13 minute read

Produkte und Projekte

Spezifische Fließmitteltechnologie von Sika Errichtung der Filstalbrücke

Die Filstalbrücke über dem Talgrund zwischen der Gemeinde Mühlhausen im Täle und der Stadt Wiesensteig ist eine Schlüsselstelle des Bahnprojekts Stuttgart–Ulm. So soll sie ab Ende 2022 von Zügen mit einer Geschwindigkeit von 250 km/h in 7 s passiert werden. Das mit der Bauausführung beauftragte Unternehmen realisierte hier einen zwängungsfrei hergestellten Überbau auf Hilfsstützen mit nachträglichem Anschluss der Pfeiler-Schrägstreben. Das heißt, die acht Anschlüsse der Y-Streben an den Überbau wurden jeweils mit ca. 70 m³ selbstverdichtendem Beton (SVB) vergossen und so starr verbunden. Dazu musste der Beton auf eine Höhe von 85 m und in der Horizontalen bis 120 m gepumpt werden, und zwar bei einer Verarbeitungszeit von 90 m und unter Gewährleistung der Gleichmäßigkeit des SVB bei den unterschiedlichen jahreszeitlichen Temperaturbedingungen. Gemeinsam mit dem Betonhersteller konzipierten die Experten von Sika das speziell für die Filstalbrücke adaptierte

Advertisement

Talquerung als Teil des Bahnprojekts Stuttgart–Ulm © Sika Deutschland GmbH

Fließmittel Sika ViscoCrete-3137: Basis ist die Produktfamilie Sika ViscoCrete mit ihren Sika-Polymeren, die exakt an die Anforderungen für SVB und Faserbeton angepasst werden kann. Entscheidend dafür sind Eigenschaften wie niedrige w/z-Werte, gute Konsistenzhaltung sowie eine optimierte Entwicklung der Frühfestigkeitsentwicklung auch im Winter. Die Neu- und Weiterentwicklung maßgeschneiderter PCE-Fließmittel für Spezialbetone zählt zu den Kernkompetenzen von Sika.

www.sika.de

Semiintegrale Tragstruktur im Entstehen © Sika Deutschland GmbH

Monolithische Verbindung von Überbau und Pfeilern © Sika Deutschland GmbH »Hochpumpen« des selbstverdichtenden Betons © Sika Deutschland GmbH

Projektspezifische Baukastenlösung von Peri Elegante Neckarbrücke bei Benningen

Herstellung des Überbaus mittels Variokit-Ingenieurbaukasten © Peri Vertrieb Deutschland GmbH & Co. KG Abgehängte Kragarmschalung zur Betonage in elf Abschnitten © Peri Vertrieb Deutschland GmbH & Co. KG

