Reports@SCM, 9 (1)

Page 1


https://reportsascm.iec.cat ISSNelectronicedition:2385-4227

EditorialTeam

Editor-in-chief

SimoneMarchesi,UniversitatdeBarcelona

AssociateEditors

MontserratAlsina,UniversitatPolit`ecnicadeCatalunya XavierBardina,UniversitatAut`onomadeBarcelona EnricCosme,UniversitatdeVal`encia N´uriaFagella,UniversitatdeBarcelona XavierMassaneda,UniversitatdeBarcelona ArturNicolau,UniversitatAut`onomadeBarcelona LauraPrat,UniversitatAut`onomadeBarcelona JoaquimRo´e,UniversitatAut`onomadeBarcelona OriolSerra,UniversitatPolit`ecnicadeCatalunya PabloSevilla,UniversitatPolit`ecnicadeVal`encia EnricVentura,UniversitatPolit`ecnicadeCatalunya

EditorialAssistant

RosaRodr´ıguez

FocusandScope

Reports@SCMisanon-profitelectronicresearchjournalonMathematicspublishedbytheSocietat CatalanadeMatem`atiques(SCM)whichoriginatedfromthedesiretohelpstudentsandyoung researchersintheirfirststepsintotheworldofresearchpublication.

Reports@SCMpublishesshortpapersinallareasofpuremathematics,appliedmathematics,and mathematicalstatistics,includingalsomathematicalphysics,theoreticalcomputerscience,andany applicationtoscienceortechnologywheremathematicsplaysacentralrole.Tobeconsideredfor publicationinReports@SCManarticlemustbewritteninEnglish(withanabstractinCatalan), bemathematicallycorrect,andcontainsomeoriginalinterestingcontribution.Allsubmissionswill followapeerreviewprocessbeforebeingacceptedforpublication.

Researchannouncementscontainingpreliminaryresultsofalargerprojectarealsowelcome.Inthis case,authorsarefreetopublishinthefutureanyextendedversionofthepaperelsewhere,withthe onlyconditionofmakinganappropriatecitationtoReports@SCM.

Weespeciallywelcomecontributionsfromresearchersattheinitialperiodoftheiracademiccareers, suchasMasterorPhDstudents.Wewishtogivespecialattentiontotheauthorsduringthewhole editorialprocess.Weshalltakespecialcaretomaintainareasonablyshortaveragetimebetween thereceptionofapaperanditsacceptance,andbetweenitsacceptanceanditspublication.

Allmanuscriptssubmittedwillbe peerreviewed byatleastonereviewer.Finaldecisionsonthe acceptanceofmanuscriptsaretakenbytheeditorialboard,basedonthereviewer’sopinion.

Thecontentspublishedin Reports@SCM aresubject,unlessotherwiseindicatedinthetextorinthe graphicmaterial,toanAttribution-NonCommercial-NoDerivs3.0Spain(by-nc-nd)licensefrom CreativeCommons,thefulltextofwhichcanbeconsultedat https://creativecommons.org/licenses/ by-nc-nd/3.0/es/deed.en.Therefore,thegeneralpublicisauthorizedtoreproduce,distribute,and communicatetheworkaslongasauthorshipandthepublishingentityareacknowledged,andno commercialuseorderivativeworkismade.

©Theauthorsofthearticles

EditedbySocietatCatalanadeMatem`atiques,Institutd’EstudisCatalans(IEC) CarrerdelCarme47,08001Barcelona.

https://scm.iec.catTel`efon:(+34)933248583 scm@iec.catFax:(+34)932701180

Institutd’EstudisCatalans https://www.iec.cat informacio@iec.cat

https://reportsascm.iec.cat ISSNelectronicedition:2385-4227

TableofContents

Reports@SCM Volume9,number1,2024

ArandomwalkapproachtoStochasticCalculus SalimBoukfalLazaar1

ExtensionsoftheCalder´on–Zygmundtheory BernatRamisVich11

Surveyonoptimalisosystolicinequalitiesontherealprojectiveplane UnaiLejarzaAlonso21

Propertiesoftriangularpartitionsandtheirgeneralizations AlejandroB.Galv´an31

Algebraictopologyoffinitetopologicalspaces Merl`esSubir`aCribillers41

Bernstein–Satotheoryforlinearlysquare-freepolynomials inpositivecharacteristic

PedroL´opezSancha 53

Apromenadethroughsingularsymplecticgeometry

PabloNicol´asMart´ınez 65

OnthebehaviourofHodgespectralexponentsofplanebranches

RogerG´omez-L´opez 77

ExtendedAbstracts 87

Arandomwalkapproach toStochasticCalculus

∗SalimBoukfalLazaar UniversitatAut`onoma deBarcelona(UAB) salim.boukfal.lazaar@gmail.com

∗Correspondingauthor

Resum (CAT)

L’objectiud’aquesttreball´espresentarunaintroducci´oalc`alculestoc`astic.Enla primerapartparlemdelmovimentbrowni`a,elqualveuremqueespotpensarcom al´ımitdepasseigsaleatorisambl’ajutdelprincipid’invari`anciadeDonsker. Acontinuaci´o,presentemdemaneraheur´ısticalesequacionsdiferencialsestoc`astiquesiveiemcomespodendefinirdemanerarigorosaambl’ajutdelaintegral estoc`astica.Finalment,parlemd’exist`enciaiunicitatdesolucionsd’aquestes equacionsitractemuncassenzillcom´eseldel’equaci´odeLangevin.

Abstract (ENG)

TheaimofthisworkistoprovideanintroductiontothesubjectofStochastic Calculus.InthefirstpartwetalkabouttheBrownianmotion,whichwewillsee thatitcanbethoughtasalimitofrandomwalksviaDonsker’sInvariancePrinciple. Next,weheuristicallypresentthestochasticdifferentialequationsandseehowthey canberigorouslydefinedwiththehelpofthestochasticintegral.Finally,wediscuss thematterofexistenceanduniquenessofsolutionstosuchequationsandsolvea rathersimplecaseliketheLangevinequation.

Keywords: Brownianmotion,randomwalk,stochasticintegral,stochastic differentialequation,Langevin.

MSC(2020): 60B10,60F17,60G50,60H05,60H10,60J65.

Received: June23,2024.

Accepted: September6,2024.

ArandomwalkapproachtoStochasticCalculus

1.Introduction

InsubjectslikeThermodynamicsandStatisticalMechanics,inseveraloccasionsonegivesastochastic approachofaproblemeventhoughitcanbetreatedinadeterministicwaybecauseitusuallyleadsto simpleandlesstediousformulationsandcomputations.Forinstance,ifwewanttostudythemotionof aparticleinafluid,itismuchmoresimplertothinkthattheobjectmovesrandomlyduetotheseveral collisionsthatarehappeninginthesystem,ratherthanconsideringeachinteractionindividuallyandtryto forcebruteNewton’sequationsintothesystem.

Thisapproach,whichseemspromising,comeswithacoupleofdrawbacks.Thefirstoneisthatwehave togiveupontryingtodeterminetheexacttrajectoryoftheparticle,since,eveniftheinitialconditions arethesame,differentidenticalparticlesmightdescribedifferentsamplepaths.

Theotherdrawback,whichweshallfocusourattentionon,isthatthesekindofformulationsusually leadtoequationsliketheLangevinequation:

where µ issomepositiverealconstant, Xt isthepositionoftheparticleattime t ≥ 0and Ft isarandom perturbationthatevolveswithtimeandsatisfiessomeconditionslike E[Ft ]=0and E[Ft Fs ]=Γδ(t s) (being E theexpectationoperator,Γsomepositiverealconstantand δ theDiracdelta).Manyphysicistssay thattheprocess X = {Xt : t ≥ 0},where Xt isthepositiondescribedbythelatterequation,isaBrownian motion.However,itisverywell-knownthatthesamplepathsofsuchprocessarenowheredifferentiablein closedintervalswithprobabilityone,meaningthatexpressionslike Xt (andhigherorderderivatives)make nosensewhentheyareconsideredpathwise,sowemustfindawaytodefinesuchobjects(derivativesof functionswhicharenotdifferentiableintheusualsense)inordertobeabletogivearigorousdefinitionof equationslike(1).Beforedoingso,wefirstneedtodefinewhatisaBrownianmotion.Moreparticularly, wemustcheckthatwecandefineamathematicalobjectsatisfyingthepropertiesthataprocesslikethe onedescribedby(1)shouldsatisfy.

2.ConstructionoftheBrownianmotion

WhenoneaskswhatisaBrownianmotiontosomeonewhoisnotfamiliarwiththesubjectofstochastic processes,theusualansweristhatitistherandommovementofaparticlesuspendedinsomemedium (aliquidortheair,forinstance).Insomeothercases,theansweristhatitisthemovementdescribed byaparticlethatmakessmall,randomdisplacementswhichbehavesimilarly,eventhoughtheyseem uncorrelatednomatterwhatthepositionoftheobjectis.

Butallthesefeaturesarealreadysatisfiedbyarandomwalkwhosejumpsare“small”(forinstance,of finitevariance).Indeed,recallthatarandomwalkisaprocess S = {St : t ∈ N ∪{0}} suchthat S0 =0 (thisistakenarbitrarily)and St = t j =1 Xj , t ≥ 1, where {Xj : j ∈ N} isasequenceofi.i.d.randomvariables,whichweshallassume,withoutanylossof generality,thattheyarecenteredandwithvariance0 <σ2 < ∞.Sowhywouldweneedtogiveitanother

name?Whatisthedifferencebetweenthisprocessesandtheso-calledBrownianmotion?Toseethis,we firstseesomeofthecommonpropertiesthatsharetheclassofrandomwalkswithfinitevariancejumps:

1.Thefirstone,whichisachoiceratherthansomeintrinsicpropertyoftheprocess S,isthatitstarts fromtheorigin.

2.Thesecondone,whichisabitmoreinteresting,isthatthedisplacementsoftheprocessareindependentandstationary;thatis,if0 ≤ s < t ≤ s ′ < t ′,thentherandomvariables St Ss and St′ Ss ′ areindependentandthelawof St Ss dependsonlyon t s.Indeed,fortheindependenceofthe increments,onehasthat

Sincetherandomvariables Xj aremutuallyindependent,weconcludethattheincrementsareindependent.Asforthesecondpart,thefactthatthelawoftheincrement St Ss dependsonlyon t s means,inoursetting,thatthelawdependsonlyonthenumberofvariables Xj involved.Sincethey areindependentandidenticallydistributed,theclaimfollows.

3.Thelastproperty,butnotlessimportant,isthat,duetotheCentralLimitTheorem,for t ≥ 0large enough,androughlyspeaking, St ∼N (0, σ 2t).

Inotherwords,thelongtermbehaviouroftherandomvariable St isdescribedbyacenteredGaussian randomvariablewithvariance σ2t.Sinceitdependslinearlywithtime,onecansaythattheprocess isdiffusiveinthelongterm.

Therefore,itseemsthat,whentherightscalesareconsidered,allrandomwalksbehaveinthesameway (modulosomeconstant).ThisisthecontentofDonsker’sInvariancePrinciple(Theorem 2.2),whichwe statebelow.Beforedoingso,wemustfirstdefinemathematicallywhataBrownianmotionis.

Definition2.1. Astochasticprocess B = {Bt : t ∈ R+} isaone-dimensionalBrownianmotionif:

1. B0 =0almostsurely.

2.Forany k ∈ N andany0 ≤ t1 < < tk < ∞,therandomvariables Bt1 , Bt2 Bt1 ,..., Btk Btk 1 areindependent.

3.Forany0 ≤ s < t < ∞,therandomvariable Bt Bs isnormallydistributedwithzeromeanand variance σ2(t s)forsomeconstant0 <σ< ∞

4.Thesamplepathsoftheprocessarecontinuouseverywherewithprobabilityone.

Theprocess B issaidtobeastandardBrownianmotionif σ =1.

ObservethatmanyofthepropertiesoftherandomwalkaresharedbytheBrownianmotion.An additionalpropertyhasbeenadded,whichisthatthesamplepathsoftheprocessarecontinuouswith probabilityone,however,thisisnotsoimportant,since,ifthefirstthreepropertiesaresatisfied,onecan findaversionoftheprocesssatisfyingthefourthone.

Reports@SCM 9 (2024),1–9;DOI:10.2436/20.2002.02.37.

ArandomwalkapproachtoStochasticCalculus

Inthecaseoftherandomwalk,weprovidedaclassofprocesses(whichweredeterminedbythe sequenceofrandomvariables {Xj : j ∈ N})thatsatisfiedthefirstthreeproperties.However,thesame cannotbedoneinthecaseoftheBrownianmotion,whichcanbethoughtasacontinuoustimeversion oftherandomwalk.Hence,wehavetofirstcheckthatsuchprocessexists.Thisis,aswell,partofthe contentofDonsker’sTheorem,whichwenowstate.

Theorem2.2 (Donsker’sInvariancePrinciple). Let {Xj : j ∈ N} beasequenceofindependentand identicallydistributedcenteredrandomvariableswithunitaryvariance.Thentherandom(continuous) functions

convergeweaklytoastandardone-dimensionalBrownianmotion,where [t] denotestheintegerpartoft. Inotherwords,ifPn arethelawsoftherandomfunctionsY (n) t ,thenthereisaprobabilitymeasureP(the Wienermeasure)overthespaceofrealcontinuousfunctionson [0,1],C [0,1],fulfillingthepropertiesfrom Definition 2.1 andsuchthatPn (G ) → P(G ) foranyBorelsetGofC [0,1] withP(∂G )=0,being ∂Gthe boundaryofG.

Theprocess ˜ S,whichresemblesquitealot S,isthelinearinterpolationofthelatterandhence,a processwithcontinuoussamplepaths.

Theproofofthisresult(whichisaresultofconvergenceofprobabilitymeasures),relies,mainly,on Prohorov’sTheorem,whichgivesacharacterizationofthefamilyoflawsinducedbythefamilyofrandom functions {Y (n) : n ∈ N},with Y (n) = {Y (n) t : t ∈ [0,1]} intermsofthetopologicalpropertiesofthe space C [0,1],andthefactthatthefinitedimensionaldistributionsofacontinuousstochasticprocess determineitslaw(wereferto[1,Theorems5.1,5.2andp.84]foraproofoftheseclaims).Aproofof Theorem 2.2 foraparticularcaseofrandomwalkisgivenin[2],andageneralproofcanbefoundin[1, Section8]aswell.

Withthis,wehavegivenananswertothefirstofthetwoquestionsandnowcanaddresstheproblem ofdefiningobjectslike(1).

3.Stochasticdifferentialequations

Beforetryingtodefinetheconceptofsolutiontoequationslike(1),whichareknownasstochasticdifferentialequations(SDEs),weshallfirstseehowonegetstothepointofhavingtoconsidersuchobjects.

Todoso,letusconsideranordinarydifferentialequation(ODE)oftheform

dXt = f (t, Xt ) dt, t ≥ 0, (2) modelingsomephenomenawhichweareinterestedinandwhere f : R+ × R → R issomegoodenough function.

Insomecases,thedescriptiongivenbytheODEmightbeabittoosimpleormightnottakeinto accountsomefactorswhichmighthavebeenneglectedduetoasimplificationorduetothefactthat wecannoteasilycontrolthem.Tosolvethis,onecandiscretizetheODEandaddarandomperturbation whichmightevolvewithtime,say V = {Vt : t ∈ R+},leadingto

where g : R+ × R → R issomefunctionmodellingtheintensityoftherandomperturbation.Usually, thisintroducednoiseaccountsforthesuperpositionofseveralsmall(offinitevariance)factorswhich cannotbecontrolled.Hence,andduetotheCentralLimitTheorem,wecanassumethatthelawofthe increments∆Vt isnormallydistributedwithvanishingmean(sincethemeantrajectoriesshouldcoincide withtheonemodeledby(2))andwithvariance∆t.Thelineardependenceontimeinthevarianceis chosenbecause,inmostscenarios,theobservedperturbationcanbesaidtobediffusive.

Onecanassume,aswell,thattherandomperturbationsindiscretetime,∆V0,∆V∆t ,...areuncorrelatedorindependentsincetheyaresupposedtoberapidlyvaryingandhence,whathappensinonetime intervalmightnotsignificantlyinterfereonwhathappensinsomeothertimeinterval.

Withallthis,oneconcludesthatthebestchoicefortheprocess V isastandardBrownianmotion.The onlythinklefttodoistotakethelimit∆t → 0toobtain,formallyspeaking,

However,andasmentionedintheintroduction,thedifferential dBt makesnosenseasaclassicalone.To solvethisproblem,onewritestheSDEinitsintegralform

Sotheonlythinglefttodoistogiveameaningtoexpressions t 0 Xs dBs (stochasticintegral)forasuitable classofstochasticprocesses X = {Xt : t ∈ R+} tosolvetheproblem.

3.1Stochasticintegrals

Thefirstideatoapproachsuchintegralsistousethealreadydevelopedtheoryofintegrationwithrespect tofunctions(Lebesgue–Stieltjesintegral)todefinesuchintegralspathwise.However,thefactthatthe samplepathsoftheBrownianmotionareofunboundedvariationprecludethisoption.

Forthispurpose,anewtheoryofintegrationneedstobedeveloped.AsinthecaseoftheRiemann–Stieltjesintegral,wewillbeconsideringsumsoftheform

where0= t0 < ··· < tn = T isapartitionofafinitetimeinterval[0, T ]andwhere t ∗ j ∈ [tj , tj +1), j =0,..., n 1.Ideally,onewouldwanttheabovesumstoconvergetothesamelimit(thislimitmight beinprobabilityorinmeansquare,forinstance)nomatterwhatchoiceof t ∗ j ismade.Unfortunately,this isnotthecase,leadingtodifferentdefinitionsofthestochasticintegraldependingonthechoiceofthe midpoints t ∗ j , j =0,..., n 1.Inthiswork,wewillbeconsideringtheleftendpointapproximations(t ∗ j = tj ), whichleadtotheItˆointegral.

ArandomwalkapproachtoStochasticCalculus

Asonemightexpect,thisintegralwillnotbedefinedforanyprocess X .Returningtothediscretization oftheSDE,wehavethattheinformationwehaveontheprocess X attime t +∆t canbedeterminedby theinformationwehaveon Xt andtheinformationwehaveonthedrivingnoise(inourcase,theBrownian motion)attime t +∆t.Atthesametime,theinformationwehaveof Xt dependsontheinformationone hason Xt ∆t andsoon.Allinall,weseethatwecaninfertheinformationof Xt attime t byknowing theentireinformationofthedrivingprocess B untilthattime.Inparticular,theinformationwehaveon Xt doesnotdependontheinformationwehaveattime s for s > t,sotheprocess X cannotseeintothe future.Inthiscase,wesaythattheprocess X mustbeadaptedtothefiltrationgeneratedbythedriving noise(theinformationwehaveon Xt dependsonthehistoryofthenoiseuntilthattime).

Anothernaturalhypothesisontheprocess X isthatitmustbeintegrableinsomesensesothatwe cantalkaboutitsintegral.Moreprecisely,wewillrequirethat

Forthisintegraltobewelldefined,wewillrequire,aswell,theprocess X ,thoughtasamap X :Ω×[0, T ] → R,(ω, t) → X (ω, t)= Xt (ω),whereΩisthesamplespace,tobejointlymeasurablewithrespecttothe corresponding σ-fields.

Whenallthesehypothesisarefulfilled,onecanshowthatintegralslike t 0 Xs dBs canbedefinedasan L2(Ω)-limit(meansquarelimit)ofRiemann–Stieltjessums.Toshowthis,andasitiscustomaryinthis typeofconstructions,onefirstdefinesaclassofsimplefunctionsoftheform

where {ej : j =0,..., n 1} areboundedrandomvariablessuchthattheinformationwehaveon ej depends onlyonthehistoryoftheBrownianmotion(thedrivingnoise)untiltime tj and0= t0 < ··· < tn = T Forsuchfunctions,theintegralwithrespecttotheBrownianmotionisdefinedasthesum(4),where Xt∗ j mustbereplacedby ej

Next,onechecksthat ||·|| definesanormonthespaceofprocesses X satisfyingthepreviously mentionedhypothesisandthatsuchnormedspace(fromnowon,thespaceofItˆointegrableprocesses)is complete.

Finally,oneshowsthatanyprocess X inthenormedspacecanbeapproximatedbysimplefunctions(5), whichallowsustodefinetheintegral T 0 Xs dBs asan L2(Ω)-limitofintegralsofsimpleprocesses.Tojustify thislaststep,acrucialresultforstepfunctions(whichalsoholdsforgeneralItˆointegrableprocesses X )is needed.Weshallstatetheresult,asitwillbeusefulinthefutureforotherpurposes.

Theorem3.1 (Isometryformula). ForanyItˆointegrableprocessX,wehave

Asitsnamesays,thepreviousresultassertsthatthestochasticintegralwithrespecttotheBrownian motionestablishesanisometrybetweenthespaceofsquareintegrablerandomvariables, L2(Ω),andthe spaceofItˆointegrablefunctions.Foradetailedconstructionofthestochasticintegral,werefertoChapter3 of[3]and[4]. https://reportsascm.iec.cat

SalimBoukfalLazaar

Anotherimportantfeatureofthisintegralisthat,when X isadeterministicItˆointegrableprocess(that is,themap X :Ω × [0, T ]isconstantinthefirstargument),onehasthattheprocess I = {It : t ∈ [0, T ]} definedby It = t 0 Xs dBs isaGaussianprocess.Moreprecisely,

Theorem3.2. IfX = f = {ft : t ∈ [0, T ]} isadeterministicItˆointegrableprocess,thenIisacentered Gaussianprocesswithindependentincrementssuchthat,foreach 0 ≤ s < t ≤ T,

t Is =

s fs dBs ∼N 0, t s f 2 u du

Thatis,theincrementisnormallydistributedwithzeromeanandvariance t s f 2 u du.

Withthis,thetaskofgivingameaningtoexpressionslike(3)hasbeenfulfilled.However,wehavenot providedanypracticalwayofcomputingstochasticintegrals.ThiswillbethepurposeoftheItˆoformula (see[3,Chapter3]againor[4,Chapter4]foraproofofthisresult),whichcanbethoughtasachainrule orasanintegrationbypartsformula,dependingonwhetheryouconsiderthedifferentialorintegralform.

Theorem3.3 (Itˆoformula). LetX = {Xt t ∈ [0, T ]} beaprocessdefinedby dXt = ft dt + gt dBt or,inintegralform, Xt = X0 + t 0 fs ds + t 0 gs dBs , wheref = {ft : t ∈ [0, T ]} isaprocessintegrablewithrespecttotheLebesguemeasurewithprobability oneandg = {gt : t ∈ [0, T ]} isanItˆointegrableprocess,andletF :[0, T ] × R, (t, x) → F (t, x) bea C1,2 function(continuouslydifferentiablewithrespecttothefirstargumentandtwicecontinuously differentiablewithrespecttothesecondone).Then,ifYt = F (t, Xt ),

t =

or,inintegralform,

Intheprevioustheorem,thedifferentials dXt and(dXt )2 canbetreatedasiftheywerefinitereal quantitiesbyusingtherules dt dt = dt dBt = dBt dt =0and(dBt )2 = dt.Then,forinstance,we havethat

and

Withthis,wecannowbegintostudystochasticdifferentialequations.

3.2Anexistenceanduniquenessresult

Thefirstthingonemustcheckwhenonestudiesequationslike(3)(oritsdifferentialform),istomakesure thatthereisatleastonesolutionand,ifpossible,toseethatitisunique.Itturnsoutthat,undersimilar hypothesistotheonesusedinPicard’sTheoremontheprocesses g and f ,onecanshowthatthereisa uniquestochasticprocess X satisfyingequation(3).However,theuniquenessisunderstoodinthesense thatanyotherprocesssatisfyingtheSDEisamodificationofoursolution.

Moreparticularly,werequire f and g tobeLipschitzfunctionsandoflineargrowthwithrespecttothe secondvariableforeach t ∈ [0, T ]:

forsomepositiveconstants C and D,andtheinitialcondition X0 tobedeterministic(thislasthypothesiscan berelaxedbyconsideringanysquareintegrableinitialconditionsatisfyingsomemeasurabilityproperties). Foraprecisestatementoftheresultandaproof,wereferto[4,Theorem5.2.1].

Withallthis,wecanfinallystudyequationsliketheLangevinone,equation(1),whenthenoise Ft is identifiedwiththedifferentialoftheBrownianmotion.Inthefollowingsectionwetreataparticularcase ofsuchequationsandcomputesomeobservablequantities.

3.3ThecaseoftheLangevinequation

Letusconsiderequation(1)when

forsomerealconstant σ.Thatis,weconsidertheequation

forsomepositiveconstant µ andsomerealconstant σ.Thetheoremofexistenceanduniquenessof solutionstellsusthat,foreach T ≥ 0andanydeterministicinitialcondition X0,thereisauniqueprocess (modulomodifications) X = {Xt : t ∈ [0, T ]} satisfyingtheaboveequation.Togiveanexplicitformula for Xt ,wemultiplytheSDEbytheintegratingfactor e µt ,whichleadsto

Theusualproductrulewouldtellusthattheleft-handsidecanbeidentifiedwith d (e µt Xt ).However, thismightnotbetrueinthecontextofstochasticprocesses.Tomakesurethatthisholds,weapplyItˆo’s formulatothefunction F (t, x)= xe µt ,forwhichwehave

So,indeed,wehavethat

or,inintegralform,

Whichsimplifiesto

Withthisandotherresultsliketheisometryformula,wecancomputesomeobservablequantitieslikethe mean,thevarianceandthecovariance.Astraightforwardcomputationusingtheisometryformulashows that

Finally,for0 ≤ s < t,wehave,byletting It =

dBu (observethatthestochasticintegralinvolvedis theoneofadeterministicfunction,soweareunderthehypothesisofTheorem 3.2),

wherewehaveusedTheorem 3.2 andtheisometryformula.Hence,forany

∈ [0, T ],

Moreover,Theorem 3.2 tellsusthattheprocess X isGaussianwithmeanandcovariancefunctionsgiven bythefirsttermin(6)and(7),respectively,andthat,foreach t ∈ [0, T ], Xt isanormalrandomvariable withmeanandvariancegivenbythefirstandlasttermsin(6).

Acknowledgements

IwouldliketothankXavierBardinaSimorraforhisinvaluableguidanceandsupportandforalwaysgiving methefreedomtochoosethepaththatsuitedmethemost.

References

[1]P.Billingsley, ConvergenceofProbabilityMeasures,Secondedition,WileySer.Probab. Statist.Probab.Statist.,Wiley-Intersci.Publ., JohnWiley&Sons,Inc.,NewYork,1999.

[2]S.BoukfalLazaar,Weakconvergenceofthe LazyRandomWalktotheBrownianmotion, ReportsSCM 8(1) (2023),11–19.

[3]I.Karatzas,S.E.Shreve, BrownianMotionand StochasticCalculus,Secondedition,Grad. TextsinMath. 113,Springer-Verlag,NewYork, 1991.

Reports@SCM 9 (2024),1–9;DOI:10.2436/20.2002.02.37.

[4]B.Øksendal, StochasticDifferentialEquations. AnIntroductionwithApplications,Sixthedition,Universitext,SpringerVerlag,Berlin,2003. 9

Extensionsofthe

Calder´on–Zygmundtheory

∗BernatRamisVich Eidgen¨ossischeTechnische HochschuleZ¨urich(ETHZ) bramis@student.ethz.ch

∗Correspondingauthor

Resum (CAT)

Leseinesdesenvolupadesenlad`ecadade1950perCalder´oniZygmundens permetendemostrarquealgunesintegralssingularsestanbendefinidesifitadesen elsespais Lp .Totiquel’espaieuclidi`afoselcontextoriginalontotesaquestesidees esvarendesenvolupar,aquestespropietatsesgeneralitzenaaltresespaism`etrics demesuraiaintegralssingularsdevalorsvectorials.Alllargdelesd`ecades,la teoriahaanatguanyantenabstracci´oiinter`es.Encaraavuiendia,hihaoperadors ques’escapendel’abastdelateoria,com´esl’operadordi`adicesf`ericmaximal.

Abstract (ENG)

Thetoolsdevelopedinthe1950sbyCalder´onandZygmundenableustoprovethat certainsingularintegralsarewelldefinedandboundedin Lp spaces.Althoughthe Euclideanspacewastheoriginalcontextwherealltheseideasweredeveloped,these propertiesgeneralisetoothermeasuremetricspacesandtovector-valuedsingular integrals.Alongthedecades,thetheoryhasbeenacquiringabstractionandluring attention.Evennowadays,thereareoperatorsthatfalloutsidethescopeofthe theory,forinstancethedyadicsphericalmaximaloperator.

Keywords: singularintegrals,Calder´on–Zygmund,maximalfunctions. MSC(2020): 42B15,42B20,42B25.

https://reportsascm.iec.cat Reports@SCM 9 (2024),11–20;DOI:10.2436/20.2002.02.38.

Received: June27,2024. Accepted: October4,2024. 11

1.Introduction

By“singularintegraloperators”wemean,inthefirstinstance,convolutionoperatorsin Rn thekernel functionofwhichpresentsasingularity,say,attheorigin.Namely,wethinkofoperatorsofthekind

forsomegivenfunction K thatblowsupattheorigin.Singularintegralsshowupinanumberofproblems ofanalyticnature.Forinstance,theygeneratesolutionsofsomepartialdifferentialequations,theyarise incomplexanalysis,theyunderpinapparentlyunrelatedsettingsingeometricmeasuretheory,etc.See Figure 1 foranillustrativeexample.

Figure1:AppearanceoftheHilberttransform(themosticonicexampleofsingularintegralin R)in Dirichlet’sproblemfortheLaplaceequation.First,let f bedefinedontheaxis y =0.Obtain u such that∆u =0intheupperhalfplaneand f istheboundaryvalueof u.Then,gettheconjugateharmonic function v of u (theonethatturns u(x, y )+ iv (x, y )intoaholomorphicfunctiononthecomplexplane). Finally,obtaintheHilberttransformof f , Hf ,bycomputingthelimitlim y →0 v (x, y ).

Fordecades,analystsfeltuncomfortablewhenutilisingsingularintegralsbecausetherewasnoknowledgeregardingtheirboundednessproperties.Weretheyhandlingcontinuousoperatorson Lp spacesor not?Inordertoanswerthisquestion,HarmonicAnalysisisthenaturalframework.

Inthemiddleandendofthe20th century,thefieldexperiencedaburst.Brilliantmathematicians contributedtotheexpansionofthetheoryconcerningsingularintegrals.Calder´on,Zygmund,Bourgain andSteinarejustsomeofthemostinfluentialdrivingforcesinthefield,whobuiltupontheworkofother greatfigureslikeHardy,LittlewoodandPaley.

Intheliterature,singularintegralsareubiquitous,astheyservetostepforwardatstageswithinproblems ofdifferentnatures.Despitethis,theoryofsingularintegralsisoftenjustpartiallyexplainedandtreated asaninstrument.Inthisdocument,wecentretheminthespotlight.

2.Calder´on–Zygmundtheory

TheCalder´on–Zygmundtheorywasdevelopedoriginallyinthesettingof Rn inthe1950s,setoffby thecollaborativebreakthroughpaper[3]publishedin1952.Itaimedtoproveboundednessofsingular convolution-typeoperatorsonspacesoffunctions(mainly Lp spaces)builtover Rn .

Thestartingpointisadecompositionlemmathat,givenanintegrablefunction,enablestosplitthe domain Rn intoasetwherethefunctionisbounded,andanothersetwhere,althoughthefunctionmaybe unbounded,itiscontrolledinaverage.

Lemma2.1 (Calder´on–Zygmundlemmain Rn ;see[5,Chapter1,Theorem4]) Letf ∈ L1(Rn ) and λ> 0 Thereexistsapartition Rn = F ⊔ Ω,suchthat

(a) |f (x)|≤ λ a.e.x ∈ F,and

(b) Ω canbewrittenasacountableunionofcubesQk withdisjointinterior Ω= k ∈N Qk ,moreover satisfying

Proof. Mesh Rn intoasetofcubes {Q 0 k }k ∈N withdisjointinteriorsandofthesamesize,largeenoughso thattheaveragesof |f | areboundedabovebythegiven λ onallofthecubesinthemesh:

Thisispossiblebecause f isintegrable,

sochoosethesizeofthecubessuchthat

Wearegoingtorunanalgorithminordertoconstruct F andΩ.SetΩ= ∅ andthestep s =1.We spliteachofthecubes Q 0 k into2n dyadicdescendantcubesofthesamesize Q 1 k

Case1: Foreachdescendantcubeinstep s (thatis,foreach k ∈ Z),if

then Q s k isselectedtotakepartinthesetΩ,soupdateΩnew =Ωold ∪ Q s k .Forsuchacube Q s k ,assume that Q s 1 r isitsdirectancestor.Then,by(2)andthefactthat Q s 1 r fellintoCase 2,

whichproves(1)for Q s k

Case2: Instead,if

thenweiterateandfurtherdivide Q s k into2n identicaldescendantcubes(eachwithhalfthesidelengthof theancestor),andcheckintowhichofthetwocaseseachofthemfalls.

ExtensionsoftheCalder´on–Zygmundtheory

Update s new = s old +1andletthealgorithmrunrecursively.Thisway,weobtainthedesiredpartition Rn = F ⊔ Ω,ΩbeingtheunionofallthosecubesthatfellintoCase 1,and F beingthecomplement ofΩ.Plus,(b)hasbeenverifiedforallcubes Q s k thatwereselectedforCase 1.Fact(a)followsfromthe Lebesguedifferentiationtheorem:if x ∈ F ,thismeansthatthereexistsasequenceofnesteddyadiccubes containing x,(Q s k (s))s∈N,(Q s k (s)) ⊃ (Q s+1 k (s+1))beingdirectdyadicdescendants ∀ s ∈ N,suchthatallof thesecubesfellintoCase 2,implyingthat

Thisdecompositionofthedomain Rn of f leadstoausefuldecompositionofthefunction f itself.By defining

(x):=

and b(x):= f (x) g (x),wereachthefollowingcorollary.

Corollary2.2 (See[5,Chapter2,Theorem1]). Letf ∈ L1(Rn ) and λ> 0.Thereexistsadecomposition offassumoftwofunctions,f = g + bsuchthat:

(a)g (x) ≤ 2n λ a.e.x ∈ Rn , (b) 1 |Qk | Qk b(x) dx =0 ∀ k ∈ N, (c) 1 |Qk | Qk |b(x)| dx ≤ 2n λ ∀ k ∈ N,

(d) supp(b)= k ∈N Qk and (e)b ≤ fa.e.

Thefunctions g and b areusuallyreferredtoasthe“good”andthe“bad”partof f .Corollary 2.2 is thekeyingredienttoproveTheorem 2.4,thatallowsustoboundsingularintegraloperators.However,as onemayguess,wefirstneedtomakesomeassumptionontheregularityofthesingularkernelfunction. Theminimalknownhypothesisthatsucceedsistheso-calledH¨ormander’scondition.

Definition2.3. Aconvolutionkernel K on Rn issaidtosatisfy H¨ormander’scondition if

Sincetheintegraliscomputedovertheregion {x ∈ Rn : |x| > 2|y |},thesingularityofthekernelis avoidedbothfor x y andfor x.Insomesense,weareaskingthattheglobalvariationofthekernelisnot sowildthatisnotintegrable.Nevertheless,H¨ormander’sconditionisusuallyseenasaweakenedversion ofthestrongercondition |∇K (x)|≤ C |x|n+1 , forall x ∈ Rn awayfromtheorigin.Allinall,hereisthetheoremthatgivesmeaningtothetheory.Inthe literature,onecanfindmanyvariationsandconsequencesofit.

Theorem2.4 (See[5,Chapter2,Sections2and3]). LetTbealinearoperatorsuchthatthereexistsa measurablekernelfunctionKsuchthat Tf (x)= Rn K (x y )f (y ) dy convergesabsolutelywheneverf ∈ L2(Rn ) andx / ∈ supp(f ).Supposethefollowing:

(i)TisboundedonL2(Rn ):thereexistsA > 0 suchthatforallf ∈ L2(Rn ),

(ii)ThekernelKsatisfiesH¨ormander’scondition (3) withconstantB. Then,

(a)TisboundedonLp (Rn ), 1 < p < ∞,and

forf ∈ Lp (Rn ) andCn,p > 0 onlydependingonn,p,AandB.

(b)Tisweak-type (1,1),i.e.,forall λ> 0 andf ∈ L1(Rn ), λ|{x

whereCn > 0 isaconstantonlydependingonthedimensionn,AandB.

2

Thestrategyfortheproofis,accountingfortheboundednessassumptionontheHilbertspace L2(Rn ), usingtheCalder´on–Zygmundlemmatofirstshow(b),i.e.,that T isweak-type(1,1).Afterthat,one canusetheMarcinkiewiczinterpolationtheorembetween p =1and p =2toget(a)for1 < p ≤ 2. Eventually,adualityargumentcoversthedualrange2 ≤ p < ∞.

3.Extensionsofthetheory

InviewofTheorem 2.4,itisnaturaltowonderifitadmitsgeneralisationstoothersettings.Indeed,under suitableconditions,itispossibletoextendthetheorem,ontheonehand,toothermeasuremetricspaces, andontheotherhand,tovector-valuedfunctions.Thefirstsettingisuseful,forexample,inthetheory ofparabolicPDEs,whereasthelattergeneralisationturnsouttobehandytostudymaximaloperatorsor operatorsofthekind“squarefunctions”.Inthissection,wepresentsuchanabstractionaccountingforthe combinationofbothextensions.

Definition3.1. Ameasuremetricspace((X , d ),Σ, µ)issaidtohavethe doublingproperty if µ(B2r (x)) ≤ C µ(Br (x)), ∀ r > 0,

C > 0beingauniversalconstantforthespace X .Thisis,measuresofdilatedballsarecomparable.

Thedoublingpropertyiscrucialifweneedavailableinequalitiesofthekind(2).Alongthissection, ((X , d ),Σ, µ)denotesageneric σ-finitemeasurespaceoverametricspaceequippedwitharegularmeasure enjoyingthedoublingproperty.

Next,notethatinanarbitrarymetricspace,cubesarenotavailableanymore,butonlyballs.Therefore, theproofofLemma 2.1 completelybreaksapart,sinceitreliesheavilyonmeshing Rn intocubes.This impliesthatthestrategytogetalemmaofthesameflavourhastobetotallydifferent.Tothisend,the Hardy–Littlewoodmaximalfunctionaids.

9 (2024),11–20;DOI:10.2436/20.2002.02.38.

ExtensionsoftheCalder´on–Zygmundtheory

Definition3.2. Let((X , d ),Σ, µ)beameasuremetricspaceandlet f ∈ L1 loc(X )bealocallyintegrable function.The centredHardy–Littlewoodmaximalfunction of f isdefinedas

Similarly,the uncentredHardy–Littlewoodmaximalfunction of f readsas

wherethesupremumistakenoverallballs B containing x Whenthedoublingpropertyisinforce,thenthecentredanduncentredversionareeasilychecked tobecomparable.ItisalsoremarkabletonotethattheHardy–Littlewoodmaximalfunctiondefinesa boundedoperatoron Lp spaces,1 < p < ∞ ([5,Chapter1,Theorem1]).Infact,inordertoshow Lp -boundednessforabroadclassofso-calledCalder´on–Zygmundoperators(thoseunderthehypotheses ofTheorem 2.4 orTheorem 3.5),onecanfirstshow,aspointedout,thattheHardy–Littlewoodmaximal functionis Lp -bounded,andthenusethisspecificresulttoprove Lp -boundednessforthebroadclassof Calder´on–Zygmundoperators.

Lemma3.3 (Calder´on–Zygmundlemmainthegeneralsetting;see[7,Chapter1,Theorem2]). Letf ∈ L1(X ) and λ> 0.ThereexistsapartitionofthespaceX = F ⊔ Ω,Fbeingaclosedsetand Ω anopen set,suchthat

(a) |f (x)|≤ λ a.e.x ∈ F,and (b) Ω canbewrittenasacountabledisjointunionofsmallersets Ω= k ∈N Ωk moreoversatisfying

forsomeconstantC > 0

Proof. Let f ∈ L1(X )andfix λ> 0.Choose

andsoΩ:= {x ∈ X : Mf (x) > λ},beingrespectivelyclosedandopen,because Mf (x)isacontinuousfunctionof x BytheLebesguedifferentiationtheorem,fora.e. x ∈ F , λ ≥ Mf (x)=sup r >0 1

so(a)isshown.

Letusintroducesomenotation.Foraball B = Br (x)centredat x withradius r andforsomeuniversal constants0 < C ∗ < C ∗∗,denoteby B ∗ := BC ∗r (x)and B ∗∗ := BC ∗∗r (x)thecentreddilationsby factors C ∗ and C ∗∗,respectively.Inordertoprove(b),weuseaVitali-typecoveringlemma([7,Chapter1, Lemma2]):giventheclosedset F ,thereexistsasequenceofballs(Bk )k ∈N andtwofamiliesofeach dilations(oruniversaldilationconstants0 < C ∗ < C ∗∗ ),(B ∗ k )k ∈N and(B ∗∗ k )k ∈N,suchthat (a)(Bk )k ∈N arepairwisedisjoint, (b) k B ∗ k = F c ,and (c) B ∗∗ k ∩ F = ∅, ∀ k

Itisconvenienttoextractanothersequenceofsets.Takethefirstelementin(B ∗ k )k ∈N anddefine Q1 := B ∗ 1 Next,define Q2 := B ∗ 2 ∖ (Q1).Byaninductiveprocess,build

Itisdirectlydeducedthatthesets Qk satisfy k Qk = F c justlikethe B ∗ k ,althoughwiththeadvantage thatthe Qk arepairwisedisjoint.Thedownside,comparedtothe B ∗ k ,isthatthe Qk arenolongerballs, butotherlesselementarysets.Thename Qk ofsuchnewsetsisinspiredbytheirroleintheproofof Theorem 3.5,whichmimicstheonecarriedoutbythecubesintheproofofthe X = Rn case.

Now,foreach Bk inthesequence(

N,chooseapoint

.Bythedefinitionof F ,

where C dp istheconstantfromthedoublingproperty(seeDefinition 3.1)and C unc istheconstantinthe equivalence

Infact, C unc =(C dp) 1.Thetwolastinequalitiesin(5)stemfromthefactthat B

⊆ Qk ⊆ B ∗∗ k andthedoublingproperty:

partitionΩ, Ω= k Ωk ≡ k Qk ,theproofiscomplete.

Notethatthisproofunveilsthepreciseidentityofthesets F andΩ,whicharedefinedintermsofthe Hardy–Littlewoodmaximalfunction.

InexactlythesamewayasinCorollary 2.2,theCalder´on–Zygmunddecompositionofanintegrable function f ∈ L1(X )as f = g + b isdeduced.

Wementionedthatwewishourgeneralisedtheoremtoholdforvector-valuedfunctions.Theconstructionofthe Lp spacesforsuchfunctionsisnowadaysstandard([4,Chapter5]).Letusdenoteby Lp B (X ) theLebesguespaceof Lp -integrablefunctionsonsomemeasurespace X andtakingvaluesintheBanach space B.Thisis,for1 ≤ p < ∞,set

p B (X ):= F : X → B : X

F (x)

p B d µ(x) < ∞ , whereasfor p = ∞,

Additionally,denoteby L(A, B)theBanachspaceofalllinearandcontinuousmapsbetweenBanach spaces A and B

NotethatwhathasbeenpresentedsofarinthissectionalsoappliestoBanach-valuedfunctions. Inordernottoscatterawayfromthetheory,weneedtoupgradeH¨ormander’sconditiononkernel functionsasfollows.Inparticular,notethatthekernelisnolongerafunction,butratheralinearoperator betweenBanachspaces.

9 (2024),11–20;DOI:10.2436/20.2002.02.38.

ExtensionsoftheCalder´on–Zygmundtheory

Definition3.4. Let A and B beBanachspaces.Anoperatorkernel K ontheproductmeasurespace ((X , d ),Σ, µ) × ((X , d ),Σ, µ)takingvaluesin L(A, B)issaidtosatisfy H¨ormander’scondition if

forsomeconstant C > 1.

Anotherimportantremarkisthatnow,thekerneloperatorinvolvestwoentriesinsteadofjustone, comparedtotheconvolutionoperators.Thereasonforthisisthat“x y ”doesnotmakesenseingeneral measuremetricspaces,sincetheylackthevectorspacestructure.Thus,wegetaroundthisissueby inputtingtwovariables x ∈ X and y ∈ X ,withtheunderstandingthatthekernelissingulararound x = y Astonishingly,thenaturalgeneralisationofTheorem 2.4 turnsouttoworkinthissettingaswell!

Theorem3.5 (See[7,Chapter1,Theorem3]and[4,Chapter5,Theorem3.4]). Let ((X , d ),Σ, µ) bea measuremetricspacewiththedoublingproperty.LetA,BbeBanachspacesandletTbealinearoperator whichisrepresentedby

(x)= X

, y )

(y )

(y ), wheneverF ∈ L∞ A (X ) withcompactsupportandx / ∈ supp(F ),wherethevector-valuedkernelK ∈L(A, B) ismeasurableinX × Xandlocallyintegrableawayfromthediagonal.Assumethat

(i)TisboundedfromLq A(X ) toLq B (X ) forafixed 1 < q ≤∞:thereexistsCq > 0 suchthatforall

,and

,

(ii)theoperatorkernelKsatisfiesH¨ormander’sconditionin (6) withconstantsCandD.

Then,

(a)theoperatorThasaboundedextensionmappingLp A(X ) toLp B (X ),with 1 < p < q.Furthermore,

forF ∈ Lp A(X ) andCp > 0 onlydependingonp,q,Cq ,CandD.

(b)TheoperatorThasaboundedweak-type (1,1) extensionthatsatisfies

, ∀ λ> 0,

forF ∈ L1 A(X ) andC1 > 0 onlydependingonq,Cq ,CandD. TheprooffollowsthestrategyofthatofTheorem 2.4,justthistimeusingLemma 3.3 insteadof Lemma 2.1,andcaringaboutthetechnicaldetailsofworkinginthegeneralcase. Hereisanexampleofoperatorthatfallsunderthescopeofthetheory.

Example3.6 (SmoothLittlewood–Paleysquarefunction) Let Pj besmoothLittlewood–Paleyprojectors. Namely,the Pj aredefinedasmultipliersontheFourierside:

Here, ψ isasmoothcompactlysupportedfunction,thedyadicdilationsofwhichformapartitionofunity infrequency.Thisway, Pj f capturesthe“part”of f withfrequenciesaround2j

Theoperator

isnamedsmoothLittlewood–Paleysquarefunction.

Firstofall,weliketothinkofthesquarefunctionasthenormofanoperatoractingonvector-valued functions S : Lp (Rn ) → Lp ℓ2 (Rn ):Define

whichisa linear operatormappingfunctionstosequencesoffunctions.1 Accordingly,

Webroughtthesquarefunctiontothevector-valuedsetting.Atthispoint,onewouldattempttoapply Theorem 3.5 to Sf .Nonetheless,adirectapplicationfailstoshowthat Sf isboundedon Lp (Rn )for1 < p < ∞.ItisnecessarytocombineTheorem 3.5 withaprobabilistictrickinvolvingRademacherrandom variablestoeventuallyshowthat Sf isboundedon Lp (Rn )for1 < p < ∞

4.Beyondtheparadigm

TogetherwiththedevelopmentoftheCalder´on–Zygmundtheoryaswellasitsextensions,newproblems aroseinthefield.Inparticular,interestwasshowninsingularmeasureoperators.Thereasonforthisinterest reliesonthethirstforunderstandingotherappealingproblemsliketheKakeyaproblem,theBochner–Riesz conjectureortheFourierrestrictionproblem,whichstillremainmysteriousandopen.Letusgiveanexample inthisdirectionofanoperatorthatisstillnotcompletelyunderstood.

Definition4.1. Let f : Rn → R beameasurablefunctionin Rn .Definethe dyadicsphericalmaximal function as

where Sn 1 ⊂ Rn istheunitsphere, σ isthesurfacemeasureof

and

1 isaunitvector.

The(non-maximal)sphericalmeansappearintheexpressionforthesolutiontotheCauchyproblem ofthewaveequationinoddspacedimension.Theinterestinstudyingitsmaximalversionsrelieson theavailabilityofastandardstrategytoprovepointwiseconvergenceresultsofthesolutiontothewave equationtowardstheinitialdatum.

Theoperator(7)issimilartotheHardy–Littlewoodmaximalfunction(4)inthesensethat,insteadof averagingoverballs,itaveragesoverspheres.However,thesurfacemeasureof Sn 1 in Rn isasingular 1 Onecanplaythesametrickwithmaximalfunctions.Forinstance, Mf (

,where A(x , r )f denotes theaverageof f ontheballcentredat x ofradius r

ExtensionsoftheCalder´on–Zygmundtheory

measure,inthesensethatallofitsmassisconcentratedonanull n-Lebesguemeasuremanifold.Furthermore,(7)canbeseenasaconvolutionofafunction f againsta(singular)measure,butnotanother functionanymore.Thisbringsobstaclestoourunderstandingofthesphericalmaximalfunction,because theCalder´on–Zygmundtheoryfromprevioussectionsdoesnotapplyanymore.

Inthiscase,theradiiarediscretised.Itisofcourseofinteresttotakesupremumoverthecontinuum r > 0.Inthatcase,thesphericalmaximalfunctionhasbeenunderstooddeeplyanditturnsoutthatthe boundednesspropertiesdependonthedimension[1, 6].Uptothedate,weknowthatthisdyadicversion definesindeedaboundedoperatoron Lp (Rn ).Nonetheless,wedonotknowwhetheritisweak-type(1,1).

Theorem4.2 (See[2]). Thedyadicsphericalmaximaloperator SfisboundedinLp (Rn ) for 1 < p ≤∞ Thisis,forf ∈ Lp (Rn ),

forsomeconstantCp > 0 dependingonpandn.

Conjecture4.3. Thedyadicsphericalmaximaloperator ˜ Sfisweak-type (1,1).Soforany λ> 0 and f ∈ L1(Rn ),

forsomeconstantC1 > 0 dependingonn.

Acknowledgements

TheauthoristhankfultoProfessorJimWrightandProfessorAlbertMasfortutoringandfortheirkindness.

References

[1]J.Bourgain,Averagesintheplaneoverconvex curvesandmaximaloperators, J.AnalyseMath. 47 (1986),69–85.

[2]C.P.Calder´on,Lacunarysphericalmeans, Illinois J.Math. 23(3) (1979),476–484.

[3]A.P.Calder´on,A.Zygmund,Ontheexistenceof certainsingularintegrals, ActaMath. 88 (1952), 85–139.

[4]J.Garc´ıa-Cuerva,J.L.RubiodeFrancia, WeightedNormInequalitiesandRelatedTopics,North-HollandMath.Stud. 116,Notas Mat. 104,North-HollandPublishingCo.,Amsterdam,1985.

[5]E.M.Stein, SingularIntegralsandDifferentiabilityPropertiesofFunctions,PrincetonMath. Ser. 30,PrincetonUniversityPress,Princeton, NJ,1970.

[6]E.M.Stein,Maximalfunctions.I.Spherical means, Proc.Nat.Acad.Sci.U.S.A. 73(7) (1976),2174–2175.

[7]E.M.Stein, HarmonicAnalysis:Real-variable Methods,Orthogonality,andOscillatoryIntegrals,WiththeassistanceofTimothyS.Murphy,PrincetonMath.Ser. 43,Monogr.Harmon. Anal. III,PrincetonUniversityPress,Princeton, NJ,1993.

https://reportsascm.iec.cat

ANELECTRONICJOURNALOFTHE SOCIETATCATALANADEMATEM ` ATIQUES

Surveyonoptimalisosystolicinequalities ontherealprojectiveplane

∗UnaiLejarzaAlonso UniversitatAut`onoma deBarcelona ulejarzalonsogjm@gmail.com

∗Correspondingauthor

Resum (CAT)

Esrevisentoteslesdesigualtatsisosist`oliques`optimesconegudesalplaprojectiu real RP2,comparant-lesambelcasdel2-tor T2.Primers’introdueixennocions b`asiquesdem`etriquesdeFinsler.Despr´ess’enuncientoteslesdesigualtats isosist`oliquesconegudespelcasreversibleise’ndonalaideadeprova.Finalment estractenlesdesigualtats`optimespelcasno-reversible.Actualmentesconeixen toteslesdesigualtats`optimesper T2,totiqueno´esaix´ıper RP2.S’hipresenten algunspetitsprogressosiargumentsafavordeladesigualtatconjecturadaenel casencaraobert.

Abstract (ENG)

Allknownoptimalisosystolicinequalitiesontherealprojectiveplane RP2 aresurveyed,comparingthemtothecaseofthe2-torus T2.First,basicnotionsonFinsler metricsareintroduced.Then,allpreviouslyknownisosystolicinequalitiesarestated andasketchofproofisgiveninthereversiblecase.Finally,optimalinequalitiesin thenon-reversiblecasearediscussed.Alloptimalinequalitiesarecurrentlyknown for T2,althoughthisisnotthecasefor RP2.Somerecentminoradvancesfor RP2 arepresented,andsomeargumentsaregiveninfavouroftheconjecturedinequality intheremainingopencase.

Keywords: realprojectiveplane,systole,isosystolicinequality,Riemannian metric,Finslermetric,Busemann–Hausdorffarea,Holmes–Thompsonarea. MSC(2020): Primary53C60,53C22.Secondary52B10.

Received: June30,2024. Accepted: September4,2024.

21 https://reportsascm.iec.cat Reports@SCM 9 (2024),21–30;DOI:10.2436/20.2002.02.39.

Surveyonoptimalisosystolicinequalitiesontherealprojectiveplane

1.RiemannianandFinslermetrics

Riemannianmanifolds,introducedinthesecondhalfofthe19thcenturybyBernhardRiemann,aremanifoldsendowedwithascalarproductoneachtangentspace.Usually,oneworkswithan n-dimensional smoothmanifold M andaRiemannianmetric gx : Tx M × Tx M → R,denotingascalarproductthat variessmoothlywith x ∈ M.Thisscalarproductgivesrisetoanormontangentvectors,bysetting ∥v ∥g x = gx (v , v ),andtoalengthforcurves γ :[0,1] → M,bysetting ℓg (γ)= 1 0 ∥γ′(t)∥g γ(t) dt.The scalarproductcanalternativelyberepresentedinalocalchartbyacollectionof n × n positivedefinite andsymmetricmatrices(gij (x ))ij .Thatway,thecanonicalRiemannianmeasuredvg of(M, g )inthislocal chartisgivenbytheformuladvg (x )= det(gij (x ))dx1 ∧···∧ dxn

FinslermanifoldsareageneralisationofRiemannianmanifolds,whereeachtangentspaceisendowed withanorminsteadofwithascalarproduct.Thesemetricstructureswerefirstconsideredin1918byPaul Finsler,althoughtheterm Finslermanifold wascoinedlaterby ´ ElieCartan,in1934.Usuallyanorm ∥·∥ isamapfromavectorspaceto R+ =[0, ∞)thatfulfilsthefollowingconditions: ∥v ∥ =0onlyif v =0, ∥λv ∥ = |λ|∥v ∥ for λ ∈ R and ∥v + v ′∥≤∥v ∥ + ∥v ′∥.InFinslergeometry,non-necessarilysymmetricnorms areconsideredmoregenerallybyreplacingthesecondpropertybythecondition ∥λv ∥ = λ∥v ∥ for λ ∈ R+ ThestructureassociatedtoavaryingnormoneachtangentspaceiscalledaFinslermetricandthenorm atsomepoint x isusuallydenotedby Fx .InanalogytotheRiemanniancase,onedefinesthelengthof acurve γ :[0,1] → M by ℓF (γ)= 1 0 Fγ(t)(γ′(t))dt.However,andincontrasttotheRiemanniancase, thereisnounambiguouslydefinedvolumenotionforFinslermetrics.Twoofthemostusedonesarethe Holmes–ThompsonandtheBusemann–Hausdorffvolumes.Theformerisrelatedtothestandardsymplectic formon T ∗M,and,thelatter,totheHausdorffmeasureofametricspaceinthesymmetriccase.From nowon,only2-dimensionalmanifoldswillbeconsidered.FixinganauxiliaryRiemannianmetric g on M, theHolmes–ThompsonandBusemann–Hausdorffareasaredefinedas

Here, |Bx |g denotestheRiemannianmeasureoftheunitball Bx = {v ∈ Tx M | Fx (v ) ≤ 1},and B ◦ x its polarconvexbodywithrespectto gx .NotethataFinslermetric F isuniquelydefinedspecifyingtheunit spheres Ux = {v ∈ Tx M | Fx (v )=1} ateachpoint x ∈ M

Definition1.1. AFinslermetric F on M issaidtobereversibleif Fx (v )= Fx ( v )forall(x , v ) ∈ TM Inotherwords, F issaidtobereversibleifalltheunitballsarecentrallysymmetric.

Sinceascalarproductinducesasymmetricnormoneachtangentspace,Riemannianmetricsarea particularcaseofFinslermetrics.Assketchedin[5,Proposition3.5],thedefinitionsin(1)areindependent ofthechosenauxiliaryRiemannian g ,andaneasyconsequenceoftheBlaschke–Santal´oinequalityisthe following.

Proposition1.2. IfFisareversibleFinslermetriconamanifoldM,then areaBH(M, F ) ≥ areaHT(M, F ) andequalityholdsifandonlyifFcomesfromaRiemannianmetric.

2.Isosystolicinequalities

IneithertheRiemannianorFinslercase,thereisanotionoflengthofcurves,andforclosedmanifoldsthat arenotsimplyconnectedonecandefinethefollowingnotionofsystole.

Definition2.1. ThesystoleofaFinslerclosedmanifold(M, F )whichisnotsimplyconnectedisdefined by

sys(M, F ) :=inf{ℓF (γ) | γ isanon-contractibleloopin M}.

OneexpectsthattheareaofaFinslermanifoldforwhichallnon-contractibleloopshavealength uniformlyboundedfrombelowcannotbemadearbitrarilysmall.Thisisdescribedbyaninequalityofthe form

area(M, F ) ≥ C sys 2(M, F ) holdingforsomesetofmetrics F ,where C issomepositiveconstant.Suchaninequalityiscalledan isosystolicinequality andtheconstantmightdependonthesetofmetricsconsidered.Usuallyoneconsiders eitherRiemannianmetrics,reversibleFinslermetricsorallFinslermetrics.Anisosystolicinequalityissaid tobeoptimaliftheconstant C cannotbeimproved.Finally,itissaidthatthereissystolicfreedomifsuch apositiveconstantdoesnotexist.

Thefirstoptimalisosystolicinequalitywasfoundforthe2-torusin1949byCharlesLoewner.Asit isexplainedbyhisstudentPaoMingPuattheendof[6],Loewnerfounditduringthelecturesofa courseonRiemanniangeometryhewasteachingatthetime.HeprovedthatforanyRiemannianmetric g onthe2-torus,area(T2 , g ) ≥ √3 2 sys2(T2 , g ),andthattheconstant √3 2 isoptimal.InspiredbyLoewner’s method,Puprovedin[6]thatfortherealprojectiveplanearea(RP2 , g ) ≥ 2 π sys2(RP2 , g )foranyRiemannianmetric g andthattheconstant 2 π isalsooptimal.ForthecaseofFinslermetricsandthe2-torus,a completesummaryofoptimalisosystolicinequalitiesisdonein[2].Thisarticlegathersallknownoptimal constants,includingtheonesforRiemannian,reversibleFinslerandnot-necessarilyreversibleFinslermetricsforbothHolmes–ThompsonandBusemann–Hausdorffareas.There, T2 isidentifiedwiththequotient oftheEuclideanplane R2 bytheintegergrid Z2.Inthatcase,ametricon T2 isjustametricon R2 compatiblewiththequotientmap,andnon-contractibleloopsin T2 correspondtopathsbetweenpoints in R2 thatdifferbysome z ∈ Z2 \{(0,0)}.Thestrategyfollowedinthearticleistoreducethegeneralcase tothecasewherethemetricisflat,inthesensethattheunitballsin Tx T2 arethesameforall x ∈ T2 Then,theinequalityismostofthetimesaconsequenceofpreviouslyknownresultsinconvexgeometry. See[2]forallthedetails.

2.1Therealprojectiveplane

Pu,in[6],followedananalogousproceduretowhatLoewnerdidwith T2 butfor RP2,soitmightbe interestingtoexplicitaparallelismbetween RP2 and T2.Whatistheuniversalcoveringmapof RP2? Howcannon-contractibleloopsin RP2 becharacterised?Isthereananalogousnotionof flat metric for RP2 thatmakescomputationseasier?Toanswerthefirstquestion,recallthat RP2 canbedefinedas aquotientspaceidentifyingantipodalpointsonthe2-sphere S2,asisshowninFigure 1.Thequotient map S2 → RP2 ∼ = S2/{± Id} istheuniversalcoveringmapover RP2 since S2 issimplyconnected,and playsananalogousroletothequotientmap R2 → T2 ∼ = R2/Z2

Reports@SCM 9 (2024),21–30;DOI:10.2436/20.2002.02.39.

Alternatively,onecouldidentify RP2 witha2-disc D thathasantipodalpointson ∂D identified.When itcomestothecharacterisationofnon-contractibleloops,itcanbeshownthatnon-contractibleloops in RP2 lifttopathsin S2 joiningantipodalpoints.SeetheillustrationinFigure 2 foranintuitiveideaand see,forinstance,[5,Proposition2.1]foraproof.Moreprecisely,theconditionofbeingnon-contractible mightbetranslatedtothediscrepresentationnotingthatapathin S2 fromapointtoitsantipodalpoint mustcrossthehorizonanoddnumberoftimes.Asasubtlety,ifthestartandendpointslieinthehorizon, theopencurveexcludingthesetwopointsmustcrossthehorizonanevennumberoftimes.Then,ifstarting andendingatpointsofthehorizoncountsasanothercross,non-contractibleloopsin RP2 arecharacterised bycrossingthehorizonanoddnumberoftimes.Crossingthehorizonistranslatedtojumpingbetween oppositepointsof ∂D,sonon-contractibleloopsin RP2 arecharacterisedbyhavinganoddnumberof thesejumps.

BecausetranslationsareisometriesoftheEuclideanplane,agivenconvexbodycanbeparalleltransportedfromapointtoanotherconsistentlytodefineanotionofflatFinslermetriconthe2-torus.Tangent vectorsof S2 couldalsobeparalleltransportedtoanotherpoint.However,thetransportedvectorwill dependonhowtheparalleltransportisperformed.Thus,inordertogetawell-definednotionofinvariant metricon S2,oneneedstoassumetheconvexbodytoberotationallyinvariant.Inthisspecialcase,the metricissaidtobearoundmetricon RP2,andcanbealternativelydefinedassomemultipleofthe Riemannianmetricobtainedfromthenaturalembeddingof S2 in R3 astheunitEuclideansphere.These metricswillplayasimilarrolefor RP2 comparedtotherolethatflatFinslermetricsplayon T2,although roundmetricsaremuchmorerestricted.

S2
RP2
Figure 1:Universalcoveringmap S2 → RP2
S2
RP2
Figure 2:Correspondencebetweenloopsin RP2 andtheirliftsto S2

2.2Previouslyknowninequalities

Asalreadymentioned,Puprovedin[6]thatarea(RP2 , g ) ≥ 2 π sys2(RP2 , g )foranyRiemannianmetric andthatequalityholdsifandonlyif g isisometrictoaroundmetricon RP2.See[5,Section4]fora proofthatusesamoremodernstyle,similarlytohowthe T2 caseistreatedin[2].Notethatinbothcases equalityholdsforaflatorroundmetric,althoughforPu’sinequalityallroundmetricson RP2 areoptimal whileforLoewner’sinequalityonlysomeflatmetricson T2 areoptimal.Inbothcases,theprocedureisto notethat,bytheuniformisationtheorem,anymetricisisometrictoaconformalmultipleofaflatorround one.Then,oneobservesthataveragingtheconformalfactorgivesamultipleoftheflatorroundmetric, whileitleavestheareainvariantbutincreasesthesystole.Finally,theinequalitiesfollowfromtheoptimal flatorroundmetriccases.Itcanbecomputedthatarea(RP2 , g )= 2 π sys2(RP2 , g )foranyroundmetric on RP2 (seeforinstance[5,Section4.2]).Forthecaseof T2,beforeconcluding,onemustprovethatthe sameisosystolicinequalityholdsalsoforanyflatmetric g .Thisisnotasstraightforwardasfor RP2,but itisequivalenttofindingtheHermiteconstant γ2,asisexplainedin[2].

Ivanovprovedin[4]thatareaHT(RP2 , F ) ≥ 2 π sys2(RP2 , F )alsoholdsforreversibleFinslermetrics. Theideaoftheproofisfirsttoconsideranon-contractibleloop γ0 on RP2 suchthat ℓF (γ0)=sys(RP2 , F ), whichcanbedonebycompactnessarguments.Suchloopsareusuallycalled systolicloops.Asisshown inFigure 2,theunionofthetwoliftsof γ0 dividesthe2-sphereintwo2-discs.Consideringthepullback metric φ ononeofthediscs D,theinequalityisreducedtofindinganinequalitybetweenareaHT(RP2 , F )= areaHT(D, φ)andthelengthof ∂D.Introducing cyclicmapsf =(f1,..., fn),Ivanovprovesthat

Finally,Ivanovnotesthatforcyclicallyorderedandequidistantpoints {pi }n i =1 ⊆ ∂D,thechoice fi (x )= dφ(pi , x )leadstoa cyclicmap.See[4,Section3]forthedefinition,propertiesandexamplesof cyclic maps.Undertheassumptionofareversiblemetric, ∂D fi · dfi +1 iseasytocomputeusinganarc-length parametrisationof ∂D.Infact,itamountstocomputingthesignedareaofthecurveshowninFigure 3a Thesignedareaofeachrectangleis 4sys2 (RP2 ,F ) n 1 2 n ,whichleadsto areaHT(RP2 , F )=areaHT(D, φ) ≥ 2 π sys 2(RP2 , F ) 1 2 n .(3)

Theproofisconcludednotingthat n canbechosenarbitrarilylarge.Ivanov’sresultandProposition 1.2 implythatareaBH(RP2 , F ) ≥ 2 π sys2(RP2 , F )foranyreversibleFinslermetric.Notethattheinequalityis optimalinbothcases,becauseequalityholdsforanyroundmetricon RP2,whichisRiemannian.

RoundmetricsdonotseemtoberelevantforIvanov’sresult.Nevertheless,theyplayanimportantrole inthecaseof T2.A stablenorm on Tx T2,introducedin[3],isdefinedas ∥z ∥x =limk→∞ d (x ,x +kz ) k for z ∈ Z2.ThisnormdependsontheoriginalFinslermetricon T2 ∼ = R2/Z2,anditcanbeshowntobeindependent of x .Thismeansthatthe stablemetric isflat,anditturnsoutthatareaHT(T2 , F ) ≥ areaHT(T2 , ∥·∥)and sys(T2 , F )=sys(T2 , ∥·∥).Moreover,asisprovenin[2],areaBH(T2 , F ) ≥ areaBH(T2 , ∥·∥)alsoforreversible metrics.Thus,alltheseoptimalisosystolicinequalitiesreducetotheirrespectiveflatcases.Followingwhat isexplainedin[2],Minkowski’sfirsttheoremimpliesthatareaBH(T2 , F ) ≥ π 4 sys2(T2 , F )forreversibleand flatmetrics,beingoptimalforthesupremumnorm.DuetoatheorembyMahler,theareasofasymmetric

Reports@SCM 9 (2024),21–30;DOI:10.2436/20.2002.02.39.

Surveyonoptimalisosystolicinequalitiesontherealprojectiveplane

convexballanditsdualarerelatedby |Bx |·|B ◦ x |≥ 8,beingalsooptimalforthesupremumnorm.This impliesthatareaHT(T2 , F ) ≥ 2 π sys2(T2 , F )isoptimalforflatandreversiblemetrics.Bythepropertiesofthe stablenorm onededucesthatthepreviousoptimalinequalitiesforflatandreversiblemetricsarealsovalid foranyreversiblemetrics.Asafinalcomment,theoptimalisosystolicinequalitiesforareaHT(T2 , F )and areaBH(T2 , F )aredifferentforthereversiblecase,incontrastwiththecaseof RP2.Thisisbecause,among Finslermetrics,optimalmetrics F0 for T2 arenotRiemannian,andsatisfyareaBH(T2 , F0) > areaHT(T2 , F0) byProposition 1.2,whileoptimalmetricsfor RP2 aretheroundones,whichareRiemannian.

3.SystolicfreedomforBusemann–Hausdorffarea

Minkowski’stheorempreventssymmetricconvexbodies K ⊆ R2 suchthatint(K ) ∩ Z2 = {(0,0)} from havingaLebesguemeasure |K | > 4,asisexplainedin[2,Section3].Theconditionint(K ) ∩ Z2 = {(0,0)} ensuresthattheflatmetric F withunitball K fulfilssys(T2 , F ) ≥ 1.Thiskeyfactimpliestheoptimal inequalityfortheBusemann–Hausdorffareaandreversiblemetrics.However,fornon-symmetricconvex bodiesthetheoremnolongerapplies.Infact,asisprovenin[2,Section3.2],thereexistsafamilyofflat metrics Fε suchthatsys(T2 , Fε)=1and |Kε| = (1+ε)2 2ε forthecorrespondingunitball Kε.Bydefinitionof theBusemann–Hausdorffarea,letting ε → 0allowsonetohaveareaBH(T2 , Fε)arbitrarilysmall,proving systolicfreedom.

(a)Here s denotessys(RP2 , F ).

(b)Theupperdirectionpointstothepole.

Figure3:Intheleft,curvesin R2 whosesignedareasgivetheresultoftheindividualintegralsin(2).In theright,unitballsalongthemeridiansofthehemisphere.

Forthecaseof RP2,ananalogousprocedurewouldbetolookforarbitrarilylargeunitballsthatdonot leadtoanarbitrarilysmallvalueforthesystole.Thisisproventobepossiblein[5,Section6],whichleads totheconclusionthatsystolicfreedomalsoholdsinthenon-reversiblecaseforareaBH.Theideabehindthe constructionin[5]istobuildametricinahemisphereof S2 suchthattheequatorcontainsasystolicloop ofsomefixedlength.InordertohaveasmallvalueforareaBH(RP2 , F ),oneneedstohavelargeunitballs ingreatpartofthehemisphereof S2.However,theselargeunitballs(whichleadtoshortdistances)must besuchthatasystolicloopstillliesinsidetheequator.Thisisdonewithunitballsofarbitrarilylargesize L

inonedirectionandarbitrarilysmallsize ε intheoppositedirection,asisshowninFigure 3b.Theseballs areallowedtobearbitrarilylargeandtheypreventcurvesthatgotowardsthepolefrombeingtooshort. Notethattheyareconvexsetscontainingtheorigin,sotheycorrespondtosomenon-reversibleFinsler metric.Thefinalstepistomakesuchametriconahemisphereof S2 well-definedandcompatiblewitha metricon RP2.Firstofall,oneneedstohaveawell-definedunitballatthepole:itcannotdependonthe meridianthatapproachesthepoint.ThiscanbeachievedchangingsmoothlytheunitballinFigure 3b to arotationallyinvariantonearoundthepole.Besides,ametric F on S2 iscompatiblewithametricon RP2 if Fx (u1)= F x (u2),where u1 and u2 arethedifferentliftsofsome v ∈ T[x ]RP2.Geometrically,assume thatoneobserves S2 fromthepointsuchthat x and x aretheclosestandfurthestpointsoftheequator, respectively.AsisillustratedinFigure 2,fromthispointofview, u1 and u2 arehalfturnrotationsofone another.Achangeinpointofviewsothat x isnowinfrontandstillwiththepoleabovecorresponds toahorizontalflipoftheviewof T x S2.Inconclusion,theunitballsofantipodalpointsintheequator mustbeverticallyflippedwhenseenthesamewayasinFigure 3b.Thus,itisenoughtochangesmoothly theunitballsintheequatortoverticallysymmetriconesinordertohaveacompatiblemetric.

NotethatbothsmoothingprocedurescanbedonewithoutchangingtheLebesguemeasureofthe unitballsandthattheangularintegrationregionis 0, π 2 × (0,2π),whichhasanareaof π2.Then, forthismetric,onegetsfrom(1)thatareaBH(RP2 , F )= π 2(ε+L) π2,whichcanbemadearbitrarilysmall for L →∞.Whenitcomestothesystole,recallthataliftofanon-contractibleloop γ mustjumpbetween oppositepointsoftheequatoranoddnumberoftimes.Consideringonlyapartof γ ifnecessary,onecan assumethat γ joinsoppositepointsoftheequatorwithoutanyotherjumpinbetween.Notethattheunit ballsofFigure 3b areanon-symmetricversionofthesupremumnorm ∥(u1, u2)∥ =max{|u1|, |u2|}.Forthis non-symmetricversionitcanbecomputedthat ∥(u1, u2)∥ =max |

L .See[5,Proposition6.2] forthedetails.If γ =(γ1, γ2)doesnotenterinthesmoothenzonearoundthepole,

Notethatequalityholdsif γ′ 2(t)=0and γ1 increasesordecreasesmonotonicallybetweenazimuthal coordinatesthatdifferexactlyin π.If γ entersthesmoothenzonearoundthepole,thefirstpartof γ must jointheinitialpointwiththezone.Bywhathasbeenmentionedabove,thelengthofvectorspointing tothepoleisproportionalto 1 ε .Then,asmallenoughchoiceof ε wouldimplythat ℓF (γ) >π also,and thereforesys(RP2 , F )= π.Intheend,areaBH(RP2 , F )= π 2(ε+L) sys2(RP2 , F ) <

2L sys2(RP2 , F )forany valueof L > 0.Inparticular,since L canbechosenarbitrarilylarge,thereissystolicfreedomfor RP2 and theBusemann–Hausdorffarea.See[5,Section6]formoredetails.

4.Optimalinequalitiesfornon-reversiblemetrics

´ AlvarezPaiva,BalacheffandTzanevprovedin[1,TheoremIV]thatareaHT(T2 , F ) ≥ 3 2π sys2(T2 , F )forflat metricsandthatequalityholdswhentheunitballisthetrianglewithvertices(1,0),(0,1)and( 1, 1). Finally,bythepropertiesofthe stablenorm,onededucesthat areaHT(T2 , F ) ≥ areaHT(T2 , ∥·∥) ≥ 3 2π sys 2(T2 , ∥·∥)= 3 2π sys 2(T2 , F ) alsoforanyFinslermetric.

9 (2024),21–30;DOI:10.2436/20.2002.02.39.

Surveyonoptimalisosystolicinequalitiesontherealprojectiveplane

FindingtheoptimalisosystolicinequalityforthemoregeneralFinslercaseforareaHT and RP2 is stillanopenproblem.Existenceofanoptimalinequalitycanbeprovenbysymmetrisingthemetric. Indeed,consideringthesymmetricmetric ˜ Fx (u)= Fx (u)+ Fx ( u),itcanbeprovenindimension2that

| ˜ B ◦ x |≤ 6|B ◦ x | (see[7,Theorem1]).If γ ⊆ RP2 isasystolicloopfor ˜ F ,theinvertedloop γ isalsononcontractible,andthensys(RP2 , ˜ F )= ℓF (γ)= ℓF (γ)+ ℓF ( γ) ≥ 2sys(RP2 , F ).Joiningtheseinequalities withtheoptimalinequalityforreversiblemetrics,

Notethatthisimpliesthattheconstant 2 π canbeimproved,atmost,byafactorof 2 3 fornon-reversible metrics.However,[7,Theorem2]statesthatareaHT(RP2 , F )= 1 6 areaHT(RP2 , F )ifandonlyifalmostall unitballsaretriangles.Thefactthattheoptimalmetricforthereversiblecaseisaroundone,farfrom havingsymmetrisedtriangularunitballs,suggeststhat 4 3π isnotoptimal.

Conjecture4.1. TheoptimalisosystolicinequalityforFinslermetricsandHolmes–Thompsonareais areaHT(RP2 , F ) ≥ 2 π sys2(RP2 , F )

Theauthorhastriedtoattackthenon-reversiblecaseandHolmes–Thompsonareawithlittlesuccess. Considerthefamilyofmetricsusedintheproofofsystolicfreedomintheprevioussection.Forsimplicity, considerthemetricbeforethesmoothing,whichcanbedoneinanirrelevantarbitrarilysmallregion. Imposingthatthesystoleisstillattainedalongtheequatoramountstoimposingthat 1 ε + 1 L ≥ 2.Indeed, asbefore,if γ doesnottouchthepole, ℓF (γ) ≥ π.Andifittouchesit,itmustgoupandthenback down,havingalength ℓF (γ) ≥ π 2 1 ε + 1 L ≥ π.ThedualconvexbodyoftheunitballsofFigure 3b canbe computedtobetheconvexhullofthepoints(±1,0), 0, 1 ε and 0, 1 L .ThisconvexkitehasLebesgue measure 1 ε + 1 L ,andsimilarlytotheBusemann–Hausdorffcase,by(1), areaHT(RP2 , F )=

sys 2(RP2 , F ).

Inconclusion,areaHT(RP2 , F ) ≥ 2 π sys2(RP2 , F )if 1 ε + 1 L ≥ 2,whichpreventstheexistenceofshortcuts throughthepole.Thesmootheningprocesswouldjustleadtoresultsarbitrarilyclosetotheaboveinequality, agreeingwithConjecture 4.1

Anyunitballcanbedrawninsidearectangleandcontainingatrianglethattouchesthreeofthefurthest pointsfromtheorigin.Thismightleaveshortestlengthsinvariantanditmightbeinterestingtoperform asimilartestfortriangle-shapedunitballs.Forexample,considertriangleswithvertices(1,0),( δ, ε) and( δ, L).Inthiscase,thedualtrianglehasvertices 1 δ ,0 , 1, 1+δ ε and 1, 1+δ L ,andLebesgue measure (1+δ)2 2δ 1 ε + 1 L .Thenormisnotsoeasytocomputebutonecouldexpectthatimposingthatthe systoleisattainedaroundtheequatorwouldimplythesame(orworse)inequality.Itwouldbeasurpriseif thereexistedvaluesfor ε, L and δ thatproveConjecture 4.1 wrong.Theauthor’ssearchofexamplesthat provetheconjecturewronghasbeenunfruitfulandlookingforwaystoproveitmightbemoresensible.

Aminoradvanceinthisdirectionhasbeenachievedin[5,Theorem5.13],givingaslightgeneralisation ofIvanov’sresultforreversiblemetrics.Itstatesthattheinequalityisalsotrueformetricssuchthatthe distancebetweenanytwopointsofasystolicloop γ0 isattainedthrough γ0.Inotherwords,oneneedsto havenoshortcutsbetweenpointsof γ0 thatdeviatefrom γ0.Inthiscase,if γ0 connects x to y (andnot

theotherwayaround),thedefinitionofsystoleensuresthattherearenoshortcutsfrom x to y .However, inthenon-reversiblecase,theremightbeshortcutsfrom y to x .Ivanov’sassumptionistohaveareversible metric,whichimpliesthattherearenosuchshortcuts.Theassumptionin[5,Theorem5.13]isweakerbut stillensuresthattherearenosuchshortcuts.TheproofisessentiallythesamethattheoneforIvanov’s theoremalthoughFigure 3a getsslightlymodified.Forinstance,thecurveisnolongercontainedinthe square[0, s]2,andtheshortstraightlinesbecomeunknownbutbounded.Thecorrespondingcurveisshown in[5,Figure6],andtheinequality(3)ismodifiedto

Luckily,forarbitrarilylarge n theinequalitybecomesareaHT(RP2 , F ) ≥

(RP2 , F ).Asufficient conditiontoavoidshortcutsisthatthesystoliccurve γ0 hasthesameforwardandbackwardlength.In particular,thisholdsif Fγ0

))forall t.Inotherwords,reversibilityofthemetric alongasystoliccurveisenough.Someideastoattackthegeneralcasewouldbetotrytomodifythemetric aroundasystoliccurvetoacaseunderwhichthetheoremholds.Thismightbeeasierthantomodifythe metricatallpoints,althoughtheattemptsdonebytheauthorleadtoinconclusivescenarios.Forinstance, makingtheunitballssymmetricalongasystoliccurvebyenlargingthem,areaHT decreasesbutshortcuts mightappear.Instead,iftheballsaresymmetrisedbystretchingthem,thesystolemustincrease,butso doesthearea.Theonlywaytheauthorhastriedtodefineakindofanoverallaveragednormon S2 is considering

where µ istheuniqueleft-invariantHaarmeasureonSO(3)suchthat µ(SO(3))=1.Intuitively,theunit normhasbeenaveragedoveralldirectionsaroundapointandoverallpoints,sothat ˜ F correspondstoa roundmetricon RP2.Itcanbeprovedthatsys(RP2 , ˜ F ) ≥ sys(RP2 , F ),becauseanycurvejoiningantipodal pointsundertheactionof σ ∈ SO(3)hasthesameproperty.However,areaHT(RP2 , F ) ≥ areaHT(RP2 , ˜ F ) canbefalseinsomecases.Forinstance,consideringtheunitballsinFigure 3b,theaveragenormforthe tangentvector(1,0)inalldirectionsshouldbe

Then,theunitsphereisgivenbyallvectorslyingontheEuclideancirclewithradius

Forthecaseof

Thisshowsthattheaveragingprocedurefailstohavegoodpropertiesevenforthesupremumnorm.As wassuggestedbyF.Balacheff,anotherapproachcouldbetoconsideracontactstructureontheunitary tangentbundle S ∗RP2.Withcontactformsthereisatheoremsimilartotheuniformisationtheoremthat saysthattheinitialcontactformandafixedroundonearecontactomorphic.Onemightbeabletoaverage overthegroupofdiffeomorphismsof S ∗RP2 thatleavestheroundcontactforminvariant.Thisissimilar

9 (2024),21–30;DOI:10.2436/20.2002.02.39.

Surveyonoptimalisosystolicinequalitiesontherealprojectiveplane

tothefactthattheactionofSO(3)leavesaroundmetricon S2 invariant.Itturnsoutthat S ∗RP2 is isomorphictotheLensspace L(4,1).However,thesystoleseemstobemoredifficulttodealwith.

AfinalideatobelievethatConjecture 4.1 istrueisthefollowing.Consideranattemptofminimising theHolmes–Thompsonareaonlyaroundasystolicloopwithafixedlength.Inordertodecreasethe valueofareaHT onemustincreasetheLebesguemeasureoftheunitballs.However,thisprocesscould beintuitivelydoneuntilthemetricissymmetricalongthesystolicloopbecauseotherwisethesystole mightdecrease.Inconclusion,itseemssensiblethatthemetricthatminimisesareaHT issymmetricalong asystolicloop,andthegeneralisationofIvanov’stheoremwouldapplyinthiscase.

Acknowledgements

Thisworkisbasedonanundergraduatethesis,whichwaspartiallysupportedbytheSpanishMinistry “MinisteriodeEducaci´onyFormaci´onProfesional”grant“BecadeColaboraci´on”.ThankstotheSCMfor givingmethechanceofwritingthisworkafterbeingthethesisawardedthe“PremiEmmyNoether2024” bythem.Finally,IwanttothankmysupervisorFlorentBalacheffforhisexcellentguidancethroughoutthe wholeprocessandbecauseofgivingmetheopportunitytodiscoverwhatresearchislikeinmathematics.

References

[1]J.C. ´ AlvarezPaiva,F.Balacheff,K.Tzanev, Isosystolicinequalitiesforopticalhypersurfaces, Adv.Math. 301 (2016),934–972.

[2]F.Balacheff,T.GilMorenodeMora,Isosystolicinequalitiesontwo-dimensionalFinsler tori, EMSSurv.Math.Sci. (2024),Published onlinefirst.

[3]D.Burago,S.Ivanov,Onasymptoticvolumeof Finslertori,minimalsurfacesinnormedspaces, andsymplecticfillingvolume, Ann.ofMath.(2) 156(3) (2002),891–914.

[4]S.V.Ivanov,FillingminimalityofFinslerian2discs, Proc.SteklovInst.Math. 273(1) (2011), 176–190.

[5]U.LejarzaAlonso,Optimalisosystolicinequalitiesonrealprojectiveplanes, Grad.J.Math. 8(2) (2023),46–72.

[6]P.M.Pu,SomeinequalitiesincertainnonorientableRiemannianmanifolds, PacificJ.Math. 2(1) (1952),55–71.

[7]C.A.Rogers,G.C.Shephard,Thedifference bodyofaconvexbody, Arch.Math.(Basel) 8 (1957),220–233.

https://reportsascm.iec.cat

Propertiesoftriangularpartitionsand theirgeneralizations

∗AlejandroB.Galv´an UniversitatPolit`ecnica deCatalunya(UPC) alejandrobasilio7@gmail.com

∗Correspondingauthor

Resum (CAT)

Unapartici´oenteraesdiutriangularsielseudiagramadeFerrersespotseparardel seucomplement(comasubconjuntde N2)ambunal´ıniarecta.Aquestarticlees basaenalgunsdesenvolupamentsrecentssobreeltemaperderivarnovespropietats enumeratives,geom`etriquesialgor´ısmiquesd’aquestsobjectes.Lainvestigaci´o s’est´endespr´esageneralitzacionsendimensionssuperiors,anomenadesparticions piramidals,iaparticionsconvexesic`oncaves,definidescomparticionsambun diagramadeFerrersquepotserseparatdelseucomplementperunacorbaconvexa oc`oncava.

Abstract (ENG)

AnintegerpartitionissaidtobetriangularifitsFerrersdiagramcanbeseparated fromitscomplement(asasubsetof N2)byastraightline.Thisarticlebuilds onsomerecentdevelopmentsonthetopicinordertoderivenewenumerative, geometricandalgorithmicpropertiesoftheseobjects.Theresearchisthenextended tohigher-dimensionalgeneralizations,calledpyramidalpartitions,andtoconvexand concavepartitions,definedaspartitionswhoseFerrersdiagramcanbeseparated fromitscomplementbyaconvexorconcavecurve.

Keywords: enumerativecombinatorics,geometriccombinatorics,triangular partitions,balancedwords.

MSC(2020): 05A15,05A16,05A17,05A19.

Received: June30,2024. Accepted: October31,2024.

31 https://reportsascm.iec.cat Reports@SCM 9 (2024),31–40;DOI:10.2436/20.2002.02.40.

1.Introduction

AnintegerpartitionissaidtobetriangularifitsFerrersdiagramcanbeseparatedfromitscomplement byastraightline.Theseobjectsfirstappearedinthecontextsofcombinatorialnumbertheory[3]and computervision[4].Fromacombinatorialperspective,theywerefirststudiedbyOnnandSturmfels[11], whodefinedtheminanydimensionandcalledthem cornercuts.Shortlyafter,Corteeletal.[5]obtained thegeneratingfunctionforthenumberof2-dimensionalcornercuts.Morerecently,triangularpartitions haveattractedinterestinthefieldofalgebraiccombinatorics.MotivatedbyworkofBlasiaketal.[2] generalizingtheshuffletheoremforpathsunderaline,BergeronandMazin[1]coinedtheterm triangular partitions andstudiedsomeoftheircombinatorialproperties.

Inthisarticlewepresentnewenumerative,geometricandalgorithmicpropertiesoftriangularpartitions andtheirgeneralizations.InSection 2 wegivebasicdefinitionsandsomeresultsfrom[1, 5].InSection 3 weintroduceanaturalalternativecharacterizationoftriangularpartitions,asthosesuchthattheconvex hulloftheFerrersdiagramandthatofitscomplementdonotintersect.Moreover,wecharacterizewhich pointsmaybeaddedtoorremovedfromtheFerrersdiagramwhilepreservingtriangularity.

InSection 4,wepresenttwowaystoencodetriangularpartitionsintermsofbalancedwords,anduse oneofthemtoimplementanalgorithmwhich,foragiven N,computesthenumberoftriangularpartitions ofsize n ≤ N intime O(N 5/2).Thisallowsustoobtainthefirst105 termsofthissequence,whilejust 39termswereknownpreviously.

InSection 5,refiningtheapproachfrom[5],weobtaingeneratingfunctionsfortriangularpartitions withagivennumberofremovableandaddablecells.InSection 6,wepresentarecurrenceforthenumber oftriangularpartitionscontainedinafixedtriangularpartition,aswellasanexplicitformulainvolving Euler’stotientfunctionforthecasewherethefixedpartitionisastaircase.Anewcombinatorialproofof Lipatov’senumerationtheoremforbalancedwords[8]isobtainedasabyproduct.

Section 7 studiespyramidalpartitions,whichareanextensionoftriangularpartitionstohigherdimensions.Weprovethatthecharacterizationintermsofconvexhullsgeneralizesnicelyandthat,for dimension3orhigher,thenumberofremovableandaddablecellscanbearbitrarilylarge.Wealsodescribe theresiduemodulo d ofthenumberof d -dimensionalpyramidalpartitionsofsize n,for d prime.

InSection 8,convexandconcavepartitionsareanalyzed.ThesearepartitionswhoseFerrersdiagram canbeseparatedfromitscomplementbyaconvexorconcaveline.Wepresentseveralcharacterizations andwedescribetheirremovableandaddablecellsintermsofconvexhulls.Finally,weprovethatthere existconstants a, b, c suchthatthenumberofconvexpartitionsofsize n isgreaterthanexp(a 3 √n)and smallerthanexp(b 3 √n log n),andthenumberofconcavepartitionsofsize n isgreaterthanexp(c 3 √n).

Duetospaceconstraints,proofsareomittedfromthisarticle.Amorethoroughexplanationofthe resultsisdetailedbyElizaldeandthepresentauthorin[7].

2.Background

A partition λ isaweaklydecreasingsequenceofpositiveintegers,calledthe parts of λ.Wewilldenote λ = (λ1, λ2,..., λk ),or λ = λ1λ2 λk whenthereisnopossibilityofconfusion.Wecall |λ| = λ1 + λ2 + + λk the size of λ.If |λ| = n,wesaythat λ isapartitionof n

Let N denotethesetofpositiveintegers.The Ferrersdiagram of λ isthesetoflatticepoints

{(a, b) ∈ N2 | 1 ≤ b ≤ k,1 ≤ a ≤ λb }

Wewilloftenidentifyalatticepoint(a, b)withtheunitsquare(calleda cell )whosenorth-eastcorner is(a, b).Inparticular,wesaythatacellliesabove,beloworonalinewhenthenorth-eastcornerdoes. TheFerrersdiagramcanthenbeinterpretedasasetofcells.Wewilloftenidentify λ withitsFerrers diagram,andusenotationsuchas c =(a, b) ∈ λ

Let σk =(k, k 1,...,2,1)denotethe staircasepartition of k parts.The conjugate λ′ of λ isobtained byreflectingitsFerrersdiagramaboutthe y = x axis.The complement of λ isdefinedtobetheset N2 \ λ, where λ isidentifiedwithitsFerrersdiagram.

Definition2.1. Apartition τ is triangular ifitsFerrersdiagramconsistsofthepointsin N2 thatlieonor belowthelinethatpassesthrough(0, s)and(r ,0)forsome r , s ∈ R>0,calleda cuttingline

SeetheleftofFigure 1 foranexample.Weoftenuse τ todenoteatriangularpartition.

Figure1:Left:Acuttinglineforthetriangularpartition(8,6,5,3,1).Right:Thefirst105 termsofthe sequence |∆(n)|/(n log n).

Denoteby∆thesetofalltriangularpartitionsandby∆(n)thesetoftriangularpartitionsofsize n Corteeletal.[5]obtainthegeneratingfunctionof |∆(n)| andboundtheasymptoticgrowthofthisnumber.

Theorem2.2 ([5]). Thegeneratingfunctionfortriangularpartitionscanbeexpressedas

Propertiesoftriangularpartitionsandtheirgeneralizations

Theorem2.3 ([5]). Thereexistpositiveconstantscandc ′ suchthat,foralln > 1, cn log n < |∆(n)| < c ′ n log n

Let c =(i , j)beacellofatriangularpartition λ = λ1 λk .Definethe armlength andthe leglength of c tobe a(c)= λj i and ℓ(c)= λ′ i j,thatis,thenumberofcellstotherightof c initsrow,and above c initscolumn,respectively.BergeronandMazin[1]characterizetriangularpartitionsandstudy thenumberofcellsthatcanbeaddedorremovedwhilepreservingtriangularity.

Lemma2.4 ([1,Lemma1.2]). Apartition λ istriangularifandonlyiftλ < t + λ ,where

Definition2.5. Acellof τ ∈ ∆is removable ifremovingitfrom τ yieldsatriangularpartition.Acellof thecomplement N2 \ τ is addable ifaddingitto τ yieldsatriangularpartition.

Lemma2.6 ([1,Lemma4.5]). Everynonemptytriangularpartitionhaseitheroneremovablecellandtwo addablecells,tworemovablecellsandoneaddablecell,ortworemovablecellsandtwoaddablecells.

3.Characterizationoftriangularpartitions

Inthissection,weintroduceanewcharacterizationoftriangularpartitionsintermsofconvexhulls.This characterizationisnaturalandarguablysimplerthantheonegiveninLemma 2.4 byBergeronandMazin[1], whichinvolvesthecomputationofanexpressionintermsofarmandleglengthsforeachcell.Wealso presentawaytoidentifyremovableandaddablecells.Theconvexhullofaset S ⊆ N2 willbedenoted byConv(S ).

Proposition3.1. Apartition λ istriangularifandonlyif Conv(λ) ∩ Conv(N2 \ λ)= ∅

Wewillusetheterm vertex torefertoa0-dimensionalfaceofapolygon;inparticular,notalllattice pointsofConv(τ )arevertices.

Proposition3.2. Twocellsin τ ∈ ∆ areremovableifandonlyiftheyareconsecutiveverticesof Conv(τ ) andthelinepassingthroughthemdoesnotintersect Conv(N2 \ τ ).Similarly,twocellsin N \ τ areaddable ifandonlyiftheyareconsecutiveverticesof Conv(N2 \ τ ) andthelinepassingthroughthemdoesnot intersect Conv(τ )

Animmediatecorollaryisthatatriangularpartitioncannothavemorethantworemovablecellsand twoaddablecells,asweknowfromLemma 2.6 byBergeronandMazin[1].

AsimilarcharacterizationintermsofconvexhullsforasingleremovablecellisprovedbyElizaldeandthe presentauthorin[7],andisthenusedtodescribeanalgorithmthatdetermineswhetherapartition λ of n into k partsistriangular.Saidalgorithmhascomplexity O(k)fortheinitializationand O(min{k, √n}) fortherestofitssteps,whereasanalgorithmbasedonBergeronandMazin’sLemma 2.4 wouldtake time O(n).

https://reportsascm.iec.cat

4.Bijectionstobalancedwordsandefficientgeneration

Inthissection,wepresenttwodifferentinterpretationsoftriangularpartitionsintermsoffiniteSturmian words,alsoknownasbalancedwords.Thefirstinterpretation,whichishintedatin[1],isquitenatural, anditwillallowustoproveanenumerationformulainSection 6.Thesecondonerelateseachtriangular partitiontoabalancedwordtogetherwithtwopositiveintegers,anditwillbeusedinSection 4.4 to implementanefficientalgorithmtocounttriangularpartitionsbysize.

4.1Backgroundonbalancedwords

Afiniteconsecutivesubwordofawordiscalleda factor.Aninfinitebinaryword s is Sturmian if,for every ℓ ≥ 1,thenumberoffactorsof s oflength ℓ isexactly ℓ +1.TheapplicationsofSturmianwords rangefromcombinatoricsandnumbertheorytodynamicalsystems;see[9]forathoroughstudy.

Afinitebinaryword w = w1 wℓ isafactorofsomeSturmianwordifandonlyifitis balanced,that is,foranypositiveintegers h ≤ ℓ and i , j ≤ ℓ h +1,wehave

)|≤ 1.

Thisconditionstatesthatforanytwofactorsof w ofthesamelength,thenumberofonesinthesefactors differsbyatmost1.Denoteby B thesetofallbalancedwords,andby Bℓ thesetofthoseoflength ℓ

ThefollowingenumerationformulaforbalancedwordswasfirstprovedbyLipatov[8].Let φ denote Euler’stotientfunction.

Theorem4.1 ([8]) Thenumberofbalancedwordsoflength ℓ is |Bℓ| =1+ ℓ i =1 (ℓ i +1)

4.2FirstSturmianinterpretation

Definition4.2. Atriangularpartitionis wide ifallitspartsaredistinct.Apartitionis tall ifitsconjugate iswide.

Itcanbeshownthateverytriangularpartitionmustbewideortall,anditisbothwideandtallif andonlyifitisastaircase.Thefollowingpropositionisaconsequenceofawell-knownbijectionbetween balancedwordsandlatticepathswithstepsin {(1,0),(1,1)} (see[9]).

Givenawidetriangularpartition τ = τ1 τk ,definethebinaryword

Since τ iswide,theexponentsarenonnegative.Forexample, ω(86531)=10110101.

Proposition4.3. Foreveryk, ℓ ≥ 1,themap ω isabijectionbetweenthesetofwidetriangularpartitions withkpartsandfirstpartequalto ℓ,andthesetofbalancedwordsoflength ℓ withkonesthatstart with 1

Reports@SCM 9 (2024),31–40;DOI:10.2436/20.2002.02.40.

4.3SecondSturmianinterpretation

Toourknowledge,oursecondencodingoftriangularpartitionsusingbalancedwordsisnew.Let W bethe setofwidetriangularpartitionswithatleasttwoparts,andlet B0 denotethesetofbalancedwordsthat containatleastone0.

Firstwedescribethesetofdifferencesofconsecutivepartsinawidetriangularpartition.For τ = τ1 τk ∈W,define

Lemma4.4. Forany τ = τ1 τk ∈W,thereexistsd ∈ N suchthat τk ≤ d +1 andeither D(τ )= {d } or D(τ )= {d , d +1}

Definemin(τ )= τk ,dif(τ )=min D(τ ),andwrd(τ )= w1 wk 1,where,for i ∈ [k 1],welet wi = τi τi +1 dif(τ ).Lemma 4.4 guaranteesthatwrd(τ )isabinaryword.

Theorem4.5. Themap χ =(min,dif,wrd) isabijectionbetween W andtheset T = {(m, d , w ) ∈ N × N ×B0 | m ≤ d +1; w 1 ∈B0 ifm = d +1}.

Itsinverseisgivenbythemap

(m, d , w1 wk 1)= τ1 τk , where τi = m + k 1 j =i (wj + d ) fori ∈ [k].

Additionally,given τ ∈W withimage χ(τ )=(m, d , w ),itsnumberofpartsequalsthelengthofwplus one,anditssizeis

τ | = km + k 2 d + k 1 i =1 iwi (3)

4.4Efficientgeneration

Beforethiswork,theentryoftheOEIS[10,A352882]forthenumbertriangularpartitionsof n onlyincluded valuesfor n ≤ 39.Thesearethetermslistedin[5],wheretheyareobtainedfromthegeneratingfunction inTheorem 2.2.Thisapproachturnsouttobeimpracticalforlarge n.

Theorem 4.5 canbeusedtoimplementamuchmoreefficientalgorithmthatcanquicklycompute thefirst105 termsofthesequence.Considerthetreewhereeachvertexisabalancedwordoflengthat most ⌊√2N⌋,andtheparentofanonemptywordisthewordobtainedbyremovingitslastletter.On input N,ouralgorithmrunsadepthfirstsearchthroughthistree.

Foreach w ∈Bℓ with ℓ ≤ √2N,thealgorithmfindsallthevalues m, d ∈ N suchthat(m, d , w ) ∈T , asdefinedinTheorem 4.5,andsuchthatthesizefunctiongiveninequation(3)isatmost N.Each triplet(m, d , w )correspondstotwopartitions,thewidetriangularpartition τ = χ(m, d , w )anditsconjugate,exceptwhen w =0k 1 (forsome k ≥ 2)and m = d ,inwhichcaseitaccountsforonlyonepartition, thestaircase σk

AC++ implementation ofthisalgorithmcanbefoundat[6].Inastandardlaptopcomputer,this algorithmgeneratesthefirst103 termsofthesequence |∆(n)| inunderonesecond,thefirst104 termsin undertenseconds,andthefirst105 termsinunderonehour.

AlejandroB.Galv´an

Proposition4.6. Theabovealgorithmfinds |∆(n)| for 1 ≤ n ≤ Nintime O(N 5/2).Additionally,itcan bemodifiedtogenerateall(resp.allwide)triangularpartitionsofsizeatmostNintime O(N 3 log N) (resp. O(N 5/2 log N)).

TheplotontherightofFigure 1 portraysthefirst105 termsofthesequence |∆(n)|/(n log n).A qualitativestudysuggeststhat,forlarge n,thissequenceoscillatesbetweentwodecreasingfunctionsthat differbyabout0.05.

5.Generatingfunctionsforsubsetsoftriangular partitions

Let∆1 and∆2 denotethesubsetsoftriangularpartitionswithoneremovablecellandwithtworemovable cells,respectively.Let∆1 and∆2 denotethesubsetsoftriangularpartitionswithoneaddablecellandwith twoaddablecells,respectively.Let∆2 2 =∆2 ∩ ∆2.Denotepartitionsofsize n ineachsubsetby∆1(n), ∆2(n),∆1(n),∆2(n)and∆2 2(n).Inthissectionweobtaingeneratingfunctionsforeachofthesesets, refiningTheorem 2.2.Inthefollowingproposition, N∆(a, b, k, m, i , j)isthefunctiondefinedinequation(1).

Proposition5.1. Thegeneratingfunctionfortriangularpartitionswithtworemovablecellscanbeexpressedas

Proposition5.2. Thegeneratingfunctionsforpartitionsin ∆1, ∆2 , ∆1 , ∆

canbewritteninterms ofG∆(z) (giveninTheorem 2.2)andG∆2 (z) (giveninProposition 5.1)asfollows:

WehaveusedProposition 5.1 inordertoimplementanalgorithmtofind |∆2(n)|,availableat[6].The initialtermsofthesequences |∆1(n)| and |∆2(n)| suggestthat |∆2(n)| > |∆1(n)| forall n ≥ 9,although wedonothaveaproofofthis.Itisinterestingtonotethat,atleastfor n ≤ 150,boththelocalmaxima of |∆1(n)| andthelocalminimaof |∆2(n)| occurpreciselywhen n ≡ 2(mod3).Ontheotherhand, |∆(n)| doesnotshowsuchperiodicextrema.

6.Triangularsubpartitionsandacombinatorialproof ofLipatov’sformulaforbalancedwords

Let I (τ )= |{ζ ∈ ∆: ζ ⊆ τ }| denotethenumberoftriangularsubpartitionsof τ ∈ ∆.Westartbygiving arecurrenceforthisnumber.Inthecasewhere τ isastaircase,weobtainanexplicitformulatoo,deriving anewproofofTheorem 4.1 intheprocess.

Reports@SCM 9 (2024),31–40;DOI:10.2436/20.2002.02.40.

Propertiesoftriangularpartitionsandtheirgeneralizations

Let c and c + betheleftmostandrightmostremovablecellsof τ .Followingthenotationin[1],let τ ◦ bethetriangularpartitionobtainedfrom τ byremovingallthecellsinthesegmentbetween c and c + (or,if c = c +,justremovingthatcell).

Lemma6.1. Forany τ ∈ ∆(n) withn ≥ 1, I (τ )= I (τ \{c })+ I (τ \{c +}) I (τ ◦)+1.

Thisrecurrencerelationcomesfromaninclusion-exclusionargument.Alongwiththebasecase I (ϵ)=1 (where ϵ denotestheemptypartition),itallowsustocompute I (τ )forany τ ∈ ∆,althoughnotvery efficiently.Wewillnowpresentamoreconvenientformulaforthecaseinwhich τ isastaircase.

Weusetheterms height and width ofapartition τ torefertothenumberofpartsandthelargestpart of τ ,respectively.Let∆ℓ×ℓ bethesetoftriangularpartitionswhosewidthandheightareatmost ℓ.Itcanbe provedthatapartitionbelongsto∆ℓ×ℓ ifandonlyifitisatriangularsubpartitionof σℓ.Ournextgoalisto giveaformulafor I (σℓ)= |∆ℓ×ℓ|.Theproofofthefollowinglemmausesthebijection ω fromequation(2).

Lemma6.2. For ℓ ≥ 1,thenumberoftriangularpartitionsofwidthexactly ℓ andheightatmost ℓ is |Bℓ|/2,and

CombiningtheabovelemmawithLipatov’sTheorem 4.1 enumeratingbalancedwords,wededucethe followingresult.

Theorem6.3. Forany ℓ ≥ 0, |∆ℓ×ℓ| = I (σ ℓ)=1+

Unfortunately,theproofofTheorem 6.3 usingLemma 6.2 andLipatov’sformuladoesnotgivea conceptualunderstandingofwhytheterms ℓ i +2 2 and φ(i )appear. Instead,wehavebeenabletofindadirectcombinatorialproofofTheorem 6.3 thatexplainsthe roleoftheseterms.Sincethewholeproofdoesnotfitinthisarticle,wewillbrieflyoutlineitsmain ideas.First,weestablishabijection ϕ betweentriangularpartitionsthatcontainthecell(2,1)andthe set {(a, b, d , e) ∈ N4 | d < a,gcd(d , e)=1},andcharacterizetheimageof∆ℓ×ℓ by ϕ.Then,forafixed pairofcoprimenumbers d < e,wetaketheunionofthepoints(a, b)forwhich(a, b, d , e) ∈ ϕ(∆ℓ×ℓ) andanaffinetransformationofthepoints(a, b)forwhich(a, b, e, e d ) ∈ ϕ(∆ℓ×ℓ).Theresultingset isformedbythelatticepointsinsideacertaintriangle,whicharecountedby ℓ e+2 2 .Summingoverall coprimepairs d < e andtakingintoaccountsometechnicaldetails,weobtaintheformulainTheorem 6.3 Asanaddedbenefit,ourargumentalsoprovidesanewproofofLipatov’sformula(Theorem 4.1).

7.Pyramidalpartitions

Inthissection,wewillstudyahigher-dimensionalanalogueoftriangularpartitions.Theseobjectsarefirst definedin[11],andsomeboundsontheirgrowtharegivenin[13].

Definition7.1. A d -dimensionalpyramidalpartitionisafinitesetofpointsin Nd thatcanbeseparated fromitscomplementbyahyperplane.

AlejandroB.Galv´an

Noticethata2-dimensionalpyramidalpartitionistheFerrersdiagramofatriangularpartition.Proposition 3.1 canbeextendedtothismoregeneralsetting;however,Lemma 2.6 doesnotholdanymore.

Theorem7.2. Letd ∈ N.Afinitenonemptysubset π ⊂ Nd isad-dimensionalpyramidalpartitionifand onlyif Conv(π) ∩ Conv(Nd \ π)= ∅

Proposition7.3. Foranyd ≥ 3,thereared-dimensionalpyramidalpartitionswithanarbitrarilylarge numberofremovableandaddablecells.

Inthecaseoftriangularpartitionsin N2,wehavethattheonlypartitions τ ∈ ∆suchthat τ = τ ′ (thatis,theyaresymmetricalwithrespecttotheline x = y )arethestaircasepartitions.Fromthisfact, wecandeducethat |∆(n)|≡ 1(mod2)when n = m 2 forsomeinteger m ≥ 2,and |∆(n)|≡ 0(mod2) otherwise.Thisapproachcanbeextendedto d -dimensionalpyramidalpartitionsbystudyinganactionof thesymmetricgrouponthem.Wewilldenoteby∆d D(n)thesetof d -dimensionalpyramidalpartitionsof size n,toavoidconfusionwith∆1(n)and∆2(n)definedinSection 5

Theorem7.4. Letn, d ∈ N,withdaprimenumber.Ifthereexistsanintegerm ≥ dsuchthatn = m d , then |∆d D(n)|≡ 1(mod d ).Otherwise, |∆d D(n)|≡ 0(mod d )

8.Convexandconcavepartitions

ConvexpartitionsaredefinedbyDeanHickersonin[10,A074658],wherethenumberofconvexpartitions ofsize n iscountedfor n ≤ 55.TheconceptofconcavepartitionsisessentialtosomeSchurpositivity conjectures(see[2,Conjecture7.1.1]).Inthissection,wewillextendourresearchontriangularpartitions tothesemoregeneralfamilies,startingwithsomecharacterizations.

Definition8.1. Apartition λ issaidtobe convex (resp. concave)ifitsFerrersdiagramconsistsofthe pointsin N2 thatlieonorbelowsomeconvex(resp.concave)curve.

Proposition8.2. Givenapartition λ,thefollowingareequivalent:

1. λ isconvex(resp.concave).

2. λ canbeobtainedastheintersection(resp.union)ofafinitenumberoftriangularpartitions.

3. Conv(λ) ∩ (N2 \ λ)= ∅ (resp. λ ∩ Conv(N2 \ λ)= ∅).

4.Thereexistsaconvex(resp.concave)regionR ⊂ R2 ≥0 suchthat λ = R ∩ N2

Usingthesenewconcepts,wecangiveanewcharacterizationfortriangularpartitions.

Corollary8.3. Apartitionistriangularifandonlyifitisconvexandconcave.

However,thischaracterizationdoesnotgeneralizetohigherdimensions(see[12]).

Removableandaddablecellsintheconvexandconcavesettingsaredefinedinananalogouswayto Definition 2.5

Proposition8.4. Acellc =(a, b) isremovablefromaconvexpartition η ifandonlyifitisavertex of Conv(η) and (a +1, b),(a, b +1) / ∈ η.Similarly,acellc ′ isaddabletoaconcavepartition ν ifandonly ifitisavertexof Conv(N2 \ ν)

Reports@SCM 9 (2024),31–40;DOI:10.2436/20.2002.02.40.

Propertiesoftriangularpartitionsandtheirgeneralizations

Toclosethearticle,wewillstudytheasymptoticgrowthofthenumberofconvexorconcavepartitions. Wewilluse (n)(resp. (n))forthesetofconvex(resp.concave)partitionsofsize n

Theorem8.5. Thereexistsaconstantbandafunction

Acknowledgements

IamverythankfultoSergiElizaldeforhissupervisionandguidance.Thisworkwaspartiallysupportedby themobilitygrantsofCFIS-UPC,GeneralitatdeCatalunyaandGobiernodeNavarra.

References

[1]F.Bergeron,M.Mazin,Combinatoricsoftriangularpartitions, Enumer.Comb.Appl. 3(1) (2023),Paperno.S2R1,20pp.

[2]J.Blasiak,M.Haiman,J.Morse,A.Pun, G.H.Seelinger,Ashuffletheoremforpathsunderanyline, ForumMath.Pi 11 (2023),Paper no.e5,38pp.

[3]M.Boshernitzan,A.S.Fraenkel,Nonhomogeneousspectraofnumbers, DiscreteMath. 34(3) (1981),325–327.

[4]A.M.Bruckstein,Theself-similarityofdigitalstraightlines,in: [1990]Proceedings.10th InternationalConferenceonPatternRecognition,Vol.1,AtlanticCity,NJ,USA,1990, pp.485–490.

[5]S.Corteel,G.R´emond,G.Schaeffer,H.Thomas,Thenumberofplanecornercuts, Adv.in Appl.Math. 23(1) (1999),49–53.

[6]S.Elizalde,A.B.Galv´an,Codeavailableat https://math.dartmouth.edu/ sergi/tp

[7]S.Elizalde,A.B.Galv´an,Triangularpartitions:enumeration,structure,andgeneration, Preprint(2023). arXiv:2312.16353.

[8]E.P.Lipatov,Aclassificationofbinarycollectionsandpropertiesofhomogeneityclasses (Russian), ProblemyKibernet. 39 (1982), 67–84.

[9]M.Lothaire,SturmianWords,in: AlgebraicCombinatoricsonWords,EncyclopediaofMathematicsanditsApplications 90, CambridgeUniversityPress,Cambridge,2002, pp.45–110.

[10]OEISFoundationInc. TheOn-LineEncyclopediaofIntegerSequences(OEIS) (2023),publishedelectronicallyat http://oeis.org

[11]S.Onn,B.Sturmfels,Cuttingcorners, Adv.in Appl.Math. 23(1) (1999),29–48.

[12]V.Pilaud,Personalcommunication(2023).

[13]U.Wagner,Onthenumberofcornercuts, Adv. inAppl.Math. 29(2) (2002),152–161.

https://reportsascm.iec.cat

Algebraictopologyof finitetopologicalspaces

∗Merl`esSubir`aCribillers UniversitatAut`onoma deBarcelona merles.subira@autonoma.cat

∗Correspondingauthor

Resum (CAT)

Aquesttreballsegueixlesl´ıniesd’estudideR.StongiM.McCorddelsespais topol`ogicsfinits.Totiques´onduesaproximacionsdiferents,tenenunpuntde contacte:elsposets.Perunabanda,classificaremelsespaistopol`ogicsfinitsa trav´esdelsposets,segonselteoremadeclassificaci´odeStong.Perl’altra,veurem comelsposetscodifiquentantlainformaci´ohomot`opicad’unpoliedrecomlad’un espaitopol`ogicfinit,seguintelteoremadeMcCord.Conclouremeltreballdonant unmodelfinitd’unasuperf´ıciecompactaconnexa.

Abstract (ENG)

ThisworkfollowsR.StongandM.McCord’sstudylinesonfinitetopologicalspaces. Althoughtheyaretwodifferentapproaches,theyintersectatonepoint:posets.On theonehand,wewillclassifyfinitetopologicalspacesthroughposets,accordingto Stong’sClassificationTheorem.Ontheotherhand,followingMcCord’sTheorem, wewillexaminehowposetsencodethehomotopicinformationofbothpolyhedra andfinitetopologicalspaces.Wewillconcludebyprovidingafinitemodelofa compactconnectedsurface.

Keywords: finitetopologicalspaces,partiallyorderedsets(posets),Hasse diagrams,homotopytheory,minimalspaces,simplicialcomplexes.

MSC(2020): Primary55M25,57P10.Secondary55P15,57R19,57N15.

Received: June30,2024.

Accepted: November8,2024.

Algebraictopologyoffinitetopologicalspaces

1.Introduction

Afinitetopologicalspaceisatopologicalspacethathasafinitenumberofpoints.Atfirst,onemight thinkthatthesetopologicalspacesarenotveryinteresting,cannotgeneratemanytopologies,andthatthe homotopygroupsvanishimmediately.However,theyhavemorestructuresinceeverytopologicalspacecan beassociatedwithapartialorder.Partiallyorderedsets,posetsforshort,arepotentcombinatorialobjects forencodinginformationaboutspaces.These,inturn,arerelatedtosimplicialcomplexes.

MichaelMcCordandRobertStongweretwoAmericanmathematiciansfromthesecondhalfofthe 20thcenturywhostudiedfinitetopologicalspacesalmostsimultaneouslyin1966,butfromtwodifferent perspectives.Inthiswork,westudyfinitetopologicalspacesfollowingthesetwoclassicalapproaches,tosee howtheyrelatetoeachotherthroughposets.Stong’sClassificationTheorem[6]isbasedontheinternal structureofthespaces,theorderstructure.Ontheotherhand,McCord’sTheorem[4]comparesfinite spaceswithsimplicialcomplexesthroughhomotopytheory,fromamoreexternalpointofview.Sincethis documentisintendedforgeneralaudiences,itdoesnotincludeproofs.However,ifthereaderiscurious, theycanconsultthereferencesfordetails.

2.Preliminaries

Inthissection,wewillseethatfinitetopologicalspacesandfiniteposetsareessentiallythesame.Wewill lookatbasicdefinitionsforworkingwithfinitetopologicalspacesandreviewsomeproperties.

Definition2.1. A finitetopologicalspace (X , τ )isatopologicalspaceoverafinitesetofpoints.

Onemightthinkthatinafinitesetthereisafinitenumberoftopologiesandthatthisfactwouldsuffice forclassification.However,thenotionofhomeomorphismistoorestrictive,andweaimtounderstandthese spacesusingtheirtopologicalpropertiesconcerninghomotopyproperties.Tograspsomeconcepts,itis recommendedtohaveabasicunderstandingofhomotopytheory.

2.1Properties

TheAlexandrofftopology[1]ischaracterizedbythepropertythattheintersectionofanyfamilyofopen setsisopen.Finitetopologicalspacesexemplifythistopology,sincethearbitraryintersectionofopensets cannotbeinfinite.Consequently,wecantalkaboutthesmallestopensetcontainingapoint,inthesense ofanopenclosure.

Definition2.2. Givenapoint x inafinitetopologicalspace(X , τ ),wedefinethe minimalopensetofx astheintersectionofallopensetscontaining x :

Theminimalopensetsformabasisforthetopologyof X ,calledthe minimalbasisofX

Definition2.3. A preorder isareflexiveandtransitiverelation.A preorderedset or preset isasetwith apreorder.A partialorder isareflexive,transitiveandantisymmetricrelation.A partiallyorderedset or poset isasetwithapartialorder.

Merl`esSubir`aCribillers

Proposition2.4. LetXbeafinitetopologicalspace.Thebinaryrelation ≤ onXdefinedbythefollowing expressionisapreorder: x ≤ yifandonlyifx ∈ Uy

Wehavejustseenthatfinitespacesinduceapreorder,givenbytheminimalbasis.Nowwewillsee that,infact,apreorderalsoinducesatopologyonafiniteset.

Definition2.5. Given P apresetand x ∈ P,wewrite P≤x := {z ∈ P | z ≤ x }.Similarly, P≥, P<,and P> aredefined.

Inthecaseofafinitetopologicalspace X withassociatedpreorder ≤, Ux correspondsto P≤x

Definition2.6. Let P beafinitepreset.The Alexandrofftopology isthetopologydefinedbythebasis {P≤x ⊆ P | x ∈ P}

Infact,thesetwoareequivalent.

Proposition2.7 ([7,Proposition2.1.7]) Let (X , ≤) beapresetand τ theAlexandrofftopology.Let ≤′ bethepreorderonXgivenbytheminimalopensetsof (X , τ ).Then,thetwopresets (X , ≤) and (X , ≤′) coincide.

Proposition2.8 ([2,Proposition1.2.1]). Afunctionf : X → Ybetweenfinitespacesiscontinuousifand onlyifitisorder-preserving.

Definition2.9. Atopologicalspace X satisfiesthe separationaxiomT0 if,giventwodistinctpoints,there isanopensetcontainingoneofthembutnottheother.

Proposition2.10 ([7,Proposition2.1.9]). AfinitetopologicalspaceXisT0 ifandonlyifitsassociated preorderedsetisantisymmetric;therefore,itisaposet.

Wehaveseenthatthecorrespondencebetweenfinitetopologicalspacesandpreordersisbijective,and, infact,ifthetopologicalspaceis T0,wehaveantisymmetryandhenceapartiallyorderedset.Oneofthe mainconsequencesofthiscorrespondenceisthevisualrepresentationthatarises:Hassediagrams.

Definition2.11. The Hassediagram ofaposet X isadirectedgraphwhoseverticesarethepointsof X and whoseedgesaretheorderedpairs(x , y )suchthat x < y andthereexistsno z ∈ X suchthat x < z < y Additionally,theelementsarearrangedindescendingorder,withbiggerelementsintheupperpartofthe diagram,whilesmalleronesareplacedbelow.

Givenanyfinitetopologicalspace,wecanconstructa T0 spacethatishomotopyequivalenttothe givenone,byidentifyingpointswiththesameclosure(see[2,Proposition1.3.1]).Wewillnowstudyfinite topologicalspacesequivalentunderhomotopies,therefore,withoutlossofgenerality,wecanreducethe studytospacesthatare T0 and,hence,posets.

Atthispoint,wediscusshowtoconvertafinitetopologicalspaceintotheHassediagramofaposet.

Example2.12. Let X = {a, b, c, d } withthefollowingopensets: ∅, {a, b, c, d }, {c}, {d }, {b, d }, {c, d } and {b, c, d },representedbytheinteriorsoftheclosedcurvesofFigure 1(a).

9 (2024),41–52;DOI:10.2436/20.2002.02.41.

Algebraictopologyoffinitetopologicalspaces

Since X is T0,itisaposet,thuswecantalkabouttheassociatedHassediagramof X .Let’sseehow itisconstructed.Westartwiththepointscorrespondingtoopensetsandplacethematthebottommost positions.Wecancomputetheopensets

= {c} andanalogously U

= {d }.With this,weestablishtheorderrelation: c < a,but c isnotcomparablewith

and d < b,but since b < a,wehavethechain

X .(b)Hassediagramof X

Nowlet’sseehowtoobtainatopologicalspacegivenatheHassediagramofaposet. Example2.13. Let Y betheposetgivenbytheHassediagramseeninFigure 2(a),wewanttocompute itsopensets.FollowingDefinition 2.6,wemovethroughtheHassediagramstartingfromthebottomand movingupwards.Thesets {c} and {d } areopen.

Now,consideranopenset U suchthat a ∈ U.Since c and d aresmallerthan a,theymustalsobe in U.Thus,wehavetheopenset Ua = {a, c, d }.Byfollowingasimilarprocessstartingfrom b,weobtain theopenset {b, c, d }.Whatwehavedonecanbedescribedas“placingourfinger”onthepoint a and descendingthroughallpossibleedgesuntilreachingthebottom.Itisimportantnottomissanyedges,for example, {b, d } isnotanopenset.Therefore,theopensetsof X are: {c}, {d }, {a, c, d }, {b, c, d },and theunions {c, d }, {a, b, c, d };seeFigure 2(b).

2.2Bijectivecorrespondence

Finitespacesinduceapreorder,andapreorderinducesatopology.Thatistosay,thereisabijective correspondencebetweenfinitetopologicalspacesandpreorders.Thus,wecantalkaboutthetopology ofapreorderortheorderinatopologicalspace.Table 1 showsasummaryofhowsomeproperties transferbetweenfinitetopologicalspacesandfinitepreorders.Somearenotexplainedhere,butforfurther informationanddetails,seethecompletefinalthesis[7].

Figure1:(a)Opensetsof
Figure2:(a)Hassediagramofspace Y .(b)Opensetsof Y

Merl`esSubir`aCribillers

FiniteTopologicalSpace X X X

FinitePreorder P P P Ux P≤x y ∈ Ux y ≤ x T0

Diagramofopensets

Openset

Antisymmetricpreorder:poset

Hassediagram

Down-set f continuous f order-preserving

Path,pathconnected Fence,order-connected

Homotopy: f ≃ g

Fenceofmaps: f = f0 ≤ f1 ≥ f2 ≤··· fn = g

Table1:Correspondencebetweenfinitetopologicalspacesandfinitepreorders(posets).

3.Stong’sClassificationTheorem

ThissectionexploreshowStonguseshomotopytheorytoclassifyfinitetopologicalspaces.

3.1Minimalspaces:thecore

Webeginbyidentifyingthesmallestspacethatpreservesthehomotopypropertiesofagivenfinitetopologicalspace.

Definition3.1. Let x , y ∈ X betwopointsinafinitetopologicalspace.Wesaythat xcoversy if x > y andforall z ∈ X suchthat x > z ≥ y ,wehave z = y .Itcanalsobesaidthat yiscovered by x

Definition3.2. Let X beafinite T0 topologicalspace.Apoint x ∈ X iscalleda downbeatpoint ifit coversoneandonlyoneelementof X .Dually, x isan upbeatpoint ifitiscoveredbyexactlyoneelement. Pointsthatsatisfyeitherofthesepropertiesarereferredtoas beatpoints of X

Remark 3.3 IntheHassediagram, x isadownbeatpointifithasexactlyoneloweredge.Inthetopological space,thisisequivalenttosayingthattheset ˆ Ux = Ux \{x } hasamaximum.Similarly, x isanupbeat pointifithasexactlyoneupperedgeintheHassediagram.

WecanseeinExample 2.12 that b, d and c areupbeatpoints, b isalsoadownbeatpointand a is neitherofthem.TherearenobeatpointsinExample 2.13

Definition3.4. Afinite T0 topologicalspace X is minimal ifithasnobeatpoints.The core ofafinite topologicalspace X isasubspacethatisalsominimalasatopologicalspace.

Givenafinitetopologicalspace X ,itscorecanbeconstructedbyremovingbeatpointsoneata time.Thisprocesspreservesthehomotopypropertiesof X becausetheresultingsubspaceisastrong deformationretract(see[2,Proposition1.3.4]).Observethatthisminimalsubspacealwaysexists.If X has nobeatpoints,itisalreadyminimal,making X itsowncore,asillustratedbythespaceinExample 2.13.If beatpointsarepresent,theycanberemovedsuccessivelyuntilaminimalspaceisobtained.Forinstance, inExample 2.12,wecanretract d to b,then b to a,andlastly c to a;therefore, {a} isthecoreof X .As

(2024),41–52;DOI:10.2436/20.2002.02.41.

Algebraictopologyoffinitetopologicalspaces

youmayhavededuced,thespace X ishomotopictoapoint;therefore, X isindeedcontractible,which canbeeasilyobservedintheHassediagram,ratherthaninthedescriptionof X byitsopensets. Notethatminimalisinthesenseofnothavingbeatpoints,notofhavingafewpoints.Thiswillbe thesmallestsubspaceofafinitetopologicalspacethatkeepstheoriginalhomotopyproperties.Thespace ofExample 2.12 isnotminimal,whereastheoneinExample 2.13 isminimal.

Example3.5. Let X bethefinitetopologicalspaceassociatedwiththeHassediagramshowninFigure 3(a). Wecomputeitscorebyremovingthebeatpoints.First,since b isanupbeatpoint,weretractittowards a. Then,weretract c towards a becauseitisanupbeatpointof X \{b}.Finally,weretract e towards a becauseitisanupbeatpointof X \{b, c}.Theresultingsubspace X \{b, c, e} isminimalandtherefore isthecoreof X .Notethatchangingtheorderofthisprocessleadstothesameresult,bearinginmind thatwecanonlyretractonebeatpointatatime.

X notminimal.(b)

3.2TheTheorem

Inhiswork,Stong[6]introducesamatricialapproachtoclassifyfinitespaces.However,inthispaperwewill notadoptStong’smethod.Instead,theClassificationTheoremcanbeprovenusingmorestraightforward propositions,asdiscussedin[7,Corollary2.3.10]or[2,Corollary1.3.7].

Theorem3.6 (ClassificationTheorem(Stong)). Ahomotopyequivalencebetweenminimalfinitetopologicalspacesisahomeomorphism.Inparticular,thecoreofafinitespaceisuniqueuptohomeomorphism, andtwofinitetopologicalspacesarehomotopyequivalentifandonlyiftheyhavehomeomorphiccores.

Thecrucialpointisthatwithminimality,wecancomparespacesbyhomeomorphisminsteadofhomotopy.Essentially,finitetopologicalspacesaredetermineduptohomeomorphismbytheircore,thereisa bijection betweenposets.

Example3.7. Considerthefollowingfinite T0 topologicalspaces X and Y givenbyFigure 4(a)and(c). Theyareverysimilar,butaretheyhomotopic?Wealreadycomputedthecoreof X inExample 3.5.For Y , wejustretract a,thatisadownbeatpoint,towards b andwehavethecoresshowninFigure 4(c)and(d).

X .(b)Thecoreof X .(c)Space Y .(d)Thecoreof Y

Figure3:(a)Space
Figure4:(a)Space

Merl`esSubir`aCribillers

Thecoresof X and Y arenothomeomorphic.Therefore,byStong’sTheorem 3.6, X and Y arenot homotopyequivalent.Butthesetwospacesarenotvisuallymuchdifferent,isthereanyotherwayto comparethem?Thenextsectionisdedicatedtorelaxingtheequivalencecriteriatoseethattheyaren’t thatdifferent.

4.McCord’sTheorem

McCordstudiesfinitetopologicalspacesbyassociatingthemwithabstractcombinatorialobjects,known as simplicialcomplexes.Thesecomplexescanbeassignedwithatopologicalrepresentation,calledthe geometricrealization,whichenablestheirvisualizationasgeometricstructuresinEuclideanspace,connected coherently,forminggeometricshapessuchastrianglesandtetrahedra.Ifthereaderisunfamiliarwiththese concepts,theycanrefertoanyintroductiontosimplicialcomplexes,suchas[5],[2,Appendix]or[7].

4.1Simplicialcomplexes

Definition4.1. A simplicialcomplex K consistsofaset VK,calledthesetofvertices,andaset SK of finitenonemptysubsetsof VK,whichiscalledthesetofsimplices,satisfyingthatanysubsetof VK of cardinalityoneisasimplexandanynonemptysubsetofasimplexisasimplex.

Definition4.2. The geometricrealization |K| ofasimplicialcomplex K isthesetofformalconvex combinations v ∈K αv v suchthat {v |αv > 0} isasimplexof K.

Definition4.3. Let X bea T0 finitetopologicalspace.The simplicialcomplexassociatedtoX ,or order complex,denotedby K(X ),isthesimplicialcomplexwhose n-simplicesarechainsoflength n:

x0 < x1 < < xn ,

wheretheorderrelationisgivenbyProposition 2.4

Example4.4. Let X bethefinite T0 topologicalrepresentedinFigure 5(a).Let’sseehowtoconstructthe associatedsimplicialcomplex K(X ).First,theelementsof X aretheverticesor0-simplices.Next,welook atthelongestchains.Herewehave {d < b < a} and {e < b < a}.Therefore,wehavetwo2-simplices. Notethattheyshareanedge, {b < a}

Next,wegodownindimension.Inthiscase,weneedtoaddanedgefrom c to d andanotherfrom c to e,becausetheotherchainsofsize1arealreadyrepresentedasedges(1-simplices)ofthe2-simplices. Finally,wegraphicallyrepresentthegeometricrealizationof K(X )inFigure 5(b).

Algebraictopologyoffinitetopologicalspaces

Theinverseprocesscanbedonebyconstructingthefaceposetof K,obtainingatopologicalspace. Thefaceposetisobtainedbytakingthesimplicesofagivensimplicialcomplex K aselementsanddefining theorderrelationbyinclusion.Notethatthiswouldnotresultintheoriginalspacebutinahomotopicone.

4.2TheMcCordmap

Definition4.5. Given K and L twosimplicialcomplexes,asimplicialmap φ : K→L isavertex map φ′ : VK → VL thatsendssimplicesintosimplices.

Notethatwhendefiningamapbetweensimplicialcomplexes,itsufficestospecifythemaponthe vertices,providedthatthevertexmappingrespectsthecombinatorialstructureoftheimagecomplex.This followsfromthefactthateachsimplexinacomplexisuniquelydeterminedbyitsvertices;therefore,once themapisdefinedonthevertices,itextendsnaturallyandconsistentlytoallsimplices.

Definition4.6. Let X and Y befinite T0 topologicalspaces,and f : X → Y acontinuousmap.Then, the associatedsimplicialmap K(f ): K(X ) →K(Y )isdefinedby K(f )(x )= f (x ).

McCord[4,Theorem6]provedthatgivenacontinuousmapthatislocallyaweakhomotopyequivalence overabasis-likeopencover,thenitisgloballyso.Wewillusethistheorem,thepreviousdefinitionandthe minimalbasistoshowthatthetwospaceswehaveseenbeforeareweakhomotopyequivalents.

Example4.7. AspreviouslydiscussedinExample 3.5,nohomotopyequivalenceexistsbetween X and Y becausetheircoresarenothomeomorphic.Butusingthefollowingmap,wecanprovethatthereisaweak homotopyequivalencebetween X and Y .Consider X ′ and Y ′ thecoresof X and Y ,respectively.The map f : Y ′ → X ′ isgivenby f (

;seeFigure 6

Itisshownthat f isorder-preserving,andthereforecontinuous.Then,bythefactthatpreimagesof minimalopensetsarecontractible[7,Corollary2.2.12]and[4,Theorem6],weobtainthat f isaweak homotopyequivalence.

Everyhomotopyequivalenceinducesanisomorphismonthehomotopygroups,buttwospaceswith isomorphichomotopygroupsmaynotbehomotopyequivalent.Thiscorrespondenceiscalleda weak homotopyequivalence.Thismeansthatspaces X and Y haveisomorphichomotopygroups,andwiththis relaxedcriteria,wecanfinallysaythattheyareequivalent.Infact,theybotharefinitemodelsofthe sphere S 1

Observethat,givenafinite T0 topologicalspace X anditsgeometricrealization |K(X )|,anypoint α ∈ |K(X )| canbeexpressed,byconstruction,intermsofcoordinatesoverachain x1 < x2 < < xn in X in theform α = n i =1 λi xi ,where λi > 0forall1 ≤ i ≤ n and n i =1 λi =1.The support of α isprecisely thischain:supp(α)= {x1, x2,..., xn }

Figure6:Map f

Merl`esSubir`aCribillers

Definition4.8. Let X beafinite T0 topologicalspaceand α ∈|K(X )| apointinthegeometricrealization ofthesimplicialcomplexassociatedwith X suchthatsupp(α)= {x1, x2,..., xn }⊆ X .The McCordmap isthemap µX : |K(X )|→ X definedby µX (α)=min(supp(α))= x1

Example4.9. WestartfromExample 4.4,wherewecomputedthesimplicialcomplexassociatedwith atopologicalspace X .Apoint α ∈|K(X )| intheinteriorofthetriangle abe canbewrittenas α = λ1e + λ2b + λ3a with 3 i =1 λi =1.Then, µX (α)=min({e, b, a})= e,andthereforeeverypointinthe interiorofthistrianglewillmapto e,representedingreeninFigure 7.Similarly,pointsintheinterior of adb willmapto d ,representedinred.

Nowconsiderapointontheinterioroftheedge ae.Sincethesupportis {e, a},theminimumis e Moregenerally,thesmallestvertex,concerningtheposetorder,ofalltheonescontainedinthesimplex, will“absorb”thepointsintheinteriorofthesimplex.Figure 7 showstheMcCordmap,wherecolours representthepreimagesofthevertices.

Fromhere,theobjectiveistoconcludethissectionbyestablishingthatforanygivenpolyhedron, thereexistsacorrespondingfinitetopologicalspace,andconversely,foranyfinitetopologicalspace,there existsapolyhedronthatmodelsit.First,weprovethatthiscorrespondenceisaweakhomotopy,followed byitsapplicationinprovingMcCord’sTheorem.TheproofsprovidedbyBarmak[2,Theorem1.4.6] andMcCord[4,Theorem1]aresomewhatintricateormaylackcomprehensivedetails.Foraclearer comprehensionofthisdemonstration,youcanreferto[7,Theorem3.1.8].

Theorem4.10 (McCord[4,Theorem1])

1.ForeveryfinitetopologicalspaceX,thereexistsafinitesimplicialcomplex K andaweakhomotopy equivalencef : |K|→ X.

2.Foreveryfinitesimplicialcomplex K,thereexistsafinitetopologicalspaceXandaweakhomotopy equivalencef : |K|→ X.

Thistheoremstatesthateveryfinitetopologicalspacehasanassociatedsimplicialcomplexthatpreservespropertiesuptoweakhomotopyequivalenceandviceversa,thateverysimplicialcomplexhasa finitetopologicalspacethatisweaklyhomotopyequivalent.Bothfinitetopologicalspacesandsimplicial complexeshaveastrongcombinatorialstructure,whichisconvenienttoworkwith.Thisisusefulbecause itallowsustostudynon-finitetopologicalspacesalgorithmicallythroughfiniteones,byusingtriangulations ofspacessuchasthesphere.

Recallthatatriangulationisahomeomorphismbetweenatopologicalspaceandasimplicialcomplex. Forexample,atriangleishomeomorphicto S 1,orahollowtetrahedronishomeomorphicto S 2,andthese aresimplicialcomplexes.

Reports@SCM 9 (2024),41–52;DOI:10.2436/20.2002.02.41.

Figure7:McCordmapcoloured.

Algebraictopologyoffinitetopologicalspaces

4.3Finitemodelsofnon-finitespaces

Weconcludethisworkbygivingsomeexamplesofusetomodelthecompactconnectedsurfaces.Dueto spaceconstraints,wewillnotseethe2-torusinthispaper;however,itcanbefoundin[7,pp.32–34].

Beginningwiththesphere S 2,considerthefollowingtriangulation h givenbyahollowtetrahedron;see Figure 8

Figure8:Triangulationofasphere.Sphereisextractedfrom[3].

Eachvertexislabelledwithanumber,andeachsimplexislabelledwiththenumbersofitsvertices. Wethenconstructthefaceposetof K andobtaintheHassediagramoftheassociatedposet;seeFigure 9. Notethatthisgivesusa minimalfinite topologicalspacethatmodelsthenon-finitespace S 2

Figure9:Finitemodelof S 2

Also,notethatatriangulationwithadditionalverticeswouldresultinalargerfinitetopologicalspace, althoughitwouldalsobeminimal.Thishighlightsthefactthatminimalreferstonothavingbeatpoints, nottohavingafewpoints.Despitebeingweaklyhomotopyequivalent,thesespaceswouldn’tbehomotopy equivalent,sincetheywouldn’tbehomeomorphic.Thisunderlineswhyweneedtorelaxtheequivalence criteriabecauseweknowthattheybothmodelthesamesurface,thereforetheymustbeequivalentin somecontext.

Thenextexampleistheprojectiveplane RP 2.ConsiderthetriangulationillustratedinFigure 10.The HassediagramofitsassociatedfaceposetcanbeseeninFigure 11

Figure10:Triangulationof RP 2

TheClassificationTheoremforcompactconnectedsurfacesstatesthateverycompactconnectedsurface canbedescribedintermsofspheres,tori,projectiveplanes,andconnectedsumsofthese.Asafinalpoint, wewillprovideanoverviewofhowtocomputetheconnectedsum,allowingustomodelallcompact connectedsurfacesbyusingthepreviouslyprovidedmodelsandincorporatingthisprocedure.

Considertwospheres S 2 triangulatedasinFigure 8.Theconnectedsumconsistsofidentifyingvertices andcorresponingedges,andeliminatingthefacescomprisedwithinthesevertices;seeFigure 12.We proceedasfollows:identifyvertex0ofthefirstspherewithvertex0ofthesecond(denotedas0′),vertex2 ofthefirstwithvertex1ofthesecond(denotedas4),andvertex3ofthefirstwithvertex2ofthe second(denotedas2′),whilekeepingvertices1ofthefirstand3ofthesecondunchanged,identifythe correspondingedges,andfinallyremovetheinteriortriangleformedby0′,2′ and4.

Figure12:Diagramoftheconnectedsumoftwospheres S 2

Giventwoassociatedposetsofthespheres,asinFigure 9,weconstructtheassociatedposetofthe connectedsumbyfollowingthementionedprocedure:identifyingcorrespondingverticesandomittingthe identifiedtriangle;seeFigure 13.Thisapproachavoidstheneedtocalculatetheposetfortheresulting connectedsumofspheres.

Figure 13:Finitemodelofaconnectedsumoftwospheres S 2

Figure11:Finitemodelof RP 2

Algebraictopologyoffinitetopologicalspaces

Acknowledgements

Iwouldliketoexpressmysinceregratitudetomythesissupervisors,GuilleCarri´onSantiagoandNat`alia CastellanaVila,fortheirinvaluableguidanceandsupportthroughoutthisresearch.

References

[1]P.Alexandroff,DiskreteR¨aume, Rec.Math. [Mat.Sbornik]N.S., 2(44),no.3(1937), 501–519.

[2]J.A.Barmak, AlgebraicTopologyofFiniteTopologicalSpacesandApplications,LectureNotesin Math. 2032,Springer,Heidelberg,2011.

[3]F.Blanco-Silva,Triangulationofcompactsurfaces.

https://blancosilva.github.io/coursematerial/2010/10/27/triangulation-ofcompact-surfaces.html Accessed:June2023.

[4]M.C.McCord,Singularhomologygroupsandhomotopygroupsoffinitetopologicalspaces, Duke Math.J. 33 (1966),465–474.

[5]V.Navarro,P.Pascual, TopologiaAlgebraica, EdicionsdelaUniversitatdeBarcelona,Barcelona,1999.

[6]R.E.Stong,Finitetopologicalspaces, Trans. Amer.Math.Soc. 123 (1966),325–340.

[7]M.Subir`a,TopologiaAlgebraicadelsEspais Topol`ogicsFinits,UnpublishedBachelor’sThesis,UniversitatAut`onomadeBarcelona,2023. https://github.com/Merlessc/BachelorFinal-Thesis

https://reportsascm.iec.cat

Bernstein–Satotheoryfor linearlysquare-freepolynomials inpositivecharacteristic

∗PedroL´opezSancha UniversitatPolit`ecnica deCatalunya pedro.lopez.sancha@estudiantat.upc.edu

∗Correspondingauthor

Resum (CAT)

LateoriadeBernstein–Satohaesdevingutrecentmentuntemacentralal’`algebra commutativailageometriaalgebraica,at`esqueconstitueixunapoderosaeina peraclassificariquantificarsingularitatsenvarietatsalgebraiques.Enparticular, hasorgitungraninter`esperestendrelateoriaaanellsdecaracter´ısticapositiva. Enaquestarticle,consideremunaclassedepolinomis,quedenominempolinomis linealmentlliuresdequadrats,iinvestiguemelsseusinvariantsassociatsenel contextdelateoriadeBernstein–Sato.

Abstract (ENG)

Bernstein–Satotheoryhasrecentlyemergedasacentraltopicincommutativealgebraandalgebraicgeometry,asitconstitutesapowerfultoolinclassifyingand quantifyingsingularitiesofalgebraicvarieties.Notably,therehasbeenasurgeofinterestinextendingthistheorytothepositivecharacteristicsetting.Inthiswork,we consideraclassofpolynomials,whichwecalllinearlysquare-freepolynomials,and investigatetheirassociatedinvariantswithinthecontextofBernstein–Satotheory.

Keywords: Bernstein–Satotheory,positivecharacteristic,testideals,Fjumpingnumbers,Bernstein–Satoroots,linearlysquare-freepolynomials. MSC(2020): Primary13A35,14F10.Secondary14B05,13N10.

Received: July1,2024. Accepted: July12,2024.

53 https://reportsascm.iec.cat Reports@SCM 9 (2024),53–64;DOI:10.2436/20.2002.02.42.

Bernstein–Satotheoryforlinearlysquare-freepolynomialsinpositivecharacteristic

1.Introduction

Acentralchallengedrivingthedevelopmentofalgebraicgeometryistheclassificationofalgebraicvarieties, whichincludestheclassificationofthesingularitiesofthesevarieties.Oneapproachattacklingthisproblem istocharacterizesingularitiesbyattachingalgebraicinvariants.

Arichfamilyofsuchinvariantsfallsundertheumbrellaoftheso-calledBernstein–Satotheory,whose rootslieinthefoundationalworksofBernstein[2]andSato[23].Webrieflyoutlinetheirdiscovery.Denote by DR|C theringof C-lineardifferentialoperatorsonthepolynomialring R = C[x1,..., xn]andlet f bea nonzeropolynomial.Thenthereexistanonzerodifferentialoperator δ(s) ∈DR|C[s],andanon-constant monicpolynomial bf (s) ∈ C[s]satisfyingthefunctionalequation

Thepolynomial bf (s)istheBernstein–Satopolynomialof f

TheBernstein–Satopolynomialhasbeenthefocusofextensiveresearchsinceitencodesthebehavior ofthesingularitiesofthehypersurfacedefinedby f in Cn.Toshowcasethis,suppose f vanishesat0 ∈ Cn Awell-knowninvariantfromcomplexanalysisisthelog-canonicalthresholdof f attheorigin,definedas lct(f )=sup λ ∈ R>0 U 1 |f |2λ < ∞ forsomeneighborhood U oftheorigin

Thelog-canonicalthresholdisarationalnumberintheinterval(0,1].Themoresingular f is,thesmaller thelog-canonicalthresholdwillbe.Koll´arprovedthatthelog-canonicalthresholdof f isthesmallest rootof bf ( s)[13].Itisknownthattherootsof bf (s)arerationalandnegativeduetoMalgrangeand Kashiwara[16, 12].AnumberofinvariantshaveoriginatedaroundtheBernstein–Satopolynomialoverthe years.Ofspecialinterestinbirationalgeometryaremultiplieridealsandjumpingnumbers(forinstance, see[15]).

Inpositivecharacteristic,Bernstein–Satotheoryhasamorerecentdevelopment.Letusmakean overviewofoneofthemainobjectsofstudy,namely,thetestideals.ThesewereintroducedbyHochster andHunekeasanauxiliarytoolinthecontextoftightclosuretheory[11],andafterwardsrelatedtothe multiplieridealsbyHaraandYoshida[8].Blickle,Mustat¸˘aandSmithgaveanalternativebutequivalent definitionoftestidealsin[6],onwhichwebaseourstudy.

Tofixideas,let R bearegularringofcharacteristic p > 0and f anonzeroelement.Thetestideals (cf.Definition 2.10)areafamily {τ (f λ)}λ∈R≥0 ofidealsof R indexedbytherealnumbers.For λ ≤ µ, thesesatisfy τ (f λ) ⊇ τ (f µ),henceoneobtainsadescendingchainofidealsin R.Onecanshowthatfora fixed λ> 0,thereexists ε> 0suchthat τ (f λ)= τ (f µ)forall µ ∈ [λ, λ + ε),i.e.thefamilyisrightsemicontinuous.Onthecontrary,thereexistcertain λ> 0suchthat τ (I λ ε) ⊋ τ (I λ)forany ε> 0,thatis, thechainoftestideals“jumps”.Thesejumpingspotsarenamed F -jumpingnumbers(cf.Definition 2.14), andthesmallestamongthemisthe F -purethreshold,asintroducedin[24].Underfinitenesshypotheses, F -jumpingnumbersareknowntobediscreteandrational(seeTheorem3.1of[6]).Needlesstosay,these notionshavebeenextendedtonon-principalideals.

Astheterminologysuggests,thetestideals, F -jumpingnumbersand F -purethresholdsserveascharacteristic p > 0analoguestothemultiplierideals,jumpingnumbersandlog-canonicalthresholds,respectively. Remarkably,thereisadeepandintricaterelationshipbetweenthesetwotheories.Forinstance,onecan

recoverthelog-canonicalthresholdfromthe F -purethresholdbyletting p →∞ (seeTheorem3.4in[19]). Itisalsoknowninseveralcasesthatthereductionmodulo p ofamultiplieridealproducesthecorresponding testideal[20].

The F -purethresholdhasbeencomputedinahandfulofcases.Itisknown,forinstance,inthecase ofellipticcurves,Calabi–Yauhypersurfaces,diagonalhypersurfacesanddeterminantalideals,tonamea few[3, 4, 10, 17].Amongthefewsituationswheretestidealshavebeenfullycharacterized,thereisthe caseofdeterminantalidealsofmaximalminors[9].

Ingeneral,finding F -jumpingnumbersandtestidealsisachallengingproblem,eveninsmoothambient spacessuchaspolynomialringsandwiththeaidofcomputationaltools.Tosomeextent,theaforementioned knownresultsrelyonthefavorablearithmeticandcombinatorialpropertiesoftheobjectsinvolved.Without theseproperties,verylittlecanbesaidabout F -invariants.

Ourgoalinthisarticleistocomputethe F -jumpingnumbersandtestidealsforanewclassof polynomials,whichwerefertoaslinearlysquare-freepolynomials.Thesearepolynomialswhosemonomials areallsquare-free,meaningtheyarenotdivisiblebyanysquareofanindeterminate.Intheprocess,wealso computeseveralother F -invariantsusefulforthetheory,namely,the ν-invariants,Frobeniusroots,and Bernstein–Satoroots,whichwewillintroduceinduecourse.Finally,werelatethesecomputationstothe log-canonicalthresholdoflinearlysquare-freepolynomialsincharacteristiczero.Thisworkoriginatedfrom thestudyof F -invariantsfordeterminantsofgenericmatricesofindeterminatesincharacteristic p > 0. Subsequently,itwasrealizedthatthesameideasappliedtolinearlysquare-freepolynomials.

Throughout,allringsconsideredwillbecommutativewithunit.

2.Background

2.1FrobeniuspowersandFrobeniusroots

Let R bearingofcharacteristic p > 0.Wedenoteby F : R → R, f → f p theFrobeniusor p-thpower map.Thisisaringendomorphismof R.Foraninteger e ≥ 0,welet F e : R → R, f → f pe bethe e-th iterateoftheFrobenius.

Definition2.1. Foraninteger e ≥ 0,the e-thFrobeniuspowerofanideal I ⊆ R is I [pe ] = F e (I )R =(f pe | f ∈ I ).

Thisisanidealof R.Inthecasethat I begeneratedby f1,..., fn,onehas I [pe ] =(

Remark 2.2 When I isaprincipalidealof R,say I =(f ),Frobeniuspowersandtheusualpowerscoincide, (f )[pe ] =(f )pe

AsortofconverseoperationtoFrobeniuspowersareFrobeniusroots.Forprincipalideals,Frobenius rootswerefirstintroducedin[1]by ` Alvarez-Montaner,BlickleandLyubeznik,inordertostudygenerators ofmodulesoverringsofdifferentialoperatorsinpositivecharacteristic.Afterwards,Frobeniusrootswere generalizedtothenon-principalcasebyBlickle,Mustat¸˘aandSmithin[6].

Bernstein–Satotheoryforlinearlysquare-freepolynomialsinpositivecharacteristic

Definition2.3. Foraninteger e ≥ 0,the e-thFrobeniusrootofanideal I ⊆ R isthesmallestideal J ⊆ R inthesenseofinclusionsuchthat

⊆ J [pe ]

Wedenotethe e-thFrobeniusrootoftheideal I by I [1/pe ].For e =0,weset I [1/pe ] = I

AcelebratedtheoremofKunzstatesthataring R ofcharacteristic p > 0isregularifandonlyifthe Frobenius F : R → R isaflatmap[14].Undertheassumptionofregularity,onecanshowthatFrobenius rootsarewell-defined.See,forinstance,Lemma2.3of[6].

Remark 2.4 Let I1, I2 beidealsof R suchthat I1 ⊆ I2.Thenonehas

Because I [1/pe ] 1 isthesmallestidealwith I1 ⊆ (I [1/pe

],itfollowsthat

henceFrobeniusrootspreserveidealcontainments.

Remark 2.5 Let I , J beidealsof R and e ≥ 0aninteger.Then

Proposition2.6 ([21,Lemma2.3]). LetI,JbeidealsofRande ≥ 0 aninteger.OnehasthatI [1/pe ] ⊆ J ifandonlyifI ⊆ J [pe ]

WenextdescribeanicecharacterizationofFrobeniusrootsintermsofgenerators,whichwillproveto becomputationallyuseful.Tothisend,weendow R withanexotic R-modulestructure.

Definition2.7. Foraninteger e ≥ 0,definethe R-module F e ∗ R asfollows.Itselementsaredenoted by F e ∗ f ,where f isin R.Asanabeliangroup, F e ∗ R isisomorphicto R,soadditionisdefinedby

Theactionof R on F e ∗ R isdefinedbyrestrictingscalarsalongthe e-thiterate F e oftheFrobenius,thatis,

),for r ∈

Definition2.8. ANoetherianring R ofcharacteristic p > 0isan F -finiteringif F e ∗ R isafinitelygenerated R-moduleforsome e ≥ 1(equivalently,all e ≥ 1).

Proposition2.9 ([1,Section3],[6,Proposition2.5]). SupposethatF e ∗ RisafreeR-modulewithbasis ε1,..., εn.LetIbeanidealofRgeneratedbyf1,..., fm.Forageneratorfi ,i =1,..., m,write

Thenthee-thFrobeniusrootofIis I [1/pe ] =(gi ,j | i =1,..., m, j =1,..., n).

PedroL´opezSancha

2.2Testidealsand ν -invariants

Fromnowon,let R bearegular F -finiteringofcharacteristic p > 0.Forarealnumber x ∈ R,let ⌈x⌉∈ Z denotetheround-upof x,i.e.theleastintegergreaterorequalthan x

Asmentionedearlier,thetestidealsarethecharacteristic p > 0analoguesofthemultiplierideals.We adoptasadefinitionforthetestidealthecharacterizationgivenin[6]:

Definition2.10 ([6,Definition2.9]). Thetestidealofanideal I ⊆ R withexponent λ ∈ R≥0 is τ (I λ)= ∞ e=0 (I ⌈λpe ⌉)[1/pe ]

Remark 2.11 Itcanbeshownthattheidealsontheright-handsidegiveanascendingchainin R, (I

(seeLemma2.8in[6]).Since R isaNoetherianring,thechaineventuallystabilizes: τ (I λ)=(I ⌈λpe ⌉)[1/pe ],forsome e ≫ 0.

Remark 2.12 Let0 ≤ λ ≤ µ berealnumbers.Because ⌈λpe ⌉≤⌈µpe ⌉,onehasthat I ⌈λpe ⌉ ⊇ I ⌈µpe ⌉,forevery e ≥ 1.

Ontheotherhand,Remark 2.4 showsthatFrobeniusrootspreserveinclusions,therefore

τ (I λ) ⊇ τ (I µ),whenever µ ≥ λ ≥ 0.

Itfollowsfromtheremarkabovethattestidealsgiveadescendingchainofidealsof R.Moreexplicitly, givennon-negativerealnumbers λ1 ≤ λ2 ≤···≤ λn ≤,onehasthat τ (I λ1 ) ⊇ τ (I λ2 ) ⊇···⊇ τ (I λn ) ⊇···

Suchchainofidealscan“jump”,i.e.thecontainmentsbetweentestidealsmaybestrict.Theresultsbelow encodethisbehavior:

Theorem2.13 ([19,Remark2.12],[6,Corollary2.16,Theorem3.1]). LetIbeanidealofR.

(i)Foreach λ ≥ 0,thereexists ε> 0 suchthat τ (I λ)= τ (I λ+ε).Inparticular,thereexists λ> 0 small enoughsuchthat τ (I λ)= R.

(ii)Thereexistrealnumbers λ> 0 suchthat τ (I λ ε) ⊋ τ (I λ) forall ε> 0

Definition2.14 ([24,Definition2.1],[19],[6,Definition2.17]). Let I beanidealof R.Arealnumber λ> 0 isan F -jumpingnumberof I if

τ (I λ ε) ⊋ τ (I λ),forevery ε> 0.

Thesmallest F -jumpingnumberiscalledthe F -purethresholdof I ,anddenotedbyfpt(I ),namely fpt(I )=sup{λ> 0 | τ (I λ)= R}

9 (2024),53–64;DOI:10.2436/20.2002.02.42.

Bernstein–Satotheoryforlinearlysquare-freepolynomialsinpositivecharacteristic

F -jumpingnumberswereintroducedunderthename F -thresholdsin[19],asaninvarianttostudythe jumpingcoefficientsofthetestidealsofHaraandYoshida[8].Afterwards,itwasshownthatthesetsof F -thresholdsand F -jumpingnumbersareequal(see[6,Corollary2.30]).Onanothernote,onehasthe followingresultrelatingthelog-canonicalthresholdandthe F -purethreshold:

Theorem2.15 ([19,Theorem3.4]). Letfbeapolynomialwithintegercoefficientsin C[x1,..., xn].Fora primenumberp > 0,letfp denotethereductionmodulopoffin Fp [x1,..., xn].Then lim p→∞ fpt(fp )=lct(f ).

Anotherobjectcloselyrelatedtothe F -jumpingnumbersarethe ν-invariants:

Definition2.16 ([19]) Let I , J beidealsof R suchthat I ⊆ rad J,whererad J denotestheradicalof J Fixaninteger e ≥ 0.The ν-invariantoflevel e of I withrespectto J is

Because I ⊆ rad J,thisintegerexistsandisfinite.Theset ν• I (pe )of ν-invariantsoflevel e of I istheset ofintegersoftheform ν J I (pe )obtainedas J rangesovertheidealscontaining I initsradical:

• I (pe )= {ν J I (pe ) | J ⊆ R suchthat I ⊆ rad J}

Remark 2.17 InviewofProposition 2.6, r ≥ 0isthe ν-invariant ν J I (pe )ifandonlyif(I r )[1/pe ] ̸⊆ J

The ν-invariantswereintroducedpreciselytostudy F -thresholds.Infact,the F -threshold c J (I )of I withrespectto J wasdefinedin[19]as

Since F -thresholdsand F -jumpingnumberscoincidewhen R isaregularring,the ν-invariantsareapowerful toolforsheddinglightontestideals.

Incomputingthe ν-invariantsofanideal I ,itisnotevidenthowtochooseanideal J thatcontains I initsradical.Instead,however,onecaninspectthechainofideals

Insomecases,thecontainmentsare,infact,equalities.Whentheyarenot,thechainofideals“jumps”.The nextproposition,togetherwithRemark 2.17,showsthatthespotwherethechainjumpsisa ν-invariant. Proposition2.18 ([21,Proposition4.2]) Thesetof ν-invariantsoflevele ≥ 0 ofanidealIis

• I (pe )= {r ≥ 0 | (I r +1)[1/pe ] =(I r )[1/pe ]}

2.3Bernstein–Satoroots

ThelastalgebraicinvariantsrelevanttoourdiscussionaretheBernstein–Satoroots.Thesearecharacteristic p > 0analoguestotherootsoftheBernstein–Satopolynomialincharacteristiczero,aconcept

thatoriginatedfromMustat¸˘a’swork[18].Mustat¸˘ainitiatedtheextensionofBernstein–Satopolynomialsto positivecharacteristic,aneffortfurtheradvancedbyBitoun[5].Duetotheintricatenatureofconstructing Bernstein–Satoroots,wewillinsteadusethemorestraightforwardcharacterizationintermsof ν-invariants, asprovidedbyQuinlan-Gallego[21].Beforedelvingintothistopic,wewillbrieflydiscuss p-adiclimitsand integers.

The p-adicvaluationon Z isthemap vp : Z → Z≥0 definedby vp (0)= ∞ and vp (n)=max {k ≥ 0 | p k divides n},for n =0, whichnaturallyextendstoavaluation vp : Q → Z≥0 byletting vp a b = vp (a) vp (b).

Thisinducesthe p-adicnorm |·|p : Q → R, |x|p = p vp (x ),andinturnthe p-adicmetric dp : Q × Q → R, dp (x, y )= p vp (x y ).Inthissetting,thering Qp of p-adicnumbersisthecompletionof Q withrespect tothe p-adicmetric.Thering Zp of p-adicintegersisthesubringof Qp givenby Zp = {α ∈ Qp ||

Because vp (n) ≥ 0forevery n ∈ Z,onehas |n|p ≤ 1,therefore Z iscontainedin Zp .Fromthedefinition, onealsoseesthat Q iscontainedin Qp .Asequence(xn)∞ n=0 ⊆ Q has p-adiclimit α ∈ Qp if xn → α in the p-adicmetric.Formoreon p-adicnumbers,werefertheinterestedreadertoSection7in[21]. Withthisinmind,Bernstein–Satorootsaredefinedasfollows:

Definition2.19 ([21,Proposition6.13],[22,TheoremIV.17]) Let I beanidealof R.A p-adicinteger α ∈ Zp isaBernstein–Satorootof I ifthereexistsasequence(νe )∞ e=0 ⊆ Z≥0 of ν-invariantsof I , νe ∈ ν• I (pe ), whose p-adiclimitis α

3.Linearlysquare-freepolynomials

Inthissectionweproveourmainresults,namely,thecomputationofBernstein–Satotheoryinvariantsfor linearlysquare-freepolynomialsincharacteristic p > 0.

Definition3.1. Let R = B[x1,..., xn]beapolynomialringoveracommutativering B.Wesaythata polynomialin R isalinearlysquare-freepolynomialifallitsmonomialsaresquare-free.

Example3.2. Let R = B[x11,..., x1n,..., xn1,..., xnn]beapolynomialringin n2 indeterminates.The indeterminatesmaybeassembledinan n × n genericmatrixofindeterminates X =(xij ).Thenthe determinantof X , det X = σ∈Sym(n) sgn(σ)x1σ(1) ··· xnσ(n), isalinearlysquare-freepolynomial.

Reports@SCM 9 (2024),53–64;DOI:10.2436/20.2002.02.42.

Bernstein–Satotheoryforlinearlysquare-freepolynomialsinpositivecharacteristic

Example3.3. Let X =(xij )bea2n × 2n skew-symmetricmatrixofindeterminates,thatis, xij = xji for1 ≤ i, j ≤ 2n.ThePfaffianof X isthepolynomial

ItcanbeshownthatthePfaffiansatisfies(Pf X )2 =det X .Sincenoindeterminateappearstwiceinthe samemonomial,thePfaffianislinearlysquare-free.

Example3.4. Let K beafieldand W ⊆ K E bearealizationofamatroid M,where E isafiniteset thatformsabasisof K E .Thentheconfigurationpolynomialof W islinearlysquare-free(see[7]).These polynomialshaveapplicationsinphysics.

Thepropositionbelowisawell-knownfactthatshowsthat F e ∗ R hasaparticularlynicestructure provided R isapolynomialringoveraperfectfieldofcharacteristic p > 0.Recallthatafield K of characteristic p > 0isperfectiftheFrobenius F : K → K isanautomorphismof K .Thisistantamount toeveryelementof K havinga pe -throotin K

Proposition3.5. LetR = K [x1,..., xn] beapolynomialringoveraperfectfieldKofcharacteristic Char(K )= p > 0.Foreachintegere ≥ 0,onehasthat

Inconsequence,theset {F e ∗

1

in n | 0

i1

in < pe } isabasisforF e ∗ R.Werefertothisasthe standardbasisofF e ∗ R.

WestartbycomputingtheFrobeniusrootsandthe ν-invariantsoflinearlysquare-freepolynomials. Thiswilllaythegroundworkforfurtherresults.Forthefollowinglemma,itwillbeconvenienttouse multi-indexnotation.If B[x1,..., xn]isapolynomialringin n variables,and a =(a1,..., an) ∈ Zn ≥0 isan n-tupleofnon-negativeintegers,welet

Lemma3.6. LetR = K [x1,..., xn] beapolynomialringoveraperfectfieldKofcharacteristicp > 0.Let fbealinearlysquare-freepolynomial.Fixanintegere ≥ 0.Thenforallintegers 0 ≤ r < pe ,F e ∗ f r isa nonzeroK-linearcombinationofelementsinthestandardbasisofF e ∗ R.

Proof. Because f islinearlysquare-free,onehas

forsomeinteger m ≥ 1,therefore

PedroL´opezSancha

Themonomialsintheexpressionabovehavetheform

Byassumption0 ≤ r < pe ,hencetheindeterminate xj appearsineachmonomialwithexponent

Itfollowsthat

,for i =1,...,

, isanelementinthestandardbasisof F e ∗ R.Asaresult,uptocollectingterms, F e ∗ f r reads

whichprovesthatthecoefficientsarein K .Because f r =0and F e ∗ R isafree R-module,somecoefficient isnonzero.

Theorem3.7. LetR = K [x1,..., xn] beapolynomialringoveraperfectfieldKofcharacteristicp > 0

Letfbealinearlysquare-freepolynomial.Fixanintegere ≥ 0.Then:

(i)Forallintegerss ≥ 0 and 0 ≤ r < pe , (f spe +pe 1)[1/pe ] =(f spe +

(ii)The ν-invariantsoffofleveleare ν

(iii)Ifs ≥ 0 isanintegerandJ =(f )s+1,then ν J f (pe )=(s +1)pe 1

Proof. (i) Forafixedinteger s ≥ 0,Frobeniusrootsgiveanascendingchain (f spe +pe 1)[1/pe ] ⊆ (f spe +pe 2)[1/pe ] ⊆···⊆ (f spe +1)[1/pe ] ⊆ (f spe )[1/pe ]

Inthecase s =0,Lemma 3.6 showsthat F e ∗ f pe 1 isanonzero K -linearcombinationofelementsinthe standardbasisof F e ∗ R.ItfollowsfromProposition 2.9 thattheFrobeniusroot(f pe 1)[1/pe ] isgenerated byunitsof R,therefore(f pe 1)[1/pe ] = R.Nowsupposethat s ≥ 1.Inviewoftheascendingchainabove, toproveequalityitsufficestoverifythat (f )s ⊆ (f spe +pe 1)[1/pe ] and(f spe )[1/pe ] ⊆ (f )s

Ontheonehand,byRemark 2.5, (f )s =(f )s (

Ontheotherhand,byProposition 2.6,thecontainment(f spe )[1/pe ] ⊆ (f )s isequivalentto(f )spe ⊆ (f )s[pe ] =(f )spe

9 (2024),53–64;DOI:10.2436/20.2002.02.42.

Bernstein–Satotheoryforlinearlysquare-freepolynomialsinpositivecharacteristic

(ii) Part (i) showsthatforeachinteger s ≥ 0,

ThenbyProposition 2.18,the ν-invariantsof f oflevel e ≥ 0areoftheform(

(iii) ItfollowsatoncefromDefinition 2.16 andpart (ii)

Lemma3.8. LetR = K [x1,..., xn] beapolynomialringoveraperfectfieldKofcharacteristicp > 0 and fbealinearlysquare-freepolynomial.Let λ ≥ 0 bearealnumberande ≥ 0 aninteger.Then

where {λ} denotesthefractionalpartof λ

Proof. Write λ as λ = ⌊λ⌋ + {λ}.If {

therefore

}≤ (pe 1)/pe ,onehasthat ⌊λ⌋

shows

Ontheotherhand,supposethat {λ} > (pe 1)/pe .Similarly,onefinds ⌊

, whichgives ⌈λpe ⌉ = ⌊λ⌋pe + pe .AgainusingTheorem 3.7 gives (f ⌈λpe ⌉)[1/pe ] =(f (⌊λ⌋+1)pe )[1/pe ] =(f )⌊λ⌋+1 , thusprovingthelemma.

Theorem3.9. LetR = K [x1,..., xn] beapolynomialringoveraperfectfieldKofcharacteristicp > 0 Letfbealinearlysquare-freepolynomial.Then:

(i)Forarealnumber λ ≥ 0,onehas τ (f λ)=(f )⌊λ⌋

(ii)ThesetofF-jumpingnumbersoffis FJN(f )= Z≥1.Inparticular,theF-purethresholdoffis 1.

Proof. (i) Sincethesequence((pe 1)/pe )∞ e=0 haslimit1as e →∞,thereisaninteger e0 satisfying {λ}≤ (pe 1)/pe forall e ≥ e0.ItfollowsfromLemma 3.8 that(f ⌈λpe ⌉)[1/pe ] =(f )⌊λ⌋ for e ≥ e0, therefore τ (f λ)=(f )⌊λ⌋

(ii) Fixaninteger n ≥ 0.Then τ (f λ)=(f )⌊λ⌋ =(f )n forallrealnumbers λ with n ≤ λ< n +1.Onthe otherhand,onehas τ (f n+1)=(f )n+1.Consequently n +1isan F -jumpingnumberof f ,andtheassertion follows.

Corollary3.10. Letfbealinearlysquare-freepolynomialwithintegercoefficientsin C[x1,..., xn].The log-canonicalthresholdoffis lct(f )=1.

Proof. Let p > 0beaprimenumberand fp bethereductionmodulo p of f in Fp [x1,..., xn].If p does notdivideallthecoefficientsof f ,then fp isnonzeroandthuslinearlysquare-free,hencefpt(fp )=1by Lemma 3.8.Thisoccursforall p largeenough,solct(f )=1byTheorem 2.15

PedroL´opezSancha

Corollary3.11. LetR = K [x1,..., xn] beapolynomialringoveraperfectfieldKofcharacteristicp > 0 TheonlyBernstein–Satorootofalinearlysquare-freepolynomialfis α = fpt(f )= 1

Proof. Let(td )∞ d =0 ⊆ Z≥0 beasequenceofnon-negativeintegersanddefine νd :=(td +1)p d 1,for d ≥ 0.

InviewofTheorem 3.7,each νd isa ν-invariantof f .Wethusobtainasequence(νd )∞ d =0 ⊆ Z≥0 of ν-invariantswith p-adiclimit νd → α = 1as d →∞.Inconsequence, α = fpt(f )isaBernstein–Sato rootof f .Becauseanysequenceof ν-invariantsof f isofthisform,itfollowsthat α =fpt(f )istheonly Bernstein–Satorootof f

Thecorollaryaboveallowsonetoanswerthefollowingquestion.

Question3.12 ([21,Question6.16]) SupposethattheF-purethreshold α ofanidealIliesin Z(p),the localizationof Z at {pk | k ≥ 0}.IsthelargestBernstein–SatorootofIequalto α?

Theanswerisaffirmativeforlinearlysquare-freepolynomialsinanycharacteristic p > 0.

Acknowledgements

Thisworkformsapartoftheauthor’sundergraduatethesisconductedattheDepartmentofMathematics, UniversityofUtah.Duringthisperiod,theauthorgratefullyacknowledgestheCFISandtheFundaci´o PrivadaMir-Puigfortheirfinancialassistance.TheauthoralsoreceivedsupportfromaMOBINTgrant providedbyAGAUR.Additionally,theauthorreceivedpartialsupportfromgrantPID2019-103849GB-I00 (AEI/10.13039/501100011033).

TheauthoralsowishestoexpressprofoundgratitudetoEamonQuinlan-GallegoandJosep ` Alvarez Montanerfortheirinsightfuldiscussions,expertguidance,andunwaveringsupport,whichhavesignificantly contributedtothisworkandbeyond.

References

[1]J. ` Alvarez-Montaner,M.Blickle,G.Lyubeznik, Generatorsof D-modulesinpositivecharacteristic, Math.Res.Lett. 12(4) (2005),459–473.

[2]J.N.Bernstein,Theanalyticcontinuationof generalizedfunctionswithrespecttoaparameter, FunctionalAnal.Appl. 6 (1972),273–285.

[3]B.Bhatt,TheF-purethresholdofanelliptic curve,Preprint(2012).

http://www-personal.umich.edu/bhattb/ math/cyfthreshold.pdf

[4]B.Bhatt,A.K.Singh,TheF-purethresholdofa Calabi–Yauhypersurface, Math.Ann. 362(1-2) (2015),551–567.

[5]T.Bitoun,Onatheoryofthe b-functioninpositivecharacteristic, SelectaMath.(N.S.) 24(4) (2018),3501–3528.

63 Reports@SCM 9 (2024),53–64;DOI:10.2436/20.2002.02.42.

Bernstein–Satotheoryforlinearlysquare-freepolynomialsinpositivecharacteristic

[6]M.Blickle,M.Mustat¸ˇa,K.E.Smith,Discretenessandrationalityof F -thresholds,Special volumeinhonorofMelvinHochster, Michigan Math.J. 57 (2008),43–61.

[7]G.Denham,M.Schulze,U.Walther,Matroidconnectivityandsingularitiesofconfigurationhypersurfaces, Lett.Math.Phys. 111(1) (2021),Paperno.11,67pp.

[8]N.Hara,K.-I.Yoshida,Ageneralizationof tightclosureandmultiplierideals, Trans.Amer. Math.Soc. 355(8) (2003),3143–3174.

[9]I.B.D.A.Henriques,M.Varbaro,Test,multiplierandinvariantideals, Adv.Math. 287 (2016),704–732.

[10]D.J.Hern´andez, F -invariantsofdiagonalhypersurfaces, Proc.Amer.Math.Soc. 143(1) (2015),87–104.

[11]M.Hochster,C.Huneke,Tightclosure,invarianttheory,andtheBrian¸con–Skodatheorem, J.Amer.Math.Soc. 3(1) (1990),31–116.

[12]M.Kashiwara, B-functionsandholonomicsystems.Rationalityofrootsof B-functions, Invent.Math. 38(1) (1976/77),33–53.

[13]J.Koll´ar,Singularitiesofpairs,in: Algebraic Geometry—SantaCruz1995,Proc.Sympos. PureMath. 62,Part1,AmericanMathematical Society,Providence,RI,1997,pp.221–287.

[14]E.Kunz,Characterizationsofregularlocalrings ofcharacteristic p, Amer.J.Math. 91 (1969), 772–784.

[15]R.Lazarsfeld, PositivityinAlgebraicGeometry. II.PositivityforVectorBundles,andMultiplier Ideals,Ergeb.Math.Grenzgeb.(3) 49 [Results inMathematicsandRelatedAreas.3rdSeries. ASeriesofModernSurveysinMathematics], Springer-Verlag,Berlin,2004.

[16]B.Malgrange,LepolynˆomedeBernsteind’une singularit´eisol´ee,in: FourierIntegralOperatorsandPartialDifferentialEquations (Colloq.Internat.,Univ.Nice,Nice,1974),Lecture NotesinMath. 459,Springer-Verlag,BerlinNewYork,1974,pp.98–119.

[17]L.E.Miller,A.K.Singh,M.Varbaro,The F -purethresholdofadeterminantalideal, Bull.Braz.Math.Soc.(N.S.) 45(4) (2014), 767–775.

[18]M.Mustat¸ˇa,Bernstein–Satopolynomialsin positivecharacteristic, J.Algebra 321(1) (2009),128–151.

[19]M.Mustat¸ˇa,S.Takagi,K.-i.Watanabe,FthresholdsandBernstein–Satopolynomials,in: EuropeanCongressofMathematics,European MathematicalSociety(EMS),Z¨urich,2005, pp.341–364.

[20]M.Mustat¸ˇa,K.-I.Yoshida,Testidealsvs.multiplierideals, NagoyaMath.J. 193 (2009), 111–128.

[21]E.Quinlan-Gallego,Bernstein–Satotheoryfor arbitraryidealsinpositivecharacteristic, Trans. Amer.Math.Soc. 374(3) (2021),1623–1660.

[22]E.Quinlan-Gallego,Bernstein–SatoTheoryin PositiveCharacteristic,Thesis(Ph.D.),2021.

[23]M.Sato,Theoryofprehomogeneousvector spaces(algebraicpart)—theEnglishtranslationofSato’slecturefromShintani’snote, NotesbyTakuroShintani,Translatedfromthe JapanesebyMasakazuMuro, NagoyaMath.J. 120 (1990),1–34.

[24]S.Takagi,K.-i.Watanabe,OnF-purethresholds, J.Algebra 282(1) (2004),278–297.

ANELECTRONICJOURNALOFTHE SOCIETATCATALANADEMATEM ` ATIQUES

Apromenadethroughsingular symplecticgeometry

∗PabloNicol´asMart´ınez CentredeRecercaMatem`atica pnicolas@crm.cat

∗Correspondingauthor

Resum (CAT)

Enaquestarticle,presentemlageometriasimpl`ecticaidePoissondesdela mec`anicahamiltoniana.Despr´esintrodu¨ımelsalgebroidesdeLiesimpl`ectics, objectesalmigdelageometriasimpl`ecticaidePoisson.Posteriorment,recordem lanoci´odereducci´osimpl`ecticaenpres`enciad’unaaplicaci´omoment.Coma aplicaci´od’aquestaconstrucci´o,descrivimelsespaisdefasedepart´ıculescarregades sotalapres`enciadecampsdeYang–Mills.Finalment,introdu¨ımunan`alegsingular d’aquestaconstrucci´oidonemexemplesf´ısics.

Abstract (ENG)

Inthisarticle,wepresentsymplecticandPoissongeometryfromtheperspectiveof Hamiltonianmechanics.WethenintroducesymplecticLiealgebroids,objectswhich liebetweensymplecticandPoissonmanifolds.Afterwards,werecallthenotionof symplecticreductionundertheexistenceofamomentmap.Asanapplicationof thisconstruction,wedescribethephasespaceofachargedparticleinteractingwith aYang–Millsfield.Finally,weintroduceasingularanalogueofthisconstruction andprovidephysicalexamples.

Keywords: Poissongeometry,reduction,minimalcoupling,Liealgebroid. MSC(2020): Primary53D17,53D20.Secondary53C12.

Received: August1,2024.

Accepted: September1,2024. 65 https://reportsascm.iec.cat Reports@SCM 9 (2024),65–76;DOI:10.2436/20.2002.02.43.

Alamem`oriadelMarcHerault

Apromenadethroughsingularsymplecticgeometry

1.Introduction

ClassicalmechanicswasinauguratedbytheworksofIsaacNewton.Afterhiscontribution,differentapproachestowriteNewton’sequationsofmotionweredeveloped,commonlywiththegoalofimproving certainaspectsofthepreviousformalism.InHamiltonianmechanics,theequationsofmotionareasystem offirstorderordinarydifferentialequations,knownasHamilton’sequations.Thisfeaturemakeseasier discussingqualitativeaspectsofsolutionsfromtheperspectiveofdynamicalsystems.Moreover,thedual behaviorofsymmetriesandconservedquantities,originallyestablishedbyEmmyNoetherforLagrangian systems,becomestransparentintheHamiltonianformalism.

SymplecticgeometrycanberegardedasanabstractionofHamiltoniandynamicsforsmoothmanifolds. Poissongeometryisafurthergeneralizationofthesymplecticsetting,wheretherelevantstructureis thePoissonbracketdefiningtheevolutionofobservablesalongthedynamicsofthesystem.Aswewill see,Poissonstructuresvastlygeneralizesymplecticstructuresand,consequently,manyresultsfromthe symplecticcategoryfailtobetransferredtoPoissonmanifolds.SymplecticLiealgebroidsdefinePoisson structureswhich,althoughnotarisingfromasymplecticform,haveaveryclosebehaviortothem.In physics,theseobjectsallowtodescribephysicalsystemswithdegenerateorconstraineddynamics.In mathematics,theyhaveprovedtobetheadequatelanguagetoestablishresultsforaclassofPoisson structures.

NewdiscoveriesinparticlephysicsduringtheXXcenturyposedtheproblemofincorporatingtheweak andstrongforcesintomechanics.ThesatisfactoryformulationwasproposedbyYangandMills,andis nowadaysknownunderthenameof gaugetheory 1 Theequationsdescribingthemotionofacharged particleunderthepresenceofaYang–MillsfieldareageneralizationofLorentz’sforceequation,andare knownasWong’sequations.SternbergshowedhowWong’sequationsfitintotheHamiltonianformalismof mechanics.WeinsteinadditionallyprovedthatthephasespaceconstructedbySternbergcouldberealized asthereductionofauniversalspaceforparticlesinteractingwithYang–Millsfields.

Thegoalofthisarticleistofillthepictureintroducedinthissection.InSection 2 werecallthefundamentalsofsymplecticandPoissongeometryfromtheHamiltonianformalismofmechanics.InSection 3 we introduceLiealgebroidsand E -symplecticmanifoldsasobjectsbetweensymplecticandPoissonstructures. Wewilladditionallygiveexamplesofinterestwheretheyhavebeenfruitfullyapplied.InSection 4 we remembertheinterplaybetweenconservedquantitiesandsymmetries,codifiedinthemomentmapofa Hamiltonianaction.Thepresenceofsymmetriesallowsforeliminationofdegreesoffreedom,aprocedure formalizedbythereductiontheoremofMarsdenandWeinstein.WepresentSternberg’sandWeinstein’s constructions,andshowhowtheyhavebeenextendedtothesettingof E -symplecticmanifolds.

2.SymplecticandPoissongeometry

2.1Symplecticgeometry

SymplecticgeometrycanbeconsideredanabstractionoftheHamiltonianformulationofclassicalmechanics.Inthisformalism,theequationsofmotionintheEuclideanspace R2n,describedintermsof 1Inmathematics,gaugetheoriesrefertothestudyofconnectionsinvectorandprincipalbundles.Thenameof Yang–Mills theories isreservedtothestudyofsolutionstotheYang–Millsequations. https://reportsascm.iec.cat

coordinates pi , qi ,canberecoveredfromafunction H ∈C∞(R2n),calledtheHamiltonian,following Hamilton’sequationsofmotion:

.(1)

Theprevioussetofequationscanbecompactlywrittenusingmatrixnotationas XH = J ·∇f ,where J is thestandardskew-symmetricmatrix.CommonchoicesinphysicsfortheHamiltonianareenergyfunctions oftheform H = 1 2m p2 i + V (q)forsomesmoothfunction V ∈C∞(R2n),calledthepotentialofthe system.

Inmanyexamples,asinsystemswithconstraints,itisbettertoworkdirectlyinthesettingofdifferentiablemanifolds.Towritetheprevioussetofequationsinanabstractmanifold,however,weneed tochooseadditionaldatarelatingtheHamiltonianvectorfield XH andthedifferentialdH.Equation(1) suggeststhatweshouldchooseaskew-symmetricandnon-degeneratetensor ω ∈ Ω2(M).Formanyresults toholdwehavetoadditionallyimposetheform ω tobeclosed.Whilethereisgoodgeometricmotivation behindthisrequirement,wedonothavethespacetodelveintothismatter.

Definition2.1. Let M beasmoothmanifold.Anon-degenerate,closedtwo-form ω ∈ Ω2(M)iscalleda symplecticform.Wecallanysuchpair(M, ω)a symplecticmanifold

Followingthepreviousanalogybetween ω andthematrix J,Hamilton’sequationsofmotion(1)should bewritteninthisnewlanguageas

XH ω = dH

Thereisnoapparentreasontobelievethisexpressionshouldberelatedingeneraltoequations(1).Itisa theoremofDarbouxthatthisis,indeed,thecase.Moreprecisely,wehavethefollowing:

Theorem2.2 (Darboux). Let (M, ω) beasymplecticmanifold.Foreverypointp ∈ Mthereexistsa chart φ : U ⊂ Rn → Mcenteredatpwithcoordinatesqi ,pj suchthat

Thisresultisverypowerfulbecauseitshowsthatsymplecticgeometryhasnolocalinvariants.Consequently,allinterestinginformationinsymplecticmanifoldshastobeoftopological/globalnature.

2.2Poissongeometry

Poissonbracketswereoriginallyintroducedtostudytheevolutionofobservables,i.e.,smoothfunctions, alongtheHamiltoniandynamics.Inmoremathematicalterms,ifwedefinethePoissonbracketof H and f tobethederivativeof f alongtheflowof XH ,Hamilton’sequations(1)directlyshow

.(2)

InthemoregeneralsettingofsymplecticgeometrythereexistsananaloguegeneralizationofthePoisson bracketgivenbytheformula

{f , g } = ω(Xf , Xg ). (3)

Apromenadethroughsingularsymplecticgeometry

Poissonshowedthathiseponymousbracket(2)islinearinbotharguments,skew-symmetric,satisfies Leibniz’sruleandJacobi’sidentityholds:

Eventhoughanybracketarisingfrom(3)satisfiestheseconditions,therearebracketsfulfillingthese propertieswhichcannotbedefinedinthisway.AtrivialexampleisthePoissonbracket {f , g } =0for all f , g ∈C∞(M).Thesystematicstudyoftheseobjectsisthebranchof Poissongeometry.

Definition2.3. A Poissonbracket onasmoothmanifold M isabilinear,skew-symmetricoperation {·, ·} : C∞(M) ×C∞(M) →C∞(M)satisfyingLeibniz’sruleineachargumentandJacobi’sidentity.

ThereisanalternativeandusefulcharacterizationofPoissonbrackets.Givenanybracket {·,·}: C∞(M)× C∞(M) →C∞(M)satisfyingLeibniz’sruleandlinearityineachvariable,wecanrecoveritsactiononany functions f , g ∈C∞(M)asthecontractionofatwo-tensorfieldΠ ∈T 2M withthedifferentialsdf ,dg Moreover,becausethePoissonbracketisskew-symmetric,thereexistsauniquebivectorfieldΠ ∈ X2(M) representingthebracket {·, ·} inthesensethat

foranysmoothfunctions f , g ∈C∞(M).Jacobi’sidentity,however,doesnotholdforgeneralbivector fields.Itturnsouttobeequivalenttheintegrabilitycondition J =[Π,Π]=0.Thetrivectorfield J ,up toafactor,isappropriatelycalledthe Jacobiator,andthebracket[ , ]isanextensionoftheLiebracket ofvectorfieldstothespaceofallmultivectorfieldscalled Schouten–Nijenhuisbracket

Giventhegreatgeneralityofthesestructures,thereisnolocalnormalformforPoissonstructures similartoDarboux’sTheorem 2.2.TheclosestanalogueisthefollowingresultduetoWeinstein.

Theorem2.4 (Weinstein[15]) Let (M,Π) beaPoissonmanifold.Foreverypointp ∈ Mthereexistsa chart φ : U ⊆ M → Rn withcoordinatesqi ,pj ,rk suchthat

Moreover,thefunctionsfij areskew-symmetricandvanishat 0

Thislocalstructuretheoremiscommonlycalledthe splittingtheorem becauseitstatesthat,locally, everyPoissonmanifoldsplitsasthedirectproductofasymplecticmanifoldandaPoissonmanifoldwith vanishingPoissonstructureattheorigin.ObservethistransversePoissonstructuremeasuresthedifference ofaPoissonmanifoldfrombeingsymplectic.

WewouldliketohighlighttwoimmediateconsequencesfromWeinstein’stheorem.Firstly,thesplitting showsthatanyPoissonmanifoldadmitsafoliationbysymplecticleaves,calledthe symplecticfoliation of themanifold.ThisshowsthatpartofthePoissonstructurecanbeencodedinthesymplecticstructures oftheleaves.Secondly,thereisawell-definednotionof transverse Poissonstructure.Incontrastwiththe symplecticrealm,Poissonmanifoldsdohavelocalinvariants.Assuch,theirstudyismuchmorecomplicated.

3.Singularsymplecticgeometry

WehaveseenthattheclassofsymplecticmanifoldsfitsverynaturallywithintheclassofPoissonmanifolds. TheclassofPoissonmanifoldsis,however,muchbiggerandwilderthanthatofsymplecticmanifolds.As such,therearesomeinterestingandniceresultsinthesymplecticcategorythatdonotholdinPoisson geometry.OneinstanceofthisphenomenonishintedinthedifferencebetweenDarboux’sTheorem 2.2 andWeinstein’sTheorem 2.4

TherearemanyspecificexamplesofPoissonmanifoldswhich,althoughnotbeingsymplectic,canbe understoodinasymplecticflavourifwearewillingtoworkwithsingularities.Takeasanexamplethe simplestdegeneratePoissonstructurewithitsdualform,

Theform ω isclearlynotasymplecticform,becauseitisnotevenwell-definedasasmoothdifferential form.Itbecomesasymplecticform,insomesense,ifwerestrictitsdomaintothespaceofvectorfields tangenttothehypersurface {z =0}.

Wecaninformallycall ω asingularsymplecticform.Theobjectiveofthissectionistoelevatethisidea toarigorousstatement.Webeginbydefiningthemainobjectsofthediscussion.

Definition3.1. A Liealgebroid isavectorbundle π : A→ M togetherwithavectorbundlemap ρ : A→ TM coveringtheidentityandequippedwithaLiebracket[ , ]A onthespaceofsectionsΓA.Moreover, thebracketsatisfies,forany X , Y ∈ ΓA and f ∈C∞(M),thefollowingcompatibilityconditions:

Inequation(5a),theoperator L denotestheLiederivativeofafunctionalongavectorfield.

Equation(5a)isageneralizedLeibniz’sidentityforthebracket.Equation(5b)turnsouttoberedundant, asitcanbededucedfrom(5a).Wehavechosentoexplicitlystateitbecauseitwillberelevantforupcoming discussions.

Letustakeabriefdetourandpreciselydescribehowtheseobjectsariseinthedescriptionofsystems withsingularities.Wewillpresentexamplesarisingfromphysicswhereallthefollowingassumptionsare satisfied.Considerthattheequationsofmotionofoursystemcanbedescribedintermsofa C∞ subsheafofvectorfields F⊆ X.Furthermore,assumethesheafislocallyfinitelygenerated,thatis,forany point p ∈ M thereisanopenset U containing p andsections X1,..., Xm ∈FU suchthattheirrestriction toanyopenset V ⊆ U generates FV .Wecanmaketwoadditionalassumptions,eachofwhichgivesrise towell-knownobjectsindifferentialgeometry.

• Ifweadditionallyassumetheintegrabilitycondition[F , F ]= F ,thesheaf F definesa singular foliation inthesenseofAndroulidakisandSkandalis.Theseobjectscanbeintegratedtogivestandard singularfoliations,orfoliationsinthesenseofStefanandSussman.

Apromenadethroughsingularsymplecticgeometry

• Ifthesheafisnotonlylocallyfinitelygeneratedbutalsolocallyfree,itisatheoremofSerre[11]in thealgebraicsettingandSwan[13]inthecontinuouscaseshowsthesheaf F canberecoveredas thesheafofsectionsofavectorbundle E

Ifbothassumptionsaresimultaneouslymade,weget projectivefoliations or Debordfoliations.If E isa representingvectorbundlefor F inthesensethat F =ΓE ,wegetanaturalmapofvectorbundles ρ : E → TM givenbytheevaluationofasectionatapoint.Thismapiscalledtheanchor,andisinjectiveinan openanddensesubset U ⊆ M,i.e.,genericallyinjective.Theintegrabilitycondition[F , F ] ⊆F liftstoa bracketinthespaceofsectionsΓE .Onecaneasilycheckthatthecompatibilityconditions(5a)and(5b) aresatisfiedand,thus,anysuchobjectisaninstanceofaLiealgebroid.

NotallLiealgebroidsarisethiswayas,ingeneral,theanchormap ρ : A→ TM isnotgenerically injective.Theclassofalgebroidspreviouslypresentedwillberelevantinupcomingsections,sowewillgive themapropername.

Definition3.2. Let M beasmoothmanifold.An E-structure isthechoiceofaDebordfoliation F⊆ X or,equivalently,avectorbundle π : E → M withagenericallyinjectivemap ρ : E → TM.Wecallthe pair(E , M)an E-manifold

ThisconstructionshowsthatwecanconsiderLiealgebroids,atleastpsychologically,asareplacementofthestandardtangentbundleTM.Assuch,wecanconsiderthedualbundle A∗ anditsexterior powers k A∗.Sectionsofthesebundlesarecalled,byanalogywiththestandardsetting, k-differential A-forms.ThespaceofallsectionsiswrittenΩk A(M).TheLiebracket[· , ·]A inducesanexteriordifferential inthespacesΩk A(M)followingthestandardKoszulformula,

Inthepreviousformula,anargumentwithahatimpliesithasbeensuppressedfromthecollectionof inputs.Aroutineverificationshowsd2 A =0.Thecohomologyspacesofthecomplexof A-formsarecalled Liealgebroidcohomologygroups. Withthenotionofdifferentialformsandexteriorcalculusforsystemswithconstraints,wecandefine asymplecticformmimickingthestandarddefinitioninclassicaldifferentialgeometry.

Definition3.3. Let π : A→ M beaLiealgebroid.A symplecticform on A isatwoform ω ∈ Ω2 A(M)which isclosedandnon-degenerate.Wecallthepair(A, ω)a symplecticLiealgebroid.Similarly,if π : E → M isan E -manifold,wecallthepair(E , ω)an E-symplecticmanifold

Inthissetting,thenon-degeneracyconditionamountstorequiringthevectorbundlemorphism ω♭ : A−→A∗ X −→ ιX ω tobeanisomorphism.Itsinversemapiswritten ω♯ : A∗ →A.Asaconsequence,wecandefinethe Hamiltonianvectorfieldassociatedtoafunction H astheuniquesolutiontotheequation ιXH ω = ρ ∨dH

Inthepreviousequation,themap ρ∨ :T∗M →A∗ denotestheadjointoftheanchormap ρ : A→ TM. https://reportsascm.iec.cat

WemotivatedtheconstructionofLiealgebroidsandsymplecticformsonthemtostudyPoisson structureswithcertaintypesofsingularities.AnysymplecticLiealgebroidindeeddefinesaPoissonbracket as {f , g } = ω(Xf , Xg ).

Thismappingisclearlybilinear,skew-symmetric,andsatisfiesLeibniz’sidentity.Jacobi’sidentityisnotas evidentbutitisaconsequenceoftheclosednessof ω asasingularsymplecticform.

Beforeconcludingthissection,letusbrieflydiscusstwodifferentexamplesof E -manifoldswhichhave foundsuccessinPoissongeometry.

Webeginbydescribing b-symplecticmanifolds.Inthiscase,thesheafofvectorfieldsconsideredis takentobethesheafoftangentvectorstoanembeddedhypersurface Z ⊆ M.TheLiealgebroidobtained iscalledthe b-tangentbundle.ItwasoriginallyconsideredbyMelrose[5]inordertogeneralizetheindex theoremtomanifoldswithboundary.Thesymplecticgeometryof b-manifoldshasbeenextensivelystudied anddescribedbyGuillemin,Miranda,andPires[2].TheschoolofMirandahasdoneremarkableworkin studyingtheinterplayof b-symplecticgeometrywithintegrablesystems,geometricquantization,KAM theory,andmanymore.

Theseobjectsaregeneralizedby bm-symplecticmanifolds.Thesheafofvectorfieldsintoconsideration isonceagainthesheafofallfieldstangenttoafixedhypersurface Z ,butnowwefixwithdegreeof tangencytobeatleast m.ThedefinitionofthesestructuresisduetoScott[10],wheresometechnical detailsconcerningadditionaldataarediscussed.Thissingularsymplecticmodelshavefoundapplications instudyingthetopologyofescapeorbitsintheplanar,restricted,circularthreebodyproblem[7].

4.Reductionbysymmetriesandminimalcoupling

Oneofthecentralideasinthestudyofphysicalsystemsisthatofsymmetries.Inthepresenceofa groupoftransformationsthatleavesthemotionofthesystemunchanged,onecanreducethenumberof parametersbyanappropriatechoiceofcoordinates(orframesofreference).Aremarkableinstanceofthis phenomenonisEuler’ssolutiontothetwo-bodyproblem.Theinvariancebylineartranslationsallowsthe originoftheframeofreferencetobetakeninthecenterofmass,whiletheinvariancebyrotationsimplies theconfinementofbothbodiestoaplaneandoneadditionalconstraint.

Theseinvariancebytransformationgroupsofthesystemcanbeduallyreadasconservationlaws. Theinvariancebylineartransformationsisequivalenttotheconservationoflinearmomentum,whilethe invariancebyrotationsisequivalenttotheconservationofangularmomentum.Theobservationthatthis phenomenonisageneralfeatureisduetoEmmyNoetherand,assuch,theconservedquantitiesobtained fromasymmetryarecalled Noethercharges

Thiscorrespondenceistransparentinthesymplecticformulationofclassicalmechanics.Todescribe it,wewillneedtodefinewhatdoesitmeanforanactionofaLiegroup G on(M, ω)tobeHamiltonian. Intuitively,wewouldlikethefundamentalvectorfieldsoftheactiontobeHamiltonian:inotherwords,we areaskingforalift µ• ofthefundamentalvectorfieldmap •# inthefollowingcommutativediagram:

Apromenadethroughsingularsymplecticgeometry

Here,wehavetacitlyassumed M isconnectedsothatH0(M)= R.Therealwaysexistssuchaliftat thelevelofvectorspaces:as X• : C∞(M) → XHam(M)issurjective,wecanchoosethepreimageofaset ofgeneratorsandextendbylinearity.

Thereareobstructionsforthemap µ• : g →C∞(M)tobeamorphismofLiealgebras,whereweendow C∞(M)withthePoissonbracketasLiebracket.ThefailuretohaveaLiealgebramorphismismeasured bythemap

c(X , Y )= {µ X , µ Y }− µ[X ,Y ]

Astheprojectionofthiselementto XHam(M)vanishesbythecommutativityofthediagram,wecanidentify theimage c(X , Y )withanelementinthekernelker X• ≃ R.Thismapthusdeterminesanelementin theChevalley–Eilenbergcomplex, c ∈ C(g; R).Themap c isclosed,andhencedeterminesaclassinthe cohomologygroupH2(g; R).Thelift µ• canbechosentobeaLiealgebramorphismifandonlyif[c]=0. Moreover,allpossiblesuchchoicesareparametrizedbyelementsofthegroupH1(g; R).

AssumingsomeconditionsontheLiegroup G , 2 thereisauniquelydeterminedliftwhichwecallthe comomentmap.Byconstruction,itintertwinestheadjointactionin g withtheinducedpullbackaction in C∞(M).Asthenamehints,however,itisbettertothinkofthecomomentmapintermsofadual objectcalledthe momentmap

Definition4.1. Let(M, ω)beasymplecticmanifoldandlet G beaLiegroupactingon M.Wesaythe actionis Hamiltonian ifthereexistsamap µ : M → g∗,calledthe momentmap,satisfyingthefollowing conditions:

Wecallanysuchtriple(M, ω, µ)a HamiltonianG-space

Equation(7a)isreminiscentoftheequivarianceofthecomomentmap.Equation(7b)isadirect consequenceofthefactthatthefundamentalvectorfieldsof g actinaHamiltonianfashion:indeed,all wearesayingisthat ⟨µ, X ⟩ istheHamiltonianfunctionof X # or,following(6),thecomomentmap µX

LetusassumenowwearegivenaHamiltonian G -space(M, ω, µ)witha G -invariantHamiltonian H andequationsofmotiondeterminedby XH .Assume H isaninvariantfunctionundertheactionof G .We willalsoassumethegroup G isconnected.ThistechnicalconditionensuresthatanyHamiltonianaction isalsoasymplecticaction,thatis,preservestheform ω.Twoconsequencesarisefromthesefacts.

Firstly,observe XH is G -invariant.Werecallthesymplecticform ω is G -invariantbecauseweassume G isconnected.BecausetheHamiltonian H is G -invariant,wehave

Asaconsequence,wededuce XH = ρg · XH

Secondly,assumewearegivenaregularvalue α ∈ g∗ of µ.Byequivariance,everyothervalue β ∈Oα isregular,andthusthepreimage Mα = µ 1(Oα)isasubmanifold.Byinvarianceof H wehave LX # H =0. Thedefinitionofmomentmapimpliesnow

2Forexample,if G issemisimple,weknowbyWhitehead’slemmasthatH1(g; R)=H2(g; R)=0.Thesemisimplicity assumptionisautomaticallysatisfiedif G isacompactgroup.

Asthisequalityholdsforall X ∈ g,wehave ⟨dµ, XH ⟩ =0.Thisresultimplies XH istangenttothelevel setsof µ and,by G -invariance,tothepreimagesofthecoadjointorbits.

Thus,thedynamicsdefinedby XH canberestrictedtothesubmanifold µ 1(Oα)andcanbefurther projectedtothequotientmanifold µ 1(Oα)/Gα,assumingtechnicalconditionsontheactionof G . 3 MarsdenandWeinsteinobservedthatthisreducedspaceisonceagainasymplecticmanifold,andhence onecanconsiderHamiltoniandynamicswithrespecttothereducedsymplecticstructure.

Theorem4.2 (Marsden–Weinstein[4]). Let (M, ω) beasymplecticmanifoldandassumeGisacompact LiegroupactingonMwithmomentmap µ : M → g∗.If α ∈ g∗ isaregularvalueof µ,thenthe space µ 1(Oα)/Gα isasymplecticmanifoldwithsymplecticform ωred.Moreover,itisuniquelydetermined by

4.1Theminimalcouplingprocedure

WewilldescribeaproceduretoconstructthephasespaceofachargedparticleinteractingwithaYang–Millsfield.ThepresentationwetakeisessentiallyduetoSternberg[12].Assumewearegivenaprincipal G -bundle π : P → X overasymplecticmanifold(X , ω)andaHamiltonian G -space(Q,Ω)withmoment map µ.Wecanconstructasymplecticstructureintheadjointbundle P ×G Q bychoosingaprincipal connection η ∈ Ω1(X ;ad P)inthefollowingway.Sternbergshowsthetwo-formd⟨µ, η⟩ +Ωin P × Q descendstoawell-definedandclosedtwo-formΩη ∈ Ω2(P ×G Q).Underanon-degeneracyassumption, themanifold(P ×G Q, ω +Ωη )issymplecticandthepreviousconstructioniscalledthe minimalcoupling procedure.TheadditionaltermΩη isknownintheliteratureasthe magneticterm.Ifwetake(Q,Ω)to beacoadjointorbitofanirreduciblerepresentationofaLiegroup G ,weobtaintheclassicalphasespaces ofchargedparticles[12].

Sternbergmentionsthat,inthecasewhere X =TM withitscanonicalsymplecticform,theprevious non-degeneracyassumptionisalwayssatisfied.WeinsteinwentbeyondthisobservationandprovedSternberg’sphasespacecanbeobtainedasthesymplecticreductionofauniversalphasespace.Theroleofthe connectionismadeexplicitintermsofanisomorphismbetweenhisconstructionandSternberg’s.More concretely,wecansummarizeWeinstein’sresultsinthefollowingtheorem.

Theorem4.3 (Weinstein[14]). Let π : P → MbeaprincipalG-bundleandlet (Q,Ω) beaHamiltonian G-spacewithmomentmap µQ .LetP # bethepullbackbundleof π bythesubmersion T∗M → M.

Then,thespace T∗P × QisaG-HamiltonianspaceforthediagonalG-actionwithmomentmap4 µ = µP + µQ .AnychoiceofconnectioninPinducesadiffeomorphism µ 1(0) ≃ P # × Qwhich,furthermore, inducesadiffeomorphismofthesymplecticspaces µ 1(0)/GandP # ×G Q.

Thesymplectomorphisminducedbythischoiceofconnectioniscalledthe minimalcoupling ofthe system.GivenaHamiltonianinthebasespace, H ∈C∞(T∗M),wecanconsideritspullbacktoeither spaceandgetequivalentdynamics.Theinducedequationsofmotionarecalled Wong’sequations [8].

3Namely,freenessandproperness.Thelatterissatisfiedif G isacompactgroup,whichwehaveenforcedsincethe constructionofthemomentmap.

4Inthisformula,themomentmap µP :T∗P → g ∗ isthenaturalmomentmapobtainedforthecotangentliftofany G -actiontothecotangentbundlewiththecanonicalsymplecticform.

9 (2024),65–76;DOI:10.2436/20.2002.02.43.

Apromenadethroughsingularsymplecticgeometry

ThereisaninterestinginterpretationofthisconstructionbyMontgomery[9].Thechoiceofaconnection yieldsthecommutativediagram

# ×G Q µ 1(0)/G

Here,theprojection π iscompletelynaturalandisinducedfromtheprojectionofthepullbackbundle π : P # → T∗M.Themap h∨ isthedualofthehorizontallift h :TM → TP,completelydetermined andequivalenttothechoiceofconnection.Therefore,wehavetwodifferentwaystounderstandWong’s equationsofmotion.Inthespace P # ×G Q,theHamiltonianfunctiondoesnotgetmodifiedbutthe symplecticstructureabsorbstheadditionalfactorΩη .Intheuniversalmodel µ 1(0)/G ,thesymplectic formiscanonicalbuttheHamiltonianfunctiongetstwistedbythepullbackunder h∨

4.2Thesingularminimalcoupling

TheminimalcouplingenablesthestudyofclassicalparticlesinteractingwithYang–Millsfieldinthe symplecticformulation.Theextensionofthisconstructiontoincludesystemsmodeledwith E -manifolds wasproposedbyMir,Miranda,andNicol´as[6].Moreconcretely,oneoftheresultsprovedisthefollowing analogousstatementtoTheorem 4.3

Theorem4.4 (Mir–Miranda–Nicol´as[6]) Let π : P → MbeaprincipalG-bundleoveranE-manifoldE → Mandlet (Q,Ω) beaHamiltonianG-spacewithmomentmap µQ .LetP # bethepullbackbundleof π bythesubmersionE ∗ M → M.

Then,thespaceE ∗ P × QisaG-HamiltonianspaceforthediagonalG-actionwithmomentmap µ = µP + µQ .AnychoiceofconnectioninPinducesadiffeomorphism µ 1(0) ≃ P # × Qwhich,furthermore, inducesadiffeomorphismofthesymplecticspaces µ 1(0)/GandP # ×G Q.

Throughouttherestofthesectionwewillfixan E -manifold EM → M andaprincipal G -bundle P → M TheproofofTheorem 4.4 followsessentiallythesameargumentasWeinstein.Thecomplicationliesin developingthemachinerynecessarytostateandfollowtheoriginalproof.Sincewewouldliketoextend thesingularitiesofourconfigurationspace M tothebundles EM and P,weneedaproceduretodoso.The fundamentalnotionisthatof prolongation,whichdatesbackatleasttotheworksofdeLe´on,Marrero, andMart´ınez[1].

Definition4.5. Assume f : N → M isasurjectivesubmersionoveraLiealgebroid A→ M.The prolongation of A along f ,written Lf A,isthepullbackbundleofthemorphismsdf :TN → TM and ρ : A→ M Asaset,itcanbeidentifiedwith

Throughouttherestofthesection,wefixan E -manifold E → M.Theprolongationofthedual bundle E ∗ M → M,whichcanbethoughtasthesingulartangentbundleofthecotangentbundle,carries anaturalLiouvilleformwhosedifferentialissymplectic[1].Thus,theprolongationof E ∗ M isasymplectic E -manifold,instrongresemblancetothecotangentbundleofasmoothmanifold.

Similarly,weconsidertheprolongationoftheprincipal G -bundle P → M.Because EP → P hasa naturalactionoftheLiegroup G andtheanchormapisinjectiveonanopenanddensesubset,theaction on P liftstoanactionon EP whichfactorsthroughthestandardtangentmap.Byduality,theactionlifts tothedualbundle E ∗ P and,moreover,itbecomesHamiltonianwithrespecttothecanonicalsymplectic structure.ThefactthattheactionoftheLiegroup G automaticallyliftsto EP isonlyvalidfor E -manifolds. IfwewanttoestablishsimilarresultsforsymplecticLiealgebroids,strongercompatibilityassumptionsare neededtodefineHamiltoniangroupactions(see[3]).

ThelastingredientintheproofofTheorem 4.4 isthenotionofsymplecticreductioninthesingularsetting.TheauthorsrelyonaversionofthereductiontheoremdevelopedbyMarrero,Padr´on,and Rodr´ıguez-OlmosforsymplecticLiealgebroids(Theorem3.11in[3]).

In[6]theauthorsconsidersomestandardconfigurationspaceswithsingularities,suchasthecompactificationofastationaryblackholeorageneral bm-manifold,motivatedbypreviouscontributionsinthe literatureofcelestialmechanics.Moreover,theyexplicitlycomputeWong’sequationsdescribingthemotion ofachargedparticleinteractingwithaYang–Millsfield.

5.Conclusions

SymplecticmanifoldsarefundamentalobjectsinthegeometricformulationofHamiltoniandynamics. ThesegiverisetoPoissonbrackets,whichmeasuretheevolutionofobservablesalongthetrajectoriesof thesystembutarevastlymoregeneral. E -Symplecticmanifoldsliebetweenbothworlds:eventhoughthey definePoissonstructures,theirbehaviorisclosertosymplecticforms.Moreover,theynaturallyencode certainphysicalsystemswithconstraineddynamics.

Theorem 4.4 extendstheclassicalminimalcouplingprocedureto E -symplecticmanifolds.Inmore physicalterms,itprovidesaHamiltonianformulationoftheequationsofmotionofparticlesunderthe interactionwithaYang–Millsfieldforconstrainedsystems.Thisresultcouldopenthedoortostudy thedynamicsofsuchphysicalsystemsusinggeometrictechniques.Indeed,in[7]theauthorsobtaina b3-symplecticstructureintheplanar,restricted,circularthree-bodyproblemand,usingacontactanalogue ofthetheorydescribedhere,discusstheexistenceofperiodicorbitsatinfinity.Noanalogueresulthasbeen establishedforchargedparticles.

Acknowledgements

DuringthedevelopmentofhisMasterthesis,theauthorwassupportedbyanINIRECcontract,financed byEvaMiranda’sICREAacademia2021projectwithintheresearchline“quantizationcommuteswith reduction”.TheauthoriscurrentlysupportedbytheSpanishStateResearchAgency,throughtheSevero OchoaandMar´ıadeMaetzuProgramforCentersandUnitsofExcellenceinR&D(CEX2020-001084-M).

References

[1]M.deLe´on,J.C.Marrero,E.Mart´ınez, Lagrangiansubmanifoldsanddynamicson

Liealgebroids, J.Phys.A 38(24) (2005), R241–R308. 75 Reports@SCM 9 (2024),65–76;DOI:10.2436/20.2002.02.43.

[2]V.Guillemin,E.Miranda,A.R.Pires,SymplecticandPoissongeometryon b-manifolds, Adv. Math. 264 (2014),864–896.

[3]J.C.Marrero,E.Padr´on,M.Rodr´ıguez-Olmos, Reductionofasymplectic-likeLiealgebroid withmomentummapanditsapplicationto fiberwiselinearPoissonstructures, J.Phys.A 45(16) (2012),165201,34pp.

[4]J.Marsden,A.Weinstein,Reductionofsymplecticmanifoldswithsymmetry, Rep.MathematicalPhys. 5(1) (1974),121–130.

[5]R.B.Melrose, TheAtiyah–Patodi–SingerIndex Theorem,Res.NotesMath. 4,AKPeters,Ltd., Wellesley,MA,1993.

[6]P.Mir,E.Miranda,P.Nicol´as,Hamiltonian facetsofclassicalgaugetheorieson E -manifolds, J.Phys.A 56(23) (2023),Paper no.235201,43pp.

[7]E.Miranda,C.Oms,ThesingularWeinstein conjecture, Adv.Math. 389 (2021),Paper no.107925,41pp.

[8]R.Montgomery,Canonicalformulationsofa classicalparticleinaYang–Millsfieldand Wong’sequations, Lett.Math.Phys. 8(1) (1984),59–67.

Apromenadethroughsingularsymplecticgeometry

[9]R.W.Montgomery,Thebundlepicturein mechanics(symplecticgeometry,Yang–Mills, Poissonmanifolds,Wong’sequations),Thesis(Ph.D.)-UniversityofCalifornia,Berkeley (1986).

[10]G.Scott,Thegeometryof bk manifolds, J. SymplecticGeom. 14(1) (2016),71–95.

[11]J.-P.Serre,Faisceauxalg´ebriquescoh´erents, Ann.ofMath.(2) 61 (1955),197–278.

[12]S.Sternberg,Minimalcouplingandthesymplecticmechanicsofaclassicalparticleinthe presenceofaYang–Millsfield, Proc.Nat.Acad. Sci.U.S.A. 74(12) (1977),5253–5254.

[13]R.G.Swan,Vectorbundlesandprojectivemodules, Trans.Amer.Math.Soc. 105 (1962), 264–277.

[14]A.Weinstein,AuniversalphasespaceforparticlesinYang–Millsfields, Lett.Math.Phys. 2(5) (1977/78),417–420.

[15]A.Weinstein,ThelocalstructureofPoisson manifolds, J.DifferentialGeom. 18(3) (1983), 523–557. https://reportsascm.iec.cat

OnthebehaviourofHodgespectral exponentsofplanebranches

∗RogerG´omez-L´opez UniversitatPolit`ecnica deCatalunya roger.gomez.lopez@upc.edu

∗Correspondingauthor

Resum (CAT)

ElsexponentsespectralsdeHodges´onunconjuntdiscretd’invariantsd’una singularitata¨ılladad’unahipersuperf´ıcie.Enaquestarticleestudiemlasevadistribuci´opelcasdebranquesplanes,entermesd’invariantsnum`ericsdelabranca.En primerlloccalculemladistribuci´ol´ımitperadiferentsmaneresdeferell´ımit. Ensegonllocdonemunaf´ormulatancadaperaladifer`enciaacumuladaentrela distribuci´od’exponentsespectralsdeHodgeiunadistribuci´ocont´ınua,laqual´es ell´ımitm´escom´u.Utilitzemaquestaexpressi´operaobtenirintervalsdevalors dominants.

Abstract (ENG)

TheHodgespectralexponentsareadiscretesetofinvariantsofanisolatedhypersurfacesingularity.Westudytheirdistributionforthecaseofplanebranches,in termsofnumericalinvariantsofthebranch.First,wecalculatethelimitdistributionfordifferentwaysoftakingthelimit.Secondly,weprovideaclosedformula forthecumulativedifferenceofthedistributionofHodgespectralexponentswith acontinuousdistribution,whichisthemostcommonlimit.Weusethisexpression toobtainintervalsofdominatingvalues.

Keywords: Hodgespectralexponents,planecurvesingularities,Puiseux pairs,limitdistribution,characteristicfunction,jumpingnumbers. MSC(2020): 32S35,32S25,32S05,14H20,14B05,14H50,32S40,32S55.

Received: September14,2024. Accepted: October15,2024.

77 https://reportsascm.iec.cat Reports@SCM 9 (2024),77–86;DOI:10.2436/20.2002.02.44.

OnthebehaviourofHodgespectralexponentsofplanebranches

1.Introduction

Let f :(Cn+1,0) → (C,0)beagermofaholomorphicfunction(orequivalentlyaconvergentpower series f ∈ C{x0,..., xn})withanisolatedsingularityattheorigin.UsingthecanonicalmixedHodge structureofthecohomologygroupsoftheMilnorfiberof f ,Steenbrink[7]definedthe Hodgespectrum of f asthegeneratingfunction

isthe Milnornumber andthepositiverationalnumbers

formadiscretesetofinvariantsofthesingularity f called Hodgespectralexponents (or spectralnumbers). Theyaresymmetricwithrespectto(n +1)/2,i.e.,forevery j =1,..., µ,wehave αµ+1 j =(n +1) αj andthusitisenoughtostudythemintheinterval(0,(n +1)/2].

AnotherinterestingfeatureprovedbyVarchenko[10]isthattheHodgespectralexponentsof f are stableunderdeformationswithconstantMilnornumber µ.Adeformationofahypersurface f (x0,..., xn) ∈ C{x0,..., xn} isafamilyofhypersurfaces ft1 ,...,tk (x0,..., xn)forsomesetofparameters(t1,..., tk ) ∈ S ⊆ Ck , satisfying f (x0,..., xn)= f0,...,0(x0,..., xn).Then,inVarchenko’sresultweareaskingthattheMilnornumber of ft1 ,...,tk (x0,..., xn)isthesameforall(t1,..., tk ) ∈ S

K.Saito[4]consideredthenormalizedspectrumwhichhedenotedasthe characteristicfunction

χf (T )= 1 µ µ i =1 T αi

WemayalsodisplaytheHodgespectralexponentsasadiscrete(probability)distributionon R.Namely, the distributionoftheHodgespectralexponents is

where δ(s)istheDirac’sdeltadistribution.Indeed,consideringeither Df (s)or χf (T )isequivalentbecause thecharacteristicfunctionistheFouriertransformofthedistributionofHodgespectralexponents,i.e.,

f (T )= F{

(s)}(τ ).

Consideringthechangeofvariables T = e 2πiτ wetreatthedependenceof χf on T andon τ interchangeably throughoutthispaper.

Remark 1.1 BecauseofthesymmetryoftheHodgespectrum,weareinterestedinthetruncations

Definition1.2. The continuousdistribution functionis Nn+1 : R → R definedas:

where 1[0,1)(s)istheindicatorfunctionand ∗ denotestheconvolutionproduct.Onemaycheckthatthe Fouriertransformof Nn+1(s)is

Definition1.3. Wedefine ϕf : 0, n+1 2 → R asthe cumulativedifferencefunction between Nn+1(s) and Df (s),thatis,

Definition1.4. Wesaythat

K.Saito[4]introducedthesenotionsofcumulativedifferencefunctionanddominatingvalues.Moreover heformulatedthefollowingquestions:

Question1. Forwhichlimitsofsequencesofhypersurfaces (f (i ))i ⩾0 doesthedistributionofHodgespectral exponentsDf (i ) (s) convergetoNn+1(s)?Equivalently,forwhichlimitsof (f (i ))i ⩾0 doesthecharacteristic function χf (i ) (T ) convergeto F{Nn+1}(τ )= T 1 log T n+1?

Question2. Givenf,whatisthesetofalldominatingvalues?

Thelimitof(f (i ))i ⩾0 inQuestion 1 hastobespecified,sinceitisnotclearaprioriwhichkindoflimit oneshouldconsider.Thefewresultswemayfindintheliteratureallconsiderdifferenttypesoflimits. K.Saitoalreadycalculatedthefollowingtwolimits,bothofwhichconvergeto Nn+1(s):

Proposition1.5 ([4,(3.7)]) Letf ∈ C[x0,..., xn] beaquasi-homogeneouspolynomialofdegree 1 with respecttotheweightsr0,..., rn,i.e.,satisfyingf (λr0 x0,..., λrn xn)= λf (x0,..., xn).Then,takingasequence ofsuchfunctionswiththelimitri → 0 foralli =0,..., n,onehas

,...,

Proposition1.6 ([4,(3.9)]) Letf ∈ C{x,y } beanirreducibleplanecurvewithPuiseuxpairs (n1,l1),...,(ng ,lg). Then,takingasequenceofsuchfunctionswiththelimitng → +∞ (keepingallothernj andlj fixed),one has

ThePuiseuxpairsaredefinedinSection 2

Morerecently,Almir´onandSchulzegaveanotherexampleforwhichthedistributionofHodgespectral exponentsalsoconvergestothecontinuousdistribution Nn+1(s):

OnthebehaviourofHodgespectralexponentsofplanebranches

Proposition1.7 ([1]). ConsiderafixedNewtondiagram Γ.Letfω ∈ C{x0,..., xn} beaNewtonnon-degeneratefunctionwithNewtondiagram ωΓ (therescalingof Γ byafactor ω ∈ Q>0).Then,takinga sequenceofsuchfunctionswithlimit ω → +∞,onehas

RegardingQuestion 2 onthesetofdominatingvalues,Tomariprovedthefollowingresultwhich,in termsofdominatingvalues,statesthefollowing:

Theorem1.8 ([9]) Letf ∈ C{x, y } beaplanecurve.Then 1 2 isadominatingvalue,i.e.,

K.Saitoaskedwhether 1 2 isadominatingvalueforany f ∈ C{x0,..., xn},thatis,whether

AconjectureposedbyDurfeestates:

Conjecture1.9 ([3]). Letf ∈ C{x, y , z} beasurfacewithasingularityattheorigin.Then pg < µ 6

Here, pg denotesthe geometricgenus of f definedas pg =dimC(R n 1 π∗OX )0 for n ⩾ 2(pg =dimC(π∗OX /OC2 )0 for n =1), with π : X → Cn+1 beingaresolutionofthesingularity.M.Saito[5]provedarelationbetweenthisinvariant andtheHodgespectralexponents,namely pg =#{i | αi ⩽ 1},andthusDurfee’sconjecturepredictsthat 1isadominatingvaluefor n =2.K.Saitoaskedwhetheronecangeneralizethisstatement:

Question3. Is 1 adominatingvalueforalln ⩾ 2?Thatis,isittruethat pg =#{αi ⩽ 1} < µ (n +1)!

foranyf ∈ C{x0,..., xn}?

TheaimofthisworkistostudyQuestions 1 and 2 forthecaseofplanebranches.RegardingQuestion 1 wecalculatethelimitdistributionforthelimits nk → +∞ and lk → +∞.RegardingQuestion 2,wegive aclosedformulafor#{αi ⩽ r } inTheorem 4.1 and ϕf (r )inTheorem 4.2 intermsofnumericalinvariants oftheplanebranch.Thereby,weprovideinTheorem 5.1 intervalsofdominatingvalues. https://reportsascm.iec.cat

2.Planebranchsingularities

Inthissectionwebrieflypresentthenecessarybackgroundonirreducibleplanecurvesthatweuseinthis paperandwerefertoCasas-Alvero’sbook[2]forunexplainedterminology.

Let f :(C2,0) → (C,0)beagermofaholomorphicfunction,orequivalentlyaconvergentpower series f ∈ C{x, y }.Theequation f =0defineslocallya(complex)planecurvearoundtheorigin.We onlyconsiderirreducibleplanecurves f (alsocalledplanebranches),i.e.,irreducibleelementsoftheunique factorizationdomain C{x, y }

Theorem2.1 (Puiseux) Letf ∈ C{x, y } defineanirreducibleplanecurvethatisnottangenttothey-axis (i.e., ∂f ∂x =0).ThenthereisaPuiseuxseriess (x)= i ⩾0 ai x i /m suchthatf (x, s(x))=0.Moreover, allsuchseriesareconjugates σε(s)= i ⩾0

i x i /m with εm =1.Thecurvecanbeparameterized byt → t m , i ⩾0 ai t i

APuiseuxseriesof f hastheform s(x)= j ∈(e0

with e0 = m,

i =min{j | aj

/

(ei 1)},

i =gcd(ei 1, βi )(i =1,..., g ), where m ischosensuchthat eg =1.Since ei |ei 1,wecandefine ni = ei 1/ei ⩾ 2.

Thesenumericalinvariantshaveageometricmeaning: e0 isthemultiplicityof f attheoriginand ei (i =1,..., g )isthemultiplicityof f atthe i -thrupturedivisorofitsminimalembeddedresolution,or equivalentlythelastinfinitelynearpointofthe i -thclusterofconsecutivesatellitepoints.Theseconcepts areexplainedin[2].

FromthePuiseuxserieswecandefine:

Definition2.2. The characteristicexponents ofaplanebranch f aretherationalnumbers β1 m ,...,

FollowingthenotationofM.Saito[6]withaslightmodification,let

(i =1,..., g ) with nj ⩾ 2, lj ⩾ 1,gcd(lj , nj )=1.Fromthiswedefine:

Definition2.3. The Puiseuxpairs ofanirreducibleplanecurve f are(n1, l1),...,(ng , lg ).

ThecharacteristicexponentsandthePuiseuxpairsaretwoequivalentsetsofcompletetopological invariantsofthesingularityof f .Thatis:theydetermine,andaredeterminedby,thehomeomorphismclass of f 1(0) ∩ U forasmallenoughneighbourhood U oftheorigin.

Remark 2.4. ThenamePuiseuxpairsappearinvariousslightlydifferentwaysintheliterature.Webasedour definitionontheonegivenbyM.Saito[6],whousedthisnameforthepairs(k1, n1),...,(kg , ng )with k1 = n1 + l1, ki = li .Casas-Alvero[2]usedthesimilartermcharacteristicpairstoreferto(β1, m),...,(βg , m).

Reports@SCM 9 (2024),77–86;DOI:10.2436/20.2002.02.44.

OnthebehaviourofHodgespectralexponentsofplanebranches

M.Saito[6]consideredthefollowingnumericalinvariantsinordertoobtainaformulaforthecharacteristicfunctionoftheHodgespectralexponentsofanirreducibleplanecurve.Wesimplifythedefinition byletting n0 =1.

Definition2.5. Wedefinethefollowingnumericalinvariants:

(j =1,..., g ), µ

1 (j =1,..., g ).

Proposition2.6 ([4]). TheMilnornumberoffis µ = µg .Moregenerally,theMilnornumberofacurve withPuiseuxpairs (n1, l1),...,(nj , lj ) is µj ,foranyj ∈{1,..., g }

Fromthesedefinitionsweprove:

Lemma2.7. TheMilnornumberofanirreducibleplanecurvewithPuiseuxpairs (n1, l1),...,(ng , lg ) is

Th`anhandSteenbrink[8]alreadydescribedtheHodgespectrumofanyplanecurveintermsofits topologicalinvariants,butinthisworkweuseaclosedformulagivenbyM.Saito:

Theorem2.8 ([6,Theorem1.5]). TheHodgespectralexponentsintheinterval (0,1) are:

Noticethatthisformulagivesusasetof µ/2Hodgespectralexponentsandthus,bysymmetry,it characterizesalltheHodgespectralexponentsof f

Toworkwithcharacteristicfunctions(i.e.,Fouriertransforms),M.Saitodefined:

Definition2.9. Let F (T )= i ⩾0 ai T i /N

N ].Then,wedefinethefollowingtruncations:

whicharethetermsof F (T )withexponentssmallerandlargerthan1respectively. Definition2.10. WedefinetheauxiliaryfunctionsΦj (T )as:

1(T )=

j (T )= 1

(for j =2,..., g ).

,

Then,M.Saitoprovesthefollowingtheorem: Theorem2.11 ([6,Theorem1.5]). Thecharacteristicfunctionofanirreducibleplanecurvefis χf (T )= 1 µg Φg (T ).

3.Limitdistributioninthecaseofbranches

InthissectionwestudythecaseofplanebranchesforK.Saito’sQuestion 1 onthelimitdistributionofHodgespectralexponents.Weconsiderirreducibleplanecurves f ∈ C{x, y } withPuiseuxpairs (n1, l1),...,(ng , lg ).Inthiscase,K.Saito’sQuestion 1 asksforwhichlimitsofirreducibleplanecurves f doesthedistributionofHodgespectralexponents Df (s)convergeto N2(s)(recallDefinition 1.2).Equivalently,itasksforwhichlimitsofthePuiseuxpairs(n1, l1),...,(ng , lg )doesthecharacteristicfunction χf (T )= F{Df (s)}(τ )convergetotheFouriertransform F{N2(s)}(τ )= T 1 log T 2

K.Saitocomputedtheparticularcaseofalimitwheretheinvariant ng ofthelastPuiseuxpairtends toinfinitywhilealltheremainingPuiseuxpairsarekeptfixed.Hisresult,recallingProposition 1.6,isthat theresultinglimitdistributionofHodgespectralexponentsis lim ng →+∞ χf (T )= T 1

ThisistheexpectedlimitdistributionofQuestion 1.Giventhisresult,weareledtoaskwhetheritis possibletogeneralizeitforthefollowinglimits:

(i) nk → +∞ foraparticular k ∈{1,..., g } whilekeepingallother nj and lj fixed,

(ii) lk → +∞ foraparticular k ∈{1,..., g } whilekeepingallother nj and lj fixed.

Forthefirstcaseweprovethefollowing:

Theorem3.1. Letg ∈ Z>0,k ∈{1,..., g }.LetfbeanirreducibleplanecurvewithPuiseuxpairs (n1, l1),...,(ng , lg ).Considerasequenceofsuchcurvesfwithnk → +∞,nj (j = k) fixedandalllj fixed. Then,thelimitofthecharacteristicfunctionis

lim nk →+∞ χf (T )= T 1 log T 2 .

Equivalently,thelimitofthedistributionofHodgespectralexponentsis

f (s)= N2(s).

nk →+∞

Theprecedingtheoremstatesthatsequencesofirreducibleplanecurveswith nk → +∞ (withtheother numericalinvariantsfixed)formafamilyofsolutionstoK.Saito’sQuestion 1 onthelimitdistributionof Hodgespectralexponents.

Ontheotherhand,weprove:

Theorem3.2. Letg ∈ Z>0,k ∈{1,..., g }.LetfbeanirreducibleplanecurvewithPuiseuxpairs (n1, l1),...,(ng , lg ).Considerasequenceofsuchcurvesfwithlk → +∞,lj (j = k) fixedandallnj fixed. Then,thelimitofthecharacteristicfunctionis

Equivalently,thelimitofthedistributionofHodgespectralexponentsis

lk →+∞ Df (s)= 1 ek 1 1 (⌊ek 1s⌋ 1[0,1)(s)+ ⌊ek 1(2 s)⌋ 1[1,2)(s)), where 1[a,b)(s) denotestheindicatorfunctionoftheinterval [a, b).

9 (2024),77–86;DOI:10.2436/20.2002.02.44.

OnthebehaviourofHodgespectralexponentsofplanebranches

Theselimitsaredifferentfrom T 1 log T 2 and N2(s)respectively.Therefore,thistheoremsaysthat sequencesofirreducibleplanecurveswith lk → +∞ (withtheothernumericalinvariantsfixed)area familyof non-solutionstoK.Saito’sQuestion 1 onthelimitdistributionofHodgespectralexponents.

4.Cumulativedifferencefunction

ϕf

FromDefinition 1.3 wehavethatthecumulativedifferencefunctionforthecaseofplanecurvesis ϕf :[0,1) → R definedas ϕf (r )= r 0 N2(s) Df (s)ds = r 0

sincewehave N2(s)= s intheinterval[0,1).TheHodgespectralexponents αi aregivenbyTheorem 2.8. Tobeabletostudythesetofdominatingvalues(i.e.,K.Saito’sQuestion 2)weneedamoreexplicit expressionfor#{αi ⩽ r } orequivalently ϕf (r ).Forthispurposeweprovethefollowing:

Theorem4.1. LetfbeanirreducibleplanecurvewithPuiseuxpairs (n1, l1),...,(ng , lg ).Then,foranyr ∈ [0,1),thenumberofHodgespectralexponentslessorequaltorisgivenbythefollowingexpression:

Theorem4.2. LetfbeanirreducibleplanecurvewithPuiseuxpairs (n1, l1),...,(ng , lg ).Then,foranyr ∈ [0,1),thecumulativedifferencefunctionbetweenN2(s) andDf (s) isgivenbythefollowingexpression:

5.Dominatingvaluesforirreducibleplanecurves

InthissectionwegivepartialanswerstoK.Saito’sQuestion 2 onthedominatingvaluesforthecase ofirreducibleplanecurves.TosuchpurposeweuseTheorem 4.2,whichgivesusanexplicitexpression forthecumulativedifferencefunction ϕf (s).Thisexpressioncanbeusedtofindsimplerfunctionswhich bound ϕf (s),thusmakingitpossibletoobtainintervalswhere ϕf ispositive.Weprovethefollowingresult:

Theorem5.1. LetfbeanirreducibleplanecurvewithPuiseuxpairs (n1, l1),...,(ng , lg ).Then,

(i)Asetofdominatingvaluesisgivenbytheinterval

with

(ii)Asetofdominatingvaluesisgivenbytheinterval

(iii)Wehavethattheleftmostintervalof (0,1)

∈ (0,lct(f ))= 0, 1

isasetofdominatingvalues.Incontrast, ϕf (r ) < 0 fortherightmostinterval

Wepointoutthatthefirsttwointervalsalwaysintersectbutitisnotalwaysclearwhicharetheendsof theuniqueintervalofdominatingvaluestheyprovide.Theintervalsofthethirditemareobtaineddirectly fromthesmallestandlargestHodgespectralexponents.

Remark 5.2 Almir´onandSchulze[1,Proposition6]provedthatthelog-canonicalthresholdofanirreducible planecurveisadominatingvalueexceptforthecaseswherethecurvehassemigroup(2,3)or(2,5).

InthecourseoftheproofofTheorem 5.1 wealsoobtainanalternativeproofofTheorem 1.8 by Tomari[9]butonlyforirreduciblecurves.

Acknowledgements

TheauthorwantstothankMariaAlberich-Carrami˜nanaandJosep ` AlvarezMontanerforsupervising hismasterthesis,fromwhichthisarticleisasummary.TheauthorgratefullyacknowledgesSecretaria d’UniversitatsiRecercadelDepartamentd’EmpresaiConeixementdelaGeneralitatdeCatalunyaand FonsSocialEuropeuPlusforthefinancialsupportofhisFIJoanOr´o(2024FI-100585)predoctoralgrant.

9 (2024),77–86;DOI:10.2436/20.2002.02.44.

OnthebehaviourofHodgespectralexponentsofplanebranches

References

[1]P.Almir´on,M.Schulze,Limitspectraldistributionfornon-degeneratehypersurfacesingularities, C.R.Math.Acad.Sci.Paris 360 (2022), 699–710.

[2]E.Casas-Alvero, SingularitiesofPlaneCurves, LondonMath.Soc.LectureNoteSer. 276 CambridgeUniversityPress,Cambridge,2000.

[3]A.H.Durfee,Thesignatureofsmoothings ofcomplexsurfacesingularities, Math.Ann. 232(1) (1978),85–98.

[4]K.Saito,Thezeroesofcharacteristicfunction χf fortheexponentsofahypersurfaceisolatedsingularpoint,in: AlgebraicVarietiesand AnalyticVarieties (Tokyo,1981),Adv.Stud. PureMath. 1,North-HollandPublishingCo., Amsterdam,1983,pp.195–217.

[5]M.Saito,Ontheexponentsandthegeometricgenusofanisolatedhypersurfacesingularity,in: Singularities,Part2 (Arcata,Calif., 1981),Proc.Sympos.PureMath. 40,American MathematicalSociety,Providence,RI,1983, pp.465–472.

[6]M.Saito,Exponentsofanirreducibleplane curvesingularityPreprint(2000). arXiv:math/ 0009133v2

[7]J.H.M.Steenbrink,MixedHodgestructureon thevanishingcohomology,in: RealandComplexSingularities (Proc.NinthNordicSummer School/NAVFSympos.Math.,Oslo,1976), Sijthoff&NoordhoffInternationalPublishers, AlphenaandenRijn,1977,pp.525–563.

[8]L.V.Th`anh,J.H.M.Steenbrink,Lespectre d’unesingularit´ed’ungermedecourbeplane, ActaMath.Vietnam. 14(1) (1989),87–94.

[9]M.Tomari,Theinequality8pg <µ forhypersurfacetwo-dimensionalisolateddoublepoints, Math.Nachr. 164 (1993),37–48.

[10]A.N.Varchenko,Thecomplexsingularityindex doesnotchangealongthestratum µ =const (Russian), Funktsional.Anal.iPrilozhen. 16(1) (1982),1–12,96.

https://reportsascm.iec.cat

ANELECTRONICJOURNALOFTHE SOCIETATCATALANADEMATEM ` ATIQUES

ExtendedAbstracts

SalimBoukfalLazaar

Anintroductiontostochasticintegration

` OscarBur´es

StochasticdifferentialequationsdrivenbyafractionalBrownianmotion

JoanDomingoPasarin

RegularityofLipschitzfreeboundariesintheAlt–Caffarelliproblem

JoaquimDuraniLamiel

SpectralgapofgeneralizedMITbagmodels

Fl`aviaFerr´usMarim´on

Unifyingframeworkfordecision-makingdynamics: optimalcontrolandinfinitehorizonperspectives

Mar´ıadeLeyvaElola-Olaso

Moduliofplanebrancheswithasinglecharacteristicexponent

FrancescPedret

Geometricmethodsinmonogenicextensions

DavidRosadoRodr´ıguez

Onthebasinsofattractionofroot-findingalgorithms

87 https://reportsascm.iec.cat Reports@SCM 9 (2024),87–104.

SCMMasterThesisDay

OnOctober4,withalargeattendance,wecelebratedthesecondSCMTFMDay.Thisactivity,organized bytheCatalanMathematicalSociety(SCM),aimstoproviderecentgraduatesfromamaster’sprogram inmathematicsataCatalanuniversityorwithinthecommonlinguisticarea(XarxaVives)theopportunitytopresenttheirFinalMaster’sThesis.Thisinter-universityeventoffersyounggraduatesaplatform toparticipateintheirfirstworkshoppresentation,fosteringconnectionswithinthecommunityofearlycareermathematiciansastheyembarkonresearch.ItalsoservestoinformparticipantsabouttheGalois Awards,thejournal Reports@SCM,andthemaster’sprogramsinmathematicsatuniversitiesintheVives Network—informationwhichisparticularlyrelevanttomathematicsstudentsintheirfinalyearwhoattend theevent.

TheeventwasheldattheheadquartersoftheInstitutd’EstudisCatalansandfeaturedeightstudents asspeakers,alongwithpresentationsbythetwostudentswhowontheEvaristeGalois2024Prize: PabloNicol´as(winner)andRogerG´omez(recipient).Thisaward,givenbytheSCMforthebestfinal master’sthesisofthepreviousyear(inthiscase,2023),highlightsoutstandingresearchachievements. Notably,thetwowinnersofthe2024GaloisAwardhadpresentedtheirTFMatthe2023SCMTFMDay.

ThescientificandorganizingcommitteefortheeventincludedMontserratAlsina(PresidentoftheSCM), JosepVives(Vice-PresidentoftheSCM),AinoaMurillo(SCMboardmember),SimoneMarchesi(Editor of Reports@SCM),XavierMassaneda(CoordinatoroftheMasterofAdvancedMathematicsUB-UAB), JordiSaludes(CoordinatoroftheUPCMaster’sinAdvancedMathematics),EnricCosmeandPabloSevilla (CoordinatorsoftheUniversityMaster’sinMathematicalResearchUV-UPV),alongwithPabloNicol´as, PhilipPita,andSergiS´anchez,currentPhDstudentsandparticipantsinthe2023edition.

Thisissueof Reports@SCM includesextendedabstractsofthetenpresentationsgivenduringtheevent.

SalimBoukfalLazaar

UniversitatdeBarcelona(UB)

salim.boukfal.lazaar@gmail.com

Abstract

Anintroductionto stochasticintegration

Resum (CAT)

L’objectiud’aquesttreball´eseld’estudiarintegralsestoc`astiquesquenos´onnecess`ariamentrespectedelmovimentbrowni`a.

Primerdetotesrevisalaconstrucci´od’aquestadarreraintegralpermotivarles possiblesextensionsaaltresintegradorscoms´onlesmartingales.

Acontinuaci´o,estudiemlesintegralsrespectedecampsaleatoris,oncomencem perestudiaraquestesintegralsrespectedelsorollblancgaussi`aper,uncopm´es, estendrelaclassed’integradors.

Alhoraqueesvanestudiantaquestsobjectes,tamb´epresentemalgunsresultats referentsal’aproximaci´oenlleid’aquests.

Keywords: Brownianmotion,Gaussianprocess,whitenoise,martingale, stochasticintegral,convergenceinlaw.

Themainpurposeofthisworkistocontinueandextendthestudyofthestochasticintegralwithrespectto theBrownianmotionusuallyseenincoursesofStochasticCalculus,providing(hopefully)anintroductory textthatwillallowtheaveragestudentofthesubject(andtoanyonewhoisalreadyfamiliarwiththe previouslymentionedstochasticintegral)toexpandhisknowledge.

Todoso,webrieflyreviewtheconstructionoftheItˆointegralwithrespecttotheBrownianmotionand noticethatitturnsoutthatveryfewfeaturesofthisparticularprocessareused,whichallowsustoexploit theseideastogeneralizetheconstructiontootherprocesses(mainly,martingales),thisisdonefollowing theconstructionprovidedinthethirdchapterof[2].

Wethendiscussthetopicofstochasticintegrationwithrespecttorandomfields.Wefirsttreatthe integralwithrespecttothespace-timeGaussianwhitenoise,followingtheconstructionpresentedinthe firsttwochaptersof[1],sinceitdealswithobjectswhichmightbeabitmorefamiliartotheintended audienceasitsconstructionusesthealreadystudiedItˆointegralwithrespecttotheBrownianmotionand Parseval’sidentity.Beforedoingso,weintroducetwocrucialGaussianprocesses(theisonormalprocess andthewhitenoise),whichgeneralizetheBrownianmotionandarecrucialwhenitcomestodefinethe stochasticintegralwithrespecttothespace-timewhitenoise.

Next,andfollowingthesecondchapterof[3],weintroduceawiderclassofrandomfields(which containstheonesalreadyseen)thatcanbeusedasintegratorsandshowhowoneconstructsintegrals withrespecttosuchobjects.Duringthisprocess,weusethealreadystudiedGaussianwhitenoiseasa canonicalexamplethatwillserveusasamodeltocomparethenewconstruction.

Anintroductiontostochasticintegration

Finally,andaswestudytheseobjects,weaddresstheproblemofhowtheintegralswithrespecttothe Brownianmotionandwithrespecttothespace-timeGaussianwhitenoisecanbeapproximatedinlawby integralswithrespecttorandomwalks.Theresultsobtained,whicharemotivatedbythealreadyknown invarianceprinciplesliketheDonsker’sone,canbeseenasgeneralizationsofthesesincethelattercanbe obtainedasaparticularcaseoftheformer.

Acknowledgements

IwouldliketothankXavierBardinaSimorraforhisinvaluableguidanceandsupport.

References

[1] R.C.Dalang,M.Sanz-Sol´e,Stochasticpartialdifferentialequations,space-timewhite noiseandrandomfields,Preprint(2024). arXiv:2402.02119

[2] I.Karatzas,S.E.Shreve, BrownianMotionand StochasticCalculus,Secondedition,Grad.Texts inMath. 113,Springer-Verlag,NewYork,1991.

[3] J.B.Walsh,Anintroductiontostochasticpartial differentialequations,in: ´ Ecoled’´et´edeprobabilit´esdeSaint-Flour,XIV—1984,LectureNotes inMath. 1180,Springer-Verlag,Berlin,1986, pp.265–439.

Stochasticdifferentialequationsdriven byafractionalBrownianmotion

` OscarBur´es UniversitatdeBarcelona obures6@gmail.com

Resum (CAT)

Enaquesttreballs’estudienlesequacionsdiferencialsestoc`astiques(EDEs)dirigidesperunmovimentbrowni`afraccionari(fBm)ambpar`ametredeHurst H > 1/2. Esdefineixlaintegralestoc`asticarespectealfBmiesdemostral’exist`enciai unicitatdesolucions.Tamb´es’introdueixelc`alculdeMalliavinenelcontext delfBm,iesprovaque,ambcondicionsm´esfortesenelscoeficients,lalleidela soluci´o´esabsolutamentcont´ınua.Finalment,esdonenfitesd’estilgaussi`aperla densitatd’unafam´ıliad’EDEs.

Keywords: fractionalBrownianmotion,stochasticdifferentialequations, Malliavincalculus.

Abstract

Inthethesis,westudyfromseveralpointsofviewtheso-calledstochasticdifferentialequationsdrivenby afractionalBrownianmotionwithHurstindex H > 1/2.Theseobjectsaredifferentialequationsofthe form

where B H isafractionalBrownianmotionwith H ∈ (1/2,1),thatis,acenteredstochasticGaussian processwithcovariancefunction

Noticethat,inparticular,when H =1/2then B H isastandardBrownianmotion.Thefirsttopiccovered inthethesisisgivingsensetoanequationlike(1).Thefactthat B H isnotasemimartingalemakes itimpossibletodefinetheintegralwithrespectto B H inasimilarwayasitisdefinedforthestandard Brownianmotion.InvirtueoftheresultsofYoungin[4]andthefurthercontributionsofZ¨ahlein[5],we areabletodefinetheintegralwithrespectto B H inthegeneralizedStieltjessense.Oncethestochastic integraliswell-defined,wefollowcloselytheargumentsofNualartandR˘a¸scanuin[2]toprovetheexistence anduniquenessofsolutionstoageneralSDEoftheform(1).

Onceweknowwecantalkaboutthesolutiontoequation(1),thenwewanttostudysuchsolutionfrom aprobabilisticpointofview.UsingtheMalliavincalculus(thatis,thestochasticcalculusofvariations)

https://reportsascm.iec.cat

9 (2024),91–92.

StochasticdifferentialequationsdrivenbyafractionalBrownianmotion

wegettoprovethatunderstrongerhypothesisonthecoefficients σ and b,thelawof Xt isabsolutely continuouswithrespecttotheLebesguemeasure,soforeach t ∈ [0, T ] Xt hasadensityfunction pt (x).In ordertoprovethisresult,weusetheconceptsofMalliavindifferentiabilityinthefractionalBrownianmotion frameworkandFr´echetdifferentiabilityandweusethesametechniquesasinNualartandSaussereauin[3].

Finally,usingmoresophisticatedMalliavincalculustechniquesandthemethodofNourdin–Viensin[1] weareabletoproofthatthesolution Xt toanequationofthetype

where σ isdeterministic, σ and b satisfythesamehypothesisasfortheexistenceofthedensityfunction pt (x)andweassumefurtherthatthereexist0 <λ< Λsuchthat λ<σs < Λ,thenthedensity pt (x) for t ∈ (0, T ]isboundedinthefollowingway:

where mt = E (Xt ).

Acknowledgements

IwouldliketothankmyadvisorDr.CarlesRoviraforhisguidanceandsupport.Thisworkhasbeen supportedbytheMaster+UBscholarship.

References

[1] I.Nourdin,F.G.Viens,DensityformulaandconcentrationinequalitieswithMalliavincalculus, Electron.J.Probab. 14(78) (2009),2287–2309.

[2] D.Nualart,A.R˘a¸scanu,Differentialequations drivenbyfractionalBrownianmotion, Collect. Math. 53(1) (2002),55–81.

[3] D.Nualart,B.Saussereau,Malliavincalculus forstochasticdifferentialequationsdrivenbya

fractionalBrownianmotion, StochasticProcess. Appl. 119(1) (2009),391–409.

[4] L.C.Young,AninequalityoftheH¨oldertype, connectedwithStieltjesintegration, ActaMath. 67(1) (1936),251–282.

[5] M.Z¨ahle,Integrationwithrespecttofractal functionsandstochasticcalculus.I, Probab. TheoryRelatedFields 111(3) (1998),333–374. https://reportsascm.iec.cat

RegularityofLipschitzfreeboundaries intheAlt–Caffarelliproblem

JoanDomingoPasarin

UniversitatdeBarcelona jdomingopasarin@ub.edu

Abstract

Resum (CAT)

EnaquesttreballestudiemlaregularitatdelesfrontereslliuresLipschitzenel problemad’Alt–Caffarelli.DemostremquelesfrontereslliuresLipschitzs´on C 1,α mitjan¸cantlainvari`anciaperreescalamentdelproblemailaregularitatinicial Lipschitzdelafrontera.Am´esam´es,tamb´eprovemquelesfronteres C 1,α s´on C ∞,cosaque,juntamentambelresultatanterior,implicaquelesfronteres lliuresLipschitzs´on C ∞

Keywords: partialdifferentialequations,freeboundaryproblems,Alt–Caffarelliproblem,Lipschitzregularity.

FreeboundaryproblemsareasubclassofPDEsinwhichnotonlydowehavetosolveaparticularPDE, butwealsohavetofindanunknowndomainΩwhereoursolutionsolvestheproblem.Moreprecisely, wehaveafixed(smooth)domain D andwewanttofindapair(Ω, u)suchthatΩ ⊂ D isadomainand u :Ω → R isasolutioninΩofthePDEinquestion.Theterm freeboundary refersto ∂Ω ∩ D,thatis, thepieceoftheboundaryofΩthatfallsinside D.Theword free signifiesthefactthatthefreeboundary dependsonoursolutionandwillchangeassoonasoursolutiondoesso.

Motivatedbyitsrelevanceinfieldssuchasfluidmechanics,optimaldesignproblemsandelectrostatics, theAlt–Caffarelliproblem(sometimesalsocalledtheone-phaseproblemortheBernoulliproblem)isa classicalexampleofafreeboundaryproblem.Studiedforthefirsttimein[1],thisproblemconsistsin findinganonnegativefunction u definedin B1 = B1(0)solving

∆u =0in {u > 0}∩ B1, ∂ν u =1on ∂{u > 0}∩ B1 (1)

Inthegeneralnotationusedpreviously,ourfixeddomainis D = B1,Ω= {u > 0},andthefreeboundary is ∂{u > 0}∩ B1.Observethatin(1)weareimposingtwoboundaryconditionsonthefreeboundary: u =0(implicitly)and ∂ν u =1.Thistypeofproblemwillnothaveasolutioningeneralsinceitconstitutes anoverdeterminedPDEproblem.However,iftheproblemcanbesolved(whichisthecasefortheAlt–Caffarelliproblem),thenwemayexpecttoproveextrapropertiesofthefreeboundary ∂{u > 0}∩ B1 thankstotheoverdeterminationoftheproblem.

https://reportsascm.iec.cat Reports@SCM 9 (2024),93–94.

RegularityofLipschitzfreeboundariesintheAlt–Caffarelliproblem

InthisworkwestudytheLipschitzregularityofthefreeboundary ∂{u > 0}∩ B1.Moreprecisely,we assumethefreeboundarytobeLipschitzandthenshowhowtoimproveitsregularitybyexploitingthe overdeterminednatureoftheproblem.Themainresultwefocusonisthefollowingone:

Theorem. Letubea(viscosity)solutionoftheAlt–Caffarelliproblem (1).Assumethatthefreeboundary ∂{u > 0}∩ B1 isLipschitz.Then ∂{u > 0}∩ UissmoothforanyopensetU ⋐ B1.Moreover, u ∈ C ∞({u > 0}∩ U) andusolves (1) intheclassicalsenseinU.

Theproofofthistheoremisaccomplishedintwosteps:first,byprovingthatLipschitzfreeboundaries are C 1,α,andsecond,byshowingthat C 1,α freeboundariesaresmooth.Forthefirststep,themain ideaistousetherescalinginvarianceof(1).Noticethatif u isasolution,thenforany r > 0the function ur (x)= 1 r u(rx)isalsoasolutioninthecorrespondingrescaleddomain B1/r .Thispropertyis crucialtofinishthisfirststep.Geometrically,theLipschitzregularityof ∂{u > 0}∩ B1 impliesthatthefree boundaryalwaysremainsoutsideaconeofafixedopening.Usingthatoursolutionsatisfies(1),weare abletoshowthatwecanimprovetheopeningofthisconeintheball B1/2.However,thisaloneisclearly insufficienttoconcludethatthefreeboundaryis C 1,α.Whatenablesustocompletetheproofofthisfirst stepispreciselytherescalinginvarianceoftheproblem,whichweusetorepeattheopeningimprovement iterativelyinthesequenceofballs B2 k .Intuitively,thisprocesstellsusthatthefreeboundary“flattens” aswezoominattheoriginwhichimplies,aftersomeextrasteps,thatthefreeboundaryis C 1,α

Asforthesecondstep,weperformsomecomputationscombinedwithSchauderestimatesforthe Laplaciantoshowthatoncewehave C 1,α regularityonthefreeboundary,thenwecanimprovethe boundaryasmuchaswewanttoobtain C ∞ regularity.Lastly,combiningbothstepsandusingasimple coveringargumentweobtaintheproofofthetheorem.

Acknowledgements

ThisworkwasdonewiththesupportofaCollaborationGrantawardedbytheMinisteriodeEducaci´on, Formaci´onProfesionalyDeportes.

References

[1] H.W.Alt,L.A.Caffarelli,Existenceandregularityforaminimumproblemwithfreeboundary, J.ReineAngew.Math. 325 (1981),105–144.

Spectralgapofgeneralized MITbagmodels

JoaquimDuraniLamiel

UniversitatPolit`ecnica deCatalunya joaquim.duran.lamiel@upc.edu

Resum (CAT)

Estudiempropietatsespectralsdelsmodelsdebossadel’MITgeneralitzats. Aquestss´onoperadorsdeDirac {Hτ }τ ∈R actuantendominisde R3 amb condicionsdefronteraquegenerenconfinament.Elseuautovalorpositium´esbaix ´esd’especialinter`es,is’haconjecturatque´esm´ınimperaunabolaentretotsels dominisambvolumfixat.Laconjecturaan`aloga´escertaperallaplaci`adeDirichlet (´esladesigualtatdeFaber–Krahn),quesorgeixenelsl´ımits τ →±∞.Estudiant laconverg`enciaenelsentitdelaresolventdelsoperadors Hτ capalsoperadors l´ımit H±∞ quan τ →±∞,provemquecertespropietatsespectralss’heredenal llargdelaparametritzaci´o.Aquestsresultatss´onnousis’hanpublicata[3].

Keywords: Diracoperator,spectraltheory,MITbagmodel,shapeoptimization,resolventconvergence.

Abstract

TheequationthatgovernsallrelativisticquantumprocessesiscalledDiracequation.In R3,itisacomplex valuedsystemoffourlinearPDEsoffirstorderintimeandspacevariables.Foraspin-1/2freeparticleof mass m,onecanwritetheDiracequationinmatricialformas i ∂ ∂t ψ(x, t)=( i α ·∇ + mβ)ψ(x, t),where α and β aretheso-calledDiracmatrices,given—essentially—bythemoreknownPaulimatrices.The stationaryeigenvalueproblemassociatedtotheDiracequationisoftheform

( i α ·∇ + mβ) φ = λφ inΩ, Boundaryconditionson ∂Ω, whereΩ ⊆ R3 isthedomainwheretheparticleevolves, φ :Ω → C4,andtheboundaryconditionstypically dependonphysicalconstraints.Theeigenvalues λ ofsuchDiracoperatorsproviderelevantinformationto understandtheevolutionofthesystem,andhencetheirstudyisofspecialinterest.

DiracoperatorsactingondomainsΩ ⊂ R3 areusedinrelativisticquantummechanicstodescribe particlesthatareconfinedinabox.Theso-called MITbagmodel isaveryremarkableexample,whichwas introducedinthe1970sasasimplifiedmodeltostudyconfinementofquarksinhadrons.

In[1]itisintroducedafamily {Hτ }τ ∈R ofDiracoperatorswithconfiningboundaryconditionsparameterizedby τ ∈ R;theparticularcase τ =0correspondstotheMITbagmodel.Becauseofthisreason, theoperators Hτ arecalled generalizedMITbagmodels

9 (2024),95–96.

SpectralgapofgeneralizedMITbagmodels

Inthiswork[2],westudysomespectralpropertiesofgeneralizedMITbagmodels.Theirlowestpositive eigenvalueisofspecialinterest,anditisconjecturedtobeminimalforaballamongalldomainsofthesame volume.TheanalogousconjectureholdstruefortheDirichletLaplacian(itistheFaber–Krahninequality).

WeprovethattheDirichletLaplacianarisesinthelimit τ →±∞ bystudyingtheresolventconvergence of Hτ inthislimit.Morespecifically,weshowstrongresolventconvergenceof Hτ to H±∞,andwejustify thatonecannotimprovethistonormresolventconvergence.Theseresultsarenewandhavebeenpublished in[3],togetherwithotherextendedresults.

Becauseofthisconvergence,weshowthatsomespectralpropertiesofthelimitingoperators H±∞ are inheritedthroughouttheparameterization.Asaconsequence,weverifytheconjectureforlargeenough valuesoftheparameter τ

Finally,weprovethattheconjectureholdstrueforcoronadomainsofrelativelysmallhole.Thisresultis alsonew.However,acontinuationofthisstudyafterthemaster’sthesis—usingmoreabstractarguments— allowedtocompletethisresultforanycoronaofthesamevolume(independentlyofthesizeofitshole). Thisextendedresultwillbesentforpublicationinanindexedjournal.

Acknowledgements

Iwouldliketothankmyadvisor,Dr.AlbertMasBlesa,forhisguidance,dedication,andcommitmentall alongthiswork.Iespeciallywanttothankhimforsuggestingthetopicofthiswork,thatIhaveenjoyed somuch,andforhavingadvisedandguidedmeinmyfutureasaresearcher,whichlargelythankstohim beganinApril2024intheformofaPhD,wherewearecontinuingtheworkstartedinthismaster’sthesis.

References

[1] N.Arrizabalaga,A.Mas,T.Sanz-Perela,L.Vega,EigenvaluecurvesforgeneralizedMITbag models, Comm.Math.Phys. 397(1) (2023), 337–392.

[2] J.Duran,SpectralgapofgeneralizedMITbag models,Master’sthesis,UniversitatPolit`ecnica deCatalunya,2024.

https://upcommons.upc.edu/handle/2117/ 400748?locale-attribute=en

[3] J.Duran,A.Mas,Convergenceofgeneralized MITbagmodelstoDiracoperatorswithzigzag boundaryconditions, Anal.Math.Phys. 14(4) (2024),Paperno.85,23pp.

Unifyingframeworkfordecision-making dynamics:optimalcontroland infinitehorizonperspectives

Resum (CAT)

L’objectiuprincipald’aquestprojecte´esdesenvoluparunmarcte`oricunificatdela propriocepci´o,elcontrolmotorilapresadedecisions.Primerament,espresenta unaintroducci´oalc`alculvariacionalilateoriadelcontrol`optimperestabliruna basete`oricas`olida.Acontinuaci´o,esproposaunsistemadin`amiclinealcoma aproximaci´oalsistemaf´ısicestudiatiesdesenvolupaunmodelseq¨uencialper predirtraject`ories.Davantladificultatdetrobarunasoluci´oanal´ıticaexacta, s’utilitzaelfiltredeKalmanperestimarelsperfilsdeposici´oivelocitat.

Abstract

Keywords: motorcontrol,decision-making,proprioception,optimalfeedbackcontrol(OFC).

Movementistheonlywaytoexpressourthoughtsandmoods,whichinitsfullexpressiondetermines ouroverallbehaviour.Avastamountofresearchhasbeendevotedtostudyhowthebraingeneratesand controlsmovementoverthelastcentury.Furthermore,thestudyoftheprinciplesunderlyinghowthebrain generatesmovementareofsignificantrelevancebothfromascientificbutalsoclinicalperspective,asmost disordersareoftenquantifiedintermsofthemotordeficitstheyimply,e.g.,Parkinson’sdisease,ictusor simpleageing.

Recentstudieshavedescribedthegenerationandcontrolofmovementsintermsofthebenefitsand costsassociatedwithpotentialmovements[7],thusestablishingafundamentalrelationshipbetweenmovementgenerationanddecision-makingtheory.Thecombinationofmovementrelatedchoicesandmore cognitivedecisionsdeterminesourresponsesandthebehaviourwithwhichweinteractwiththeenvironment.Thiscanbestudiedandmodelledmathematicallythrough optimaldecisionmaking and motor controltheory [8].However,thesetheoriesfallshorttoconsiderthecontributionandroleoftheinner perceptionofourbody,namelythebodilyperceptionor proprioception,whichplaysacrucialrolewhen planningandexecutingmovements.Inparticular,proprioceptionprovidesinternalcorroborationthata movementisongoing,itishenceadistributedphenomenonimplicatedinprocessesof top-downprediction and bottom-upcorrection

Despiteitsobviouspracticalandclinicalimportance,proprioceptionremainsoneoftheleaststudied senses,oftenovershadowedbyitsmorefamiliarcounterparts.Consequently,thecentralpurposeofthis projectistopresenta unifiedtheory that,unlikesimplermodelsofmotorcontrol,encompassesthe explicit incorporationofneuralsignaturesofproprioception intoa comprehensivemodel.Theproposedmodelmay beabletodescribethe interactionsbetweenproprioceptionanditsinfluenceonmotorcontrol

Unifyingframeworkfordecision-makingdynamics:optimalcontrolandinfinitehorizonperspectives

Forthispurpose,onthefirstchapter,anintroductiontothestateofthearttheoriesandrecentwork ontheprinciplesofoptimalfeedbackcontrol(OFC)andmovementrelatedchoicesispresented,asstated byexpertsofthefield,[6, 8],tofullycontextualizetheproblem.

Onthesecondchapter,robusttheoreticalformulationonoptimalcontrolframeworkispresentedin ordertoprovideasolidmathematicalbackgroundasameanstounderstandthedynamicalsystemstudied asanInfinitehorizonoptimalcontrolproblem,[2, 3, 5].

Theexperimentalapproachfollowedonthisprojectisbasedonplanarreachingmovements,asdescribed onpreviousstudies[4].OnChapter3,anintroductiontotimeseriestheoryispresentedtounderstandthe dataanalysisconductedovertheexperimentaldistributionsgathered,sincetheyaregivenbytimeseriesto applytheoptimalfeedbackcontrolapproachasdescribedbytheKalmanfilter,[1].OnChapter4,amore detailedinsighttotheexperimentalconfigurationisstated,concerningtheexplicitdevelopmentofthe dynamicalsystemstudied,asproposedby[6, 7].Followingthetheoreticalframeworkbuiltintheprevious chapters,thesequentialcomputationalapproachimplementedisstatedonChapter5.

Finally,theresultsobtainedfromimplementingtheOFCmodelarestatedinChapter6,aswellasan exhaustivecomparisonandanalysisbetweentheexperimentalandsimulateddistributions.

Acknowledgements

Throughoutthewritingofthisthesis,Ihavereceivedagreatdealofsupportandassistancefrommy supervisor,Dr.IgnasiCosAguilera.

References

[1] P.J.Brockwell,R.A.Davis, IntroductiontoTimeSeriesandForecasting,Secondedition,With 1CD-ROM(Windows),SpringerTextsStatist., Springer-Verlag,NewYork,2002.

[2] D.A.Carlson,A.B.Haurie,A.Leizarowitz, InfiniteHorizonOptimalControl.Deterministicand StochasticSystems,Secondrevisedandenlargededitionofthe1987original,Springer-Verlag, Berlin,1991.

[3] F.Clarke, FunctionalAnalysis,CalculusofVariationsandOptimalControl,Grad.Textsin Math. 264,Springer,London,2013.

[4] I.Cos,N.B´elanger,P.Cisek,Theinfluenceof predictedarmbiomechanicsondecisionmaking, J.Neurophysiol. 105(6) (2011),3022–3033.

[5] W.H.Fleming,R.W.Rishel, Deterministic andStochasticOptimalControl,Applications ofMathematics 1,Springer-Verlag,Berlin-New York,1975.

[6] L.Rigoux,Compromisentreeffortsetr´ecompenses:unmod`eleunifi´edelad´ecisionetdelamotricit´e,PhDthesis,Paris6,2011.

[7] L.Rigoux,E.Guigon,Amodelofreward-and effort-basedoptimaldecisionmakingandmotorcontrol, PLoSComput.Biol. 8(10) (2012), e1002716,13pp.

[8] S.H.Scott,Optimalstrategiesformovement: successwithvariability, NatureNeuroscience 5 (2002),1110–1111. https://reportsascm.iec.cat

Moduliofplanebrancheswith asinglecharacteristicexponent

Mar´ıadeLeyvaElola-Olaso

UniversitatPolit`ecnica

deCatalunya maria.de.leyva@upc.edu

Resum (CAT)

Estudieml’espaidem`odulsdebranquesplanes(perequival`enciaanal´ıtica)ambun ´unicexponentcaracter´ısticmitjan¸cantunaestratificaci´outilitzantelsemigrup devalorsdel’idealjacobi`adelabranca.Enparticular,estudiemcomabordarel problemamitjan¸cantdiferentst`ecniques.Enprimerlloc,proporcionemunprocedimentalgor´ıtmicbasatenunprocedimentdeCasas-Alvero,que,sotaalgunssup`osits,descriuelsestrats.Incloemunaimplementaci´oen Maple d’aquestalgorisme.Am´es,comparemlanostraestratificaci´oambunaaltraestudiadapr`eviament perPerairel’any1998apartirdel’invariantdeZariski.Aix`oenspermetferalgunes reflexionssobreelsreptesdecalcularladimensi´odelsnostresestrats,querefinen elsestratsdePeraire,ipresentaralgunesnoveseinesperabordarelproblema.

Keywords: analyticclassification,stratification,Jacobianideal.

Abstract

ThemoduliproblemofclassifyingbyanalyticalequivalencegermsofirreduciblecurvesinthesameequisingularityclasswasfirstintroducedbyOscarZariski,[3],whogaveapartialdescriptionofthespaceand workedoutsomeexamples.Thedifficultyoftheproblemsoonbecameapparentandmanyopenquestions, thatremainstillopen,arose.Ourgoalistostudythemoduliproblemforplanebrancheswithasingle characteristicexponentanddescribeastratificationusingthesemigroupofvaluesoftheJacobianidealof thebranch,denotedby Θ.ThisstratificationrefinesapreviouslyknownonebasedontheZariskiinvariant studiedbyRosaPerairein1998,[2].

Thegerms

wherewedenoteby σ theinteger np + mq nm andby A thecoefficients Ai ,j ,representallanalytic typesofgermswithasinglecharacteristicexponentequalto m/n,(n, m)=1,andZariskiinvariantequal to σ.Casas-Alveroin[1]describesaprocedurethatobtainsforagiven f (A, x, y ) ∈ C(A){x, y },asin thepreviousequationwithfixedZariskiinvariant σ,thesemigroupofvaluesoftheJacobianidealofthe branch γA accordingtoasetofconditionsonthe Ai ,j .Theseconditionsdescribethestratathatcorrespond totheZariskiinvariant σ ofthestratificationofthemodulispaceusingthesemimoduleofvaluesofthe

https://reportsascm.iec.cat Reports@SCM 9 (2024),99–100.

Moduliofplanebrancheswithasinglecharacteristicexponent

Jacobianidealofabranch.Oneofourmaincontributionsisdevelopingthisprocedureintoanalgorithm andimplementingitin Maple.Theimplementationofthisprocedurealsoleadustotheconstructionofan interestingtree,thetreeofconditionsfortheJacobianvaluesofafixedsinglecharacteristicexponent m/n ArootedtreestructureinwhichtheleavesrepresentallthepossiblesemigroupsofvaluesoftheJacobian idealof γA andthenodesrepresenttheconditionsthatthesetofcoefficientsmustsatisfyineachofthe cases.

Fromouralgorithmweareabletodeduceasemi-reducedandareducedequationdescribingofallthe branchesinanyfixedstratumwithfixedsetofJacobianvalues Θ,andasaby-productthedimensionof thatstratum.Givenanystratification,ageneralequation fA,σ ofastratum(representingallitsanalytic types)issemi-reducediftheonlynon-nullcoefficients Ai ,j arethosewhosevariationresultsinachange intheanalyticaltypeofthebranch γA,σ .Areducedequationofastratumisasemi-reducedequation expressedintermsofaminimalnumberof Ai ,j .These Ai ,j inareducedequationprovideaparametrization ofthestratum,anditscardinalispreciselythedimensionofthatstratum.

PeraireinherTheorem4.12of[2]givesacombinatorialexpressionforthedimensionofthestrataof herstratificationbytheZariskiinvariant.Wegeneralizeherresultandprovethatananalogousexpression accountsforthenumberofnon-nullcoefficients Ai ,j inasemi-reducedequation.Furthermore,weprove thatforherstrata,anysemi-reducedequationis,infact,reduced,whichdoesnotholdingeneralfor ourstrata.Werevealthatthispresentsthemaindifficultyinprovidingacombinatorialexpressionforthe dimensionofthestratainourstratificationbythesetofJacobianvalues Θ.Finallyweintroducethenotion of Θ-continuouscoefficients,whichwebelieveisstronglyrelatedtothisdimension.

References

[1] E.Casas-Alvero,Polargerms,Jacobianidealand analyticclassificationofirreducibleplanecurvesingularities, ManuscriptaMath. 172(1-2) (2023),169–207.

[2] R.Peraire,Moduliofplanecurvesingularitieswithasinglecharacteristicexponent, Proc.

Amer.Math.Soc. 126(1) (1998),25–34.

[3] O.Zariski, TheModuliProblemforPlaneBranches,WithanappendixbyBernardTeissier, Translatedfromthe1973FrenchoriginalbyBen Lichtin,Univ.LectureSer. 39,AmericanMathematicalSociety,Providence,RI,2006.

ANELECTRONICJOURNALOFTHE SOCIETATCATALANADEMATEMATIQUES

Geometricmethods inmonogenicextensions

FrancescPedret

UniversitatPolit`ecnica deCatalunya francesc.pedret@upc.edu

Abstract

Resum (CAT)

Uncosdenombres K ´esmonogensielseuanelld’entersest`ageneratperun solelementcoma Z-`algebra.Enelcasc´ubic,determinarsi K ´esmonogenono ´esequivalentaresoldrel’equaci´odiof`antica |IK (X , Y )| =1sobre Z,on IK ´esla forma´ındexdelcos.Unasoluci´oenteradeterminaunpuntracionalalacorbade g`enere1 IK (X , Y )= Z 3.Mitjan¸cantaquestaconstrucci´o,espotdemostrarque K determinauna F3-`orbitaen H 1(Q, E [3]),on E ´eslacorbael l´ıpticadefinida per Y 2 =4X 3 +Disc(K ).Donemlaconstrucci´oexpl´ıcitad’aquesta`orbitapelcas decossosc´ubicspursicaracteritzemlasumadecociclesassociatsacossosno isomorfs.

Keywords: monogenity,diophantineequations,ellipticcurves,Galois cohomology.

Itiswellknown,duetotheprimitiveelementtheorem,thatanynumberfield K isgeneratedbyasingle algebraicnumberover Q.Onewouldthinkthattheanalogousstatementshouldholdfortheringof integers OK ,sothat OK = Z[α]forsomealgebraicinteger α ∈OK .However,Dedekindfoundthefirst counterexampleforthisassumptionin1878(see[2]).Whenthereexistssuch α, K issaidtobe monogenic Today,for n ≥ 3,itisexpectedthat,whenorderedbydiscriminant,thesetofmonogenicnumberfieldsof degree n hasmeasure0(see[1]).

Afterchoosingasuitableintegralbasisof OK ,wecanassociateadegree n(n 1)/2homogeneous form IK on n 1variablesto K calledthe indexform of K .Thisformallowstocharacterizethemonogenity of K byadiophantineequation: K ismonogenicif,andonlyif,thereexist x1,..., xn 1 ∈ Z suchthat IK (x1,..., xn 1)= ±1.When n =3, IK isabinarycubichomogeneousformanditsdiscriminantisequal tothediscriminantof K (see[3]).Thus,theprojectivecurve CK : IK (X , Y )= Z 3 issmoothandan integralsolutiontotheindexformequationgivesrisetoarationalpointon CK .Therefore,wefocuson studyingtheexistenceofrationalpointson CK

Fornon-zero r ∈ Q,let E r denotetheellipticcurvegivenby Y 2 =4X 3 + r .Let D =Disc(K ).In recentworkofAlp¨oge,Bhargava,andShnidman(see[1]),theydefinedarationalmap πK : CK → E 27D anda3-isogeny ϕD : E D → E 27D suchthat(CK , πK )isa ϕD -coveringof E 27D .Asaconsequence, CK isahomogeneousspacefor E D .The ϕD -coveringsof E 27D areparametrizedby H 1(Q, E D [ϕD ]),

https://reportsascm.iec.cat Reports@SCM 9 (2024),101–102.

Geometricmethodsinmonogenicextensions

where E D [ϕD ]=ker(ϕD ),andhomogeneousspacesfor E D areparametrizedbytheWeil–Chˆatelet group H 1(Q, E D ),whosetrivialclassconsistsofthehomogeneousspacesfor E D whichhavearational point.ThesecohomologygroupsarerelatedbytheKummerexactsequence

where ι isgiven,intermsof ϕD -coveringsandhomogeneousspaces,by ι(CK , πK )= CK .Thus,(CK , πK ) isinthekernelof ι if,andonlyif, CK hasarationalpoint.Therefore,byanalysingthiskernel,wecan studythemonogenityoffamiliesofnumberfieldswithdiscriminant D.Weapplythistheoryinorderto giveboundsforthetotalnumberofmonogeniccubicnumberfieldswiththesamediscriminantinterms of E D

Since(CK , πK )isa ϕD -covering,itdeterminesaclass αK ∈ H 1(Q, E D [ϕD ]).When K isaDedekind typeIfield,i.e.when K = Q( 3 √hk 2),where h, k arecoprime,square-freeintegerssuchthat hk 2 ̸≡±1 modulo9,weprovethatthecocycle

isarepresentativeof αK ,where ω isathirdrootofunity.Usingthisexpression,givenDedekindtypeI fields K1 and K2 withthesamediscriminant,wefindanexpressionforthe ϕD -coveringassociatedto ξK1 + ξK2 ,determiningalsowhenthiscoveringcorrespondstoaDedekindtypeIfield.

Acknowledgements

TheauthorwouldliketothankJordiGu`ardiaforhisguidanceduringthisproject.Theauthoralsogratefully acknowledgestheUniversitatPolit`ecnicadeCatalunyaandBancoSantanderforthefinancialsupportof hispredoctoralFPI-UPCgrant.

References

[1] L.Alp¨oge,M.Bhargava,A.Shnidman,Apositiveproportionofcubicfieldsarenotmonogenic yethavenolocalobstructiontobeingso,Preprint(2020). arXiv:2011.01186

[2] R.Dedekind,UeberdenZusammenhangzwischenderTheoriederidealeundderTheorie

derh¨oherenCongruenzen, Abhandlungender K¨oniglichenGesellschaftderWissenschaftenin G¨ottingen 23 (1878).

[3] W.T.Gan,B.Gross,G.Savin,Fouriercoefficientsofmodularformson G2, DukeMath.J. 115(1) (2002),105–169.

Onthebasinsofattraction ofroot-findingalgorithms

Resum (CAT)

Elsalgoritmesdecercad’arrelshanestathist`oricamentutilitzatsperresoldre num`ericamentequacionsnolinealsdelaforma f (x)=0.Aquesttreballexplora ladin`amicadelsm`etodesdelafam´ıliaTraubparametritzada Tp,δ aplicadaa polinomis.Aquestsm`etodesinclouenunventalldesdelm`etodedeNewton(δ =0) finsalm`etodedeTraub(δ =1).Elnostreenfocamentrauainvestigardiverses propietatstopol`ogiquesdelesconquesd’atracci´o,particularmentlasevasimple connectivitatilanoacotaci´o,ques´oncrucialsperidentificarunconjuntuniversal decondicionsinicialsqueassegurinlaconverg`enciaatoteslesarrelsde p

Keywords: dynamicalsystems,root-findingalgorithms,Newton’smethod, Traub’smethod.

Abstract

Solvingnonlinearequationsoftheform f (x)=0isacommonchallengeinvariousscientificfields,spanningfrombiologytoengineering.Whenalgebraicmanipulationisnotfeasible,iterativemethodsbecome necessarytodeterminesolutions.Newton’smethodisawell-knownapproach,derivedfromlinearizingthe equation f (x)=0.Itsiterativeexpressionisgivenby:

(xn)

n+1 = xn

Overthepastfewdecades,numerousresearchershavesuggestedvariousiterativeapproachesaimedat enhancingNewton’smethod[4].Oneprevalentstrategyfordevisingnewmethodsinvolvesdirectlycombiningexistingtechniquesandsubsequentlymodifyingthemtominimizethecountoffunctionalevaluations. Forexample,ifweapplyNewton’smethodtwicewhilekeepingthederivativeconstantinthesecondstep, wederiveTraub’smethod[5].Aspecifictypeofroot-findingalgorithms,calledthe dampedTraub’sfamily, wasfirstintroducedinthepapers[2, 6].Itsiterativeexpressionisgivenby:

where yn = xn f (xn ) f ′(xn ) isaNewton’sstepand δ isthedampingparameter.Noticethat δ =0corresponds toNewton’smethodand δ =1toTraub’smethod.Newton’smethodconvergesquadraticallyforsimple

https://reportsascm.iec.cat Reports@SCM 9 (2024),103–104.

Onthebasinsofattractionofroot-findingalgorithms

rootsofapolynomialwhentheinitialguessissufficientlyclosetothedesiredroot.Ontheotherhand, Traub’smethodexhibitscubic(local)convergence.ItisworthnotingthateachiterationofTraub’smethod requiresmorecomputationscomparedtoNewton’smethod.

Thechallengeofiterativemethodsliesinthechoiceofinitialconditionstostartthealgorithm.The studyofdynamicalsystemsplaysacrucialroleingaininginsightintohowtomakethisselectioneffectively. Anexampleofthisispresentedin[3],whereauniversalandexplicitsetofinitialconditions,denotedby Sd , isconstructed.Thissetdependssolelyonthedegreeofthepolynomialandcanbeusedtofindallthe rootsofapolynomialusingNewton’smethod.Theexistenceofthissetisensuredbythefactthatthe immediatebasinsofattractionforthemethodaresimplyconnectedandunboundedsets.

Theaimofthisworkistoconstructasetanalogousto Sd forTraub’smethod.Ifsuccessful,thiswould offerawaytofindalltherootsofapolynomialwithenhancedconvergencespeed.Toachievethis,itis necessarytoprovethattheimmediatebasinsofattractionforTraub’smethodaresimplyconnectedand unboundedsets.Thiswouldprovidetheessentialframeworkforconstructingasetsimilarto Sd .Arecent study[1]demonstratedthisresultundertheassumptionsthatthepolynomialiseitherofdegree2,orit canbeexpressedintheform pn,β (z):= z n β,where n ≥ 3and β ∈ C

WecontributedtothisresearchbyanalyzingthebehaviorofthedampedTraub’sfamilywhenthe dampingfactoriscloseenoughtozerobyconsideringthemethodasasingularperturbation.Wehave beensuccessfulinprovingtheunboundednatureoftheimmediatebasinsofattractionsforthiscase. Furthermore,wefocusoninvestigatingthesimpleconnectivityandunboundednessoftheimmediatebasins ofattractionsspecificallyforthird-degreepolynomials,achievingsomefindingsconcerningthedistribution ofboththefreecriticalpointsandthefixedpointsthatarenotrootsforthedampedTraub’smethod undertheconditionthat δ isclosetozero.Finally,weconcludeourresearchbyexaminingTraub’smethod appliedtothefamily pd (z)= z(z d 1).Wehaveproventheunboundednessoftheimmediatebasinsof attractionforspecificvaluesof d,andwepresentevidencessuggestingthatthisunboundednessholdsfor allvaluesof d

References

[1] J.Canela,V.Evdoridou,A.Garijo,X.Jarque, Onthebasinsofattractionofaone-dimensional familyofrootfindingalgorithms:fromNewton toTraub, Math.Z. 303(3) (2023),Paperno.55, 22pp.

[2] A.Cordero,A.Ferrero,J.R.Torregrosa,DampedTraub’smethod:convergenceandstability, Math.Comput.Simulation 119 (2016),57–68.

[3] J.Hubbard,D.Schleicher,S.Sutherland,How tofindallrootsofcomplexpolynomialsbyNewton’smethod, Invent.Math. 146(1) (2001), 1–33.

[4] M.S.Petkovi´c,B.Neta,L.D.Petkovi´c, J.Dˇzuni´c,Multipointmethodsforsolvingnonlinearequations:asurvey, Appl.Math.Comput. 226 (2014),635–660.

[5] J.F.Traub, IterativeMethodsfortheSolutionof Equations,AMSChelseaPublishingSeries 312, AmericanMathematicalSoc.,1982.

[6] J.E.V´azquez-Lozano,A.Cordero,J.R.Torregrosa,DynamicalanalysisoncubicpolynomialsofdampedTraub’smethodforapproximatingmultipleroots, Appl.Math.Comput. 328 (2018),82–99.

https://reportsascm.iec.cat

TableofContents

ArandomwalkapproachtoStochasticCalculus

ExtensionsoftheCalder´on–Zygmundtheory BernatRamisVich11

Surveyonoptimalisosystolicinequalitiesontherealprojectiveplane UnaiLejarzaAlonso21

Propertiesoftriangularpartitionsandtheirgeneralizations

Algebraictopologyoffinitetopologicalspaces

OnthebehaviourofHodgespectralexponentsofplanebranches

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.