6 minute read

triển năng lực

Next Article
TÁC GIẢ

TÁC GIẢ

Qua đó có thể rút ra một điều: Trong quá trình GQVĐ sự ST có thể nảy sinh ở khâu này hoặc khâu khác và sự ST xuất hiện khi GQVĐ và có thể xem sự ST là mức độ cao của hoạt động GQVĐ. Từ đó có thể ghép năng lực GQVĐ và năng lực ST thành một cụm là năng lực GQVĐ và ST.

1.4. Dạy học giải bài tập hình học ở trường THCS theo hướng phát triển năng lực

Advertisement

Các nghiên cứu [72], [82] đã phân tích, dạy học theo hướng phát triển năng lực người học tập trung vào đầu ra, chú trọng vào người học đạt được những năng lực nào sau khi kết thúc chương trình học tập. Chú trọng vào kết quả đầu ra tức là hướng vào các năng lực cần đạt mà không quá chú trọng vào kiến thức cụ thể và ghi nhớ máy móc. Hay nói cách khác, dạy học theo hướng phát triển năng lực người học hướng tới không chỉ việc các em phải biết gì mà còn có thể làm gì trong các tình huống và hoàn cảnh khác nhau. Kết quả đầu ra của người học chính là những gì người học làm được sau khi kết thúc chương trình hoặc kết thúc bài học. Như vậy, để dạy học theo hướng phát triển năng lực người học người GV phải thiết lập được các điều kiện và cơ hội để người học có thể đạt được những kết quả theo yêu cầu đã quy định trong chương trình. Cụ thể, người GV cần phải lựa chọn và tổ chức nội dung dạy học không chỉ dựa vào tính hệ thống, lôgic mà ưu tiên những nội dung phù hợp với trình độ nhận thức của HS, thiết thực với đời sống thực tế, có tính tích hợp liên môn; tạo dựng môi trường dạy học tương tác tích cực, tăng thực hành vận dụng, khuyến khích HS giao tiếp, hợp tác trong học tập; đồng thời thường xuyên quan sát, động viên, khuyến khích, hỗ trợ HS khi cần thiết, giúp HS tự tin, hứng thú và tiến bộ không ngừng trong học tập. Về dạy học giải bài tập hình học ở trường THCS. Trước hết phải khẳng định rằng, trong việc dạy Toán, việc dạy giải bài toán có vị trí hết sức quan trọng và từ lâu đã là một trong những vấn đề trung tâm của PPDH toán. Đối với HS, việc giải bài toán có thể coi là một hình thức chủ yếu của việc học toán. Việc giải bài toán có nhiều ý nghĩa. Thứ nhất, đó là hình thức tốt nhất để củng cố, đào sâu, hệ thống hóa kiến thức và rèn luyện kỹ năng, kỹ xảo. Trong nhiều trường hợp, nó giúp dẫn dắt HS tự mình đi đến kiến thức mới.