Die neue, 195 m lange Neckarbrücke bei Benningen stammt aus der Feder des renommierten Ingenieurbüros Leonhardt, Andrä und Partner und bildet in Verbindung mit einer 107 m langen Stützwand die Grundlage für die neue, 1,2 km lange Ortsumfahrung der L 1138 zwischen Freiberg und Marbach. Geplant und ausgeführt wurde diese elegante Flussquerung als Stahlverbundstruktur mit Hohlkasten, wobei der Stahlgurt, monolithisch verbunden, übergangslos in die V-förmigen Flusspfeiler übergeht. Ihre Konzeption als gevoutete Rahmenbrücke harmoniert mit der von Weinbauhängen geprägten Landschaft und ermöglichte zudem eine schlanke Konstruktion mit nur 1,90 m Bauhöhe in Feldmitte über dem Neckar, musste hier doch ein 60 m breites und 6,30 m hohes Lichtraumprofil für die Binnenschifffahrt eingehalten werden. Das gestalterisch wie statisch anspruchsvolle Tragwerk war auch für die Herstellung herausfordernd: Die mit nur 4 m Breite sehr schmalen Stahlhohlprofile wurden dichtgeschweißt teils am Neckarufer vormontiert und das 145 t schwere Mittelstück mithilfe eines Schwimmkrans in die Endlage eingehoben. Durch die in zwei Achsen gekrümmte Brückengeometrie war auch der Betonüberbau mit großen Herausforderungen verbunden: Die Brücke geht von einer Wendeklothoide in einen Radius von 125 m über und ist in Längs- und Querrichtung bis 7,50 % geneigt. Das praxisgerechte Baukastensystem Variokit von Peri zielt darauf ab, wirtschaftliche Lösungen für den Großteil aller Anforderungen im Ingenieurbau zu ermöglichen. Im Fokus steht dabei ein hoher Anteil an mietbaren Kern- und Systembauteilen, die vielfältige Anwendungen abdecken. In Kombination mit dem baustellenbegleitenden Support durch den Stuttgarter Peri-Fachberater und den Ingenieuren des Weißenhorner Kompetenzzentrums Infrastruktur wurde hier zusammen mit dem bauausführenden Unternehmen eine projektspezifisch angepasste Baukastenlösung erarbeitet. Im ersten Schritt ermöglichte die abgehängte Variokit-Kragarmschalung die Betonnage des in elf jeweils 15–20 m lange Abschnitte eingeteilten Überbaus im regelmäßigen Wochentakt. Die anschließende Aufbringung der Kappen erfolgte mit Hilfe der Variokit-Gesimskappenkonsole. Zur Herstellung der bis zu 45 cm dicken Fahrbahnplatte aus Beton wurde die Variokit-Kragarmkonsole VCB verwendet. Trotz der enorm großen Auskragung von beidseitig 3,95 m konnte mit einem großzügigen Konsolabstand von 90 cm gearbeitet werden. Ein weiterer großer Vorteil war, dass sich das Variokit-System fächerförmig mittels zweier unterschiedlicher Aufhängungsvarianten an die jeweilige Baustellensituation anpassen ließ: In den Bereichen über Land konnte sie von unten gelöst werden, bei den Betonierabschnitten über Wasser hingegen von oben, wobei die Umsetzung der Aufhängung per Kran erfolgte.

Gesimskappenkonsole als wirtschaftlichste Lösung © Peri Vertrieb Deutschland GmbH & Co. KG

In beiden Fällen war der Überbau frei zugänglich, die bündig mit der Betonoberkante abschließende Spannstahlaufhängung vermied Störstellen und ermöglichte durch den Einsatz von Rüttelbohlen hohe Betoniergeschwindigkeiten. Die einfach handhabbare Variokit-Gesimskappenkonsole VGK war die wirtschaftlichste Alternative zur Kappenherstellung und ermöglichte zudem sicheres und effizientes Arbeiten, auch dank der Verankerung der Bühneneinheiten an der Brückenunterseite. Der durchdringungslose Bühnenbelag sorgte darüber hinaus für ausreichenden Schutz für die auf dem Neckar querenden Binnenschiffe und Ruderboote. Und die separate Schalungseinheit der VGK-Lösung ließ sich stufenlos an die geforderte Kappengeometrie anpassen.

www.peri.de

Senkrecht eingebaute Sonderlager von Maurer Schrägseilbrücke bei Pelješac in Kroatien

Die Pelješac-Brücke an der malerischen Küste von Kroatien wird eine der imposantesten Schrägseilbrücken, doch sie ist politisch umstritten. Beim Brückenbau interessieren allerdings nicht die politischen Verwerfungen, sondern die tektonischen: Die Region ist Erdbebengebiet, entsprechend müssen die Lager große Bewegungen und hohe Horizontalkräfte aufnehmen, weshalb die Hälfte von ihnen senkrecht angeordnet werden. Maurer entwickelte hierfür eine Sonderlösung, um sicherzustellen, dass zwischen den Gleitflächen kein Spalt aufgehen kann. So wird der Verschleiß reduziert und eine Lebensdauer von mindestens 50 Jahren erreicht. Die Pelješac-Brücke ist seit Jahren ein Politikum. Der Süden Kroatiens ist auf dem Landweg nur über die Stadt Neum erreichbar, die allerdings zu BosnienHerzegowina gehört. Die ca. 22 m breite neue Brücke wird das kroatische Festland mit der vorgelagerten Halbinsel Pelješac verbinden und damit einen vollständig kroatischen Landweg aus dem Norden nach Dubrovnik eröffnen. Ausgelegt ist sie als Schnellstraße mit je zwei Fahrspuren. Nach ihrer Errichtung wird sie insgesamt beachtliche 2.404 m lang sein, unterteilt in 13 unterschiedliche Felder. Die Hauptbrücke über den sogenannten Pelješac-Kanal ist eine Schrägseilstruktur mit zwölf Pylonen, wobei die fünf zentralen Spannweiten je 285 m betragen, die Durchfahrtshöhe misst 55 m. Da die gesamte Region erdbebengefährdet ist, müssen die Brückenlager spezielle Anforderungen bezüglich Beweglichkeit, Dauerhaftigkeit und Lastkapazität erfüllen. Die Planer sahen für die Widerlager und sechs der insgesamt zwölf Pylonen je zwei Kalotten- und zwei Topflager vor, Maurer überzeugte sie aber von einer reinen Kalottenlager-Lösung. Und so baute Maurer im Herbst 2020 in Summe 32 Kalottenlager in Kroatien ein. Technisch besonders anspruchsvoll waren dabei die 16 Lager zur Führung der Brücke in Längsrichtung, denn sie müssen in Querrichtung hohe Horizontalkräfte ≤ 19 MN aufnehmen und senkrecht angeordnet werden. Dabei ist sicherzustellen, dass die Gleitflächen ständig in Kontakt bleiben: Wo sich ein Spalt auftut, kann Staub eindringen und die Gleiteigenschaften, wie niedrige Reibung, gefährden. Zudem kommt es dann zu Verschleiß, was die Lebensdauer verkürzen würde, und zwar auf nur fünf statt der geforderten 50 Jahre.

Brückenbauwerk im Entstehen: Blick zur Halbinsel Pelješac © Maurer SE

»Spiegelung« des Lagers im Edelstahl-Gleitblech (oben) © Maurer SE Maurer entwickelte hierfür Sonderlager mit Tellerfedern im Kern. Die Federn halten die Gleitflächen immer in Kontakt miteinander, mit einer Kraft von ca. 500 kN in Mittelstellung, und sind überdies ermüdungsfest ausgelegt. Als Hochleistungswerkstoff auf allen Gleitflächen setzt Maurer grundsätzlich MSM® ein, also Maurer Sliding Material. Es hält im Vergleich zum herkömmlichen Teflon (PTFE) mindestens doppelt so hohe Auflasten aus, was bedeutet, dass die Lager ca. 30 % kleiner und wirtschaftlicher gefertigt werden konnten. Außerdem verkraftet MSM® mindestens fünfmal mehr Bewegungen ohne Verschleiß. Dies ist gerade bei weichen Tragstrukturen wie der Pelješac-Brücke in Kombination mit den auftretenden Naturgewalten Wind und Erdbeben sehr wichtig. Die MSM®-Kalottenlager erreichen so laut ihrer Europäischen Technischen Zulassung eine Lebensdauer von 50 Jahren. Weitere 16 MSM®-Kalottenlager, je zwei pro Pylon, wurden für die Aufnahme von Vertikalkräften ≤ 33 MN eingebaut. Da aus Wind und Erdbeben auch abhebende Kräfte ≤ 2 MN resultieren können, sind die Lageroberteile mit einer Klammer ausgestattet, die ein Abheben verhindert. Darüber hinaus müssen alle Lager im Erdbebenfall große, schnelle Bewegungen ≤ ±1,30 m aufnehmen. Und das bedingt Lagerlängen ≤ 3 m, die größten Lager sind hier 1,20 m breit und ca. 330 mm hoch.

