Tipologio γ

Page 1

i  z1, 2  2 

(f (g ( x )))  f (g ( x ))  g( x )

 f ( x )dx    f ( x )dx

f ( x )  0

z1  z 2     i    i  (   )  (  )i

Μαθηματικό 1

f ( x )  y  f ( y)  x

Tυπολόγιο lim xx 0

f (x)  f (x 0) x  x0

2

|z|  zz

Γ ΛΥΚΕΙΟΥ

lim (f ( x )  g ( x ))  lim f ( x )  lim g ( x ) xx0

f ( )  f ()  0

xx0

xx0

f () 

f ()  f () 

Κώστας Κουτσοβασίλης


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.