12 minute read

1. La biología actual en el mundo y en México

Next Article
Bibliografía

Bibliografía

Antecedentes históricos y avances de la biologia del siglo XX y XXI Durante el siglo XX, la biología tuvo un extraordinario desarrollo, gran parte de ello se debió al enfoque interdisciplinario e integrador que adquirió esta ciencia al auxiliarse de otras disciplinas como la fisiología, la genética, las matemáticas y en especial de la química y la física, de cuyo apoyo resultaría la biología molecular, que tuvo un impresionante avance durante este periodo. Las principales aportaciones científicas de la biología en el siglo XX fueron: En 1900, el holandés Hugo de Vries, el alemán Carl Correns y el austriaco Erich Tschermak, redescubrieron en forma independiente el artículo olvidado de Gregor Mendel, sobre los mecanismos de la herencia (experimentada con plantas de chícharo), publicado en 1865 y que coincidía con los descubrimientos que habían obtenido (fig. 1.1). En los primeros años del siglo XX, el fisiólogo ruso Ivan Pavlov realizó importantes estudios sobre aprendizaje asociativo a través de sus experimentos de condicionamiento clásico, con los cuales descubrió que al alimentar a un perro al mismo tiempo que hacía sonar una campana, éste producía saliva con sólo escuchar el sonido, ya que lle- gó a relacionar el alimento con la campana (fig. 1.2). En 1902, Walter S. Sutton señaló la relación que había entre la segregación de los factores hereditarios, propuesta por Mendel, con la separación de los cromosomas homólogos de la meiosis. En 1905, Edmund B. Wilson y Nettie M. Stevens identificaron en insectos los cromosomas X y Y. En 1910, Thomas Hunt Morgan, al experimentar con la mosca Drosophila melanogaster, descubrió que algunos caracteres ligados al sexo se heredan, y concluyó que la información hereditaria se localiza en los cromosomas al demostrar que los caracteres ligados al sexo se encuentran en el mismo cromosoma. En 1933 recibió el premio Nobel de fisiología por demostrar que la información hereditaria se transporta en los cromosomas (fig. 1.3). En 1924, el bioquímico ruso Alexander I. Oparin propuso su teoría sobre el origen abiótico de la vida, a partir de la materia orgánica del medio acuático sintetizada de los compuestos de la atmósfera secundaria de la Tierra. En 1928, el bacteriólogo escocés Alexander Fleming descubrió, en forma accidental, la penicilina. Cierto día de ese año Fleming encontró que su cultivo de bacterias estafilococos (Staphylococcus aureus) se había contaminado con hongo Penicillium notatum. Observó que las bacterias no habían crecido alrededor del hongo, lo que le hizo suponer que posiblemente el hongo liberaba alguna sustancia que inhibía el crecimiento de las bacterias. Después comprobó su hipótesis y del extracto que se obtuvo de este hongo se fabricó la penicilina, antibiótico que se emplea para combatir infecciones de origen bacteriano. En 1928, el bacteriólogo inglés Frederick Griffith descubrió el principio transformante por el cual las cepas no virulentas de Streptococus pneumoniae pueden cambiar a cepas

Figura 1.1 Gregor Mendel estableció las leyes fundamentales de la herencia.

Advertisement

Figura 1.2 Experimento de Pavlov por el cual condicionó al perro a asociar el alimento con el sonido de una campana.

Figura 1.3 Thomas Hunt Morgan realizó experimentos con la mosca de la fruta o Drosophila melanogaster y comprobó que la información hereditaria se encuentra en los cromosomas.

Figura 1.4 Difracción de rayos X del ADN obtenida por Franklin y Wilkins.

Figura 1.5 Doble cadena de nucleótidos del ADN. virulentas, lo que en 1944 quedó demostrado con la identificación del ADN (ácido desoxirribonucleico) como la molécula que transmite la información hereditaria por medio de los análisis químicos realizados por Oswald T. Avery, Colin M. MacLeod y Maclyn McCarty. En 1937, Hans Adolf Krebs descubrió el ciclo del ácido cítrico, por medio del cual los grupos acetilo se degradan a bióxido de carbono y agua durante la respiración celular aerobia, con liberación de energía que puede ser utilizada para producir ATP (adenosín trifosfato). En su honor se conoce al ciclo como Krebs. En 1941, George W. Beadle y Edward L. Tatum encontraron que un gen particular daba instrucciones para la producción de una determinada enzima. En su trabajo emplearon el moho rojo del pan Neurospora crassa y comprobaron que las cepas que no podían crecer en un medio de cultivo simple eran mutantes nutricionales, con un gen defectuoso que les impedía tener una vía metabólica para producir un aminoácido. Con base en los resultados que obtuvieron elaboraron su hipótesis un gen una enzima. La hipótesis de estos genetistas estadounidenses no sólo ha sido aceptada, sino ampliada, ya que trabajos experimentales posteriores demostraron que el gen no sólo sintetiza enzimas, sino otros tipos de proteínas, que se forman de dos o más cadenas de polipéptidos, cada una de éstas la especifica un gen. Además, algunos genes determinan también la síntesis de moléculas de ácidos ribonucleicos (ARN). Por sus trabajos, Beadle y Tatum recibieron el premio Nobel de fisiología en 1958. En 1950, Erwin Chargaff descubrió que en el ADN de los organismos de una especie la cantidad de adenina es igual a la cantidad de timina, y la cantidad de guanina es igual a la de citosina. Esto se explica porque en las dos cadenas de nucleótidos del ADN, la adenina va unida siempre a la timina y la guanina a la citosina. En aquella época aún se desconocía la estructura del ADN.

