EIE CBCS Syllabus

Page 24

18EI3010

EMBEDDED AUTOMOTIVE SYSTEMS

L 3

T 0

P 0

C 3

Course Objectives 1. To expose the students to the fundamentals and building of Electronic Engine Control systems. 2. To teach on functional components and circuits for vehicles 3. To discuss on programmable controllers for vehicles and to teach logics of automation & commercial techniques for vehicle communication Course Outcomes: After the completion of this course the student will be able to: 1. Summarize the concepts of electronics in automobile field. 2. Compile the challenges and opportunities of Drive by wire. 3. Categorize various hardware modules of automotive system. Outline the structure of Electronic ignition systems 4. Create the concepts of automotive embedded systems using recent advancements 5. Discuss the basics of Electronic diagnostics for vehicles Module 1: Basics of Electronic Engine Control Systems (7 Hours) Motivation ,concept for electronic engine controls and management-Standards; introduction to fuel economy- automobile sensors-volumetric, thermal, air-fuel ratio, solenoid ,hall effect- exhaust gas oxygen sensors, Oxidizing catalytic efficiency, emission limits and vehicle performance; advantages of using Electronic engine controls – open and closed loop fuel control; Block diagram of Electronic ignition system and Architecture of a EMS with multi point fuel injection system, Direct injection; programmed ignition- actuators interface to the ECU; starter motors and circuits - sensors interface to the ECU; Actuators and their characteristics – exhaust gas recirculation. Module 2: Hardware modules (8 Hours) Basic sensor arrangement, types of sensors such as- oxygen sensors, crank angle position sensorsFuel metering vehicle speed sensors and destination sensors, Attitude sensor, Flow sensor, exhaust temperature, air mass flow sensors. Throttle position sensor, solenoids, stepper motors, relays Module 3: Fuel cell for automotive power (8 Hours) Fuel cell-Introduction-Proton exchange membrane FC (PEM), Solid oxide fuel cell (SOFC)properties of fuel cells for vehicles-power system of an automobile with fuel cell based drive, and their characteristics Module 4: Vehicle Management Systems (8 Hours) Electronic Engine Control-engine mapping,air/fuel ratio spark timing control strategy, fuel control, electronic ignition-Vehicle cruise control- speed control-anti-locking braking system-electronic suspension - electronic steering , wiper control ; Vehicle system schematic for interfacing with EMS, ECU. Energy Management system for electric vehicles- for sensors, accelerators, brake-Battery management, Electric Vehicles-Electrical loads, power management system-electrically assisted power steering system Module 5: Automotive Telematics (8 Hours) Role of Bluetooth, CAN, LIN and flex ray communication protocols in automotive applications; Multiplexed vehicle system architecture for signal and data / parameter exchange between EMS, ECUs with other vehicle system components and other control systems; Realizing bus interfaces for diagnostics, dashboard display ,multimedia electronics- Introduction to Society of Automotive Engineers(SAE). J1850 message with (IFR) in frame response in protocol-Local Interconnect n/w [LIN], Bluetooth. Module 6: Electronic Diagnostics for Vehicles (6 Hours) System diagnostic standards and regulation requirements –On board diagnosis of vehicles electronic units &electric units-Speedometer, oil and temperature gauges, and audio system. References 1. William B. Ribbens ,”Understanding Automotive Electronics”, Elseiver,2012 2. Ali Emedi, Mehrded ehsani, John M Miller , “Vehicular Electric power system- land, Sea, Air and Space Vehicles” Marcel Decker, 2004. 3. L.Vlacic,M.Parent,F.Harahima,”Intelligent Vehicl Technologies”,SAE International,2001. 4. Jack Erjavec,Jeff Arias,”Alternate Fuel Technology-Electric ,Hybrid& Fuel Cell Vehicles”,Cengage ,2012

Instrumentation Engineering


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

18EI3025 Entrepreneurship development for embedded system 3:0:0 3

6hr
pages 39-246

18EI3023 Internet of things and protocols 3:0:0 3

1min
page 37

18EI3021 Real Time Operating System 3:0:0 3

2min
page 35

18EI3022 Embedded networking and automation of Electrical Systems

2min
page 36

18EI3020 Advanced course in Embedded C 3:0:0 3

2min
page 34

18EI3019 Python programming and Interfacing Techniques 3:0:0 3

2min
page 33

18EI3018 Embedded Android Programming 3:0:0 3

2min
page 32

18EI3016 Embedded based Image Processing Techniques 3:0:0 3

2min
page 30

18EI3017 Optimization techniques for Embedded Systems 3:0:0 3

2min
page 31

18EI3015 Embedded Product Development 3:0:0 3

2min
page 29

18EI3013 Smart system Design 3:0:0 3

2min
page 27

18EI3014 MEMS Technology for Embedded Design 3:0:0 3

2min
page 28

18EI3012 Wireless and Mobile Communication 3:0:0 3

2min
page 26

18EI3011 Distributed Embedded Computing 3:0:0 3

2min
page 25

18EI3010 Embedded Automotive Systems 3:0:0 3

2min
page 24

18EI3008 IoT Lab 0:0:4 2

1min
page 22

18EI3009 Field programmable Lab 0:0:4 2

1min
page 23

18EI3007 Embedded Based Virtual Instrumentation Lab 0:0:4 2

2min
page 21

18EI2013 Microcontroller and PLC Laboratory 0:0:2 1

2min
page 13

18EI3006 Advanced Embedded System Lab 0:0:4 2

2min
page 20

18EI3005 Embedded Linux 3:0:0 3

2min
page 19

18EI3004 Advanced Embedded Processors 3:0:0 3

2min
page 18

18EI2014 Modelling and Simulation 3:0:0 3

2min
page 14

18EI3002 Embedded system and software design 3:0:0 3

2min
page 16

18EI3003 Programmable Devices for Industrial Automation 3:0:0 3

2min
page 17

18EI3001 Advanced Embedded Signal Processors 3:0:0 3

1min
page 15
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.