FIELD REPORT
Bugs have no boundaries: antimicrobial resistance challenges of Australian poultry
@cobb.com
This presentation identifies challenges of emerging critically important antimicrobial resistance particularly from “reverse zoonosis” and “migratory birds” in Australia.
Introduction Antimicrobial resistance (AMR) is one of the most prominent health and biosecurity issues affecting animals and humans in modern society. Owing to the complex biology whereby AMR can develop and be harboured in a multitude of host animal species and the environment, it is arguably the biosecurity issue that best epitomises the need for a One Health approach to management. S. Abraham Antimicrobial Resistance and Infectious Diseases Laboratory, Murdoch University, Murdoch, WA, Australia
14
In recent decades, we have seen the emergence of critically important antimicrobial (CIA)-resistant E. coli and Salmonella in livestock production systems in Asia, Europe and North America. This predominant-
- field report -
ly includes resistance to drugs such as fluoroquinolones (FQs) and extended spectrum cephalosporins (ESCs) amongst isolates from pigs, poultry and cattle. Resistance to critically important antimicrobials (CIAs) amongst Enterobacteriaceae is shaping up as a key risk for livestock producers, particularly when it involves organisms with the potential to colonise humans, cause disease in humans or both. Internationally, there are growing calls for closer scrutiny of the pathways by which humans might be exposed to sources of CIA from animals. Outside of Australia, the emergence in livestock of bacteria resistant to CIAs, particularly those which are heavily relied on in human medicine (ESCs and FQs) has often been attributed to the routine use of such antimicrobials in livestock production systems. Evidence accumulated over the last decade suggests that the ecology of AMR amongst E. coli and Salmonella isolated from Australian food-producing animals differs considerably to that observed in many other countries. This is attributable to Australia’s unique geography, quarantine restrictions and unique constraints governing the use of CIAs in food-producing animals. For example, in Australia FQs have never been registered for use in food-producing animals and label directives limit the administration of ESCs to only individual animals. Polymixins are only found in a single registered preparation that has low-level of use as a topical agent for ocular conditions. This multifaceted approach has been successful in minimizing the occurrence of CIA resistance among Gram-negative bacteria in food-producing animals.