En 1952, Alfred Day Hershey y Martha Chase experimentaron con virus que infectan las bacterias (bacteriófagos) para demostrar que era el ADN del virus el que permitía la reproducción de nuevos virus dentro de las bacterias infectadas. Esto indica que el ADN es el sopote de la herencia. Plenamente convencidos de que era el ADN la molécula portadora de la herencia biológica, los investigadores se dieron a la tarea de aclarar su estructura tridimensional. En ésta participaron Linus C. Pauling y sus colaboradores, quienes en 1951 habían diseñado la estructura tridimensional de hélice alfa de algunas proteínas, en la que las cadenas de aminoácidos se hallan dispuestas en forma de hélice, sostenidas por puentes de hidrógeno entre los giros de la hélice. Rosalind Franklin y Maurice Wilkins, en el King’s College de Londres, aplicaron en 1951 la técnica de difracción de rayos X en la investigación de la estructura del ADN. La imagen obtenida reflejaba que la molécula tenía giros de una gigantesca hélice (fig. 1.4). En 1953, con la información que ya se tenía, James D. Watson y Francis C. Crick dedujeron el modelo tridimensional del ADN. Se trata de una doble cadena de nucleótidos en forma de hélice. Su aspecto se asemeja a una escalera de caracol, en la cual los pasamanos están formados por moléculas de desoxirribosa y fósforo, y los peldaños por bases nitrogenadas. Las bases de una cadena se sostienen por enlaces de hidrógeno con las bases de la cadena opuesta (fig. 1.5). En las dos cadenas de polinucleótidos enfrentadas, las bases quedan hacia el interior y la cadena de azúcar (desoxirribosa) y fosfato hacia el exterior. Ambas cadenas son

complementarias, de tal manera que la adenina se une a la timina por dos enlaces de hidrógeno, en tanto que la guanina se empareja con la citosina por tres enlaces de hidrógeno. La doble hélice da una vuelta completa en el espacio cada 34 ángstrom (Å) (3.4 nanómetros), en esa vuelta caben 10 pares de bases. En la hélice la distancia entre un nucleótido y otro es de 3.4 Å (0.34 nm). Las dos cadenas son antiparalelas, porque mientras una se orienta en dirección 5’n3’, la complementaria lo hace en dirección 3n5’. Watson, Crick y Wilkins compartieron el premio Nobel de fisiología en 1962 (fig. 1.6). La química de los ácidos nucleicos conocida como dogma central de la biología molecular se interpretó en esa época de la siguiente manera:

a) El ADN conserva la información genética por medio de su misma replicación. b) El ADN transmite la información genética por transcripción al ARN. c) El ARN realiza la síntesis de proteínas por medio de la traducción del mensaje. En 1955, Arthur Kornberg aisló y purificó la enzima ADN polimerasa de la bacteria Escherichia coli. Esta enzima es la encargada de sintetizar la molécula de ADN, es decir, la que hace posible su replicación. A principios de la década de 1960, Howard M. Temin detectó la existencia de la transcripción inversa en ciertos virus. En 1970, Howard M. Temin y David Baltimore, en forma separada, aislaron la enzima transcriptasa inversa que, contrariamente a como se realiza de manera cotidiana, hace posible la síntesis de ADN dirigida por ARN en los retrovirus como el VIH del SIDA. Por este descubrimiento en 1975 compartieron con Renato Dulbecco el premio Nobel de fisiología. En 1966, Har Gobind Khorana, Marshall Warren Nirenberg y Heinrich Matthaei descifraron el lenguaje del código genético, al descubrir que los veinte aminoácidos eran codificados por el ADN por medio de tripletes de bases llamados codones. En 1970, Kent Wilcox y Hamilton Smith descubrieron en la bacteria Haemophilus influenzae la primera enzima de restricción que corta el ADN en sitios específicos. En 1972, Paul Berg, al emplear una enzima de restricción, cortó el ADN y, al utilizar la ADN ligasa, enzima que suelda las moléculas del ácido nucleico, unió dos segmentos de ADN de especies distintas en un plásmido (pequeña molécula circular de ADN de las bacterias). Con ello se produjo la primera molécula de ADN recombinante y se iniciaron trabajos de la ingeniería genética que ha permitido aislar y manipular el material hereditario. Después, los modelos experimentales se han empleado en la industria para obtener productos que benefician a la humanidad, lo que impulsa la biotecnología moderna. Por ejemplo, en 1978 los investigadores de Genentech y The City of Hope National Medical Center utilizaron bacterias para producir insulina humana mediante la tecnología del ADN recombinante. En 1985, Kary B. Mullis y sus colaboradores de la compañía Cetus dieron a conocer la técnica de la Reacción en Cadena de la Polimerasa (PCR, por sus siglas en inglés), la cual permite amplificar (sacar muchas copias) un segmento de ADN en poco tiempo. A mediados de la década de 1980, un grupo de científicos iniciaron el Proyecto Genoma Humano (PGH), con el propósito de identificar todos los genes del ser humano. Objetivo logrado en febrero de 2001, cuando fueron publicadas con un alto porcentaje de confiabilidad, las secuencias definitivas del genoma humano. En 1996, en el Instituto Roslin, cerca de Edimburgo, nació Dolly, la primera oveja clonada a partir de una célula somática (de glándula mamaria).

Figura 1.6 El modelo de ADN de Watson y Crick, construido con alambre y hojalata.

La clonación de mamíferos ha abierto nuevas perspectivas a la biotecnoloía, a tal grado que se asevera que el siglo XXI será la era de los clones, ya que existen las posibilidades de diseñar y desarrollar los organismos con nuevas características y con propósitos de interés social o económico. Por una parte, a través del Proyecto Genoma Humano se ha podido precisar la ubicación de los genes, también ha revelado algunos polimorfismos de un solo nucleótido (SNPs) que nos da individualidad genética al definir los caracteres físicos de cada individuo y su susceptibilidad a determinadas enfermedades, lo que permitirá tomar las medidas preventivas para que éstas no se desarrollen.

Avances de la ciencia en México En los primeros años del siglo XX, la educación superior se circunscribía sólo a un reducido grupo social, que tenía un mayor poder económico. La escolaridad de los que tenían acceso a la educación elemental no superaba los cuatro años. Fue durante 1920 y 1930 cuando se establecieron las condiciones necesarias para el desarrollo científico y tecnológico, especialmente en la Universidad Nacional Autónoma de México (UNAM) y en el Instituto Politécnico Nacional (IPN). Por aquellos años ya se cursaban los estudios de ciencias biológicas en la UNAM, que ya contaba con su Instituto de Biología. En el IPN la carrera de biólogo que se imparte en la Escuela Nacional de Ciencias Biológicas fue creada en 1940. La inmigración española de 1939 y 1940 fue una importante contribución al desarrollo de la ciencia en México. Llegaron a nuestro país muchos científicos que no sólo participaron en la investigación, sino también en la formación de profesionales de la biología. Otro hecho importante que contribuyó al avance de esta ciencia en México fue la creación en 1970 del Consejo Nacional de Ciencia y Tecnología (Conacyt), el cual impulsa y fortalece el desarrollo científico mediante la formación y sostenimiento de investigadores y temas afines. En la segunda mitad del siglo XX se incrementó el número de universidades y escuelas de educación superior en el país, en las que se cursa la carrera de biología. A finales del siglo ya funcionaban alrededor de cien instituciones que trabajaban sobre distintas líneas de investigación relacionadas con la biotecnología, así como en la formación de investigadores. Por ejemplo, los diferentes centros de investigación de la UNAM, el Centro de Investigación y Estudios Avanzados (Cinvestav) del IPN, la Universidad Autónoma Metropolitana, los Institutos Tecnológicos Regionales y las Universidades de los estados de la República. A pesar del reducido presupuesto que el gobierno federal le destina a la investigación científica, destacados investigadores mexicanos han logrado poner muy en alto el nombre de nuestro país en el contexto internacional de la investigación científica, como lo demuestran los doctores Francisco Bolívar Zapata y Luis Herrera Estrella, quienes contribuyeron a la construcción de plantas transgénicas. En México se realizan enormes esfuerzos por participar en el desarrollo de la nueva ciencia genómica (referente al estudio de la totalidad de información genética de una célula o de un organismo). Por ejemplo, en el Centro de Investigación sobre Fijación de Nitrógeno (CIFN) de la UNAM, se obtiene y analiza la secuencia genómica de la bacteria Rhizobium etli, de acción muy importante en la agricultura, por la fijación que hace del nitrógeno cuando se aloja en los nódulos de la raíz de las leguminosas, mediante una relación simbiótica que establece con estas plantas y por la cual las leguminosas aseguran su suministro de nitrógeno, elemento indispensable en la síntesis de los ácidos nucleicos y de las proteínas. Otro importante proyecto de investigación es el que se realiza en el Cinvestav del IPN en Irapuato, Guanajuato, donde se lleva a cabo la secuenciación del genoma del maíz, cuyo objetivo es identificar genes de interesante acción en la agricultura. En el campo biomédico destaca el banco de cerebros para la investigación de Alzheimer y enfermedades neurodegenerativas fundado por el doctor Raúl Mena López en el Cinvestav de la Ciudad

This article is from: