(( (( ( (( ( ( ( (( (
)) ))) )) ) ) ) ) )) )
l og33, s i n(A ) 2 s n(B) s i n(C ) 2 2i 5 2 =c −2 =⋅c a =b + ⋅b⋅c os(A) 3 3 8 8 1 1 , 7 , 7 l o l o g g 4, a b c(C ) 5 s i n(A ) 2 s i n(B) s i n 3 3 3 , 5 , 5 l og3 2 =c 2−2 =⋅c aa == a =b + ⋅b⋅c os(A) 2 4 4 , 5 , 57 a b c l o l o g g381, l o g 2 2 2 2 2 a2 = b 2+ c 2−2⋅b⋅c ⋅c os(A) 3 , 5 2 , 4 4 −1 3 = t va = a n b = a + c −2 ⋅a⋅c ⋅c os(B) 4 , 5 2 0 l og 2, 2 2 2 4 4 b2 = =b a2++ cc2− −2 2 a⋅⋅cc⋅⋅c c o s(A) (B) v = t a n−1 2 a ⋅⋅b o s 20 Sinusrelationerne Cosinusrelationerne 2 4 , 4 4 4 a b, c −−1 12 2 2 2 vv == t t a a n n = = b22= b a22+ c 2 − ⋅a⋅ ⋅ os(B) a 2 2b c c (A) 2 2 0 0 s i n(A ) s i n (B) s i n(C ) c = a + b −2⋅a⋅b⋅c os(C ) a b c 2 2 2 = −1 2 , 44= a = b + c − 2 ⋅ b ⋅ c ⋅ c o s(A) 2 2 2 vi = a ns 2+ b2−2 n (A ) t i n(B) s i n(C ) c2 på =a abagflappen. a⋅⋅cb⋅⋅c c o s (C ) H:s ind under Cosinusrelationerne 20 b = + c −2 ⋅⋅a o s (B) a =
2 2
2 2
2 2
Regnearternes hierarki - Parenteser 3 2+ 4 ⋅√ 2 5− 3 = 8+ 4⋅5− 3 = 8+ 20− 3 = 25 - Potenser og rødder 3 -2 Multiplikation +4 ⋅√ 2 5− 3 = og 8+division 4⋅5− 3 = 8+ 20− 3 = 25 - Addition og subtraktion
c = abagflappen. +b ⋅a⋅b (C ) b på c −2 c ⋅c os(B) H:si ind) under Cosinusrelationerne n(A s i n(B) s i n(C ) = = Kvadratsætningerne b på = abagflappen. + c −2 a⋅ac ⋅c os(B) H: H: ind ind underb Cosinusrelationerne Cosinusrelationerne på bagflappen. a under c b + c ⋅− s i n(A ) s i n(B) s i n(C ) os cc =(A) a= + b −2 ⋅a⋅b⋅c os(C ) = = Kvadratsætningerne 2 ⋅b⋅c a b c b + c − a H: ind under Cosinusrelationerne på cos =(A) abagflappen. + b −2 ⋅a⋅b⋅c os(C ) c = Kvadratsætningerne Kvadratsætningerne 2 ⋅b⋅c (a + b)
2
2
2
= a + b + 2ab
2
2
2
2
2 2 2
2
2
2
2
2 2
2
2
2
2
2
2 c −a c =(A) a =+ b b + −2 ⋅a⋅b⋅c os(C ) c os Kvadratsætningerne 2 2 2 2 ⋅b2⋅c 2 Kvadratsætningerne 2 (a + b) = a + b + 2ab a +c − b c os(B )= b2+ c 2− a 2 2 2 2 2 2 2 2 2 2a (a (a + + b) b) = = a + + b b + + 2 2 ab ab ⋅a2⋅c 2 2 2 2 22 c o s (A) = a =b) b + c= −a2 ⋅+bb ⋅c − ⋅c os (A) (a − 2 ab a +⋅cb⋅ 2− 2 cb c os(B )= b22 +c − a 2 2 2 c o s (A) = 2 ⋅ a ⋅ c 2 2 2 2 2 2⋅c 2 2 a = b + c − 2 ⋅ b ⋅ c o s (A) a +⋅cb2⋅−c b 2 (a− + b) = ab (a = a +b + −2 2 ab c os(B )= b22 +c − a c os(A) = 2 2 2 2 2 2 2 ⋅a2 ⋅c 2 2 (a (a2−−b) b)2 ==2 aa ++bb −−2 2 ab ab 2 cc a +⋅b⋅− 2 b a +− c b) −2 ⋅= a⋅ca⋅2c os c os(C ) =a2+ c 2− b2 (a +=b)(a − b(B) ⋅ a ⋅ b 2 22 2 c o s (B ) = 2 2 2 2 2 a +⋅a b2 c −c2 b(a = a2 + c=−a 2 ⋅a c o s (B) 2 2 − b) +⋅bc ⋅− 2 ab c os(C ) = a22 + c ⋅− b (a + b)(a − b) = a − b c os(B )= 22 ⋅a2 ⋅b 2 a22 +⋅b − c 2 2 2 2 2 a ⋅ c (a (a2++b)(a b)(a −b) b) == aa −−bb 2 − 2 c os(C ) = a + c − b2 cBrøkregneregler Potenser = a + b −2 ⋅a⋅b⋅c os(C ) c os(B )= 2 ⋅a⋅b 2 ⋅a⋅c 2 2 2 2 2 2 2 c(a = a + b− b) −2 ⋅= a⋅ba⋅2 c os a + b −c + b)(a − b(C ) c o s (C ) = 0 a b a+b a =1 2 ⋅a⋅ 2b 2 + = a2 +b − c c os(C ) = c c c 22 ⋅b 2 n m n+ m⋅a2 aos ⋅ a(C )==aa + b −c 2 2 2 c b +c − a c osb (A) =a ⋅ b 2 ⋅a⋅b a ⋅ = 22 ⋅b2 ⋅c 2 n bc + c − a a n⋅ b n = ( a ⋅ b ) c c os(A) = 2 ⋅b⋅c
