovcov tcov nA.wprov Ko.t tcov oio.ycovirov ../5 + 1 E0 a. tou eivm L. Na 5eix0ei on yta to eµpo.Mv tou E = =2 EM o.(.J5 - 1) 2 tcrx;Uet 11 crx&OTJ: 8E � L . A'6crtt ttn£lMiv: ru:Opyoi; TmwA-ri i; TpinoA.ri, at­ ( �towcrrii; ftawapoi; - Ilupyoi;). owcrrii; ruiwapoi; - Ilupyo�. 0co µai; TcraKai; Ilatpo., rtwpyoi; AnocrtoA01tOUAOi; - MecroA6yyt, EYXOMAI:TE KAAEI: AIAKOIIEI: ! ! ! . Po86A-<poi; Mn6prii; .:laq>VTJ, ftawri i; Tcr6m::A-ai; .

.

-

-

-

-

EYKAEIAH� B ' 104 T.4179


Ma8rprr1 Ka Ka• AoyoTcxvfa

HAia� Kwvaravr6nouAo�

OA0KA17Pow: 7TOIW r1 rtAe1ov OA.6tlfl pfl 11 npoon68eta tdvet atflV oA.otli] pU>Ofl EtflV nA.i] pU>Ofl Kevcbv :ri ellehpeU>v IlaVLOS elOOUS ellehpEU>V

To ir1T&lpo

Kai

ro µ11otv

filre1po, To a:nep aV'ro , 'to a'teA.eutll 't O, 'to µeya 'to 0µ1xA.wBe� To µepo� ioo µe 'to 6A.o To u:nom)voA.o ioo µe 'tO m)voA.o

K68e tvas txet TUXfl va yivet 0A.otl11 pcbmµos :ri oA.otl11 pU>t:ris K68e tvas µnopd va J3pet tvav 0A.otl11 pcot:ri va yivet 0A.6tl11 pos TIA:ri Pil S - aKtpatos - tEAEtOS Ka8 ' 0A.otl11 pia 0A.6tl11 pos

EVLEAcbs - tEAEtU>S - ets tflV EVLEAEta Na µnopd va yivet oAOKAfl pU>ttKOS va ouµJ36llet atflV oA.otli] pcoOfl alla 6xt atov oA.oi<A11 pU>noµ6 Na cptpet ets ntpas tflv 0A.otl11 pia cbate va entocppayioet to oA.otli] pU>µa 'Oncos µta oA.otlfl pU>µanKi] KaµnuA.ri 'Oxt 6µU>S triv oA.otlfl pU>nKi] Kataatpocpzi Na OAOKAJ:l pcbvet es' oA.otlzi pou cbate va nmd to aKpov aU>tov tflS teAet6tritas

Ave�epeUVT)'tO To futetpo 'tWV cpu01Kwv, 'twv pT)'tWV To fute1po 'tWV appT)'tWV, 'tO mo :7tUKVO 'tWV u:nep�UTIKWV To a:ne1po 'tWV a:neipwv To a0wo µT)Bev :7tOU XWPUEl 'tU :7tUV'tU Ka'ta�pox0i�e1 'ta :nav'ta OAU, EK'tO� a:no 'tO a:ne1po To futetpo tll � eu0eia� T) eu0eia - a:ne1po To µT)Bev 'tou OT) µeiou To OT) µeio - µT)Bev filre1po l:uµ:nav 'tWV µT)Bev1Kwv µopiwv


-

EAAqv1K q Ma8q par1K q Era 1pEla

KaA0 Ka 1 q 1 v t <; �paOT 11p 1 6 T f1T £ <; , ..

,,

��

0

M(Q19r\µ (Q1T I K� �====;t

,,

�alf aoKrlv on

----�-

y1a µa9�TE� /f, E' Kai It' A�µo11KoU rpaµµaTI KO ATTI Kti�

A.o 1 IwMou

arc s IwMou 2011

ZOYME I: E OMA llEI: KA I rN!2PIZOYME TH �YI: H

l: Tox o c; Twv np oypaµ µciTwv £ i va 1 f1 avciTTTU� f1 Tf1c; � nµ 1 oupy 1 K6TnTac; ot 9 t µaTa µa9 nµan Kf\c; na 1 � t iac; , n 'IJuxavwv i a , n ci9Anon , Ka • OTQ

T I <; Ka i

Ma 9 n µ a T I Kci ,

y1a

£ � £ T ci o t 1 c; Twv � 1 aywv 1 oµwv

Tf1

� £AT iWOf1

TWV

Tf1c;

Tf1c;

ETT i � o onc;

OTO

n µ u non oxoAt i o ,

n t 1 p aµaT I KW V L X O A t i w v 'EAAnv 1 Kf\c; Ma9nµaT 1 Kf\c; ETa 1p £ iac;

TIAf1pocpopi&� : arov Iaroxwpo Tl'\l;: EME: www.hms.gr Kai ara rnA. 2 10 3 6 1 6 5 3 2 , 2 10 3 6 17784



Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.