ICP Research Report 2021

Page 42

Institutsbericht 2021

4.1

Institute of Computational Physics

Nachweis von Nanopartikeln in komplexen Umgebungen

Nanopartikel gibt es überall, von Medtech-Produkten bis hin zu Kosmetika oder Lebensmitteln. Deshalb ist es wichtig, Instrumente zu haben, um sie vor Ort zu überwachen. Die derzeitigen Methoden zum Nachweis und zur Charakterisierung von Nanopartikeln sind auf bestimmte Umgebungen (z. B. Flüssigkeiten) beschränkt oder erfordern eine aufwendige und teure Probenvorbereitung. Aus diesem Grund entwickeln wir in Zusammenarbeit mit dem Adolphe Merkle Institut der Universität Freiburg neue, auf Thermographie basierende Methoden zum Nachweis von auf Reize ansprechenden Nanopartikeln in komplexen Umgebungen. Mitwirkende: Partner: Finanzierung: Dauer:

M. Bonmarin Adolphe Merkle Institut der Universität Fribourg Innosuisse, Stiftungen seit 2012

Nanopartikel sind winzige Partikel mit einer Grösse von 1 bis 100 nm (zum Vergleich: Die Dicke eines Blattes Papier beträgt etwa 100'000 nm). Nanopartikel werden heute in vielen Produkten wie Verbundwerkstoffen oder medizinischen Geräten, aber auch in Kosmetika oder Lebensmitteln verwendet. Der Einsatz von Nanopartikeln wird vor allem in Europa zunehmend reguliert. Deshalb ist es von besonderer Bedeutung, über akkurate Instrumente zu verfügen, um sie nachzuweisen. Für den Nachweis und die Charakterisierung von Nanopartikeln stehen mehrere Methoden zur Verfügung, die jedoch oft Einschränkungen in Bezug auf das Medium, in dem die Partikel untersucht werden können, oder die Vorbereitung der Probe und die damit verbundenen Kosten aufweisen. Viele Nanopartikel reagieren auf Stimuli, d. h. sie haben die Fähigkeit, Wärme zu erzeugen, wenn sie stimuliert werden (durch Licht oder ein wechselndes Magnetfeld). Die resultierende Infrarotstrahlung kann leicht mit einer Wärmekamera erfasst werden. Mit Hilfe dieses Prinzips haben wir zusammen mit dem Adolphe Merkle Institut in Fribourg eine neue Methode entwickelt, um Nanopartikel in komplexen Umgebungen wie Zellkulturen, Gewebe oder Kompositmaterialien mit sehr hoher Genauigkeit zu charakterisieren. Wir haben mehrere Instrumente für magnetische Nanopartikel wie SPIONs oder plasmonische Partikel wie Gold entwickelt. Die Technologie wurde geschützt (2 Patente) und das Startup-Unternehmen NanoLockin GmbH mit Sitz in Fribourg vermarktet die Forschungsergebnisse. Wir sind überzeugt, dass die Thermografie eine vielversprechende Methode ist zur Untersuchung von Nanopartikeln, die gut auf Stimuli reagieren. Wir untersuchen derzeit das weitere Potenzial dieser Technik für viele Anwendungen im Bereich der Nanowissenschaften

Zürcher Fachhochschule

Abb. 1: Bild des Calorsito VIS-NIR Gerätes, das von der Firma NanoLockin GmbH entwickelt wurde. Die Firma ist eine Spin-off des Adolphe Merkle Instituts und des Institute of Computational Physics der ZHAW.

Referenzen: [1] Journal of Physical Chemistry C, 124(2):1575-1584 (2020) [2] Particle & Particle Systems Characterization Journal, 36:1900224 (2019). [3] Journal of Physical Chemistry C, 121(48):27164-27175 (2017). [4] Journal of Magnetism and Magnetic Materials, 427:206-2011 (2017). [5] Nanoscale Journal, 8(27):13321-13332 (2016). [6] www.nanolockin.com

37

www.zhaw.ch


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

A.7 ICP-Mitarbeitende

1min
page 60

A.6 ICP-Spin-off-Firmen

3min
pages 57-59

5 Computergestützte Physik und künstliche Intelligenz

3min
pages 47-48

A.5 Vorlesungen

3min
pages 55-56

4.5 Künstliche-Intelligenz (KI) Wärmepumpen-Regler

2min
page 46

4.4 Messtechnik für dezentrale Energiesysteme

2min
page 45

A.2 Wissenschaftliche Publikationen

7min
pages 50-52

4.3 Design und Entwicklung von künstlichen Hautmodellen für taktile Sensoranwendungen

2min
page 44

4.2 Tragbares Gerät zur Frühdiagnose von Lymphödemen

2min
page 43

4.1 Nachweis von Nanopartikeln in komplexen Umgebungen

2min
page 42

3.7 Hardware-Software-Integration und Validierung eines kompakten Terahertz-Systems

2min
page 40

3.6 Organische Terahertz-Photonik

1min
page 39

elektrochemischen Methoden und theoretischen Modellen

2min
page 38

3.4 Neue Tools für die Charakterisierung von Quanten-Punkt-Displays

1min
page 37

Kombination von Experiment und Simulation (CTDyn

2min
page 36

grossflächige Perowskitsolarzellen

1min
page 35

trainiertes neuronales Netzwerk

2min
page 34

3 Organische Elektronik und Photovoltaik

1min
page 33

Brennstoffzellen für Transportanwendungen

2min
page 29

2.4 Thermodynamisch konsistenter Ansatz zur Modellierung von Redox-Flow-Batterien

2min
page 31

2.1 Makro-homogene Modelle für organische Flussbatterien

2min
page 28

und Befeuchtung

2min
page 30

Verlagerungsstrategie

2min
page 26

und Effektivität

1min
page 25

1.18 Erweiterte Peridynamik-Fähigkeit bei der Vorhersage von mechanischen Fehlern

2min
page 24

1.15 Effektive Wärmeleitfähigkeit und CFD-Implementierung einer Heatpipe

2min
page 21

von Kunststoffrohren

1min
page 20

1.17 Lebensdauer von Goldkontaktkomponenten unter adhäsiver Verschleissbelastung

2min
page 23

1.16 Simulation der Hüllentemperatur eines Heissluftballons

2min
page 22

Infrarot-Schweissen von Kunststoffrohren

2min
page 19

Klimaanlagen

2min
page 18

von SOFC-Elektroden

2min
page 17

1.10 Modellbasierte Optimierung von MIEC-SOFC-Anoden

2min
page 16

beweglichen Pistolen

2min
page 12

1.7 Thermophoretische Kraft auf Schwebeteilchen

2min
page 13

Kapillardruck bei der Entwässerung in Opalinuston

1min
page 15

1.5 CFD-Modellierung von Tropfenaufprall in eine ruhende Flüssigkeit

2min
page 11

1.8 Dreidimensionale Modellierung von Pulverschneelawinen

2min
page 14

1.3 Entwicklung einer Rohrsensorplattform für Inline-Prozessüberwachung

1min
page 9

1.4 Simulationsbasierte Kalibrierung von Infusionssystemen

1min
page 10
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.