a a :c = 2 2 2 a +c − b b b c os(B )=⋅ c
a−n =
2 ⋅a2⋅c 2 a +c − b c aos(B b )=a ⋅ d2 b ⋅ c ad + bc ⋅+a⋅c = + = 2
c
d
c ⋅d
2
d ⋅c
2
cd
2
a + b −c c aosc(C ) =ac 22 b 2 ⋅ = a +⋅ba2⋅− c bosd(C ) = bd c 2 ⋅a⋅b
2
(a )
n m
2
1 an
=a
n⋅m
a n a = bn b
n
4
3 8 = 38= −2 4 +⋅2 9 1+ 20− 3 = 25 2−+7 4 ⋅+√2 25− 80 +1 4 5−=3 2 =3 8 4
3 8 = 38= −2 4 +⋅2 9 1+ 20− 3 = 25 2−+7 4 ⋅+√25− 80 +1 4 5−=3 2 =3 8
Kernestof Mat B
KERNESTOF MAT B Indhold i opslag Opslagene indeholder en introcase, matematikteori, eksempler og øvelser. Hvert kapitel indeholder mellem tre og seks opslag. Der er opgaver bagerst i hvert kapitel, og formelsamling på coverets flapper. QR-koder linker til små film med uddybninger og eksempler. Facitliste bag i bogen.
4
8−7+42 = 8−42401+ 2 = 2391 (8− 7) + 2 = 1+ 2 = 1+ 2 = 3 4
8−7+42 = 8−42401+ 2 = 2391 (8− 7) + 2 = 1+ 2 = 1+ 2 = 3 4
4
2 ) + 2 = 1+ 2 = 1 (8 +)⋅2 (4−−7 15)⋅4+ 2 (16− 15 4+=2 3 1 ⋅4+ 2 4+ 2 6 = = = = = 2 3 3 3 3 9 √4 4 2 (8 −7 ) + 2 = 1+ 2 = 1+ 2 = 3 (4− 15)⋅4+ 2 (16− 15)⋅4+ 2 1 ⋅4+ 2 4+ 2 6 = = = = = 2 3 3 3 3 √9 2
(4− 15)⋅4+ 2
(16− 15)⋅4+ 2
2
–4 · x + 2 = –6
3 · x+1=x– 7
−4 x 8 − –6 6−–22 –4 · +x=2 +−22 –= 2=
3x 32 · +x1 +−= 1x–−=x7=x x−–7− 7 –x x
−4 x+ 2= − 6 − 4 −8 –4 ·xx= −4 x 8 ==−–8 −4 4 −2 4 −=6− 6− 2 − x+ 2−= − −x− 4 4⋅4 −− 88 x⋅x x−=2− 8 = ==−−−−2 −4 4 4= − 6− 2 − x+==2 8 − −4 4 − −4 4
x− 4 =x− 2− 8 −4 −4 −4 x −8 = x− = 4− 2− 4
Parenteser a c a d : = ⋅ b d b c a ⋅ (b + c ) = a ⋅ b + a ⋅ c
x = −2
(a + b ) ⋅ (c + d ) = ac + ad + bc + bd
3x+ 1= x − 7
22x ·+x1 +−= 11= −=–7 7− 7− 1
3x+ 1−=x x=− x7− 7− x
22x ·+x=1 +− –=1 − =7 –−71 –1 −11 8 3 2x+ 1−=x −=7x − 7− x
22x · x = –88
2 x+== − −8 2 x −=7− 7− 1 2 2 x +1 1−=12 22 ⋅x x 88 =−−−4 xx+== 1 − = − 7− 1 2 2 −1 8 2 = 22 x = −4 2 2 2x 8 x2==−−42
2 x–4 8 x = x2 = =− −8
4 ⋅(x − 3)= 0 x = −4 Ligningsløsning med Nulreglen
”Hvis giver 0, er en af faktorerne 0”. 4 ⋅(x −produktet 3)= 0 4x·=(x3– 3) = 0
4 ⋅(x − 3)= 0
Lindhardt og Ringhof
ISBN 9788770665667
9 788770 665667
Per Gregersen og Peter Limkilde
ISBN 978-87-7066-566-7
xx–=33 =0
4 ⋅(x − 3)= 0
x(x = +3 1)⋅(7− x ) = 0
Per Gregersen og Peter Limkilde
4+ 2 6 = = 2 3 3
(4− 15)⋅4+ 2 (16− 15)⋅4+ 2 1 ⋅4+ 2 4+ 2 6 = = = = = 2 3 3 3 3x+ 1− x =3 9 √ −4 x+ 2−=2−=6− 6− 2 = x −x 7− 7− x
=−8 x−=4x 2=
www.lru.dk/kernestof
1 ⋅4+ 2
=ved omformning= = Ligningsløsning 3 3x+ 1= x −3 9 −4 x+ √2 = −6 7
x =3
1)⋅·(7 (x(x++1) (7− –x )x)==0 0 x =3
xx+ = 1 =−01eller ellerx 7=– 7 x=0 (x + 1)⋅(7− x ) = 0
xx= = –1− 1 eller 77 eller xx== (x + 1)⋅(7− x ) = 0
www.lru.dk
x = − 1eller x = 7 x = − 1eller x = 7