Thứ hai, đó là một hình thức vận dụng những kiến thức đã học vào các vấn đề cụ thể, vào thực tế, vào các vấn đề mới. Thứ ba, đó là một hình thức tốt nhất để GV kiểm tra HS và HS tự kiểm tra mình về năng lực, về mức độ tiếp thu và vận dụng kiến thức đã học. Thứ tư, việc giải toán có tác dụng lớn gây hứng thú học tập cho HS, phát triển trí tuệ và giáo dục, rèn luyện con người HS về rất nhiều mặt [17, tr.122]. Như vậy, các bài toán ở trường phổ thông là một phương tiện rất có hiệu quả và không thể thay thế được trong việc phát triển năng lực cho HS trong dạy học toán. Hoạt động giải bài tập toán là điều kiện để thực hiện tốt các mục đích dạy học toán ở trường phổ thông, trong đó có phát triển năng lực cho HS. Về các bài toán hình học. Có nhiều cách để phân loại bài toán hình học. Theo quan điểm của G. Polya thì có ba loại bài toán là: loại chứng minh, loại tìm tòi và loại toán thực tiễn. Bài tập tổng hợp sẽ bao gồm cả ba loại nói trên. Căn cứ vào PP giải, người ta thường xếp bài tập hình học phổ thông thành những dạng bài tập tính toán, chứng minh, dựng hình, quỹ tích, cực trị,... Có thể nói, các bài tập hình học ở trường THCS rất đa dạng, phong phú. Việc giải bài tập hình học không chỉ đòi hỏi và rèn luyện cho HS các thao tác TD, các PP suy luận GQVĐ mà còn thuận lợi để bồi dưỡng các kĩ năng đặc trưng trong giải toán hình học như vẽ hình, tưởng tượng, liên tưởng, tìm tòi, dự đoán,... Đặc biệt, trước khi giải bài tập hình học, nói chung, HS phải tóm tắt giả thiết kết luận của bài toán và phải vẽ hình (tìm hiểu vấn đề). Việc vẽ hình làm sao để dễ nhìn thấy những quan hệ cần thiết trong bài toán chính là thể hiện khả năng tưởng tượng ST của HS. Hay việc vẽ hình và vẽ thêm hình phụ sao cho thuận lợi để giải toán chính là biểu hiện năng lực ST của HS. Như vậy, việc dạy học giải bài tập hình học có nhiều tiềm năng để GV khai thác, phát triển năng lực chung và năng lực toán học cho HS, đặc biệt là năng lực GQVĐ và ST. Trong môn Toán ở trường phổ thông không có một thuật giải tổng quát nào để giải tất cả các bài toán. Mà chỉ có thể thông qua việc dạy học giải một số bài tập cụ thể mà GV dần dần hình thành cho HS cách thức, kinh nghiệm

trong việc suy nghĩ, tìm lời giải cho mỗi bài toán. Điều quan trọng trong dạy học giải bài tập toán chính là dạy HS cách suy nghĩ, tìm ra hướng để giải được bài toán, cách suy nghĩ GQVĐ. Để làm làm được điều đó, GV phải hình thành cho HS một quy trình chung, PP tìm lời giải cho một bài toán. Dựa trên những tư tưởng tổng quát cùng với những gợi ý chi tiết của G. Polya (1975) về cách thức giải bài toán đã được kiểm nghiệm trong thực tiễn dạy học, PP chung để giải bài toán được tiến hành theo 4 bước [76], [49]: Bước 1: Tìm hiểu nội dung bài toán - Phát biểu bài toán dưới những dạng thức khác nhau để hiểu rõ nội dung bài toán. - Phân biệt cái đã cho và cái phải tìm, phải chứng minh. - Có thể dùng công thức, hình vẽ, kí hiệu để hỗ trợ cho việc diễn tả bài toán. Bước 2: Tìm cách giải - Tìm tòi, phát hiện cách giải nhờ những suy luận có tính chất tìm đoán. - Kiểm tra lại lời giải. - Tìmtòi cách giải khác, so sánh chúng đểlựa chọn cách giải hợp lí nhất. Bước 3: Trình bày lời giải Từ cách giải đã phát hiện được, sắp xếp các việc phải làm thành một chương trình gồm các bước theo một trình tự thích hợp và thực hiện các bước đó. Bước 4: Nghiên cứu sâu lời giải. - Đánh giá lời giải đã thực hiện. - Nghiên cứu khả năng ứng dụng của lời giải. - Nhận biết các dạng, loại bài tập điển hình, - Nghiên cứu giải những bài toán tương tự, mở rộng hay lật ngược vấn đề. Việc học PP chung để giải toán chính là học những kinh nghiệm giải toán mang tính chất tìm tòi, phát hiện. Ở trường phổ thông không dạy tường minh PP chung để giải bài toán mà thông qua việc giải những bài toán cụ thể, GV nhấn mạnh để HS nắm được PP chung để giải toán theo bốn bước nêu trên và có ý thức vận dụng bốn bước trong quá trình giải toán; thông qua

This article is from: