SCIENCE&RESEARCH BUILDING

Page 1

科研建筑

SCIENCE & RESEARCH BUILDING 科 研 建 筑

SCIENCE & RESEARCH BUILDING

Dalian University of Technology Press

Edited by HI-DESIGN PUBLISHING

Dalian University of Technology Press

Edited by HI-DESIGN PUBLISHING


PREFACEⅠ 序言一 Traditionally research laboratories have been highly internalized and almost secretive places. They were funded by Governments or large corporations and singularly focused on the research at hand. They were not designed with the well-being of the user in mind or to celebrate the activities within. That has now changed. The modern research institution relies on the generous donations of benefactors to drive the expensive research and there is no better way to entice their benevolence than to demystify and celebrate the inner workings of the lab. Likewise institutions need to provide an attractive working environment to draw in the best researchers. So the modern laboratory is on display. Architecturally it must look the part – both as an interpretative exhibition space, and as a desirable work space. But it must still function as a place for research. When architects work within a particular building typology they must understand what is negotiable and what is not. Projects of great complexity, such as modern research laboratories and hospitals, can be overwhelming to an architect. There are so many standards to comply with, services and piped gases to coordinate, expensive equipment to accommodate, and very specific workflows to understand. It is far easier, and safer, to follow the accepted wisdom and repeat the typology that appears to work and is already accepted. However institutions want memorable facilities that will attract funding and need architects to redefine and challenge the accepted architectural canon. So if innovation is to occur within these programmatically complex buildings, it requires a thorough understanding of exactly how and what is to occur within the building. A collaborative first principles analysis by architect and stakeholder is necessary to unpack the mysteries of the type. This will help to identify and test the non-negotiable aspects of the project brief, so that the team can move onto the areas of potential innovation and interest. Conversely, design innovation completed without this kind of

How would we be today if contemporaries Benjamin Franklin, Alessandro Volta and Michael Faraday, just to mention some electricity-related scientists, had shared the same work place with Heinritz Hertz, Alexander Graham Bell, telecommunications scientists and the Lumière brothers, picture masters? We would probably already have the iPad in museum showcases and I can’t even imagine in what other ways we would be communicating presently: teleportation? Cordless electricity? What we demand today are immediate results. Scientists work against the clock in the patents race. The best known way to progress rapidly is interaction between professionals, interpersonal and multi-disciplinary relations. Although staying in-touch despite distances and being up-to-date in any field is easy in this day and age, it has been proven that the productivity of ideas and results is enhanced exponentially in shared places designed specifically for personal interaction. New work spaces in buildings for research and science must allow the researcher to experiment, to work alone and to informally relate with other professionals. Scientists from all over the world move their homes and their lives to places and countries far away from their normal surroundings. The atmosphere and the conditions of the work place must be appealing, almost home-like, where a high percentage of the work area is to be destined for resting, contemplation, relation and even leisure. The laboratory, the workstation and the common areas could therefore be built in the essential cells of the structure of a science and research building. They must all be flexible spaces that allow for transformation and adaptation to the changing uses and habits over the life of the building.

interrogation of the type is unlikely to achieve little more than architectural novelty.

Javier Aja Cantalejo ACXT-IDOM, Senior Partner / Architect

Thus briefing is fundamental to the success of a Research Laboratory. Some spaces, such as the write up spaces, can be looser in their requirements, but others, such as the laboratory support spaces that may contain expensive and finely calibrated equipment, freezers or incubation compartments, need to be detailed to very specific requirements. Over time the requirements will change. So the design must provide a flexible and evolving research facility that will be able to adapt to constantly evolving and variable research programming. This is one

如果同代人,一些与电力相关的科学家,比如,本杰明 • 富兰克林、亚历山德罗 • 伏特、迈克尔 • 法拉第与海因里希 • 赫兹、亚历山

of the core challenges in laboratory design – how to cater for a highly serviced environment with vertical risers

大 • 格雷厄姆 • 贝尔这样的通信科学家以及卢米埃尔兄弟这样的图像大师在同样的工作场所工作,我们现在的生活会是怎样的呢?我们可

and ductwork that is essentially fixed, yet allowing for future flexibility and changes.

能已经将 iPad 陈列于博物馆,我甚至不能想象那样的我们现在会用什么样的通信方式:远距传送?还是无线电? 今天我们需要的是立竿见影的效果。科学家们争分夺秒地专注于专利竞赛。想要迅速进步的最有名的方式就是专业人士间互相交流,

Andrew Nimmo, Director lahznimmo architects Adjunct Professor at the Faculty of Architecture, Planning and Design, University of Sydney.

建立人际交往和多学科之间的互动。在当今这个时代做到忽视距离保持联系和在某个领域中与时俱进很容易,但是事实证明,在专为个人 互动设计的共享区域中,思想和成果的产出会成倍提高。 科研建筑的新工作空间必须允许研究人员进行实验,独立工作,并以非正式的方式与其他专业人士联系。来自世界各地的科学家将他 们的家和他们的生活移到了远离其熟悉的环境的地方和国家。因此,工作场所的气氛和条件必须有吸引力,几乎要像家一样,因为很大一 部分的工作区是注定要被设计成为休息、沉思、社交甚至是休闲的场所的。 因此,实验室、工作站和公共区域都成为了科研建筑结构的基本组成部分。科研建筑的空间设计必须灵活,以便利于空间改造,适应

传统意义上的科研实验室是高度内在化的、几近神秘的地方。他们受政府或大型企业资助,非常专注于手上研究的项目,用户的福祉

新的空间利用方式以及人们不断变换的生活习惯。

或庆祝活动不在他们的考虑之中。但是现在这些已经发生了变化。现代研究机构依靠捐助者的慷慨捐赠来驱动昂贵的研究,没有比使实验 室非神秘化和庆祝实验室内部运作更好的办法来吸引捐助者的仁慈了。同样,机构需要提供一个有吸引力的工作环境,以吸引最好的研究

Javier Aja Cantalejo

人员。因此,现代化的实验室是以真面目示人的。在结构上,它必须兼具解说性的展览空间以及理想的工作空间的功能。同时,它还必须

ACXT-IDOM 事务所,高级合伙人 / 建筑师

要继续发挥科研场所的功能。 当建筑师在一个特定的建筑类型内工作时,他们必须明白什么是可协商的,什么是不可协商的。高复杂性的项目,如现代化的研究实 验室和医院,对于建筑师而言是高难度的,因为要遵守太多的标准要求,比如,要协调服务和气体管道,要留有容纳昂贵设备的空间,要 充分理解非常具体的工作流程。相对而言,遵循公认的准则和重复那些有效且已被公认的建筑类型的工作则更加容易,更加安全。 然而,研究机构需要重量级的设施来吸引资金,就需要建筑师重新定义和挑战公认的建筑标准。因此,如果想要在这些编程复杂的建 筑物内进行创新,就需要透彻理解究竟要如何在建筑物内进行创新和什么需要创新。解开这种建筑类型的神秘性,是建筑师和利益相关者

AGAINST THE CLOCK

分秒必争

对于协作分析的首要原则。这将有助于确定和测试不可协商的项目的本质,以便于团队继续向前研究潜在的创新领域和利益区间。相反, 如果不对该类型建筑进行上述研究,那么建成的建筑,除了建筑外形上的创新,很难有更深的新意。 因此,项目的本质是一个科研实验室取得成功的关键。一些空间,如办公空间,它们的建筑要求相对宽松一些,但是其他空间,如实 验室的相关空间,可能放有昂贵而精细校准的设备、冷冻机或孵化室,故这类空间的设计要求非常细化、具体。随着时间的推移,要求会 不断发生变化。因此,必须设计出灵活且不断发展的研究机构,这样才能适应不断变化的研究方案。要在已经固定的垂直立管和管道系统 的基础上创建一个高质量的环境,同时还要为空间留有未来发展的灵活性和改造的可能性,这是实验室设计面临的一个主要挑战。

PREFACEⅡ 序言二

安德鲁 • 尼姆,lzhznimmo 建筑事务所设计总监 悉尼大学建筑、设计与规划学院副教授

004

005


PREFACEⅠ 序言一 Traditionally research laboratories have been highly internalized and almost secretive places. They were funded by Governments or large corporations and singularly focused on the research at hand. They were not designed with the well-being of the user in mind or to celebrate the activities within. That has now changed. The modern research institution relies on the generous donations of benefactors to drive the expensive research and there is no better way to entice their benevolence than to demystify and celebrate the inner workings of the lab. Likewise institutions need to provide an attractive working environment to draw in the best researchers. So the modern laboratory is on display. Architecturally it must look the part – both as an interpretative exhibition space, and as a desirable work space. But it must still function as a place for research. When architects work within a particular building typology they must understand what is negotiable and what is not. Projects of great complexity, such as modern research laboratories and hospitals, can be overwhelming to an architect. There are so many standards to comply with, services and piped gases to coordinate, expensive equipment to accommodate, and very specific workflows to understand. It is far easier, and safer, to follow the accepted wisdom and repeat the typology that appears to work and is already accepted. However institutions want memorable facilities that will attract funding and need architects to redefine and challenge the accepted architectural canon. So if innovation is to occur within these programmatically complex buildings, it requires a thorough understanding of exactly how and what is to occur within the building. A collaborative first principles analysis by architect and stakeholder is necessary to unpack the mysteries of the type. This will help to identify and test the non-negotiable aspects of the project brief, so that the team can move onto the areas of potential innovation and interest. Conversely, design innovation completed without this kind of

How would we be today if contemporaries Benjamin Franklin, Alessandro Volta and Michael Faraday, just to mention some electricity-related scientists, had shared the same work place with Heinritz Hertz, Alexander Graham Bell, telecommunications scientists and the Lumière brothers, picture masters? We would probably already have the iPad in museum showcases and I can’t even imagine in what other ways we would be communicating presently: teleportation? Cordless electricity? What we demand today are immediate results. Scientists work against the clock in the patents race. The best known way to progress rapidly is interaction between professionals, interpersonal and multi-disciplinary relations. Although staying in-touch despite distances and being up-to-date in any field is easy in this day and age, it has been proven that the productivity of ideas and results is enhanced exponentially in shared places designed specifically for personal interaction. New work spaces in buildings for research and science must allow the researcher to experiment, to work alone and to informally relate with other professionals. Scientists from all over the world move their homes and their lives to places and countries far away from their normal surroundings. The atmosphere and the conditions of the work place must be appealing, almost home-like, where a high percentage of the work area is to be destined for resting, contemplation, relation and even leisure. The laboratory, the workstation and the common areas could therefore be built in the essential cells of the structure of a science and research building. They must all be flexible spaces that allow for transformation and adaptation to the changing uses and habits over the life of the building.

interrogation of the type is unlikely to achieve little more than architectural novelty.

Javier Aja Cantalejo ACXT-IDOM, Senior Partner / Architect

Thus briefing is fundamental to the success of a Research Laboratory. Some spaces, such as the write up spaces, can be looser in their requirements, but others, such as the laboratory support spaces that may contain expensive and finely calibrated equipment, freezers or incubation compartments, need to be detailed to very specific requirements. Over time the requirements will change. So the design must provide a flexible and evolving research facility that will be able to adapt to constantly evolving and variable research programming. This is one

如果同代人,一些与电力相关的科学家,比如,本杰明 • 富兰克林、亚历山德罗 • 伏特、迈克尔 • 法拉第与海因里希 • 赫兹、亚历山

of the core challenges in laboratory design – how to cater for a highly serviced environment with vertical risers

大 • 格雷厄姆 • 贝尔这样的通信科学家以及卢米埃尔兄弟这样的图像大师在同样的工作场所工作,我们现在的生活会是怎样的呢?我们可

and ductwork that is essentially fixed, yet allowing for future flexibility and changes.

能已经将 iPad 陈列于博物馆,我甚至不能想象那样的我们现在会用什么样的通信方式:远距传送?还是无线电? 今天我们需要的是立竿见影的效果。科学家们争分夺秒地专注于专利竞赛。想要迅速进步的最有名的方式就是专业人士间互相交流,

Andrew Nimmo, Director lahznimmo architects Adjunct Professor at the Faculty of Architecture, Planning and Design, University of Sydney.

建立人际交往和多学科之间的互动。在当今这个时代做到忽视距离保持联系和在某个领域中与时俱进很容易,但是事实证明,在专为个人 互动设计的共享区域中,思想和成果的产出会成倍提高。 科研建筑的新工作空间必须允许研究人员进行实验,独立工作,并以非正式的方式与其他专业人士联系。来自世界各地的科学家将他 们的家和他们的生活移到了远离其熟悉的环境的地方和国家。因此,工作场所的气氛和条件必须有吸引力,几乎要像家一样,因为很大一 部分的工作区是注定要被设计成为休息、沉思、社交甚至是休闲的场所的。 因此,实验室、工作站和公共区域都成为了科研建筑结构的基本组成部分。科研建筑的空间设计必须灵活,以便利于空间改造,适应

传统意义上的科研实验室是高度内在化的、几近神秘的地方。他们受政府或大型企业资助,非常专注于手上研究的项目,用户的福祉

新的空间利用方式以及人们不断变换的生活习惯。

或庆祝活动不在他们的考虑之中。但是现在这些已经发生了变化。现代研究机构依靠捐助者的慷慨捐赠来驱动昂贵的研究,没有比使实验 室非神秘化和庆祝实验室内部运作更好的办法来吸引捐助者的仁慈了。同样,机构需要提供一个有吸引力的工作环境,以吸引最好的研究

Javier Aja Cantalejo

人员。因此,现代化的实验室是以真面目示人的。在结构上,它必须兼具解说性的展览空间以及理想的工作空间的功能。同时,它还必须

ACXT-IDOM 事务所,高级合伙人 / 建筑师

要继续发挥科研场所的功能。 当建筑师在一个特定的建筑类型内工作时,他们必须明白什么是可协商的,什么是不可协商的。高复杂性的项目,如现代化的研究实 验室和医院,对于建筑师而言是高难度的,因为要遵守太多的标准要求,比如,要协调服务和气体管道,要留有容纳昂贵设备的空间,要 充分理解非常具体的工作流程。相对而言,遵循公认的准则和重复那些有效且已被公认的建筑类型的工作则更加容易,更加安全。 然而,研究机构需要重量级的设施来吸引资金,就需要建筑师重新定义和挑战公认的建筑标准。因此,如果想要在这些编程复杂的建 筑物内进行创新,就需要透彻理解究竟要如何在建筑物内进行创新和什么需要创新。解开这种建筑类型的神秘性,是建筑师和利益相关者

AGAINST THE CLOCK

分秒必争

对于协作分析的首要原则。这将有助于确定和测试不可协商的项目的本质,以便于团队继续向前研究潜在的创新领域和利益区间。相反, 如果不对该类型建筑进行上述研究,那么建成的建筑,除了建筑外形上的创新,很难有更深的新意。 因此,项目的本质是一个科研实验室取得成功的关键。一些空间,如办公空间,它们的建筑要求相对宽松一些,但是其他空间,如实 验室的相关空间,可能放有昂贵而精细校准的设备、冷冻机或孵化室,故这类空间的设计要求非常细化、具体。随着时间的推移,要求会 不断发生变化。因此,必须设计出灵活且不断发展的研究机构,这样才能适应不断变化的研究方案。要在已经固定的垂直立管和管道系统 的基础上创建一个高质量的环境,同时还要为空间留有未来发展的灵活性和改造的可能性,这是实验室设计面临的一个主要挑战。

PREFACEⅡ 序言二

安德鲁 • 尼姆,lzhznimmo 建筑事务所设计总监 悉尼大学建筑、设计与规划学院副教授

004

005


CONTENTS

006

目录

008

马库斯纳米技术研究中心

024

格罗尼根大学 Linnaeusborg 生命科学中心

036

中东技术大学模拟与仿真研究中心

048

雀巢公司研究实验室

065

凡 • 列文虎克实验室

079

CIC Energigune 实验大楼

095

阿姆斯特丹牙科学术中心

106

阿姆斯特丹大学理学院

MARCUS NANOTECHNOLOGY RESEARCH CENTER

LINNAEUSBORG, CENTER FOR LIFE SCIENCES

MIDDLE EAST TECHNICAL UNIVERSITY MODSIMMER MODELLING AND SIMULATION RESEARCH CENTER

NESTLE'S RESEARCH LABORATORIES

VAN LEEUWENHOEK LABORATORY

CIC ENERGIGUNE

ACADEMIC CENTER FOR DENTISTRY

AMSTERDAM FACULTY OF SCIENCE

120

La Cite Collegiale 学院科研中心

128

尼科西亚大学建筑研究中心

138

艾伦研发中心

156

洛伊癌症研究中心

169

土耳其移动通信技术研究与发展中心

178

生物医学研究中心

188

毕缇生物多样性研究中心和水生生态系统研究院

196

Bèta 技术和企业加速器

LA CITE COLLEGIALE RESEARCH CENTER

ARCHITECTURAL RESEARCH CENTER, UNIVERSITY OF NICOSIA

ARON R & D CENTER

LOWY CANCER RESEARCH CENTER

TURKCELL TECHNOLOGY RESEARCH AND DEVELOPMENT CENTER

BIOMEDICAL RESEARCH CENTER

BEATY BIODIVERSITY CENTER AND AQUATIC ECOSYSTEMS RESEARCH LABORATORY

BÈTA TECHNOLOGY AND BUSINESS ACCELERATOR

205

加拿大自然资源部材料检测实验室

214

李嘉诚知识研究院

222

麦吉尔大学生命科学综合楼

230

新 Immergas 高级培训中心 Domus Technica

238

国家生物多样性基因组学实验室

246

纽约州立大学石溪分校西蒙斯几何和物理中心

254

清华大学环境能源楼研究中心

265

奥地利维也纳分子医学研究中心

CANMET MATERIALS TECHNOLOGY LABORATORY

LI KA SHING KNOWLEDGE INSTITUTE

MCGILL UNIVERSITY LIFE SCIENCES COMPLEX

DOMUS TECHNICA IMMERGAS

NATIONAL LABORATORY OF GENOMICS FOR BIODIVERSITY

SUNY STONY BROOK SIMONS CENTER FOR GEOMETRY AND PHYSICS

SIEEB RESEARCH CENTER

272

280

294

304

312

324

332

Emily Couric 临床癌症中心

EMILY COURIC CLINICAL CANCER CENTER

爱茉莉太平洋研究与设计中心

AMORE PACIFIC RESEARCH & DESIGN CENTER

桑福德再生医学研究中心

SANFORD CONSORTIUM FOR REGENERATIVE MEDICINE

芬兰 Metla 森林研究中心

METLA FOREST RESEARCH CENTER

斯瓦尔巴科学中心

SVALBARD SCIENCE CENTER

蒙巴顿纳米技术研究中心

THE MOUNTBATTEN NANOTECHNOLOGY BUILDING CENTER

索引

INDEX

ANNA SPIEGEL RESEARCH BUILDING

007


CONTENTS

006

目录

008

马库斯纳米技术研究中心

024

格罗尼根大学 Linnaeusborg 生命科学中心

036

中东技术大学模拟与仿真研究中心

048

雀巢公司研究实验室

065

凡 • 列文虎克实验室

079

CIC Energigune 实验大楼

095

阿姆斯特丹牙科学术中心

106

阿姆斯特丹大学理学院

MARCUS NANOTECHNOLOGY RESEARCH CENTER

LINNAEUSBORG, CENTER FOR LIFE SCIENCES

MIDDLE EAST TECHNICAL UNIVERSITY MODSIMMER MODELLING AND SIMULATION RESEARCH CENTER

NESTLE'S RESEARCH LABORATORIES

VAN LEEUWENHOEK LABORATORY

CIC ENERGIGUNE

ACADEMIC CENTER FOR DENTISTRY

AMSTERDAM FACULTY OF SCIENCE

120

La Cite Collegiale 学院科研中心

128

尼科西亚大学建筑研究中心

138

艾伦研发中心

156

洛伊癌症研究中心

169

土耳其移动通信技术研究与发展中心

178

生物医学研究中心

188

毕缇生物多样性研究中心和水生生态系统研究院

196

Bèta 技术和企业加速器

LA CITE COLLEGIALE RESEARCH CENTER

ARCHITECTURAL RESEARCH CENTER, UNIVERSITY OF NICOSIA

ARON R & D CENTER

LOWY CANCER RESEARCH CENTER

TURKCELL TECHNOLOGY RESEARCH AND DEVELOPMENT CENTER

BIOMEDICAL RESEARCH CENTER

BEATY BIODIVERSITY CENTER AND AQUATIC ECOSYSTEMS RESEARCH LABORATORY

BÈTA TECHNOLOGY AND BUSINESS ACCELERATOR

205

加拿大自然资源部材料检测实验室

214

李嘉诚知识研究院

222

麦吉尔大学生命科学综合楼

230

新 Immergas 高级培训中心 Domus Technica

238

国家生物多样性基因组学实验室

246

纽约州立大学石溪分校西蒙斯几何和物理中心

254

清华大学环境能源楼研究中心

265

奥地利维也纳分子医学研究中心

CANMET MATERIALS TECHNOLOGY LABORATORY

LI KA SHING KNOWLEDGE INSTITUTE

MCGILL UNIVERSITY LIFE SCIENCES COMPLEX

DOMUS TECHNICA IMMERGAS

NATIONAL LABORATORY OF GENOMICS FOR BIODIVERSITY

SUNY STONY BROOK SIMONS CENTER FOR GEOMETRY AND PHYSICS

SIEEB RESEARCH CENTER

272

280

294

304

312

324

332

Emily Couric 临床癌症中心

EMILY COURIC CLINICAL CANCER CENTER

爱茉莉太平洋研究与设计中心

AMORE PACIFIC RESEARCH & DESIGN CENTER

桑福德再生医学研究中心

SANFORD CONSORTIUM FOR REGENERATIVE MEDICINE

芬兰 Metla 森林研究中心

METLA FOREST RESEARCH CENTER

斯瓦尔巴科学中心

SVALBARD SCIENCE CENTER

蒙巴顿纳米技术研究中心

THE MOUNTBATTEN NANOTECHNOLOGY BUILDING CENTER

索引

INDEX

ANNA SPIEGEL RESEARCH BUILDING

007


MARCUS NANOTECHNOLOGY RESEARCH CENTER

马库斯纳米技术研究中心

Architect: Bohlin Cywinski Jackson, M+W Zander

008

Project Team: Bernard J. Cywinski, David Murray, Todd Lynch, Anthony Pregiato, Erin Roark, Rick Miller, Joe Bridy, LB Young, Scott Sampson, Collin Robertson, Jay Sitton, George Murphy Location: Atlanta, Georgia

Area: 17651.58 m2 Photographer: Nic Lehoux

The Marcus Nanotechnology Research Center is located on a highly visible, sloping site on the Georgia Tech campus. It is bordered by streets on two sides, an “Eco-Commons” landscape on another, and a new pedestrian path on the fourth side. It is a facility for ultraclean research and teaching activities ranging from microelectronics and semiconductors to nanotechnology. The heart of the building is a light-filled central galleria that connects the transparent wing of laboratories, office and conference rooms to a 2787 square-meter cleanroom block that is wrapped in a copper screen. A wood assembly unfolds up the west wall and onto the ceiling. An LED light beam from the crease between wall and ceiling illuminates the galleria day and night. A skylit steel and glass stairwell is contained with an oval cylinder at the south end of the space.

The three-storey cleanroom block is an open plan “ballroom” with large flexible space housing Class 10, Class 100, and Class 1000 cleanrooms , as well as laboratories. It is clad in ribbed, precast concrete panels. Stairwells, chemical storage tanks, heating and ventilation equipment, and air scrubbers arranged outboard of the cleanroom block. The exterior copper screen is perforated to varying degrees to allow different levels of daylight penetration into areas that support the opaque cleanrooms. Integrated with the campus landscape the Nanotechnology Research Center reflects its program’s rigorous technical requirements and forms a compelling place for people.

009


MARCUS NANOTECHNOLOGY RESEARCH CENTER

马库斯纳米技术研究中心

Architect: Bohlin Cywinski Jackson, M+W Zander

008

Project Team: Bernard J. Cywinski, David Murray, Todd Lynch, Anthony Pregiato, Erin Roark, Rick Miller, Joe Bridy, LB Young, Scott Sampson, Collin Robertson, Jay Sitton, George Murphy Location: Atlanta, Georgia

Area: 17651.58 m2 Photographer: Nic Lehoux

The Marcus Nanotechnology Research Center is located on a highly visible, sloping site on the Georgia Tech campus. It is bordered by streets on two sides, an “Eco-Commons” landscape on another, and a new pedestrian path on the fourth side. It is a facility for ultraclean research and teaching activities ranging from microelectronics and semiconductors to nanotechnology. The heart of the building is a light-filled central galleria that connects the transparent wing of laboratories, office and conference rooms to a 2787 square-meter cleanroom block that is wrapped in a copper screen. A wood assembly unfolds up the west wall and onto the ceiling. An LED light beam from the crease between wall and ceiling illuminates the galleria day and night. A skylit steel and glass stairwell is contained with an oval cylinder at the south end of the space.

The three-storey cleanroom block is an open plan “ballroom” with large flexible space housing Class 10, Class 100, and Class 1000 cleanrooms , as well as laboratories. It is clad in ribbed, precast concrete panels. Stairwells, chemical storage tanks, heating and ventilation equipment, and air scrubbers arranged outboard of the cleanroom block. The exterior copper screen is perforated to varying degrees to allow different levels of daylight penetration into areas that support the opaque cleanrooms. Integrated with the campus landscape the Nanotechnology Research Center reflects its program’s rigorous technical requirements and forms a compelling place for people.

009


160 80 40 0

0

010

40

80

160

011


160 80 40 0

0

010

40

80

160

011


012

013


012

013


014

015


014

015


马库斯纳米技术研究中心坐落于乔治亚理工大学校园内一个非常显眼的倾斜场地上。 它的两侧毗邻街道,另两侧一侧为“生态共享”景观区,最后一侧是一个新建的人行道。 0

10

20

40

80

共三层的无菌室有像“舞厅”一样开放的布局,大面积的弹性空间配置了 10 级、100

从微电子技术、半导体技术到纳米技术,这是一个能为其提供超洁净的研究和教学活动的

级、1000 级无菌室和实验室,由条状的预制混凝土板包覆。楼梯间、化学品储存罐、加热

场所。

与通风设备以及空气净化器都安排在无菌室区域的外侧。外部铜网上钻有不同大小的孔洞,

该建筑的中心是一个光线充足的中央广场,将实验室的透明翼、办公室和会议室,与 一个包裹在铜网里的总面积为 2787 平方米的无菌室区域连接起来。木制组件被应用在西 侧墙面和天花板上。墙壁和天花的交界处安装的 LED 灯条,照亮了有篷走廊的白天和黑夜。

016

由钢和玻璃组成的楼梯间则位于南端的一个椭圆形的柱状结构内。

以便引入不同强度的日光,为不透明的无菌室提供照明。 与校园景观相结合,纳米技术研究中心的设计既反映出其程序上严格的技术要求,又 打造了一个引人注目的建筑。

017


马库斯纳米技术研究中心坐落于乔治亚理工大学校园内一个非常显眼的倾斜场地上。 它的两侧毗邻街道,另两侧一侧为“生态共享”景观区,最后一侧是一个新建的人行道。 0

10

20

40

80

共三层的无菌室有像“舞厅”一样开放的布局,大面积的弹性空间配置了 10 级、100

从微电子技术、半导体技术到纳米技术,这是一个能为其提供超洁净的研究和教学活动的

级、1000 级无菌室和实验室,由条状的预制混凝土板包覆。楼梯间、化学品储存罐、加热

场所。

与通风设备以及空气净化器都安排在无菌室区域的外侧。外部铜网上钻有不同大小的孔洞,

该建筑的中心是一个光线充足的中央广场,将实验室的透明翼、办公室和会议室,与 一个包裹在铜网里的总面积为 2787 平方米的无菌室区域连接起来。木制组件被应用在西 侧墙面和天花板上。墙壁和天花的交界处安装的 LED 灯条,照亮了有篷走廊的白天和黑夜。

016

由钢和玻璃组成的楼梯间则位于南端的一个椭圆形的柱状结构内。

以便引入不同强度的日光,为不透明的无菌室提供照明。 与校园景观相结合,纳米技术研究中心的设计既反映出其程序上严格的技术要求,又 打造了一个引人注目的建筑。

017


018

019


018

019


020

021


020

021


022

023


022

023


LINNAEUSBORG, CENTER FOR LIFE SCIENCES

格罗尼根大学 Linnaeusborg 生命科学中心

Architect: Rudy Uytenhaak, Tanja Buijs-Vitkova

024

Firm: Rudy Uytenhaak Architecture Bureau Client: Property and Investment Projects, University of Groningen

Linnaeusborg is a functionally determined building that, while it is large in scale, does not form an impenetrable mass. The volume can be interpreted as a body that rises from the ground and partly vanishes in the perspective and the sloping ground level. A “gate” effect means that one looks through the building rather than at it. The basic principles for the internal organization of the building are interaction, dynamism and flexibility. The upper part of the building is zoned, with laboratories and offices located in two facing areas. The efficiency and flexibility of this model are enhanced by the addition of a third zone incorporating a range of ancillary areas. Light from above through the open areas and views of the sky, ground or water connect the interiors of the corridors with the outside world. The mix of laboratories, ancillary areas

and offices in combination with the spatial and functional qualities of the circuits results in a practical, light and dynamic whole that is highly efficient in both architectural and technical terms. Linnaeusborg scores high on sustainability criteria. The building is compact, with a very favorable exterior wall to floor ratio, contains multiple techniques creating a sustainable technical infrastructure, and it is sustainable in terms of materials used and energy consumption. The techniques used to create a sustainable technical infrastructure include a green roof, as well as high-temperature cooling and low-temperature heating using concrete core activation connected to heat and cold storage facilities.

Contractor: Sternike Partnership (Strukton, Voortman, GTI) Location: Groningen, the Netherlands Area: 36,000 m²

025


LINNAEUSBORG, CENTER FOR LIFE SCIENCES

格罗尼根大学 Linnaeusborg 生命科学中心

Architect: Rudy Uytenhaak, Tanja Buijs-Vitkova

024

Firm: Rudy Uytenhaak Architecture Bureau Client: Property and Investment Projects, University of Groningen

Linnaeusborg is a functionally determined building that, while it is large in scale, does not form an impenetrable mass. The volume can be interpreted as a body that rises from the ground and partly vanishes in the perspective and the sloping ground level. A “gate” effect means that one looks through the building rather than at it. The basic principles for the internal organization of the building are interaction, dynamism and flexibility. The upper part of the building is zoned, with laboratories and offices located in two facing areas. The efficiency and flexibility of this model are enhanced by the addition of a third zone incorporating a range of ancillary areas. Light from above through the open areas and views of the sky, ground or water connect the interiors of the corridors with the outside world. The mix of laboratories, ancillary areas

and offices in combination with the spatial and functional qualities of the circuits results in a practical, light and dynamic whole that is highly efficient in both architectural and technical terms. Linnaeusborg scores high on sustainability criteria. The building is compact, with a very favorable exterior wall to floor ratio, contains multiple techniques creating a sustainable technical infrastructure, and it is sustainable in terms of materials used and energy consumption. The techniques used to create a sustainable technical infrastructure include a green roof, as well as high-temperature cooling and low-temperature heating using concrete core activation connected to heat and cold storage facilities.

Contractor: Sternike Partnership (Strukton, Voortman, GTI) Location: Groningen, the Netherlands Area: 36,000 m²

025


Cross section

88

Legende: 1. central hall 2. teaching and practical halls Legende: 1. central hall 3. technical 2. teaching and practical halls 77 4. greenhouses 3. technical 55 5. office zone 4. greenhouses 5. office zone 6. intermediate strip (support functions, open areas) 6. intermediate strip (support functions, open areas) 7. animal facilities 66 7. animal facilities 8. outdoor animal housing 99 animal housing 55 8. outdoor 9. goods 9. goods 10. lab zone 10. lab zone 11. break areas 11. break areas

55 66 10 10

55

Situation

66

Situation

22 33

10 10

8 8

44

00

25 25

00

25 25

7 7

Plan Planground groundfloor floor 5 5

Plan Plan2nd 2ndfloor floor

5 5

6 6 5 5

9 9

10 10

6 6 10 10

66 55

5 5 3 3

0 0

2 2

25 25

6 6

10 10

4 4

0 0

25 25

Cross Crosssection section

Plan ground floor Plan ground floor

Legende: Legende: 1.1. central centralhall hall 2.2. teaching teachingand andpractical practicalhalls halls 3.3. technical technical 4.4. greenhouses greenhouses 5.5. office officezone zone 6.6. intermediate intermediatestrip strip(support (supportfunctions, functions,open openareas) areas) 7.7. animal animalfacilities facilities 8.8. outdoor outdooranimal animalhousing housing 9.9. goods goods 10. 10.lab labzone zone 11. 11.break breakareas areas

Plan 2nd floor Plan 2nd floor

10 10

6 6 5 5

Situation Situation Cross section Cross section

026

027


Cross section

88

Legende: 1. central hall 2. teaching and practical halls Legende: 1. central hall 3. technical 2. teaching and practical halls 77 4. greenhouses 3. technical 55 5. office zone 4. greenhouses 5. office zone 6. intermediate strip (support functions, open areas) 6. intermediate strip (support functions, open areas) 7. animal facilities 66 7. animal facilities 8. outdoor animal housing 99 animal housing 55 8. outdoor 9. goods 9. goods 10. lab zone 10. lab zone 11. break areas 11. break areas

55 66 10 10

55

Situation

66

Situation

22 33

10 10

8 8

44

00

25 25

00

25 25

7 7

Plan Planground groundfloor floor 5 5

Plan Plan2nd 2ndfloor floor

5 5

6 6 5 5

9 9

10 10

6 6 10 10

66 55

5 5 3 3

0 0

2 2

25 25

6 6

10 10

4 4

0 0

25 25

Cross Crosssection section

Plan ground floor Plan ground floor

Legende: Legende: 1.1. central centralhall hall 2.2. teaching teachingand andpractical practicalhalls halls 3.3. technical technical 4.4. greenhouses greenhouses 5.5. office officezone zone 6.6. intermediate intermediatestrip strip(support (supportfunctions, functions,open openareas) areas) 7.7. animal animalfacilities facilities 8.8. outdoor outdooranimal animalhousing housing 9.9. goods goods 10. 10.lab labzone zone 11. 11.break breakareas areas

Plan 2nd floor Plan 2nd floor

10 10

6 6 5 5

Situation Situation Cross section Cross section

026

027


5

6

2 10

3

4

0

25

0

25

Plan ground floor

Plan 2nd floor

5 11 6

5

10

11

6

5

5

6

10

10

10

Cross section

0

25

0

25

Plan 5th floor

Plan 8th floor

Legende: Legende: 1.1. central hall 2.2. teaching and practical halls 3.3. technical 4.4. greenhouses 5.5. office zone 6.6. intermediate strip (support functions, open areas) 7.7. animal facilities 8.8. outdoor animal housing 9.9. goods 10. 10.lab labzone zone 11. 11.break breakareas areas 12. bicycles 13. water feature Situation

Linnaeusborg 是一个功能型建筑,虽然它的规模很大,但却没有给人一种突兀的感觉。它可以用这样的语句来形容:

12

13

建筑主体拔地而起并随视线消失在远处的坡地中。 一种“大门”似的结构能使人们的视线穿透建筑,而不仅仅停留在建筑的表面。 建筑内部布局围绕互动性、动态性和灵活性的原则。建筑上部分分为实验室和办公室,两者相对各分布在建筑的一侧。 一个由一系列辅助区域构成的第三区加强了上述分区方法的有效性和灵活性。 由上而下穿过开放区的光线和天空、地面、水面的景色将室内走廊与户外环境联系起来。实验室、辅助区和办公室与

Cross section intermediate strip open areas

空间和高品质的电路功能相结合,营造了一个实用、明亮、动感的建筑体,无论是在建筑方面还是在技术方面都非常高效。 Linnaeusborg 完全符合可持续发展标准。该建筑是紧凑密集型的,拥有有利的外墙和容积率,建造中采用了多种技 术,进而打造出了这个可持续发展的科研建筑,同时,在材料使用和能源消耗方面,它也是可持续的。 该可持续发展的科研建筑中应用到的技术包括绿化屋顶和高温冷却低、温加热系统,此系统中实际调度核心与加热和 冷藏设施相连。

028

029


5

6

2 10

3

4

0

25

0

25

Plan ground floor

Plan 2nd floor

5 11 6

5

10

11

6

5

5

6

10

10

10

Cross section

0

25

0

25

Plan 5th floor

Plan 8th floor

Legende: Legende: 1.1. central hall 2.2. teaching and practical halls 3.3. technical 4.4. greenhouses 5.5. office zone 6.6. intermediate strip (support functions, open areas) 7.7. animal facilities 8.8. outdoor animal housing 9.9. goods 10. 10.lab labzone zone 11. 11.break breakareas areas 12. bicycles 13. water feature Situation

Linnaeusborg 是一个功能型建筑,虽然它的规模很大,但却没有给人一种突兀的感觉。它可以用这样的语句来形容:

12

13

建筑主体拔地而起并随视线消失在远处的坡地中。 一种“大门”似的结构能使人们的视线穿透建筑,而不仅仅停留在建筑的表面。 建筑内部布局围绕互动性、动态性和灵活性的原则。建筑上部分分为实验室和办公室,两者相对各分布在建筑的一侧。 一个由一系列辅助区域构成的第三区加强了上述分区方法的有效性和灵活性。 由上而下穿过开放区的光线和天空、地面、水面的景色将室内走廊与户外环境联系起来。实验室、辅助区和办公室与

Cross section intermediate strip open areas

空间和高品质的电路功能相结合,营造了一个实用、明亮、动感的建筑体,无论是在建筑方面还是在技术方面都非常高效。 Linnaeusborg 完全符合可持续发展标准。该建筑是紧凑密集型的,拥有有利的外墙和容积率,建造中采用了多种技 术,进而打造出了这个可持续发展的科研建筑,同时,在材料使用和能源消耗方面,它也是可持续的。 该可持续发展的科研建筑中应用到的技术包括绿化屋顶和高温冷却低、温加热系统,此系统中实际调度核心与加热和 冷藏设施相连。

028

029


030

031


030

031


032

033


032

033


034

035


034

035


MIDDLE EAST TECHNICAL UNIVERSITY MODSIMMER MODELLING AND SIMULATION RESEARCH CENTER

中东技术大学模拟与仿真研究中心

Architect: Yazgan Design Architecture

036

Project Team: Kerem Yazgan, Burak Turgutoğlu Employer: Middle East Technical University Presidency Structural Project: Aydin Pelin - Can Binzet Consultancy Engineering Inc. Mechanical Project: Unlu Engineering Mechanical Industry Trading Co. Ltd. Electrical Project: Nuve Lighting Industry and Trading Co. Ltd. - Mustafa Karakas

Interior Design: Kerem Yazgan, Burak Turgutoğlu Landscape Design: Yazgan Design Architecture Co. Ltd., Middle East Technical University Construction Services Department Location: Ankara, Turkey Area: 4,100 m2 Photographer: Yunus Özkazanc, Kerem Yazgan

037


MIDDLE EAST TECHNICAL UNIVERSITY MODSIMMER MODELLING AND SIMULATION RESEARCH CENTER

中东技术大学模拟与仿真研究中心

Architect: Yazgan Design Architecture

036

Project Team: Kerem Yazgan, Burak Turgutoğlu Employer: Middle East Technical University Presidency Structural Project: Aydin Pelin - Can Binzet Consultancy Engineering Inc. Mechanical Project: Unlu Engineering Mechanical Industry Trading Co. Ltd. Electrical Project: Nuve Lighting Industry and Trading Co. Ltd. - Mustafa Karakas

Interior Design: Kerem Yazgan, Burak Turgutoğlu Landscape Design: Yazgan Design Architecture Co. Ltd., Middle East Technical University Construction Services Department Location: Ankara, Turkey Area: 4,100 m2 Photographer: Yunus Özkazanc, Kerem Yazgan

037


METU MODSIM is a building situated in a land of 5.200 m2 that is both bound to and diverts from its context. On one hand, it greets contextual values considering the facade color, the building height, levels of the site, the direction of the sun and the pedestrian axis. Being at the midst of a poplar forest, the building facade is a reflection of all greens of the surrounding. On the other hand, the 4.200 m2 building displays a unique identity by exhibiting a different knowledge in terms of both the formal, spatial and contextual means of production and the choice of materials. Its strict, rectangular-shaped geometry renders the building to be seen from every point within the diversity of forms in the green forested context. The building has a double program; simulation and research center. Although these two

038

different programs do not mix in terms of circulation, they are designed in such a way that they can be integrated in the future. In order to gain this flexibility in the programmatic development, the layered strip pattern, which resemble Turkish carpet designs’ configurations, are integrated with a grid in the third dimension. Furthermore, the design was not developed through the architect’s hand alone; it gives chance to a collaborative work with the client and the engineers. The designed matrix with the strips and the grid gave way to a peaceful working environment between different actors, such as architects, engineers and craftsmen etc., in the process of construction. The building is the result of a three dimensional reference system through matrix and its constitutional elements and relations.

039


METU MODSIM is a building situated in a land of 5.200 m2 that is both bound to and diverts from its context. On one hand, it greets contextual values considering the facade color, the building height, levels of the site, the direction of the sun and the pedestrian axis. Being at the midst of a poplar forest, the building facade is a reflection of all greens of the surrounding. On the other hand, the 4.200 m2 building displays a unique identity by exhibiting a different knowledge in terms of both the formal, spatial and contextual means of production and the choice of materials. Its strict, rectangular-shaped geometry renders the building to be seen from every point within the diversity of forms in the green forested context. The building has a double program; simulation and research center. Although these two

038

different programs do not mix in terms of circulation, they are designed in such a way that they can be integrated in the future. In order to gain this flexibility in the programmatic development, the layered strip pattern, which resemble Turkish carpet designs’ configurations, are integrated with a grid in the third dimension. Furthermore, the design was not developed through the architect’s hand alone; it gives chance to a collaborative work with the client and the engineers. The designed matrix with the strips and the grid gave way to a peaceful working environment between different actors, such as architects, engineers and craftsmen etc., in the process of construction. The building is the result of a three dimensional reference system through matrix and its constitutional elements and relations.

039


040

041


040

041


042

043


042

043


044

045


044

045


中东技术大学模拟与仿真研究中心坐落于一块 5200 平方米的土地上,与其周围环境既融合又脱离。一方面,它符合 周围的环境标准,设计考虑到了外立面颜色、建筑高度、场地的高度、太阳的方位和行人轴等因素。位于杨树林的中部, 该建筑的外立面是周围绿色环境的缩影。 另一方面,这个面积为 4200 平方米的建筑展示出一种独特的存在感,它在建造及材料选择上表现出一种非常规的空 间形态方法。该建筑精准的矩形几何状外观使其在这片绿色的森林内,无论在哪一个点都可以看出其呈现出的建筑形式的 多样性。 该建筑包括两部分:模拟中心和研究中心。虽然这两个不同的分区在交通动线上各自独立,但是它们的设计方式可以 使它们在未来被集为一体。为了在建筑方案开发上营造这种灵活性,设计采用了酷似土耳其地毯的分层条形模式来设计, 用网格将二者栩栩如生地联系在一起。 此外,该项目的设计开发不仅仅通过建筑师一人之手,它是同客户和工程师共同合作的成果。在施工过程中,条纹和 网格的矩阵布局,为如建筑师、工程师和工匠等不同作业的人员提供了一个平静的工作环境。矩阵布局、构成元素和构成 关系,三者结合使建筑最终成为一个三维参考系统。

046

047


中东技术大学模拟与仿真研究中心坐落于一块 5200 平方米的土地上,与其周围环境既融合又脱离。一方面,它符合 周围的环境标准,设计考虑到了外立面颜色、建筑高度、场地的高度、太阳的方位和行人轴等因素。位于杨树林的中部, 该建筑的外立面是周围绿色环境的缩影。 另一方面,这个面积为 4200 平方米的建筑展示出一种独特的存在感,它在建造及材料选择上表现出一种非常规的空 间形态方法。该建筑精准的矩形几何状外观使其在这片绿色的森林内,无论在哪一个点都可以看出其呈现出的建筑形式的 多样性。 该建筑包括两部分:模拟中心和研究中心。虽然这两个不同的分区在交通动线上各自独立,但是它们的设计方式可以 使它们在未来被集为一体。为了在建筑方案开发上营造这种灵活性,设计采用了酷似土耳其地毯的分层条形模式来设计, 用网格将二者栩栩如生地联系在一起。 此外,该项目的设计开发不仅仅通过建筑师一人之手,它是同客户和工程师共同合作的成果。在施工过程中,条纹和 网格的矩阵布局,为如建筑师、工程师和工匠等不同作业的人员提供了一个平静的工作环境。矩阵布局、构成元素和构成 关系,三者结合使建筑最终成为一个三维参考系统。

046

047


NESTLE’S RESEARCH LABORATORIES Architect: rojkind arquitectos

048

Design Principal: Michel Rojkind Project Team: Agustín Pereyra, Paulina Goycoolea (Project Leaders), Juan Carlos Vidals (Renders), Moritz Melchert(Team Leaders), Tere Levy, Isaac Smeke Jaber, Tomas Kristof, Francisco Gordillo, Andrés Altesor, Juan Pablo Espinosa Lanscape: rojkind arquitectos

雀巢公司研究实验室

Facade Engineering: Vycisa (Juan Pablo Casillas, Cybelle Hernández) Structural Engineering: Ing. Juan Felipe Heredia Location: Querétaro, México Area: 776 m2 Photography: ©Paúl Rivera, Iwan Baan Drawings: ©rojkind arquitectos

049


NESTLE’S RESEARCH LABORATORIES Architect: rojkind arquitectos

048

Design Principal: Michel Rojkind Project Team: Agustín Pereyra, Paulina Goycoolea (Project Leaders), Juan Carlos Vidals (Renders), Moritz Melchert(Team Leaders), Tere Levy, Isaac Smeke Jaber, Tomas Kristof, Francisco Gordillo, Andrés Altesor, Juan Pablo Espinosa Lanscape: rojkind arquitectos

雀巢公司研究实验室

Facade Engineering: Vycisa (Juan Pablo Casillas, Cybelle Hernández) Structural Engineering: Ing. Juan Felipe Heredia Location: Querétaro, México Area: 776 m2 Photography: ©Paúl Rivera, Iwan Baan Drawings: ©rojkind arquitectos

049


In this case, a series of spheres intersect and multiply like foam forming the origin of a continuous open space: a portico. This space expands while another one, made of orthogonal boxes clad in satin mirrored glass, restrains the proliferation of the spheres and houses the specific program requirements for the lab. While the exterior is opaque, metallic and impenetrable in appearance, the interior of these boxes painted in different colors, have an almost theatrical quality to them: it appears as if the researchers wearing their white robes were floating in a continuous flow of blues, yellows or greens which are interrupted by the continuous space of different colors sometimes, when one of the of the metal panels that covers the boxes reveals itself and opens like a window, they can be seen from the outside. The construction of these buildings (if built in a different latitude, a more sophisticated technology most likely would have had been employed to automatize the production of

050

the unique geometries of these spheres) implied the translation of spatial forms was to be done in a different constructive manner, in a simple almost colloquial way, which allowed the local workers to fabricate the foam like spherical space from the physical intersection of the spherical cupolas made of rebar rings and arches. The final result is a series of contrasts that has been unified with apparent simplicity: the exterior metallic slightly reflective satin color lightly contrasts with and against the bright and satin colors of the interiors, the sloped abstracted planes of the boxes contrast against the exuberance of the interweaving spheres. The strength of this project might be attributed to this game of contrasting opposites, which in a dynamic and changing way depending from the physical view of the observer, can be a discrete characteristic in another. A rethought and recharged industrial construction thus regains an understanding of what at one time it offered to Architecture: clarity and force.

051


In this case, a series of spheres intersect and multiply like foam forming the origin of a continuous open space: a portico. This space expands while another one, made of orthogonal boxes clad in satin mirrored glass, restrains the proliferation of the spheres and houses the specific program requirements for the lab. While the exterior is opaque, metallic and impenetrable in appearance, the interior of these boxes painted in different colors, have an almost theatrical quality to them: it appears as if the researchers wearing their white robes were floating in a continuous flow of blues, yellows or greens which are interrupted by the continuous space of different colors sometimes, when one of the of the metal panels that covers the boxes reveals itself and opens like a window, they can be seen from the outside. The construction of these buildings (if built in a different latitude, a more sophisticated technology most likely would have had been employed to automatize the production of

050

the unique geometries of these spheres) implied the translation of spatial forms was to be done in a different constructive manner, in a simple almost colloquial way, which allowed the local workers to fabricate the foam like spherical space from the physical intersection of the spherical cupolas made of rebar rings and arches. The final result is a series of contrasts that has been unified with apparent simplicity: the exterior metallic slightly reflective satin color lightly contrasts with and against the bright and satin colors of the interiors, the sloped abstracted planes of the boxes contrast against the exuberance of the interweaving spheres. The strength of this project might be attributed to this game of contrasting opposites, which in a dynamic and changing way depending from the physical view of the observer, can be a discrete characteristic in another. A rethought and recharged industrial construction thus regains an understanding of what at one time it offered to Architecture: clarity and force.

051


052

053


052

053


054

055


054

055


在这个建筑中,一系列的球体像泡沫一样交叠,形成一个连续的开放空间的原点:一个门廊。

出来,用于自动生产这些球状几何建筑了)暗示了要以一种独特的建造方式,一种简单得近乎通

圆球空间膨胀的同时,一个由缎色镜面玻璃构成的直角的“盒式”建筑阻断了球状空间的扩展,该“盒

俗的方式,来转变空间形式,这样本地工人才能把由钢筋环和拱组成的球状圆顶以物理交叉的方

式”建筑内是实验室的具体项目。

式组合起来,最终形成泡沫状的球形空间。

虽然建筑外表是不透明的、金属质感的且视线不能穿透的,但这些“盒子”的内部则被涂上

最终的建筑是一系列看似简单而又统一的对比:外部金属略微反射了缎色,与室内明亮的缎

了不同的颜色,拥有了戏剧化的特点:整个建筑内部好像是穿着白色长袍的研究人员正漂浮在连

色形成了轻微的对比与呼应;倾斜而抽象的盒子表面又与大弧度的相互交织的球面形成了对比。

续流动的蓝色、黄色或绿色气流中,有时被不同颜色的连续空间打断,当盒子表面的某块金属板

该项目的优势可能正源于这种鲜明的对比,这种对比是动感而变化的,取决于观看者不断变化的

凸显出来或者被当成窗户打开时,从外部就能看到内部的情况了。

观赏角度,在这个角度是这个特点,换个角度就完全不一样了。因此,这个经重新构思和建造的

这些建筑的建成(如果建立在不同的纬度上,那么很可能已经有一种更为先进的科技被研制

056

工业建筑,重新向建筑界证明了它对建筑的一贯认知:简洁而有震撼力。

057


在这个建筑中,一系列的球体像泡沫一样交叠,形成一个连续的开放空间的原点:一个门廊。

出来,用于自动生产这些球状几何建筑了)暗示了要以一种独特的建造方式,一种简单得近乎通

圆球空间膨胀的同时,一个由缎色镜面玻璃构成的直角的“盒式”建筑阻断了球状空间的扩展,该“盒

俗的方式,来转变空间形式,这样本地工人才能把由钢筋环和拱组成的球状圆顶以物理交叉的方

式”建筑内是实验室的具体项目。

式组合起来,最终形成泡沫状的球形空间。

虽然建筑外表是不透明的、金属质感的且视线不能穿透的,但这些“盒子”的内部则被涂上

最终的建筑是一系列看似简单而又统一的对比:外部金属略微反射了缎色,与室内明亮的缎

了不同的颜色,拥有了戏剧化的特点:整个建筑内部好像是穿着白色长袍的研究人员正漂浮在连

色形成了轻微的对比与呼应;倾斜而抽象的盒子表面又与大弧度的相互交织的球面形成了对比。

续流动的蓝色、黄色或绿色气流中,有时被不同颜色的连续空间打断,当盒子表面的某块金属板

该项目的优势可能正源于这种鲜明的对比,这种对比是动感而变化的,取决于观看者不断变化的

凸显出来或者被当成窗户打开时,从外部就能看到内部的情况了。

观赏角度,在这个角度是这个特点,换个角度就完全不一样了。因此,这个经重新构思和建造的

这些建筑的建成(如果建立在不同的纬度上,那么很可能已经有一种更为先进的科技被研制

056

工业建筑,重新向建筑界证明了它对建筑的一贯认知:简洁而有震撼力。

057


058

059


058

059


060

061


060

061


062

063


062

063


VAN LEEUWENHOEK LABORATORY Architect: DHV architects

Client: TNO Finance & Real Estate User: Delft University of Technology and TNO Structural Engineer: DHV B.V. Building Physics: DHV B.V. Mechanical, Electronic and Control Systems: Deerns B.V.

The Van Leeuwenhoek Laboratory is an advanced research facility for nanotechnology. It is unique in being the only laboratory where a national research organization and a leading technology university join forces to create the extraordinary. Whether it is science, education, R&D or business opportunities: Delft is at the heart of nanotechnology innovations worldwide. Industrial buildings are characterized by a pragmatic and process-driven configuration. Unlike schools, theaters and libraries it’s not the user-experience but the industrial process which is leading. Form follows function. Progressive and very complex research places extremely high demands on the building. The underlying principle of the architectonic design was to once again place humans in a central position. The focus thus lies on communication between

064

凡 • 列文虎克实验室

Contractor (Civil): Heijmans Utiliteitsbouw N.V. Contractor (Utilities): Burgers Ergon B.V. Location: Delft, The Netherlands Area: 10,300 m2

the building’s users, but also on (visual) communication with the outside world – the atrium plays an important role in this. It forms an interface between the clean rooms (machine) and users. The atrium is suitable for meetings and stimulates an exchange of knowledge. Because the building is occupied around the clock, at night it acts as a beacon for its surroundings. The main corridors adjoin the outer facades in such a way that the scientists become visible from the campus and the daylight and heat load of the cleanrooms can be regulated more efficiently. The colored perforations in the building’s facade provide insight into the technology of the future, from within the building they serve as guiding points for the technical staff.

065


VAN LEEUWENHOEK LABORATORY Architect: DHV architects

Client: TNO Finance & Real Estate User: Delft University of Technology and TNO Structural Engineer: DHV B.V. Building Physics: DHV B.V. Mechanical, Electronic and Control Systems: Deerns B.V.

The Van Leeuwenhoek Laboratory is an advanced research facility for nanotechnology. It is unique in being the only laboratory where a national research organization and a leading technology university join forces to create the extraordinary. Whether it is science, education, R&D or business opportunities: Delft is at the heart of nanotechnology innovations worldwide. Industrial buildings are characterized by a pragmatic and process-driven configuration. Unlike schools, theaters and libraries it’s not the user-experience but the industrial process which is leading. Form follows function. Progressive and very complex research places extremely high demands on the building. The underlying principle of the architectonic design was to once again place humans in a central position. The focus thus lies on communication between

064

凡 • 列文虎克实验室

Contractor (Civil): Heijmans Utiliteitsbouw N.V. Contractor (Utilities): Burgers Ergon B.V. Location: Delft, The Netherlands Area: 10,300 m2

the building’s users, but also on (visual) communication with the outside world – the atrium plays an important role in this. It forms an interface between the clean rooms (machine) and users. The atrium is suitable for meetings and stimulates an exchange of knowledge. Because the building is occupied around the clock, at night it acts as a beacon for its surroundings. The main corridors adjoin the outer facades in such a way that the scientists become visible from the campus and the daylight and heat load of the cleanrooms can be regulated more efficiently. The colored perforations in the building’s facade provide insight into the technology of the future, from within the building they serve as guiding points for the technical staff.

065


066

067


066

067


068

069


068

069


凡 • 列文虎克实验室是一个先进的纳米技术研究中心。它的独特之处在于它是唯一的一所由国家实验室和先进的科技大学合力 创建的实验室,旨在打造非凡的技术。无论是在科学、教育、研发还是商机方面,代尔夫特在世界范围内都是纳米技术创新的中心。 工业建筑以其功能和流程设计为特点。因此,它并不像学校、剧院和图书馆那样遵循使用者的需求来设计,它的设计基于先进 的工艺流程。形式追随着功能。 先进且极其复杂的研究场所在建筑设计上有着极高的要求。该建筑设计的基本原则再一次将“人”放在了中心位置。因此,设 计的重心不仅在于建筑使用者之间的交流,也在于建筑与外界的(视觉)交流──在这一点上,中庭起到了至关重要的作用,它在 设备房与用户之间构建了一个接口。中庭适合举办会议,有助于促进知识交流。 由于建筑里的人们昼夜不停地工作,夜晚时分,实验室就像灯塔一样屹立在那里。主要走廊与外立面结合起来,从校园中就能 看到建筑里的科学家的身影,无菌室则能够有效地调节自然光线和热负荷。建筑物的有色穿孔立面为未来科技提供了一种展望,而 在建筑内部,穿孔则充当了技术人员的参考点。

070

071


凡 • 列文虎克实验室是一个先进的纳米技术研究中心。它的独特之处在于它是唯一的一所由国家实验室和先进的科技大学合力 创建的实验室,旨在打造非凡的技术。无论是在科学、教育、研发还是商机方面,代尔夫特在世界范围内都是纳米技术创新的中心。 工业建筑以其功能和流程设计为特点。因此,它并不像学校、剧院和图书馆那样遵循使用者的需求来设计,它的设计基于先进 的工艺流程。形式追随着功能。 先进且极其复杂的研究场所在建筑设计上有着极高的要求。该建筑设计的基本原则再一次将“人”放在了中心位置。因此,设 计的重心不仅在于建筑使用者之间的交流,也在于建筑与外界的(视觉)交流──在这一点上,中庭起到了至关重要的作用,它在 设备房与用户之间构建了一个接口。中庭适合举办会议,有助于促进知识交流。 由于建筑里的人们昼夜不停地工作,夜晚时分,实验室就像灯塔一样屹立在那里。主要走廊与外立面结合起来,从校园中就能 看到建筑里的科学家的身影,无菌室则能够有效地调节自然光线和热负荷。建筑物的有色穿孔立面为未来科技提供了一种展望,而 在建筑内部,穿孔则充当了技术人员的参考点。

070

071


072

073


072

073


074

075


074

075


076

077


076

077


CIC ENERGIGUNE Architect: Javier Aja Cantalejo

078

Firm: ACXT Arquitectos Project Team: Aitziber Olarte Bidaurrazaga, Daniela Bustamante Altamirano Project Management: Gorka Viguri Roa

CIC Energigune 实验大楼

Client: EVE. Basque Energy Entity Location: Plot 10.4, Parque Tecnológico, Spain Area: 6,000 m2 Photographer: Javier Aja Cantalejo, Aitor Ortiz

079


CIC ENERGIGUNE Architect: Javier Aja Cantalejo

078

Firm: ACXT Arquitectos Project Team: Aitziber Olarte Bidaurrazaga, Daniela Bustamante Altamirano Project Management: Gorka Viguri Roa

CIC Energigune 实验大楼

Client: EVE. Basque Energy Entity Location: Plot 10.4, Parque Tecnológico, Spain Area: 6,000 m2 Photographer: Javier Aja Cantalejo, Aitor Ortiz

079


The CIC Energigune is configured as a set of modular buildings connected together through a functional and communication hub that acts as the backbone of the centre’s activity. The areas within have been designed with the aim of promoting relationships which foster informal transmission of knowledge between researchers in a relaxed atmosphere. The largest building (PB+3), facing the main road of the park, houses the reception area, the shared research equipment (microscopes, diffractometers, etc.), maintenance facilities, a group of laboratories, the boardroom, the training area, and administration offices. The

080

smallest building (PB +1) holds the other group of laboratories. The shell of the laboratory buildings is made up of a single locking system, consisting of a folded sheet of polished stainless steel to which an opaque or perforated treatment is applied according to the orientation of the areas to be illuminated, the need for a particular view or ventilation or the need to hide these. The building shell of the transversal areas consists of large polycarbonate parasols with great solar absorption capacity. The overall picture obtained is of a distinctly innovative technology, in which nature is reflected in buildings and merges with them.

081


The CIC Energigune is configured as a set of modular buildings connected together through a functional and communication hub that acts as the backbone of the centre’s activity. The areas within have been designed with the aim of promoting relationships which foster informal transmission of knowledge between researchers in a relaxed atmosphere. The largest building (PB+3), facing the main road of the park, houses the reception area, the shared research equipment (microscopes, diffractometers, etc.), maintenance facilities, a group of laboratories, the boardroom, the training area, and administration offices. The

080

smallest building (PB +1) holds the other group of laboratories. The shell of the laboratory buildings is made up of a single locking system, consisting of a folded sheet of polished stainless steel to which an opaque or perforated treatment is applied according to the orientation of the areas to be illuminated, the need for a particular view or ventilation or the need to hide these. The building shell of the transversal areas consists of large polycarbonate parasols with great solar absorption capacity. The overall picture obtained is of a distinctly innovative technology, in which nature is reflected in buildings and merges with them.

081


082

083


082

083


084

085


084

085


CIC Energigune 实验大楼由几栋模数建筑组成,各个建筑由一个功能性交流中心连接起来, 该中心是 CIC Energigune 内所有活动的中枢。这一组建筑的设计旨在提升人际关系,进而在一 个放松的氛围中,促进研究人员之间非正式的知识交流。 面向公园主要道路的建筑(PB+3)是规模最大的,内置接待区域、公共研究设备(显微镜和 衍射机等)、日常维护设备、一组实验室、董事会议室、训练区域以及管理办公室。规模最小的

086

建筑(PB+1)内则设置了另一组实验室。 这些实验室大楼的外立面都是锁闭的,由一层抛光不锈钢折叠板制成,并根据需照明区域的 方位朝向、特别取景或通风需要进行了非透明或穿孔处理。横向区域的建筑外立面则由具有超强 太阳能吸收力的大型聚碳酸酯阳伞构成。 最终,整栋建筑就是一项独特的科技创新的成果,将自然映射到建筑当中,并使两者相互融合。

087


CIC Energigune 实验大楼由几栋模数建筑组成,各个建筑由一个功能性交流中心连接起来, 该中心是 CIC Energigune 内所有活动的中枢。这一组建筑的设计旨在提升人际关系,进而在一 个放松的氛围中,促进研究人员之间非正式的知识交流。 面向公园主要道路的建筑(PB+3)是规模最大的,内置接待区域、公共研究设备(显微镜和 衍射机等)、日常维护设备、一组实验室、董事会议室、训练区域以及管理办公室。规模最小的

086

建筑(PB+1)内则设置了另一组实验室。 这些实验室大楼的外立面都是锁闭的,由一层抛光不锈钢折叠板制成,并根据需照明区域的 方位朝向、特别取景或通风需要进行了非透明或穿孔处理。横向区域的建筑外立面则由具有超强 太阳能吸收力的大型聚碳酸酯阳伞构成。 最终,整栋建筑就是一项独特的科技创新的成果,将自然映射到建筑当中,并使两者相互融合。

087


GROUND FLOOR

FIRST FLOOR

088

SECOND FLOOR

089


GROUND FLOOR

FIRST FLOOR

088

SECOND FLOOR

089


THIRD FLOOR

FOURTH FLOOR

090

091


THIRD FLOOR

FOURTH FLOOR

090

091


092

093


092

093


ACADEMIC CENTER FOR DENTISTRY Architect: Benthem Crouwel Architekten

094

Project Team: Mels Crouwel, Marcel Blom, Peter Alberts, Annette van Baren, Okke van den Broek, Paul van Ginkel, Thomas Harms, Noortje ter Heege, Jan van Heerd, Falk Schneemann, Rick Ultee, JanDirk Valewink, Nico de Waard, Daphne Tempelman, Cees Zuidervaart

阿姆斯特丹牙科学术中心

Location: Amsterdam, the Netherlands Area: 25,000 m² Photographer: Jannes Linders

095


ACADEMIC CENTER FOR DENTISTRY Architect: Benthem Crouwel Architekten

094

Project Team: Mels Crouwel, Marcel Blom, Peter Alberts, Annette van Baren, Okke van den Broek, Paul van Ginkel, Thomas Harms, Noortje ter Heege, Jan van Heerd, Falk Schneemann, Rick Ultee, JanDirk Valewink, Nico de Waard, Daphne Tempelman, Cees Zuidervaart

阿姆斯特丹牙科学术中心

Location: Amsterdam, the Netherlands Area: 25,000 m² Photographer: Jannes Linders

095


096

097


096

097


The new premises of the Academic Center for Dentistry has a sturdy city block for the low-rise portion, a narrow “waist� above that and a cantilevered volume on top. Each of the three volumes has a different shade of grey for its glazing and bears the stylized digital image of a cloudy sky in alternating patterns of stripes and staggered window configurations. These patterns are printed on both panes of the double glazing so that the facade's appearance changes subtly with changes in the angle of observation. The real skies are reflected in the smooth glass facades. Areas for the public, rooms for patients and education and workrooms for general staff and professors are all in the low-rise portion. Above that in the intermediate volume is a two-tier restaurant whose upper level doubles as an examination room. In the topmost volume are the labs and offices for the specialized staff. The standout space is the central atrium in the low-rise, where a spectacular cascade of escalators stitches the floors in that volume together. These floors are open on the side of the patients' treatment rooms and closed off on the opposite side with a glass partition bearing white and green floral motifs, behind which are the rooms for the staff. Patients, students and staff all make use of the escalators which give them a good overall view of the open treatment rooms. Patients will feel more at ease in the roomy well-lit atrium as they can see where they need to be and that others are being treated. The revolving circular platforms fitted out with dental chairs are an eye-catching departure. All the materials, the smooth finishes and pale colors are attuned to creating a professional and hygienic working environment for the Academic Center for Dentistry, which aspires to be among the best of its kind in the world.

098

099


The new premises of the Academic Center for Dentistry has a sturdy city block for the low-rise portion, a narrow “waist� above that and a cantilevered volume on top. Each of the three volumes has a different shade of grey for its glazing and bears the stylized digital image of a cloudy sky in alternating patterns of stripes and staggered window configurations. These patterns are printed on both panes of the double glazing so that the facade's appearance changes subtly with changes in the angle of observation. The real skies are reflected in the smooth glass facades. Areas for the public, rooms for patients and education and workrooms for general staff and professors are all in the low-rise portion. Above that in the intermediate volume is a two-tier restaurant whose upper level doubles as an examination room. In the topmost volume are the labs and offices for the specialized staff. The standout space is the central atrium in the low-rise, where a spectacular cascade of escalators stitches the floors in that volume together. These floors are open on the side of the patients' treatment rooms and closed off on the opposite side with a glass partition bearing white and green floral motifs, behind which are the rooms for the staff. Patients, students and staff all make use of the escalators which give them a good overall view of the open treatment rooms. Patients will feel more at ease in the roomy well-lit atrium as they can see where they need to be and that others are being treated. The revolving circular platforms fitted out with dental chairs are an eye-catching departure. All the materials, the smooth finishes and pale colors are attuned to creating a professional and hygienic working environment for the Academic Center for Dentistry, which aspires to be among the best of its kind in the world.

098

099


新建的牙科中心低层部分拥有厚实的建筑体量感,顶部体量悬挑而出,之间由“纤细”形体过渡连接。建筑的三个体量均依 靠玻璃表面形成不同的明暗层次,窗扇玻璃表面被设计形成参差错落的纹理,可以反射出独具艺术效果与丰富变化的天空映像。 由于双层玻璃的每一层均具有纹理变化,因此,建筑的外立面可以随着视角的改变而发生微妙的变化。天空的变化真实地呈现在 这些光滑的玻璃表皮上。 公共空间、患者指导室、教授与普通科研人员的工作室均分布于低层空间,其上的中间体量自下而上为双层餐厅与双层诊察室。 顶部体量则为特殊科研人员实验室与办公室。建筑的特色空间当属低层部分的中央庭院,中庭内的大型自动扶梯纵贯整个低层体量, 蔚为壮观。低层部分的患者诊疗室一侧开敞,另一侧则用印有白、绿相间的花卉纹样的玻璃隔墙进行分隔,将工作人员工作室隐 于其后。中庭内的大型扶梯为患者、学生、工作人员共同提供了俯瞰整个开敞诊疗室的绝佳视角。患者们在宽敞明亮的中庭内部 可以放松心情,在那里,他们可以看到其他患者正处于也是自己将要进入的诊疗室。配备了牙科手术椅的旋转环形平台成为了建 筑中引人注目的尾声。材料的使用、流畅的形态和淡雅的色彩,共同造就了牙科中心专业而卫生的工作环境,使其处于全球同类 科研中心的领先位置。

100

101


新建的牙科中心低层部分拥有厚实的建筑体量感,顶部体量悬挑而出,之间由“纤细”形体过渡连接。建筑的三个体量均依 靠玻璃表面形成不同的明暗层次,窗扇玻璃表面被设计形成参差错落的纹理,可以反射出独具艺术效果与丰富变化的天空映像。 由于双层玻璃的每一层均具有纹理变化,因此,建筑的外立面可以随着视角的改变而发生微妙的变化。天空的变化真实地呈现在 这些光滑的玻璃表皮上。 公共空间、患者指导室、教授与普通科研人员的工作室均分布于低层空间,其上的中间体量自下而上为双层餐厅与双层诊察室。 顶部体量则为特殊科研人员实验室与办公室。建筑的特色空间当属低层部分的中央庭院,中庭内的大型自动扶梯纵贯整个低层体量, 蔚为壮观。低层部分的患者诊疗室一侧开敞,另一侧则用印有白、绿相间的花卉纹样的玻璃隔墙进行分隔,将工作人员工作室隐 于其后。中庭内的大型扶梯为患者、学生、工作人员共同提供了俯瞰整个开敞诊疗室的绝佳视角。患者们在宽敞明亮的中庭内部 可以放松心情,在那里,他们可以看到其他患者正处于也是自己将要进入的诊疗室。配备了牙科手术椅的旋转环形平台成为了建 筑中引人注目的尾声。材料的使用、流畅的形态和淡雅的色彩,共同造就了牙科中心专业而卫生的工作环境,使其处于全球同类 科研中心的领先位置。

100

101


102

103


102

103


104

105


104

105


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.