Kalottenlager auf Betonsockel © Maurer SE

Dehnfuge vom Typ Schwenktraverse © Maurer SE

Aus Korrosionsschutzgründen sind die Stahlbauteile nicht nur mit einer entsprechenden Beschichtung C5-m versehen, das wichtige innere Kalottengelenk wurde komplett aus einem Werkstoff gefertigt, nämlich MSA® oder Maurer Sliding Alloy. Das glänzende, extrem glatte und hochkorrosionsbeständige Material erlaubt im Vergleich zu einer verchromten Oberfläche eine Reduzierung der Toleranzen um mindestens 50 % mit besserer Passgenauigkeit im Gelenk, bei gleichzeitig drei- bis vierfach längerer Lebensdauer. Der geforderte Korrosionsschutz beeinflusst auch die Konstruktion der Dehnfugen, die als flexible Bauelemente an beiden Brückenenden die Temperatur- und Erdbebenbewegungen (≤ 1.400 mm) des Überbaus ausgleichen. Gleichzeitig ist sichergestellt, dass der Verkehr über diese Dehnfugen ohne Einschränkung und unabhängig von deren Verschiebezustand fahren kann. Die Dehnfugen werden rechtwinklig zur Fahrtrichtung angeordnet. Die zwei 23,60 m langen Fugen vom Typ Schwenktraverse mit 14 Profilen wird Maurer in Hybridausführung

Querschnitt eines Hybridprofils © Maurer SE

fertigen. Hybrid bedeutet hier, dass der obere Teil der Stahlprofile aus Edelstahl besteht, der untere aus Baustahl, was einen hohen Schutz gegen Korrosion bietet. Die Dehnfugen werden 2021 in einem Stück nach Kroatien geliefert, weil Schweißarbeiten an der Fuge auf der Baustelle nicht erlaubt sind. Die Bauarbeiten an der »aktuellen« Pelješac-Brücke – ein erstes Projekt wurde vor zehn Jahren eingestellt – begannen Mitte 2018 und sollen bis Ende 2022 abgeschlossen sein.

www.maurer.eu

Typengeprüftes Traggerüst von Ischebeck Ortsumfahrung von Oberlauchringen

Mehr als 10.000 Kfz/d durchqueren Oberlauchringen, weshalb sich die Realisierung einer Ortsumfahrung, die gleichzeitig die A 98 mit der B 34 verbindet, aufdrängte. Eine Länge von 2,10 km aufweisend, soll sie noch 2021 eröffnet werden. Dazu bedurfte es auch der Errichtung einer Brücke aus Stahlbeton. Da das Traggerüst die bei solchen Bauwerken üblichen hohen Lasten aufnehmen muss, hier zum Beispiel 60 kN pro Stiel in einer Höhe von 5 m, fiel die Wahl auf das nach EN 12812 typengeprüfte und zugelassene Alu-Schalungsgerüst namens »Titan« von Ischebeck, zumal es sich außerordentlich schnell montieren lässt. Eine besondere Herausforderung war indessen die geforderte Durchfahrtsöffnung für den Baustellenverkehr, die mit Hilfe von in Längsrichtung verlaufenden Typ-3-Überbrückungsträgern bewältigt wurde. Zentral unter dem Brückenüberbau angeordnete Betonpfeiler waren eine weitere Besonderheit: Aufgrund ihrer Breite von 2,50 m war die Platzierung der Unterstützung auf die Randbereiche begrenzt – und es kamen Typ-3-Überbrückungsträger in Querrichtung zur Ausführung, um die großen Stützabstände zu überbrücken. Diese Träger zeichnen sich mit ca. 36 kg/m durch ein leichtes Gewicht aus, so dass auch die Demontage schnell und einfach zu erfolgen vermag. Der Schalplan wurde als Service durch Ischebeck erstellt, wobei die Typenprüfung erlaubte, das Alu-Schalungsgerüst flexibel an die Situation anzupassen und es optimal zu nutzen. Die bei der Unterstützung von Brückenbauwerken anfallenden Horizontallasten können im Übrigen oftmals direkt im Alu-Schalungsgerüst abgetragen werden.

www.ischebeck.de

Stahlbetonquerung »mit« Schalung © Friedr. Ischebeck GmbH Überbrückungsträger im Detail © Friedr. Ischebeck GmbH

Planung, Bemessung, Konstruktion und Errichtung durch Teupe Behelfsbrücke am Düsseldorfer Kennedydamm

Der Kennedydamm ist eine der meistbefahrenen Straßen der Landeshauptstadt Düsseldorf. Die über ihn verlaufende Rad- und Fußwegbrücke musste Ende Juli 2019 abgerissen werden, da an dem über 60 Jahre alten Bauwerk massive altersbedingte Schäden festgestellt worden waren und seine Standsicherheit nicht abschließend zu prüfen war. Da sich viele Anlieger östlich des Kennedydamms nun vom Rhein und vom ÖPNV abgeschnitten fühlten, wurde im Dezember 2019 unter hohem politischen Druck zwischen HansBöckler-Straße und Karl-Arnold-Platz eine Behelfsbrücke errichtet, die bis zur Realisierung des Brückenneubaus als Überweg über den Kennedydamm dient. Teupe & Söhne wurde von der Stadt Düsseldorf mit der Planung, der Ausführung und der späteren Demontage einer Behelfsbrücke für Fußgänger, Radfahrer und Räumfahrzeuge beauftragt, die allen Anforderungen in Bezug auf Stand- und Verkehrssicherheit sowie Witterungsbeständigkeit entspricht. Der Auftrag umfasste sämtliche Leistungen von der Konzeption über die statische Berechnung und die Erarbeitung der Ausführungszeichnungen bis hin zur Werkstattfertigung, Vor-Ort-Montage und Übergabe sowie späteren Demontage.

Tragwerk aus Stahlbauelementen © Teupe & Söhne Gerüstbau GmbH Temporäre Konstruktion für Fußgänger und Radfahrer © Teupe & Söhne Gerüstbau GmbH

Für die Errichtung der Behelfsquerung konnten die beiden Widerlager der abgerissenen alten Brücke inklusive Zuwegen genutzt werden. Die Behelfsbrücke wurde als Stahlkonstruktion mit aufgelegten Stahlträgern umgesetzt und hat eine Tragkraft von 800 kg/m². Die Fertigung aller Elemente, der Schwerlasttürme und Jochträger erfolgte in der Teupe-Stahlbauwerkstatt gemäß der Ausführungsklasse EXC-3 und auf Basis der DIN EN 1991-2 für Fuß- und Radwegebrücken. Die Behelfsbrücke ist über 3 m breit und hat eine Gesamtlänge von ca. 118 m, die maximale Stützweite zwischen den Stahltürmen beträgt 22,50 m. Zunächst wurden von Teupe im Grünbereich außerhalb der Fahrspuren neue Fundamente für die Türme erstellt: Die Gründungshöhen mussten millimetergenau vermessen und die Längs- wie Querachsen der Türme vor Montagebeginn auf die Fundamente aufgetragen werden, da es keine Möglichkeit der späteren Höhenregulierung gab. Die Stütztürme wurden außerdem mit einem Anprallschutz versehen, um die Verkehrssicherheit zu gewährleisten. Die komplette Montage der Ersatzbrücke über den Kennedydamm erfolgte am ersten Dezember-Wochenende während einer Wochenendsperrpause im ZweiSchicht-Betrieb. An der Brücke wurde ein durchsturz- und überklettersicheres Geländer mit einer Höhe von 1,30 m und einem zusätzlich angeordneten Handlauf montiert und die Laufebene zudem mit einer rutschsicheren Beschichtung versehen. Nach der Freigabe durch den Prüfingenieur wurde die Brücke am 20. Dezember 2019 termingerecht zur Nutzung freigegeben. Da sich das Projekt im politischen Fokus befand, war es unabdingbar, dass die Brücke vor dem Jahresende 2019 in Betrieb genommen wird. Die Realisierung stand deshalb unter extrem hohem zeitlichen Druck: Die komplette Auftragsausführung von der Konzeption und detaillierten Planung bis hin zur Errichtung inklusive Werkstattplanung, Herstellung der Stahlelemente in zwei Teupe-Werkstätten in Stadtlohn und Jena sowie der Montage vor Ort und der Übergabe erfolgte innerhalb von knapp zwölf Wochen von September bis Dezember 2019. Die Behelfsbrücke bleibt bis zur Fertigstellung des Brückenneubaus in Nutzung, danach wird sie von Teupe wieder demontiert, was auch den Abtransport aller Konstruktionselemente und Bauteile einschließt.

www.geruestbau.com

Schnelle Oberflächenentwässerung dank ACO Neubau der Autobahnbrücke Burgweinting

Die Bundesautobahn A 3 ist eine der verkehrsreichsten Fernstraßen Deutschlands. Seit 2018 wird sie im Raum Regensburg von vier auf sechs Fahrspuren verbreitert, aktuell befindet sich der 15 km lange Abschnitt vom Autobahnkreuz Regensburg bis zur Anschlussstelle Rosenhof nach jahrelanger Planung in der Ausführung. Allein in diesem Abschnitt müssen 16 Brücken neu errichtet werden, die größte in diesem Bereich hat eine Länge von ca. 200 m und liegt bei Burgweinting. Sie besteht aus zwei nebeneinanderliegenden Teilbauwerken mit jeweils drei Fahrspuren und überspannt 23 Fernbahngleise der Deutschen Bahn. Der Neubau des nördlichen Teilbauwerks verlief unter fließendem Straßen- und Schienenverkehr, und zwar unter Anwendung des Taktschiebeverfahrens. Das heißt, sobald die neue Brücke ihre endgültige Position hatte, wurde die Fahrbahnplatte mit drei Fahr- und einem Standstreifen ausgestattet. Um effektiv Lärm zu reduzieren, kam hier ein Fahrbahnbelag mit offenporigem Asphalt (OPA) zur Ausführung, der freilich der Entwässerung auf zwei Ebenen bedarf: Neben der Oberfläche muss der porige Asphalt entwässert werden. So fand schon in einer frühen Planungsphase der Einsatz einer kappenintegrierten Entwässerung Beachtung. Ausschlaggebend dafür waren die hohe Entwässerungsleistung, wenige Durchdringungen und die zweite Entwässerungsebene für den

Größte Brücke in diesem Streckenabschnitt © ACO Tiefbau Vertrieb GmbH

offenporigen Asphalt – Eigenschaften, die das Entwässerungssystem der Hohlbordrinne ACO KerbDrain Bridge umfasst. Die Hohlbordrinne verbindet Bordstein und Entwässerungsrinne in einem Element. Als Teil der Kappe dient selbige als verlorene Schalung und ist Höhengeber für Asphalt und Beton. Wie in den Richtzeichnungen gefordert, werden die Rinnenelemente im Kappenbeton rückverankert. Der Stoß der Hohlbordrinne besitzt eine integrierte Dichtung zum einfachen und gesicherten Einbau. Der Vorteil jener Lösung mit integrierter Dichtung ist, dass Streckenradien ohne weitere Anpassungen herzustellen sind. Zudem wird das aufgenommene Wasser vollständig abgeleitet, was einen positiven Effekt hinsichtlich des Bauwerksschutzes mit sich bringt. Nach Freigabe der Nordbrücke im Oktober 2021 erfolgt derzeit nach dem gleichen Verfahren die Erneuerung Südbrücke, die voraussichtlich 2023 fertiggestellt sein wird. Der gesamte Verkehr läuft nun über das neue Teilbauwerk, wobei die leistungsstarke ACO KerbDrain Bridge sich im nicht überfahrenen Bereich befindet. So ist eine zuverlässige, schnelle Ableitung des Niederschlags über zwei Ebenen auch bei hohem Verkehrsaufkommen gesichert.

www.aco-tiefbau.de

Hohlbordrinne als Teil der Kappe © ACO Tiefbau Vertrieb GmbH Bordstein und Entwässerung in einem Element © ACO Tiefbau Vertrieb GmbH

This article is from: