saqarTvelos teqnikuri universiteti
v. sesaZe, g. dalaqiSvili, v. kekenaZe, g. WikaZe
energosistemebis mdgradobis gamokvleva sinergetikis meTodebis gamoyenebiT
damtkicebulia stu-s saredaqcio-sagamomcemlo sabWos mier
Tbilisi 2009
Tanamedrove energetikuli sistemebi ganekuTvnebian rTuli sistemebis kategorias da miekuTvnebian Tavisi bunebiT arawrfivi sistemebis klass. monografia eZRvneba energosistemebis Semadgeneli nawilebis mdgradobis analizs sinergetikis meTodebis gamoyenebiT. monografiaSi Seswavlilia energosistemaSi mimdinare gardamavali procesebi, gaanalizebulia energosiste-mis ZiriTadi elementebis maTematikuri modelebi, hopfis bifurkaciis Teoriis gamoyenebiT gaanalizebulia erTgeneratoriani, orgeneratoriani da samgeneratoriani energosistemebis mdgradoba, dadgenilia energosistemebis mdgradobis areebi diskretuli dinamikuri sistemebis marTvis parametris mixedviT, Seswavlilia energosistemis ori an ramdenime procesis qcevis Tavsebadoba droSi, anu sinqronizacia. gamokvleulia energosistemis qaosuri moZraoba sxvadasxva raodenobis generatorisTvis. SerCeuli koeficientebisa da parametrebis safuZvelze miRebuli Sedegebis mixedviT ganisazRvra energosistemis qceva. monografia gankuTvnilia bakalavrebisTvis, magistrebisaT-vis, doqtorantebisTvis da am dargSi momuSave specialistebisa da farTo profilis mecnierebisTvis. monografias vuZRvniT Cvens megobars da maswavlebels baton almasxan guguSvils. recenzentebi: saqarTvelos teqnikuri universitetis sruli profesori konstantine kamkamiZe saqarTvelos teqnikuri universitetis asocirebuli profesori irma kucia
© sagamomcemlo saxli ,,teqnikuri universiteti’’, 2009 ISBN 978-9941-14-373-1 http://www.gtu.ge/publishinghouse/ yvela ufleba daculia. am wignis arc erTi nawili (iqneba es teqsti, foto, ilustracia Tu sxva) aranairi formiT da saSualebiT (iqneba es eleqtronuli Tu meqanikuri), ar SeiZleba gamoyenebul iqnas gamomcemlis werilobiTi nebarTvis gareSe. saavtoro uflebebis darRveva isjeba kanoniT.
Sinaarsi Sesavali................................................................................................................. 1. gardamavali procesebi energosistemaSi ................... 1.1.
energosistemebis
ZiriTadi
6 11
elementebis
maTematikuri modelebi .................................................
11
1.1.1
sinqronuli manqanis gantolebebi........................ 11
1.1.2
asinqronuli manqanis gantolebebi.....................
1.1.3
eleqtruli qselis gantolebebi............................ 22
1.1.4
mTliani energosistemis maTematikuri modeli ..............................................................................................
1.1.5
24
mTliani energosistemis mTliani maTematikuri modelis Taviseburebebi................................
1.2
19
27
mravalmanqaniani sistemebis gamartivebuli gantolebebi.................................................................................. 29
1.2.1
Cqari eleqtromagnituri procesebis kvlevis maTematikuri modeli................................................ 29
1.2.2
Jdanovis modeli...................................................................
1.2.3
poziciuri modeli................................................................. 32
1.2.4 eleqtrul
qselSi
gasaSualebuli
30
pro-
cesebis modeli .................................................................
35
1.3
energosistemis statikuri mdgradoba.............. 39
1.4
ormanqanuri energosistemis dinamika................. 41
1.5
liapunovis veqtoruli funqciis meTodi energosistemis mdgradobisTvis ........................... 45
3
2. bifurkacia energosistemebSi .................................... 50 2.1
gaormagebis cikli da bifurkacia energosistemebSi......................................................................................
50
2.2
hopfis bifurkacia energosistemaSi................... 56
2.3
hopfis bifurkacia erTgeneratoriani sistemisTvis.......................................................................................... 59
2.4
hopfis bifurkacia orgeneratoriani energosistemisTvis.......................................................................... 64
2.5
hopfis bifurkacia samgeneratoriani sistemisTvis........................................................................................
72
3. qaosi energosistemebSi................................................................. 78 3.1
qaosis gamokvlevis meTodebi .................................. 78
3.2
qaosi erTgeneratorian energosistemaSi ....
3.3
qaosi orgeneratorian energosistemaSi ....... 90
3.4
qaosi samgeneratorian energosistemaSi ....... 94
3.5
dinamikuri qaosis kriteriumebi energosistemaSi da liapunovis maxasiaTebeli ..........
84
101
4. sinqronizacia energosistemebSi............................................. 109 4.1
sinqronizaciis problemebi ....................................... 109
4.2
sinqronuli generatorebis paralelur muSaobaSi avtomaturi CarTva ......................................
4.3
121
avariuli situaciebis analizi .............................. 126
4.3.1. asinqronuli reJimebis likvidacia, resinqronizacia................................................................................. 4.3.2. asinqronuli reJimebis niSnebi ............................. 4
126 129
4.4
sinqronizirebadi marTva ............................................. 131
danarTi..................................................................................................................
144
gamoyenebuli literatura................................................................. 162
5
Sesavali Tanamedrove ekonomikuri zrdis tempis daCqarebis erT-erTi ZiriTadi safuZveli aris energetika. samecniero-teqnikur progress, warmoebis intensifikacias, teqnikuri donis da Sromis nayofierebis amaRlebas Sedegad moaqvs adamianebis sayofacxovrebo pirobebis gaumjobeseba da warmoebis Tanamedrove aRWurvilobiTa da sayofacxovrebo teqnikiT uzrunvelyofa, raSic ganmsazRvreli
roli
ukavia
Tanamedrove
energo-
sistemas. Tanamedrove
energetikuli
sistemebi
ganekuTvne-
bian rTuli sistemebis kategorias. energosistemebis swraf ganviTarebasTan da avtomatizaciis donis amaRlebasTan
erTad
maTi
sirTule
ufro
da
ufro
izrdeba. rTuli sistemebis qveS SeiZleba vigulisxmoT iseTi sistemebi, romelTac aqvT sakmaod Rrma Siga kavSirebi da Sedgebian didi raodenobis urTierTdakavSirebuli
da
energetikuli
urTierTqmedi sistema
elementebisgan.
warmoadgens
rTul
amgvarad, sistemas,
romlis ZiriTadi Semadgeneli nawilebia: 1.
sinqronuli da asinqronuli manqanebi (genera-
torebi);
6
2.
eleqtruli
torebidan
wredi,
sxvadasxva
romelSic
saxis
xdeba
eleqtruli
genera-
signalebis
gadacema; 3. datvirTva. winamdebare
naSromSi
ganvixilavT
energosiste-
mebSi mimdinare gardamaval procesebs, imisaTvis rom warmodgena Segveqmnas energosistemis muSaobis Sesaxeb. Tavdapirvelad vagebT da viyenebT mis maTematikur modelebs. dResdReobiT, rTuli energosistemis funqcionirebisa da marTvis analizisaTvis ZiriTad formirebul saSualebad iTvleba energosistemebis maTematikuri modelireba Tanamedrove gamoTvliTi teqnikis gamoyenebiT. energosistemis Semadgeneli nawilebis maTematikuri modelebis urTierTkavSiri, romlebic adeqvaturad asaxaven sxvadasxva ierarqiul doneze gamosakvlev procesebs, warmoadgenen specifikidan gamomdinare, Sesaswavli procesebis xasiaTis gaTvaliswinebiT, gadasWreli amocanebis Taviseburebebs. cnobilia, rom mdgrad sistemebs aqvT ori mdgeneli: 1. gardamavali procesi; 2. damyarebuli mdgomareoba. damyarebul mdgomareobaSi, roca sistemebSi dasrulebulia yvela gardamavali procesi, sistema warmoadgens an konstantas, an raime periferiul amo7
naxsns
[1].
rogorc
cnobilia,
sistemas
ewodeba
dinamikuri, Tu masSi procesebi mimdinareobs droSi. dinamikur
sistemebSi
damyarebuli
mdgomareoba
niSnavs asimptotur mdgomareobas, roca t
∞, damya-
rebuli reJimi aucileblad unda xasiaTdebodes Sesabamisi funqciis SezRuduli mniSvnelobebiT. Diferencialuri gantolebebis sistemis amonaxsnebsa da mis damyarebul mdgomareobas Soris sxvaobas gardamavali procesi ewodeba. cnobilia, rom sistemis arawrfivobisas arsebobs parametrebis
farTo
diapazoni,
romelSic
sistemis
moZraoba damyarebul reJimSi aris SezRuduli, magram ara perioduli. rxevebi iReben SemTxveviT xasiaTs da xasiaTdebian ara diskretuli, rogorc periodulis dros, aramed farTo, uwyveti speqtriT. amis garda, sistemis
moZraobis
xasiaTi
imdenad
mgrZnobiarea
sawyisi pirobebis variaciaze damokidebulebiT, rom SeuZlebelia zusti amonaxsnebis grZelvadiani prognozireba. aseTi maRali mgrZnobiaroba sawyisi pirobebis variaciaze damokidebulebiT damaxasiaTebelia qaosuri sistemisaTvis, romelic warmoadgens determinirebul sistemas da mis moqmedebas aqvs SemTxveviTi saxe [2,3]. energosistemis gamokvlevaSi mniSvnelovani roli aqvs bifurkaciis movlenas. 8
bifurkacia aris gadasvlebi, romlebic SeiZleba moxdes dinamikuri qcevidan sxvadasxva saxeebs Soris parametrebis cvlilebisas. bifurkaciuli movlenis aRwera Seicavs cnebebs gansakuTrebul Sesaxeb.
amonaxsnebisa
bifurkaciis
kargi
da
maTi
mdgradobis
magaliTia
SemTxveva,
rodesac sistemis gansakuTrebuli amonaxsnebis wertili iyofa jerad gansakuTrebul amonaxsnebad. Ddakvirvebadi movlenebi – es ar aris ubralod mdgradobis Secvla, es ufro bifurkaciis magaliTia. unda aRiniSnos Semdegi: gansakuTrebuli wertilis mdgradobis qveS gvesmis mdgradoba liapunovis mixedviT. naSromSi ganvixilavT struqturul mdgradobas, romelic bifurkaciuli analizis kvlevis sagania. gansakuTrebuli
mniSvneloba
energosistemebis
mdgradobis gamokvlevisas eniWeba qaosis arsebobas. qaosi aris arawrfivi movlena, romelic gvxvdeba yvela mecnierul disciplinaSi. misi gaanalizeba intuiciurad Zalze rTulia, magram mainc realurad arsebuli movlenaa. ZvelTaganve mkvlevarebi xvdebodnen qaoss, magram mas Rebulobdnen fizikur xmaurad da gverds uvlidnen. axla ukve cnobili gaxda, rom qaosi Cndeba ara marto xelovnur sistemebSi, aramed sistemebSic, romelTac axasiaTebT arawrfivoba. uxeSad rom vTqvad, qaosi warmoadgens sakmaod araCveulebriv qcevas romeliRaca sistemisa damyare9
bul reJimSi. termini `qaosuri� determinirebul fizikur
da
maTematikur
sistemebSi
gamoiyeneba
iseTi
moZraobebis mimarT, romelTa traeqtoriac Zlier aris damokidebuli sawyis pirobebze. qaosuri rxevebi Cndeba Zlieri arawrfivobis dros. cnobilia, rom arawrfivobis dros arsebobs
pa-
rametrebis farTo diapazoni, romelTa drosac sistemis moZraoba damyarebul reJimSi aris SezRuduli, magram ara perioduli. rxevebi SemTxveviTia da xasiaTdebian ara diskretuli, rogorc periodulis dros, aramed farTo uwyveti speqtriT. amas garda sistemis moZraobis xasiaTi imdenad mgrZnobiarea sawyis pirobebze damokidebulebiT, rom grZelvadiani prognozireba zusti amonaxsnisa SeuZlebelia. aseTi maRali mgrZnobiaroba sawyisi pirobebis variaciaze damokidebulebiT qaosuri sistemis erT-erTi damaxasiaTebeli Tvisebaa. qaosuri sistema determinirebuli sistemaa, romlis moqmedebasac SemTxveviTi saxe aqvs. energosistemebSi didi yuradReba aris gamaxvilebuli sinqronizaciis movlenaze, romelic Tavis umravles saerTo interpretaciaSi niSnavs ori an ramodenime procesis qcevis Tavsebadobas droSi.
`sinqronizireba~ _ niS-
navs SevaTanxmoT droSi, mivyveT an operireba gavukeToT sistemas mxolod erT da imave siCqareze, gamomdinare erTi da imave droidan. 10
1. gardamavali procesebi energosistemebSi 1.1. energisistemebis ZiriTadi elementebis maTemetikuri modelebi
1.1.1. sinqronuli manqanis gantolebebi. energosistemebSi mimdinare procesebis maTematikuri modelirebis sakiTxebi Seiswavles iseTma gamoCenilma mecnierebma, rogorebic arian: s.a. lebedevi, p.s. Jdanovi, a.a. gorevi, romelTa naSromebic mniSvnelovania energosistemebis mdgradobisa da gardamavali procesebis TeoriaSi. energosistemebis proeqtirebisa da eqsploataciisas aucilebelia eleqtruli amocanebis kompleqsis amoxsna,
romlebic
statikuri
da
moicaven
dinamikuri
eleqtromeqanikuri
damyarebuli
mdgomareobis,
gardamavali
reJimebis, xangrZlivi
procesebis,
mokled
SerTvis denebis da sxv. amocanebis amoxsnas [4]. sinqronuli konturiT
manqana
warmoadgens
rotorze sistemas,
ori
dempferuli
romelic
Sedgeba
eqvsi magniturad dakavSirebuli konturisgan. am konturebidan sami manqanis fazis sivrceSi umoZrao sami konturia, xolo danarCeni sami konturi – aRgznebis gragnili da ori dempferuli konturia.
11
sinqronuli manqanis gardamavali eleqtromagnituri procesebis gantoleba fazur koordinatebSi SeiZleba Semdegnairad Caiweros [1,2,3,4,5]: Uca= rcica+d Ψ ca/dt; Ucb = rcicb+d Ψ cb/dt; Ucc=rcicc+d Ψ cc/dt;
(1.1)
Uf = rfif+d Ψ f/dt; O = rgig+d Ψ g/dt; O = rhih+d Ψ h/dt. sadac UUca, Ucb, Ucc, ica, icb, icc, _ Sesabamisad manqanis eleqtrul wredTan mierTebis fazuri Zabvebi da statoris fazuri denebia; Uf _ aRgznebis gragnilis Zabvaa; rc, rf, rg, rh _ aqtiuri winaRobebia Sesabamisad statoris fazis, aRgznebis gragnilis, horizontaluri da vertikaluri dempferuli konturebisaTvis; if, ig, ih _ denebia aRgznebis gragnilSi, da horizontalur da vertikalur dempferul konturebSi; Ψh
Ψ ca, Ψ cb, Ψ cc, Ψ f, Ψ g,
_ nakadSerTvebi Sesabamisad fazis konturebSi,
aRgznebis gragnilSi, horizontalur da vertikalur dempferul
konturebSi,
romlebic
arian
denebis
funqciebi: Ψ ca=
LaIca + MabIcb+MacIcc+MafIf+MagIg+MahIh;
Ψ cb=
MabIca + LbIcb+MbcIcc+MbfIf+MbgIg+MbhIh;
Ψ cc=MacIca+McbIcb+LcIcc+McfIf+McgIg+MchIh; Ψ f=
MafIca + MbfIcb+MafIcc+LfIf+MfgIg; 12
(1.2)
Ψ g=
MagIca + MbgIcb+McgIcc+MfgIf+LgIg;
Ψ h=
MahIca + MbhIcb+MchIcc+LhIh
sinqromanqanis procesebis Teoriis Camosayalibeblad unda davuSvaT: 1. TviTinduqciisa da urTierTinduqciis koeficientebis damoukidebloba. fazaTa konturebis TviTinduqciis da urTierTinduqciis koeficientebi La, Lb, Lc, Mab, Mac, Mbc, warmoadgenen rotoris horizontaluri RerZisa da a( θ ) fazis magnitur RerZs Soris kuTxis periodul
funqciebs
periodiT П, xolo
urTierT-
induqciis koeficientebi Maf, Mbf, Mcf, Mag, Mbg, Mcg, Mah, Mbh, Mch arian θ kuTxis perioduli funqciebi periodiT 2 Π . 2. mravalwevris umaRlesi wevrebis koeficientebi furies
mwkrivad
daSlisas
arian
mcireni
da
ar
axdenen mniSvnelovan zegavlenas manqanaSi mimdinare procesebze [1,5,6]. am pirobebis gaTvaliswinebiT TviTinduqciis da urTierTinduqciis
koeficientebi
SeiZleba
Caiweros
Semdegi saxiT: La=Lcp+Lm cos2θ Lb=Lcp+Lm cos(2θ+1200); Lc=Lcp+Lmcos(2θ-1200); Mab= -Mcp+Mo cos(2θ-1200); Mcc= -Mcp + cos(2θ+1200); Mbc = -Mcp + Mo cos2θ. 13
(1.3)
sadac
L cp =
Lmax + Lmin ; 2
M cp =
Lm =
Lmax − Lmin ; 2
M max + M min M − M min ; M o = max . 2 2
Lmax, Lmin, Mmax, Mmin - statoris fazaTa konturis TviTinduqciisa da urTierTinduqciis koeficentebis maqsimaluri da minimaluri mniSvnelobebia. Maf=Mf cosθ; Mbf=Mf cos(θ-1200); Mcf=Mf cos(θ+1200); Mag=Mg cosθ; Mbg=Mgcos(θ-1200);
(1.4)
Mcg=Mg cos(θ-1200); Mah= -Mh sinθ; Mbh= -Mhsin(θ-1200); Mch= -Mhsin(θ+1200); t
θ= ∫ ωdt + θ0. 0
aq Mt, Mg, Mh _ statoris fazis konturis urTierTinduqciis koeficientebis maqsimaluri mniSvnelobebia aRgznebis konturTan, horizontalurad da vertikalur dempferul konturebTan mimarTebaSi, ris brunvis kuTxuri siCqarea.
14
ω
_ roto-
sinqronuli manqanis moZraobis gantolebas, romelic Cawerilia dalamberis principiT, aqvs Semdegi saxe [1,5]: J
dw =TT_Te dt
(1.5)
sadac TT _ warmoadgens rotoris RerZis Siga Zalebis ganlagebis momentis, anu pirveladi Zravis momentis, J _ rotoris inerciisa da masTan dakavSirebuli
moZravi
nawilebis
momentia;
Te
_
eleqtro-
magnituri momentia, romelic moqmedebs rotorze da gamoisaxeba damokidebulebiT: Te=
ϑw ϑθ
(1.6)
magnituri velebis energia gamoiTvleba Semdegi formuliT: w= 1
2
∑ jkΨ k k
(1.7)
am gamosaxulebaSi ajamva xdeba manqanis yvela konturis mixedviT. (1.1) ÷ (1.7) gantolebebi warmoadgenen sinqronuli manqanis gantolebebs fazur koordinatebSi. Tu (1.1) ÷ (1.7) periodulkoeficientebian gantolebebs gardavqmniT mudmivkoeficientebian gantolebebad, SeiZleba mivaRwioT sinqronuli manqanis gardamavali procesebis analizur gamartivebas [5]. gadasvla fazuri koordinatebidan mudmivkoeficientebian gantolebaTa sistemaze xorcieldeba park15
gorevis gardaqmnebis daxmarebiT. denebis, Zabvebis da nakadSerTvebis myisieri fazuri sidideebis nacvlad Semoitaneba
axali
saangariSo
sidideebi
id,
iq,
io, Ψ d, Ψ q, Ψ o, Ud, Uq, Uo, romlebic dakavSirebulni arian fazur sidideebTan Semdegi TanafardobebiT [7]:
⎡Uca ⎤ ⎡Ucd ⎤ ⎢Ucq ⎥ =Ac ⎢Ucb ⎥ ; ⎢ ⎥ ⎢ ⎥ ⎢⎣Uco ⎥⎦ ⎣⎢Ucc ⎥⎦
(1.8)
⎡ Icd ⎤ ⎡ Ica⎤ ⎢ Icq ⎥ =A ⎢ ⎥ ⎢ ⎥ c ⎢ Icb⎥ ; ⎢⎣ Ico ⎥⎦ ⎣⎢ Icc ⎥⎦
(1.9)
⎡Ψcd ⎤ ⎡Ψca ⎤ ⎢ Ψcq ⎥ =A ⎢ ⎥ C Ψcb ; ⎢ ⎥ ⎢ ⎥ ⎢⎣ Ψco ⎥⎦ ⎢⎣ Ψcc ⎥⎦
(1.10)
sadac Ac _ park-gorevis gardasaxvaTa matricaa, romelic Caiwereba Semdegi saxiT: ⎡ ⎢ cos θ 2⎢ Ac = ⎢ − sin θ 3⎢ 1 ⎢ ⎣ 2
cos(θ − 120 ) − sin(θ − 120 0 ) 1 2 0
⎤ cos(θ + 120 ) ⎥ ⎥ − sin(θ − 120 0 ) ⎥ ⎥ 1 ⎥ 2 ⎦ 0
(1.11)
axali saangariSo sidideebi iwodebian A, q, O mdgenelebad, xolo TviT gardasaxva warmoadgens sinqronuli manqanis gantolebis mimarTebas sakoordinato RerZebisadmi,
romlebic
uZravad
16
arian.
A,
q,
O
koordinatebidan fazur koordinatebze gadasvla xdeba Semdegi matricis daxmarebiT: cos θ − sin θ 1⎤ ⎡ Αc−1 = ⎢⎢ cos(θ − 1200 ) − sin(θ − 1200 ) 1⎥⎥ ⎢⎣ cos(θ + 1200 ) − sin(θ + 1200 ) 1⎥⎦
(1.12)
axal koordinatul RerZebSi sinqronuli manqanis gardamavali procesebis gantoleba matricul formaSi SeiZleba Caiweros Semdegi saxiT: UI=RIII+(PE+NI) Ψ I; Ψi =LIII;
J
(1.13)
3 dω = T T - (ψ cd i cq -ψ cq i cd ) 2 dt
sadac UI=[Uf, Ucd, O, Ucq, O, Uco]T II=[if, icd, ig, icq, ih, ico]T Ψ I=[ Ψ f, Ψ cd, Ψ g, Ψ cq, Ψ h, Ψ co]
T
RI=diag[rf, rc, rg, rc, rb, rc]T
LLI=
Lf
3 Mf 2
Mfg
Mf
Ld
Mg
Mfg
3 Mg Lg 2
Lq
Mh
3 Mh 2
Lh Lco
17
-ω NI= ω
E _ erTeulovani diagonaluri matricaa. sidideebi Ld=Lcp+Mcp+ 3 Mo;
(1.14)
2
Lq=Lcp+Mcp_ 3 Mo; 2
warmoadgenen statoris fazis TviTinduqciis koeficientebs horizontaluri da vertikaluri denebisaTvis; Lco=Lcp_2Mcp
(1.15)
warmoadgens statoris fazis TviTinduqciis koeficients nulovani mimdevrobis denebisaTvis. (1.13)
gardamqmnel
gantolebas
uwodeben
park-
gorevis gantolebas, romelic Seicavs periodul koeficientebs imdenad, ramdenadac koordinatul RerZebSi induqciis koeficientebis mniSvnelobebi warmoadgenen mudmiv sidideebs. parkis da gorevis naSromebi erT-erTi pirveli sainJinro namuSevrebia, romlebic efeqturad gamoiyeneba periodulkoeficientebiani gan-
18
tolebaTa
sistemis
mudmivkoeficientebian
gantole-
baTa sistemad gardaqmnisTvis [8,9].
1.1.2. asinqronuli manqanis gantolebebi asinqronuli
manqanebis
gardamavali
procesebis
gantolebebi fazur koordinatebSi Seicavs periodul koeficientebs, romelTa raodenobac ganpirobebulia im faqtiT, rom statoris fazaTa konturebis urTierTinduqciis koeficientebi arian perioduli funqciebi, romlebic damokidebuli arian rotoris mdgomareobaze. Tu miviRebT, rom stators da rotors aqvT samfaza
simetriuli
gragnilebi,
SeiZleba
asinqro-
nuli manqanis gardamavali el.magnituri procesebis gantolebebi fazur koordinatebSi Caiweros Semdegi saxiT[1,5,7,8,9,10]: Uca=rcica+ dΨca ; dt
Ucb=rcicb+ dΨcb ; dt
Ucc=rcicc+ dΨcc ; dt
Upa=rpipa+ Upb=rpipb+ Upc=rpipc+
19
dΨ pa dt dΨ pb dt dΨ pc dt
; ; ;
(1.16)
sadac Uca, Ucb, Ucc, ica, icb, icc, Upa, Upb, Upc, ipa, ipb, ipc, _ Sesabamisad fazuri Zabvebi da denebia statoris da rotoris gragnilebisTvis; rc, rp _ statorisa da rotoris
fazaTa
gragnilebis
aqtiuri
winaRobebia;
Ψca , Ψcb , Ψcc , Ψ pa , Ψpb , Ψpc _ statorisa da rotoris fazebis konturebis nakadSerTvebia. asinqronuli manqanis rotoris maZraobis gantolebas aqvs Semdegi saxe:
d 2θ J M 2 =_Tc+Te, dt
(1.17)
sadac Tc _ amZravi meqanizmis winaRobis momentia; Te _ eleqtromeqanikuri momentia, romelic ganisazRvreba (1.6), (1.7) gantolebebiT. d, q, o fazuri sidideebidan moZrav kordinatul sistemaSi ω K Tavisufali siCqariT gadasvla xorcieldeba sinqronuli manqanebis gantolebebis analogiurad. asinqronuli
manqanis
gantoleba
matriculi
formiT Caiwereba Semdegnairad:
U II =RIIIII+(PE+MII) Ψ ; IJ
ΨII =LIJIIJ;
(1.18)
JM dω = 3 Lad(ipdicq_ipqicd)_Tc, dt
2
sadac: UII=[ Ucd, Ucq, Upd, Upq, Uco, Upo,]T III=[ icd, icq, ipd, ipq, ico, ipo,]T; 20
ΨII = [Ψcd , Ψcq , Ψ pd , Ψ pq , Ψco , Ψ po ,] ; T
RII=diag[ rc, rc, rp, rp, rc, rp]; Lc1
Lad Lc1
LLLI
Lad
Lad
Lp1 Lad
=
Lp1 Lco Lpo
− ωk
ωk ω − ωk
NNII ωk − ω
=
Lc1= Lc- Mc _
statoris fazebis induqciis koeficientia
pirdapiri mimdevrobis denebisaTvis; Lco=Lc+2Mc _ igive pirdapiri nulovani mimdevrobis denebisaTvis;
Lad= 3 M; 2
Lp1=Lp-Mp _ rotoris fazebis TviTinduqciis koeficienti pirdapiri mimdevrobis denebisaTvis; Lp0=Lp-2Mp _ igive nulovani mimdevrobis denebisaTvis. 21
(1.18)
gantoleba
ar
Seicavs
periodul
koefi-
cientebs, amasTan perioduli koeficientebi (sinqronuli manqanisgan gansxvavebiT) gamoiricxebian asinqronuli manqanis gantolebebidan sakoordinato RerZebis brunvis siCqaris ω k nebismieri SerCevisas, rac ganpirobebulia asinqronuli manqanis simetriulobiT. Tu ganvixilavT
asinqronuli
manqanis
moZraobas,
roca
ω = cos t , maSin misi gardasaxuli gantolebebi Rebuloben wrfivi gantolebebis saxes mudmivi koeficientebiT.
1.1.3. eleqtruli qselis gantolebebi fazur koordinatebSi ra, La, ca wredis gantoleba, boloebSi
U1 ,
U2
ZabvebiT,
SeiZleba
Caiweros
Semdegnairad:
U 2 a = U 1a − r∧ i∧ a − L∧
d i∧a d d 1 − M ∧ i ∧b − M ∧ i ∧c − ∫ i∧ a dt ; dt dt dt C ∧
U 2 b = U 1b − r∧ i ∧ b − M ∧
d i∧a d d 1 − L∧ i ∧ b − M ∧ i ∧ c − ∫ i∧ b dt ; dt dt dt C ∧
U 2 c = U 1c − r∧ i∧ c − M ∧
d i∧a d d 1 − M ∧ i ∧ b − L∧ i ∧ c − ∫ i∧c dt ; dt dt dt C ∧
sadac
(1.19)
r∧ , L∧ , M ∧ _ Sesabamisad fazis aqtiuri wi-
naRobaa, fazis konturis TviTinduqciis koeficienti
22
da
ori
fazis
konturis
urTierTinduqciis
koefi-
cientebia; C ∧ _ wredis gamWoli tevadobaa. (1.19) gantolebebi warmoadgenen mudmivkoeficientebian wrfiv diferencialur gantolebebs. maTi gardasaxviT mbrunav koordinatul sistemaSi (U 1 _RerZTan, mbrunavi
ω1 siCqariT;
U 2 _RerZTan
_ ω2
siCqariT;
i∧
RerZTan_ ωk siCqariT)miviRebT[6]: U Id cos(θ k − θ 1 ) + U 1q sin(θ k − θ 1 ) − U 2 d cos(θ k − θ 2 ) − U 2 q sin(θ k − θ 2 ) − rπ I πd − di dθ 1 − Lπ 1 πd + Lπ 1iπ q k = ∫ iπd dt + ∫ [− U 1d sin(θ k − θ 1 ) + U 1q cos(θ k − θ 1 ) + dt dt Cπ
+U2d sin(θk −θ2) −U2q cos(θk −θ2) −rπiπ q − Lπ1
diπq dt
− Lπ1iπ d
dθk ⎤ dθk dt; ⎥ dt ⎦ dt
−U1d sin(θk −θ1)+U1q cos( θk −θ1) +U2d sin(θk −θ2) −U2q cos(θk −θ2)−rπiπq − −Lπ1
diπq dt
−Lπ1iπd
dθk 1 = ∫iπqdt+∫ −U1d cos( θk −θ1)−U1q sin( θk −θ1)+U2d cos( θk −θ2)+ dt Cπ
[
+ U 2 q sin(θ k − θ 2 ) + rπ iπd + Lπ 1 U10 − U 20 − rπ iπ 0 − Lπ 0
sadac,
Lπ 1 = Lπ − M π ;
koeficientebia
diπd dθ ⎤ dθ − Lπ 1iπ q k ⎥ k dt; dt dt ⎦ dt
diπ 0 1 = iπ dt , dt Cπ ∫ 0
Lπ 0 = Lπ + 2M π
pirdapiri
(1.20)
_ wredis TviTinduqciis da
nulovani
mimdevrobis
denebisaTvis. (1.19) da (1.20) gantolebebi Sedgenilia eleqtruli qselis yvela parametrisaTvis da erTiandebian eleqtruli qselis kvanZebisaTvis kirxofis pirveli ka23
nonis gantolebebTan. am damokidebulebebs
j kvanZi-
saTvis SeiZleba hqondeT Semdegi saxe:
∑ i j
j
= 0
(1.21)
sadac j , j kvanZTan mierTebis Stoebis raodenobaa. (1.19) da (1.20) gantolebebis SerwymiT kirxovis II kanonTan eleqtruli qselis konturebisTvis miviRebT [11]:
∑ U l
sadac
l
l
(1.22)
= 0
_ aris elementebis raodenoba, romlebic Se-
m -ur
dian
konturSi.
1.1.4 mTliani energosistemis maTematikuri modeli imisaTvis, rom CavweroT energosistemis gardamavali procesis mTliani maTematikuri modelebis gantoleba, energosistemis calkeuli elementebisaTvis unda miviRoT koordinatTa sistema da denebis mimarTuleba. denebis dadebiT mimarTulebad miviRoT denis mimarTuleba qselidan manqanaSi, q iyos vertikaluri (ordinatTa) RerZi, d – horizontaluri (abscisaTa) [1,5]. mTliani
energosistemis
maTematikuri
modelis
gantolebebis optimalurad CawerisTvis sinqronuli manqanebis
toloba
unda
Caiweros
mbrunav
koordi-
natebSi, romlebic myarad arian dakavSirebuli erTma24
neTTan manqanis rotoriT. asinqronuli manqanebisa da statikuri elementebis gantolebebi Caiwerebian mbrunav
koordinatebSi,
romlebic
xistad
arian
dakav-
Sirebuli erT-erTi sinqronuli manqanis rotorTan an fazur koordinatebTan [1,11]. eleqtruli qselis gantoleba CavweroT kvanZuri Zabvebis meTodiT, roca ar arseboben denis nulovani mdgenelebi.
eleqtruli
qselis
da
asinqronuli
manqanebis gantolebebi SevufardoT RerZebs, romlebic xistad arian dakavSirebuli erT-erTi sinqronuli manqanis rotorTan. vTqvaT es aris manqana n kvanZSi. am dros manqanis horizontaluri _ namdvili RerZebisa da warmosaxviTi _ vertikaluri RerZebis Tanxvedrisas eleqtruli qselis mdgomareobis gantoleba j kvanZisTvis, (1.20) gantolebis gaTvaliswinebiT, kompleqsur formaSi Caiwereba Semdegnairad [5]:
U jY sadac kvanZSi
jj
+ ∑ (U j − U q )Y
jq
+I
jc
+I
ja
=0
q
(1.23)
I jc , I ja _ denebia, romlebic ganpirobebulia j sinqronuli
da
Y jq _
Stos
arsebobiT;
jq
asinqronuli gamtarianoba,
manqanebis romelic
akmayofilebs gamosaxulebas: Y
jq
1
=
r + ( p + jw k ) L ∧ 1 +
25
(1.24) 1 ( p + jw k ) C ∧
Y jq axdens j kvanZSi statikuri datvirTvis modelirebas.
Tu
statikuri
datvirTva
warmodgenilia
rH , LH wredis saxiT, maSin
Y jj = Caketili
1 rH + ( p + jwk ) LH
sistemebis
misaRebad
(1.25) saWiroa
sinqro-
nuli manqanebis gantolebebsa da eleqtruli qselis mdgomareobis gantolebas daematos sxvadasxva koordinatTa
sistemis
kavSiris
gantolebebi,
romlebic
SeiZleba CavweroT Semdegi saxiT [5,11,12]:
U 'j = U cdj cos δ jn − U cqj sin δ jn U 'j' = U cdj sin δ jn + U cqj cos δ jn
(1.26)
I 'jc = icdj cos δ jn − icqj sin δ jn I 'jc' = icdj sin δ jn + icqj conδ jn talRuri procesebis gaTvaliswinebiT grZeli xazis gantoleba CavweroT α , β , o koordinatebSi da davumatoT fazuri koordinatebis kavSirebis gantolebebi α , β , o koordinatebSi. d,q,o
koordinatebSi
gardasaxvis
matricas
aqvs
Semdegi saxe:
A d α = A c S II− 1
⎡ cos θ = ⎢ − sin θ ⎢ 0 ⎣⎢ 26
sin θ cos θ 0
0⎤ 0⎥ ⎥ 1 ⎥⎦
(1.27)
1.1.5 energosistemis mTliani maTematikuri modelis Taviseburebebi ganvixiloT umartivesi energosistemebis gardamavali procesebis gantolebebi, romlebic Sedgeba ori sinqronuli manqanisgan da muSaoben statikur datvirTvaze, romelsac warmoadgens parametrebi rH , LH . simartivisaTvis gamoyenebulia araregularuli sinqronuli manqanebi
udemfero
konturebiT
simetriul
reJimSi.
gamoyenebulia mTliani maTematikuri modelis gantolebebi
mbrunav
koordinatTa
RerZebSi.
sinqronuli
manqanebis gantolebebi ukavSirdebian maT rotorebs (1.13) gantolebis safuZvelze da Caiwerebian Semdegnairad [1,5,11,13]:
U cdj = rcj i cdj + U cqj = rcj icqj +
U J
j
d (Lqj icqj ) + (Ldj icdj + M fj i fj ) ⋅ ω j ; dt
= r fj i fj +
fj
dω
d (L dj icdj + M fj i fj ) − L qj icqj ω j ; dt
j
dt
= TT j −
d ⎛ 3 M ⎜ dt ⎝ 2
3 ⎡M 2 ⎣
fj
(1.28)
⎞ + i L i fj c d j fj fj ⎟ ; ⎠
i fj i c q j + ( L d j − L q j ) i c d j i c q j ⎤⎦ ,
sadac j=1,2 datvirTvis wredis gantolebebi SeZleba Caiweros Semdegi saxiT:
27
U cd 1 = rH i Hd + L H
U cq 1 = rH i Hq
di Hd − L H i Hq ω 1 dt
(1.29)
di Hq + LH + L H i Hd ω 1 dt
kirxofis I kanoni datvirTvis kvanZisTvis da I da II sinqronuli manqanebisTvis SeiZleba Caiweros Semdegi saxiT [11]:
icd 1 + icd 2 cos δ + icq 2 sin δ + iHd = 0; icq1 + icq 2 cos δ − icd 2 sin δ + iHq = 0;
(1.30)
U cd 1 = U cd 2 cos δ + U cq 2 sin δ ; U cq1 = −U cd 2 sin δ + U cq 2 cosδ . t
δ = ∫ ( ω 1 − ω 2 ) dt + δ 0
(1.31)
o
(1.28) ÷ (1.31) gantolebebi aRweren ganxiluli sistemis gardamaval procesebs. maTi erToblivi amoxsna saSualebas
iZleva
aRvweroT
eleqtromagnituri
da
eleqtromeqanikuri procesebi. (1.28) ÷ (1.31)-dan Cans, rom mbrunav koordnatebSi mTliani maTematikuri modelis Cawerisas sinqronuli manqanebis
gantolebebidan
gamoiricxeba
perioduli
koeficientebi, amasTan es koeficientebi (sin δ , cos δ ) gardaiqmnebian
manqanis
rotorebs
Soris
kuTxis
periodul funqciebad, romelTa cvalebadoba droSi aRiwereba (1.31) gantolebiT. 28
1.2 mravalmanqaniani sistemebis gamartivebuli variantebi
1.2.1 Cqari eleqtromagnituri procesebis kvlevis maTematikuri modeli es modeli aris mTliani modelis kerZo SemTxveva da miiReba misgan Cqari moZraobis gamoyofiT, sinqronuli da asinqronuli manqanebis rotorebis brunvis kuTxuri siCqareebis Semagrebis gziT sinqronuli manqanebis rotorebis brunvis kuTxuri siCqareebis erTnairi mniSvnelobebisas. i-uri sinqronuli manqanebisTvis Cqari eleqtromagnituri procesebis gantoleba (1.13)-is safuZvelze Caiwereba Semdegi saxiT:
U Ii = RIi I Ii + ( PE + N Iio )ΨIi ;
(1.33)
Ψ Ii = L Ii I Ii gantolebebs
wredisTvis
r∧ , L∧ , C ∧
parametrebiT
(1.20)-is safuZvelze eqneba saxe:
U 1d − U 2 d − r∧ i∧ d − L∧1
d i∧d 1 + L∧1i∧ q ω0 = ∫ i∧ d dt + dt C∧
di∧q ⎡ ⎤ U U r i L L i − − − − ω ∧ ∧ ∧ ∧ ∧ 1 q 2 q q 1 1 d o ⎥ωodt ; ∫ ⎢⎣ dt ⎦
29
di∧q
1 ∫ i∧q dt + dt C∧ dj∧d ⎡ ⎤ − − − − − ω ωodt ; U U r i L L i 1 d 2 d d 1 1 q o ∧ ∧ ∧ ∧ ∧ ∫ ⎢⎣ ⎥ dt ⎦
U1q − U 2 q − r∧ i∧q − L∧1
+ L∧1 j∧d w0 =
U 10 − U 20 − r∧ i∧ 0 − L∧ 0
di ∧ 0 1 = ∫ i ∧ 0 dt . dt C∧
(1.34)
mocemuli gantolebebi miRebulia energosistemis yvela elementisTvis da warmoadgenen Cqari eleqtromagnituri procesebis models, romelic arawrfivia Tavisi mudmivi koeficientebiT simetriuli reJimebisTvis [1,5,13,14].
1.2.2. Jdanovis modeli gasaSualebis pirveli meTodis gamoyeneba iwvevs Jdanovis maTematikuri modelis gamartivebas. energosistemebisTvis
im
modelis
gantolebebs,
romlebic Sedgebian n-sinqronuli da ℓ-asinqronuli manqanebisgan, kompleqsur formaSi eleqtromagnituri procesebis gauTvaliswineblad, eqnebaT Semdegi saxe: Ji
dωi = TTi (ωi ) − Tei (δ1n ,..., δ ( n−1) n , ω1 ,..., ωn , ωM 1 ,..., ωml ); dt
JMv
dωmv = −Tcv (ωmv ) +Tev (δ1n ,...,δ(n−1)n ,ω1,...,ωn ,ωm1,...,ωml ); dt
dδ in = ωi − ωn . dt 30
(1.35)
sadac i=1,2,...,n; ν = 1, 2,..., l;
δ 1n _
i-uri da n-uri sinqronuli
manqanebis rotorebs Soris urTierTZvris kuTxea;
ωi − i -
uri sinqronuli manqanis rotoris brunvis kuTxuri siCqarea;
ωmν −ν -uri
asinqronuli manqanis rotoris
brunvis kuTxuri siCqarea. (1.35)-Si Semavali funqciebis cxadi analitikuri gamosaxulebebi SeiZleba miRebul iqnes eleqtruli qselis mxolod ubralo wrfivi modelebis SemTxvevaSi. Jdanovis models orgeneratoriani sistemisTvis, romelic mTliani modelidan miiReba, aqvs Semdegi saxe: Eq1Eq 2 ⎤ 1 3 ⎡ Eq12 dω1 sin α11 + sin (δ12 − α12 ) ⎥ ; = TT 1 − J1 ⎢ ω1 2 ⎣ Z11 dt Z12 ⎦ Eq1Eq 2 ⎤ dω2 1 3 ⎡ Eq22 J2 sin α sin (δ 21 − α 21 ) ⎥ ; = TT 2 − + 22 ⎢ dt Z21 ω2 2 ⎣ Z22 ⎦
(1.36)
d δ12 = ω1 − ω2 . dt sadac Eq1 = ω1 M f 1i f 1 , Eq 2 = ω2 M f 2i f 2 - eleqtromamoZravebeli Zalebia; z11, z22, z12, z21,α 11 ,α 22 ,α 12 ,α 21 _ Sesabamisad sakuTrivi
da
urTierTwinaRobebis
argumentebisTvis
modulebi da damatebiTi kuTxeebia [1,5,15,16,17,18,19,20].
31
1.2.3 poziciuri modeli poziciuri modelis gantolebebis aracxadi saxiT Cawera statikuri maxasiaTeblebis asinqronuli datvirTvis gaTvaliswinebiT (1.35)-dan gamomdinare, xdeba Semdegnairad:
d 2δin 1 1 ⎡⎣TTn − Ten (δ1n ,..., δ( n−1) n )⎤⎦ = − − [ T T ( δ ,..., δ )] Ti ei 1n ( n−1) n 2 dt Ji Jn (i =1,2,...,n−1)
(1.37)
poziciuri modeli gamoiyeneba sinqronuli manqanebis fardobiTi moZraobis analizisTvis da misi gamoyeneba SeiZleba maSin, roca unda gamovikvlioT procesebi,
damokidebuli
sinqronuli
manqanebis
roto-
rebis brunvis kuTxur siCqareze. arseboben
am
principze
agebuli
sxva
gamarti-
vebuli maTematikuri modelebi. ganvixiloT maT Soris yvelaze xSirad gamoyenebuli n-kvanZSi ω0 sixSiriani usasrulo simZlavris saltis gamartivebuli maTematikuri modeli [5,19]. sinqronuli generatoris rotoris moZraoba (1.13)is gaTvaliswinebiT ase aRiwereba:
d 2δ rin 3 T ji = PTi − ⎡⎣ Eqi2 Yii sin α ii + EqiU iYEUi sin(δ EVi − α Evi ) ⎤⎦ 2 dt 2 sadac
(1.38)
δ rin − i -uri sinqronuli manqanis rotoris da
eqvivalentur
usasrulo
simZlavris 32
generatoris
saltes Soris kuTxea; Eqi _ i -uri sinqronuli manqanis fiqtiuri emZ; Ui _ i-uri sinqronuli manqanis eleqtrul qselTan
Sexebis
kvanZSi
Zabvis
modulia;
Υ ii , α ii , Υ EUi , α EUi _ sakuTari da saerTo gamtarobis argumentebis modulebi da damatebiTi kuTxeebia EQi da Ui kvanZebisTvis; PTI − i -uri sinqronuli manqanis pirveladi Zravis simZlavrea;
TJi = J iω0 .
i-uri sinqronuli manqanis aRgznebis gragnilSi eleqtromagnituri gardamavali procesebis gantoleba (1.13)-is safuZvelze gardaiqmneba Semdegnairad:
Td oi E 'qi − Χ 'd
sadac
E qei − emZ-is
dt
= E qei − E qi
gardamavali
stacionaluri
proporciulia
T doi −
dE qi'
aRgznebis
(1.39)
winaRobis
mniSvnelobaa,
emZ-a;
romelic
gragnilis
Zabvisa;
aRgznebis gragnilis drois mudmivaa.
gamartivebuli
modelisTvis
i-uri
sinqronuli
manqanis rotoris moZraobis gantolebas aqvs saxe: n ⎤ d2δin 3⎡ 2 Tji 2 = PTi − ⎢EQiYii∋k sinαii∋k +∑EQi EQj sin(δij −αij∋k )⎥ dt 2⎣ j=1 ⎦
i-uri
sinqronuli
manqanisTvis
E 'qi
cvladebis kavSiris gantolebas aqvs saxe:
33
(1.40) da
EQi
⎛ 1 ⎞ n = EQi ⎜ − Yii∋k cosαii∋k ⎟ + ∑EQiYij∋k cos(δij −αij∋k ) ' ' ⎜ ⎟ j =1 xqi − xdi ⎝ xqi − xdi ⎠ j≠i Eqi'
(1.41)
ufro gamartivebuli modeli miiReba im SemTxvevaSi, roca aRgznebis regulirebis moqmedebiT SeiZleba uzrunvelyofil iqnes zogierTi Ei ∋ k emZ-is mudmivoba eqvivalenturi reaqtiuli winaRobiT xi, romelic damokidebulia aRgznebis regulatoris maxasiaTebelze. am modelis moZraobis gantoleba Caiwereba Semdegnairad: h d 2δ in 2 TJi = PTi − Ei Yii∋k sin α ii∋ k − ∑ Ei E jYij ∋k sin(δ ij − α ij ∋k ) (1.42) 2 j =1 dt
sadac E
i
=
3 E 2
i∋ k
; E
j
3 E 2
=
i∋ k
;
xi _ gaTvaliswinebulia sakuTriv da urTierTgamtarobaSi
(i=1,2,...,n-1).
modelis
Semdgom
gamartivebad
iTvleba konservatiul modelebze gadasvla, romelTaTvisac damatebiTi kuTxe [5,19,20].
34
α ij ∋ k
xdeba nulis toli
1.2.4. eleqtrul qselSi gasaSualebuli procesebis modeli eleqtrul qselSi mravalsixSiruli denebis da Zabvebis Secvlas erTsixSiruliT mivyavarT modelis gamartivebamde,
romelsac
SeiZleba
vuwodoT
eleq-
truli qselis gasaSualebuli procesebis maTematikuri modeli. aseTi tipis modelis realizaciisas unda ganvixiloT sinqronuli manqanebis muSaoba SekavSirebis kvanZze, rogorc miwodebuli Zabvis momWerebze da gavaerTianoT sxvadasxva sixSiris wredebi energetikuli balansis gantolebebiT [1,5,19,21,22]. gasaSualebis erT-erT saSualebas, romelic akmayofilebs mocemul pirobebs, warmoadgens el.simZlavreebis an momentis saSualo mniSvnelobis gansazRvra [1,5]: ωe =
∑ω P ∑ P i
∋∧i
i
anu
∋∧i
(1.43)
i
ω
=
e
∑ ω J ∑ J i
i
i
(1.44)
i
i
CavweroT
gasaSualebis
energositemisTvis,
romelsac
maTematikuri aqvs
modelebi
n-sinqronuli,
ℓ-
asinqronuli manqana da m-eleqtruli qselis kvanZi. juri sinqronuli manqanis moZraobis gantoleba Caiwereba Semdegi saxiT: 35
U Ij = RIj I Ij + ( PE + N Ij )ΨIj ;
Ψ Ij = LIj I Ij ; Jj
(1.45)
3 dwj = TTj − ( Ψcdj icqj − Ψcqj icqj ) , dt 2
sadac j=1,2,...,n.
ν -uri asinqronuli manqanis moZraobis gantoleba Caiwereba Semdegi saxiT:
U IIν = RIIν I IIν + ( pE + N IIν )Ψ IIν ;
Ψ IIν = LIIν I IIν ; J Mν
(1.46)
d ων 3 = Ladν (i pdν icqν − i pqν icdν ) − Tcν , 2 dt
sadac ν = 1, 2,..., l. yoveli j-uri eleqtruli qselisaTvis (maT Soris sinqronuli
da
kvanZebisaTvis) mdgomareobis
asinqronuli eleqtruli
gantolebebi
manqanebis qselis
aqtiuri
SeerTebis
stacionaluri da
reaqtiuli
simZlavreebis balansis gantolebebis saxiT Caiwereba Semdegnairad [1,5,22,23]: U 2j Υ jj sinα jjγ y + ∑U jUqYjq sin (δ jn − δqn −α jq ) + PjH (U j ,ωc ) + Pjc + Pja = 0; q
U Υ jj cosα jj − ∑U jUqYjq cos (δ jn − δqn −α jq ) + Qγ H (Uγ ,ωc ) + Qjc + Qja = 0.
(1.47)
2 j
q
sadac j=1, 2,...., m. gantolebis ricxvis ucnobTa ricxvTan SesabamisobaSi mosayvanad aucilebelia sinqronuli, asinqronuli
manqanebis
da
eleqtruli 36
qselis
cvladebis
kavSiris damatebiTi gantolebaTa sistemis Sedgena. sinqronuli
manqanisaTvis,
romelic
SeerTebulia
j
kvanZTan, es gantolebebi Caiwereba Semdegi saxiT [5]:
Pjc = U cdj icdj + U cqj icqj ;
Q jc = U cqj icdj − U cdj icqj ;
(1.48)
2 2 U 2j = U cdj + U cqj ;
δ jn = δ rjn + arctg
dδ rjn dt sadac
δ rjn _kuTxea
U cqj U cdj
;
= ω j − ωn .
sinqronuli
manqanis
j rotoris
horizontalur RerZsa da generatoris horizontalur RerZs Soris. asinqronuli manqanisTvis, romelic mierTebulia
ν
kvanZze,
kavSiris
gantoleba
SeiZleba
Caiweros
Semdegnairad:
Pνa = U cdν icdν + U cdν icqν ; Qν a = U cdν icdν − U cdν icqν ;
U v2 = U c2 dν + U c2 dν ; δν n = arctg ormanqanur
U cqv U cdv
energosistemebSi
(1.49)
.
sinqronuli
manqa-
nebisTvis mocemul gantolebebs aqvT Semdegi saxe: 37
U cdj = rcj icdj +
U cqj = rcj icqj +
d ( Ldj jcdj + M fji fj ) − Lqj jcqjω j ; dt
d ( Ldjicdj ) − ( Ldj jcdj + M fj j fj ) ω j ; dt
U fj = rfj i fj +
Jj
(150)
d ⎛3 ⎞ ⎜ M fj icdj + L fj i fj ⎟ ; dt ⎝ 2 ⎠
dw j
3 = TTj − ⎡⎣ M fj i fj icqj + ( Ldj − Lqj ) icdj icqj ⎤⎦ . dt 2
sadac j=1,2. energetikuli
balansis
gantoleba
datvirTvis
kvanZSi parametrebiT rH, LH da cvladebis kavSiris gantoleba Caiwereba Semdegi saxiT [1,5,24,25,26,27]:
U H2 rH ( ucdj icdj + ucqj icqj ) + r 2 + L2 ω 2 = 0; ∑ j =1 H H c 2
U H2 wc2 LH ( ucqj icdj + ucdj icqj ) + r 2 + L2 ω 2 = 0; ∑ j =1 H H c 2
U H2 = ucd2 1 + ucq2 1;
(1.51)
U H2 = ucd2 2 + ucq2 2 ; δ r12 = arctg
ucq 2 ucd 2
− arctg
dδ r12 = ω1 − ω21 ; dt ωc =
ω1 J1 + ω2 J 2
38
J1 + J 2
.
ucq1 ucd 1
;
1.3 energosistemis statikuri mdgradoba amJamad energosistemasTan dakavSirebul sakiTxTa gamartivebam farTo gavrceleba hpova. wrfivi modelebis SemTxvevaSi es sakiTxi SeiZleba gadawyvetili iqnas maxasiaTebeli gantolebis analizis safuZvelze sxvadasxva meTodebiT. am
analizis
mTavari
mizania,
gagebuli
iqnas
Tavisebureba, romelic Tan sdevs energosistemis mTel models, imisaTvis, rom ufro safuZvlianad mivudgeT mis gamartivebas saerTo SemTxvevaSi. naSromSi ganixileba sinqronuli manqana, romelic muSaobs ucvleli sinusoiduri Zabvis wyaroze. ikvleva SemTxveva, romelic miaxloebiT asaxavs erTi sinqronuli manqanis muSaobas Zalze mZlavr wredSi. energosistemis gantoleba CavweroT koordinatTa sistemaSi, romelic emTxveva sinqronuli manqanis rotoris RerZebs. mosaxerxebelia maTi warmodgena Semdegi saxiT (fardobiT erTeulebSi) [1,5,26,27]:
dΨd + Rid − (1 + S )Ψ q = u sin δ ; dt
dΨq dt
dΨ p dt
+ Riq + (1 + S ) Ψ q = u cos δ ;
+ Rpip = u p ; 39
(1.52)
Tj sadac
dS + Ψqiq − Ψd iq − M T (ω ) = 0 , dt
Ψ = {Ψd , Ψq , Ψp };
i = {id , iq , i p };
Ψ p , i p - sinqronuli
manqanis rotoris xviaTa nakadSerTvebisa da denebis veqtorebia;
U p = {U f ,0...,0};
ω0
-
Zabvis
statoris
xviaze dadebuli sixSirea; δ - kuTxea rotoris ganiv RerZsa da dadebuli Zabvis gamosaxviT veqtors Soris, romelic aiTvleba Zabvis veqtoridan saaTis isris sawinaaRmdego mimarTulebiT. Tj = j
2 ω баз
М баз
meqanikuri momen-
tia; simartivisTvis ugulebulyofelia amZravi meqanizmebis gardamavali procesebi. maxasiaTebel gantolebas aqvs me-5 rigi. a. gorevis naSromSi
mcire
parametrebis
meTodis
daxmarebiT
miRweul iqna me-5 rigis sawyisi gantoleba daSliliyo dabali rigis sam gantolebad:
p 2 + ( ρ a + ρ d ' ) p + (1 + ρ q ρ a ' ) = 0 ; a 4 p + a5 ( 3)
(5)
= 0;
(1.53)
2 (3) (5) a2(1) p 3 + a3(2) э p + q4 p + q 4 = 0 ;
p 5 + a1 p 4 + a 2 p 3 + a3 p 2 + a 4 p + a5 = 0 .
40
1.4 ormanqanuri energosistemis dinamika energosistemebis maTematikur modelebs Soris poziciuri modeli rCeba energosistemis erT-erT umTavres idializaciad, romelsac klasikuri ewodeba. aseTi sistemis dinamikis sakiTxebs, upirveles yovlisa mdgradobas, eZRvneba uamravi literatura, sadac ganixileba gamokvlevis sxvadasxva aspeqtebi cifruli, analitikuri da xarisxobrivi meTodebis gamoyenebiT. mdgradobis gamokvlevisa ganxilul meTodebs Soris aris liapunovis funqciis meTodi. miuxedavad imisa, rom liapunovis funqciis meTodi ukve didi xania gamoiyeneba energetikaSi, vxvdebiT srulebiT umniSvnelo raodenobis amocanebs, romlebic amoxsnili arian am meTodis daxmarebiT. ganvixiloT ormanqanuri energosistema poziciur idealizaciaSi amoixsneba amocana:
misi
wrfivi
dempfirebiT,
dinamikis
wonasworobis
ramodenime
mdgomareobis
romlisTvisac mniSvnelovani separatrisuli
zedapirebis umravlesobis aRwera, romlebic zRudaven energosistemis wonasworobis mdgomareobas asimptoturi mdgradobiT da wonasworobis mdgomareobis umravlesobis globaluri mizidulobis pirobebis miReba. CamoTvlili amocanebi amoixsneba liapunovis I da II meTodebiT da Sedarebis organzomilebiani sistemis meTodiT.
wrfivad
dempfirebuli 41
organzomilebiani
energosistemis poziciuri modelis fardobiTi moZraoba gamoisaxeba Semdegi saxiT [1,5,26,27]: .
δ 12 = ω12 ; −1 −1 −1 −1 ω12 =−λω 1 12 +(λ2 −λ1)ω2 +μ1 P 12 cos(δ12 −θ12)−μ2 P 12 cos(δ12 −θ12); m1 −μ1 A m2 +μ2 A .
ω 2 = −λ2ω2 + μ 2−1 Pm 2 − μ 2−1 A12 cos(δ12 − θ12 ), sadac
(1.54)
δ 12 , ω12 , ω 2 , _ sistemis fazuri cvladebia
( δ 12 = δ 1 − δ 2 ,
ω12 = ω1 − ω 2 ,
δi ,
ωi = δ i ,
i = 1,2,
-
Sesabamisad rotoris absoluturi kuTxe da kuTxuri siCqarea
θ12 ,
i -uri
manqanisTvis); λi , μ i , Pmi , i = 1,2,
A12 ,
- mudmivebia, μ i > 0, λi > 0, i = 1,2, A12 > 0. . (1.54)-Si
davuSvaT
.
δ 12 = 0,
ω12 = 0,
.
ω 2 = 0,
maSin
vRebulobT wonasworobis gantolebas:
Diω 2 + ϕ (δ 12 ) = Pmi ( i = 1,2, ) romlebSic Di = λi μ i
(1.55)
( i = 1,2, )
ϕ (δ12 ) = A12 cos(δ12 − θ12 ) . Tu
(1.54)
–
sistemis
parametrebi
(1.56) akmayofileben
pirobas:
λ1μ1 ≠ λ2 μ2 ; (λ1 μ1 Pmi − λ 2 μ 2 Pm1) ( A12 (λ1 μ1 − λ 2 μ 2 ) ≤ 1
(1.57)
maSin misi wonasworobis mdgomareoba ganisazRvreba TanafardobebiT:
ω120 = 0;
ω20 = ( Pm − Pm ) (λ1μ1 − λ2 μ2 ); 1
42
2
cos(δ 20 − θ12 ) = (λ1μ1 Pm2 − λ2 μ2 Pm1 ) ( A12 (λ1μ1 − λ2 μ2 ))
(1.58)
(1.58)-dan gamomdinareobs, rom (1.57) pirobisTvis (1.54)
sistemas
aqvs
wonasworobis
izolirebuli
mdgomareobis Tvladi simravle. Tu misgan gamovyobT wonasworobis
nebismier
mdgomareobas,
aRniSnuli
( ω12 , ω 2 , δ 12 , )-iT da Tu SevitanT gadaxrebs: z1 = ω12 − ω12 , *
*
*
*
z 2 = ω 2 − ω 2* ,
zσ = δ 12 − δ 12* , vRebulobT (1.54) an (1.55)-is
gaTvaliswinebiT Semdeg gantolebebs: .
σ = z1 ; .
z1 = −λ1 z1 + (λ2 − λ1 ) z2 + b1Ψ (σ );
(1.59)
.
z 2 = −λ2 z2 + b2 Ψ (σ ).
sadac b1 = A12 ( μ1 − μ 2 ), −1
−1
b2 = A12 μ 2−1 > 0 .
Ψ (σ ) = Sin(σ + α ) − Sin(α );
α = δ12* − θ12 − π 2.
(1.60)
CavTvaloT, rom: λ2 ≥ 1, α ∈ (0, π 2)
(1.61)
amasTan, pirveli gantoleba yovelTvis Sesrulebadia. wonasworobis mdgomareobebs z1 ,
z 2 gadaxrebi-
sTvis eqneba Semdegi saxe:
z i = 0, i = 1,2, .. Ψ (σ ) = Sin(σ + α ) − Sinα = 0 .
(1.62)
am Tanafardobas mivyavarT oradTvlad Tanamimdevrobisken
wonasworobis
obisa: 43
izolirebuli
mdgomare-
θ k ' = zi ' = 0 ; i = 1,2 ; σ k '= 2kπ ; k
= 0,±1,±2...
(1.63)
θ k " = zi " = 0 , i = 1,2 σ k " = kπ − 2α , k = ±1,±3...
(1.64)
(1.59), (1.60) sistemis wrfiv miaxloebas θ k ' wertilis axlos aqvs Semdegi saxe: .
.
σ = z1 ;
z 1 = −λ1 z1 + (λ2 − λ1 ) z2 + b1 cos α (σ − σ k ');
.
z 2 = −λ2 z2 + b2 cos α (σ − σ k ').
(1.65)
xolo misi maxasiaTebeli gantolebebi miiReben Semdeg saxes:
Δ' (μ) = μ3 + μ2 (λ1 + λ2 ) + μ(λ2λ1 −b1 cosα) − cosα[b1λ2 + b2 (λ2 − λ1 )] = 0
(1.66)
amasTan, sistemis wrfivi nawilis maxasiaTebeli gantoleba, wonasworobis mdgomareobis farglebSi
θ k''
Caiwereba ase: Δ"(μ ) − μ 3 + μ 2 (λ1 + λ2 ) + μ (λ1λ2 + b1 cosα ) + cosα[b1λ2 + b2 (λ2 − λ1 )] = 0
vTqvaT yofilebs
(1.59)
(1.60)
pirobas:
sistemebis
α ∈ (0, π 2) ,
b1λ2 + b2 (λ2 − λ1 ) < 0 , maSin
mas
izolirebuli mdgomareobebi zRvreba
(1.63)
da
(1.64)
parametrebi
λ2 > λ1 > 0,
gaaCnia
(1.67) akma-
b2 > 0 ,
wonasworobis
θ k' , θ k'' , romlebic ganisa-
formulebiT,
amasTanave
θ k'
wonasworobis mdgomareobebi asimptoturad mdgradebia ' da es faqti ganisazRvreba imiT, rom θ k wertilebSi
(1.59) da (1.60) sistemebis wrfivi nawilis maxasiaTebel
44
gantolebebs aqvs fesvebi kompleqsuri sibrtyis fesvebis marcxena Ria naxevarsibrtyeSi [26,27]. 1.5 liapunovis veqtoruli funqciis meTodi energosistemis mdgradobisTvis arawrfivi da arastandartuli elementebis mqone maRali Tanrigis rTul sistemebSi liapunovis erTiani funqciis ageba mdgomareobis yvela cvladisTvis dakavSirebulia
praqtikulad
gadaulaxav
siZneleeb-
Tan. aseTi amocanebis amoxsnis erT-erTi gzaa liapunovis veqtoruli funqciis Simotana. liapunovis veqtorfunqcia
warmoadgens
liapunovis
ufro
martivi
funqciis θi ( xi ) nakrebs, romelTaganac TiToeuli Sedgenili iqneba sistemis (qvesistemis) nawilisaTvis da damokidebulia cvladis umcires ricxvze. amave dros, mTeli
sistemis
mdgradobis
bunebrivia, rom qvesistemebze da
uzrunvelsayofad, θi
funqciebze emateba
damatebiTi moTxovnebi. amJamad ufro metad damuSavebulia is meTodebi, romlebSic es damatebiTi moTxovnebi dayvanilia yoveli S i qvesistemis eqsponencialuri mdgradobis moTxovnamde [28]. energosistemebis
dinamikuri
mdgradobis
gamoT-
vlebis erT-erTi etapi dakavSirebulia gamosakvlevi sistemis fazuri cvladebis avariis Semdgomi damya45
rebuli reJimisgan dasaSvebi gadaxris agebis aucileblobasTan. rig SemTxvevaSi es amocana daiyvaneba gamosakvlevi sistemis modelis avariisSimdgomi mdgomareobis miaxloebiT Sefasebamde. SemoTavazeulia lvf-is (liapunovis veqtoruli funqcia) agebis ori saSualeba energosistemebisTvis: 1) pirveli saSualeba ganekuTvneba lvf-is agebas luries funqciis saxiT (kvadratul funqcias plius arawrfivobis
integrali).
amasTan
sistemis
sawyisi
modeli iSleba rig qvesistemebad, romlebic moicaven erTi
da
igive
nawils
(mravalmanqanuri
sistemis
gantoleba). 2)
meore
sistemis
modeli
fazuri
ganekuTvneba
koordinatebis
lvf-is wrfivi
agebas formis
modulebis saxis komponentebiT da gankuTvnilia iseTi sistemebisTvis,
romlebic
ar
Seicaven
erTmaneTTan
sustad dakavSirebul qvesistemebs. lvf-is
mixedviT
diferencialuri
gantolebebis
CawerisaTvis gaTvaliswinebulia energosistemaSi arsebuli siCqaris regulatoris muSaoba da mravalmanqanuri sistemebis daxasiaTebisTvis Semoitaneba Semdegi daSvebebi: 1)
sinqronuli manqana icvleba mudmivi emZ-iT, ro-
melsac romelic
aqvs
gardamavali
damokidebulia
reaqtiuli manqanis
muSaobis reJimze; 46
winaRoba
tipze
da
da misi
2)
pirveladi Zravebis momentebi iTvlebian mud-
mivad; 3)
datvirTvaSi aris mudmivi winaRobebi;
4)
dempfireba gaiTvaliswineba mudmivi koefici-
entiT, romelic proporciulia srialisa; 5)
sistemis sqemis sruli winaRobebi da pasiuri
elementebis gamtarobebi iTvleba wrfivad da ar arian damokidebuli elementebis muSaobis reJimze. Semdegi daSvebebis safuZvelze arawrfivi mravalmanqanuri energosistemis moZraobis gantoleba SeiZleba Caiweros Semdegi saxiT [28,29]:
T jiδ i '+ Diδ i '+ Pei − Pmi = 0 , i = 1, m, sadac
Di
dempfirebis
koeficientia,
(1.68)
Pmi -
manqanis
RerZze meqanikuri simZlavrea, T ji - inerciuli mudmiva,
δ i ' -i-uri manqanis rotoris mobrunebis absoluturi kuTxe;
Pei - aqtiuri simZlavreebia, romlebic ganisa-
zRvrebian Semdegi Tanafardobidan: m
Pei = E Y sin θ ii + ∑ Ei E jYij sin(δ i '− δ j '+ θ ij ) , 2 i ii
sadac
i =1 j ≠1
(1.69)
Ei - aris i-uri siqronuli manqanis emZ; Yij m
manqanis TviTgamtarobebi Yii = Yi + ∑ Yij ; Yij - urTierTj =1 j ≠1
47
gamtarobebi;
θ ii ,
π
θ ij - kuTxeebi, romlebic avseben
2
-iT
TviT da urTierTgamtarobebis kuTxeebs. vTqvaT δ i
0
- aris (1.68) gantolebis mdgomareobis
cnobili koordinatebi (avariisSemdgomi damyarebuli reJimi).
vuSvebT,
δ i ' = δ i + δ i0 , δ i − δ i ' = yi , sadac
rom
δ i − i − uri manqanis rotoris kuTxis gadaxra damyarebuli mniSvnelobidan
δ i0 da vumatebT ra siCqaris
regulatoris gantolebas, miviRebT arCeuli energosistemis modelis aRgznebuli miZraobis gantolebas:
δ i = yi ; y i = d i z i − d i yi − Ψi ;
(1.70)
z i = −li yi − g i z i − α i yi , sadac ai , d i , li ,
i = 1, m.
gi ≠ 0, α − const , y i
i
i-uri manqanis
rotoris brunvis absoluturi kuTxuri siCqarea, zi regulatoris
koordinata;
arawrfivi
funqcia
Ψi
gamoisaxeba gantolebiT:
ψ i = ∑ aik ⎡⎣sin(δ i − δ k + δ i0 − δ k0 − θ ik ) − sin(δ i0 − δ k0 − θ ik ) ⎤⎦ k =1 k ≠i
(1.71)
sadac θik = const . advili
SesamCnevia,
rom
(1.70)
gantolebas
aqvs
wonasworobis bevri mdgomareoba, rac gamowveulia am sistemis marjvena mxaris nawilis 48
damokidebulebiT
kuTxeebis
δi −δk .
sxvaobaze
amitom
dinamikuri
mdgradobis gamokvlevisas ganixileba e.w. manqanebis urTierTmoZraobis
gantoleba.
mocemul
SemTxvevaSi
ganixileba (1.70) gantolebidan miRebuli Semdegi gantolebaTa sistema:
u i = y i − y m ; y i = ai z i − d i y i − Ψi ' ; y m = a m z m − d m y m + Ψm ;
(1.72)
z i = −(α i ai + g i ) z i − (li − α i d i ) yi + α i Ψi ' ; z m = −(α m a m + g m ) z m − (l m − α m d m ) y m + α m Ψm ' . sadac U m = δ i − δ m , U i = δ i − δ m , 0
0
0
m −1
Ψ i ' = ∑ aik [sin(U i −U k + U i0 + U k0 − θik ) − sin(U i0 − U k0 − θik )] + k =1 k ≠i
(1.73)
+ aim [sin(U i + U − θim ) − sin(U − θim )]; 0 i
0 i
m −1
,
Ψ m ' = ∑ amk [sin(U k + U k0 + θ mk ) − sin(U k0 + θ mk )] ( i = 1, m − 1 ).. k =1
49
2. bifurkacia energosistemebSi 2.1. gaormagebis cikli da bifurkacia energosistemebSi rogorc aRvniSneT bifurkacia – es aris gadasvlebi, romlebic SeiZleba moxdes sxvadasxva saxeebs Soris dinamikuri qcevidan parametrebis cvlilebisas [34,35]. bifurkaciis
movleba
zogadi
cnebaa,
romelsac
Seesabameba SesaZlo topologiuri cvlilebebis qvesimravle
da
axasiaTebs
SemTxvevaSi gansaxilvel
sistemis X
amonaxsns.
zogad
amonaxsnTa sivrce SeiZ-
leba daxasiaTdes garkveuli topologiiT. kerZod, romeliRac metrikuli sivrce SeiZleba SevusabamoT n ganzomilebis Ε evklidur sivrces. Teoriul aspeqtSi n
SeiZleba ganvixiloT Ε -ze ufro zogadi sivrce [30]. n
bifurkaciul TamaSoben
analizSi
gansakuTrebuli
gadamwyvet amonaxsnebi,
rols romlebic
SeiZleba davajgufoT Semdegi saxiT: 1. x0 =|| X | f : x0 → x0 || - stacionaluri amonaxsnebi. 2. X =|| X | f : x(0) → x(0 + T ) || - perioduli amonaxsnebi. 3.
X a =|| X | f : X a → X || -
pirobiT-perioduli
amonax-
snebi. dinamikuri
sistemebisaTvis,
romelic
Semdegi diferencialuri gantolebiT: 50
aRiwereba
dx = f ( x, p ) , dt
(2.1)
amonaxsnTa simravlis pirveli SemTxveva Seesabameba gantolebaTa
sistemis
dx =0 dt
amonaxsns,
romelic
warmoadgens f '( x, p ) = 0 gantolebaTa simrales. meore
SemTxvevaSi
amonaxsni
warmoadgens
an
martiv, an sakmaod rTul zRvrul ciklebs. zemoT
CamoTvlil
or
amonaxsnTan
SedarebiT
ufro rTuli xasiaTi gaaCnia an pirobiT-periodul amonaxsnebs an atraqtorebs, romelTa sazRvrebs gareT traeqtoriebi ar gadian. e. i. X a ⊂ X . ukve naxsenebi gansakuTrebuli amonaxsnebi (1,2,3) xasiaTdebian im TvisebebiT, rom maTken miiswrafian yvela regularuli amonaxsnebi, roca
t → +∞
t → −∞ .
an
mocemuli amonaxsnebi warmoadgenen struqturul mdgradobas, Tu mezobeli regularuli amonaxsnebi parametrebis
cvlilebisas
iqneba
erTmaneTTan
sakma-
risad axlos [31,32,33,34]. ganvixiloT diskretuli dinamikuri sistema, romelic mocemulia QSemdegi gantolebiT
X n +1 = VX n (1 − X n )
(2.2)
V koeficienti marTvis parametria. Tu intervali 0-dan 4-mdea, maSin nebismieri mniSvneloba
0 ≤ X ≤1
aisaxeba amave intervalis romelime wertilSi. V -s 51
sawyisi mniSvnelobis micemis Semdeg advilad ganisazRvrebian X 1 , X 2 ... cnobili formulebiT [34,35].
V -ze { X n }-is
damokidebulebiT qcevis
cvlilebas;
bijebis
gazrda
iwvevs
V <3, maSin { X n }
roca
mimdevroba dadis uZrav wertilze, roca 3<V1 <V2 , maSin { X n } mimdevroba xasiaTdeba T = 2 periodiani wanacvlebiT. atraqtorebi xdebian ucnaurni, roca
V -s
mniSvneloba uaxlovdeba 3,5699471860-s. aq iwyeba qaosi. Tavidan mwyobrad ganSladi xazebi uecrad iqcevian qaosur zigzagebad (nax. 1). amasTan ucnauria isic, rom roca V -s mniSvneloba uaxlovdeba 4-s, qaosi wydeba. aseTi wesiT miRebuli gamosaxuleba aris bifurkaciuli diagrama. Tu mas SevxedavT gverdidan, gamoCndeba
X qaosuri speqtri, romlis dekoratiuli Taviseburebanic warmoadgens gamocanas, romlis amoxsna SeiZleba mxolod Teoriuli saSualebiT. hopfis
Teoriis
safuZvelze
Semogvaqvs
hopfis
bifurkaciisa da zRvruli ciklebis cneba. zRvruli
ciklebis
koncefcia
diferencialuri
gamtolebebis kvlevidan Camoayaliba a. puankarem. aseT sistemebSi SeiZleba miviRoT rxevebi, romlebic ubrundebian sawyis mdgomareobas mcire SeSfoTebis Semdeg rxevebis nebismieri fazis dros. puankarem aseT rxevebs mdgradi zRvruli ciklebi uwoda. sistemebs ki puankares oscilatorebi ewodebaT. 52
a)
b)
nax. 1 bifurkaciuli diagrama
53
g)
d)
nax. 1 bifurkaciuli diagrama
54
Tu ciklis
CavTvliT, tipis
rom
rxevebs,
sistema maSin
iZleva
SeiZleba
zRvruli gavakeToT
winaswari daskvnebi aseTi sistemebis mdgradobis Sesaxeb, miuxedavad imisa, viciT Tu ara sistemis aRmweri gantolebebi. imisaTvis, rom vimsjeloT sistemis mdgradobis an aramdgradobis Sesaxeb zRvruli ciklis mdgradobis mixedviT, unda davadginoT erTgeneratorian, orgeneratorian da samgeneratorian sistemebSi zRvruli ciklebis
arsebobis
faqti.
Tu
mcire
SeSfoTebisas
zRvruli cikli ubrundeba sawyis mdgomareobas, maSin sistema mdgradia, Tu ar ubrundeba â&#x20AC;&#x201C; aramdgradia. Tu dinamikuri sistema damokidebulia parametrze, es parametri SeiZleba iyos temperatura, wneva, Zabva da sxva fizikuri sidideebi, maSin maTi cvlilebisas sistemis
dinamika
icvleba.
dinamikuri
sistemebis
parametrebis cvlilebisas SeiZleba Seicvalos mdgradobis wertilebis ricxvi da maTi mdgradoba. aseTi cvlilebebi
arawrfiv sistemebSi, romlebic damokide-
bulia sistemis parametris cvlilebaze, warmoadgens bifurkaciis Teoriis sagans [34].
55
2.2 hopfis bifurkacia energosistemaSi arawrfiv dinamikaSi erTi parametris variaciaze damokidebuli aramdgradoba warmoadgens mdgrad bifurkacias, vibraciuli aramdgradoba ki aris hopfis bifurkacia. ganvixiloT organzomilebiani sistema, roca sistemis dinamika aRiwereba Semdegi saxis gantolebebiT.
X 1 = f 1 ( X 1 , X 2 ,η ) ,
X 1 (0) = X 10 ,
X 2 = f 2 ( X 1 , X 2 ,η ) ,
X 2 (0) = X 20 .
(2.3)
η parametris cvlilebisas icvleba sistemis xarisxi. am mniSvnelobas ewodeba bifurkaciuli mniSvneloba. am wertilebis maxloblobaSi xdeba gadasvlebi stacionalur mdgomareobebs Soris, stacionalur mdgomareobebsa da zRvrul ciklebs Soris, an zRvrul ciklebsa da qaoss Soris. bifurkaciis zRvruli
magaliTia
ciklebis
gaCena.
fizikur am
dros
sistemebSi
S 1 , S 2 = ± iω + y
fesvibi ar aris nulis toli da kveTs warmosaxviT RerZs ise, rom y ≥ 0 . am dros Tavidan xdeba mdgradi fokusis bifurkacia zRvrul ciklSi. koeficientis cvlilebam
SeiZleba
gamoiwvios
aramdgradoba (nax.2).
56
zRvruli
ciklis
nax.2 zRvruli ciklis aramdgradoba
nax.3 bifurkacia spiralidan zRvrul ciklze
Tu erTi namdvili maCvenebeli y xdeba dadebiTi, maSin Zveli zRvruli cikli SeiZleba daiSalos ramodenime zRvrul ciklad. xolo imisaTvis, rom igi Semdgom daubrundes sawyis mdgomareobas, saWiroa 2jer meti dro, anu xdeba periodis gaormageba, e.i. subharmonikis generacia.
57
nax.3-ze
mocemulia
bifurkacia
spiralidan
zRvrul ciklebze. dasmuli amocana gadavwyvitoT sistemis aRmweri gantolebebis amoxsniT erTi parametris cvlilebis miRebuli
dros. Sedegebi
es
ki
iZleva
ganzogaddes
saSualebas, da
rom
xelmisawvdomi
gaxdes sxvadasxva msgavsi sistemebis kvlevisaTvis [34]. hopfis bifurkaciuli Teorema organzomilebiani sistemisaTvis ( R ) Camoyalibdeba Semdegnairad: 2
vTqvaT, funqcia cirebadi
f1 da f 2 4-jer maincaa diferen-
TiToeuli
argumentis
mixedviT
da
f 1 (0.0.4) = f 2 (0.0.4) = 0 yvela namdvili η -Tvis. CavTvaloT, rom 1)
d [Re λ (η )]<0 > 0 , maSin: dη
arsebobs 2-jer diferencirebadi η , ( −ε , ε ) → R . is,
rom sawyisi wertili ( X ,0,η ( X 1 )) Zevs 2π X (η ) peri0
0
odian Caketil traeqtoriaze, romlis radiusic izrdeba ise, rogorc 2)
η , roca X 10 = 0 , η (0) = 0 .
arsebobs (0,0,0) wertilis V are R -Si, ise, rom 3
nebismieri Caketili traeqtoria U areSi aris zemoT miTiTebuli saxis erT-erTi Caketili traeqtoria. 3)
Tu `0~ wertili atraqtoria, roca η = 0 . maSin
η ( X 10 ) > 0 yvela X 10 ≠ 0 -Tvis da Caketili traeqtoriebi miizidebian. R sistemaSi Caketil traeqtoriad iTvle2
ba nebismieri X , akmayofilebs X (t ) = X (t + T ) = X pi*
58
robas nebismieri T > 0 droisaTvis. wonasworobis wertilebi Caketili traeqtoriebia. hopfis TeoriiT η -s 0-dan daSorebisas traeqtoriebma SeiZleba Seicvalon qcevebi,
rac
damokidebulia
iakobis
matricis
sakuTari
koordinatTa mniSvnelobis
saTaveSi namdvili
nawilis sidideze. pirveli piroba niSnavs koordinatTa saTaveSi bifurkacias gansazRvrul radiusian Caketil traeqtoriaSi
(~ η ) . rodesac η = 0 , maSin wertili iqneba
mimzidveli. xolo sawyisi traeqtoriebi, warmoSobili fiqsirebuli wertilebidan, Tavad miizidaven.
2.3 hopfis bifurkacia erTgeneratoriani sistemisTvis erTgeneratoriani sistema warmovidginoT Semdegi saxiT:
dS = K (sin δ * − sin(δ * + Δδ * )) , dt
(2.4)
dΔS = S (t ) . dt wonasworoba ganisazRvreba Semdegnairad:
S (t ) = 0 ; K (sin δ * − sin(δ * + Δδ * )) = 0 ,
59
(2.5)
(0,0 + 2πk ) wertili wonasworobis wertilia. gamovikvlioT (0,0) wertili. gardaqmnebis Sedegad miviRebT [26,34]:
dS ΔS =S = K cos δ * Δδ * , dt dt
(2.6)
nax. 4 gadagvarebuli kvanZi anu aramdgradi wonasworoba
60
nax. 5 mdgradi kvanZi
nax. 6 aramdgradi mdgomareoba
61
nax. 7 neitralurad mdgradi mdgomareoba
anu matriculi saxiT ( S , Δδ ) = t
d ⎡ S ⎤ ⎡0 − K cos δ * ⎤ ⎡ S ⎤ = ⎥ ⎢Δδ ⎥ . 0 dt ⎢⎣ Δδ ⎥⎦ ⎣⎢1 ⎦⎣ ⎦ λ -s
(2.7)
mimarT maxasiaTebel gantolebas aqvs saxe:
det
−λ 1
− K cos δ * =0 −λ
(2.8)
anu λ − k cos δ = 0 ; 2
aqedan λ1 =
*
k cos δ * , λ2 = k cos δ *
radiusi iqneba
λ1 = λ2 .
k . maSin gveqneba oTxi SemTxveva:
1. k > 0 ; λ1 = λ2 > 0 - gadagvarebuli kvanZi – aramdgradi wonasworoba. amonaxsns aqvs saxe (nax. 4): 62
S (t ) = c2 e − λt , Δδ (t ) = ce − λt . 2. k > 0 ; λ1 = λ2 < 0 - mdgradi kvanZi – amonaxsns aqvs saxe:
S (t ) = C1e − λt , Δδ (t ) = −C 2 e − λt da isini akmayofileben (2.5) gantolebas (nax. 5). 3. k = 0 ; λ1 = λ2 = 0 - aramdgradi mdgomareoba. (nax. 6). zogad amonaxsns aqvs saxe:
Δδ = C1 + C 2 t ; S = C 2 ; 4.
K < 0;
λ1 = −λ2
kompleqsuri
fesvebia.
miviRebT
cikls – neitralurad mdgradi mdgomareoba (nax. 7). e.i,
roca
k > 0,
gvaqvs
wonasworobis
mdgradi
mdgomareoba (nax. 5). k = 0 -is dros _ aramdgradi (nax. 6). roca k < 0 _ sistema gadadis rxevis reJimSi. is ar aris mdgradobis dakargva, anu hopfis bifurkacia. urTierTdamikidebuleba S-sa da Δδ -s Soris yvela SemTxvevisaTvis
gamosaxulia
(danarTi).
63
egm-ze
modelirebiT
2.4 hopfis bifurkacia orgeneratoriani energosistemisaTvis orgeneratoriani sistema aRiwereba Semdegi gantolebaTa sistemiT: dS1 E1 E2 I12 = [sin(δ *1 − δ *2 ) − sin(δ *1 + Δδ *2 − δ *2 )] + dt I1 E UI + 1 1U [sin δ *1 − sin(δ *1 + Δδ1 )] − T1S1 I1
(2.9)
dS 2 E1 E2 I12 = [sin(δ *1 + Δδ *1 − δ*2 − Δδ*2 ) − sin(δ*1 − δ*2 )] + dt I2 E1UI1u [sin δ*2 − sin(δ*2 + Δδ*2 )] − T2 S2 . I2
(2.10)
SemovitanoT aRniSvnebi:
E UI E1 E2 I 12 = K 1 ; 1 1U = K 2 ; I2 I1
(2.11)
E UI E1 E 2 I 12 = K 3 ; 1 1U = K 4 . I2 I1 Tu (2.11) aRniSvnebs SevitanT (2.9)-Si, miviRebT:
dS1 = K1 [sin(δ*1 − δ*2 ) − sin(δ*1 + Δδ*1 − δ*2 + Δδ*2 )] + dt K2 [sinδ*1 −sin(δ*2 +Δδ*1)] −TS 1 1;
(2.12) (2.12)
dS2 = K3 [(δ *1 + Δδ1 − δ *2 − δ 2 ) − sin(δ *1 - δ *2 )] + dt K4 [sinδ*2 − sin(δ*2 + Δδ*2 )] − T2 S2 . aRvniSnoT
dΔδ 1 d Δδ 2 = S2 = S1 dt dt 64
(2.13)
wonasworebis wertili iqneba:
( S1 , Δδ 1 , S 2 , Δδ 2 ) = (0,0,0,0)
(2.14)
da am wertilis areSi sistemas eqneba saxe:
dS1 = − K 1 ⋅ cos(δ *1 − δ *2 )Δδ 1 − K 2 ⋅ cos(δ *1 )Δδ 1 − T1 S1 + dt K 1 cos(δ *1 − δ *2 )Δδ 2 ;
(2.15)
dS 2 = − K 3 cos(δ *1 − δ *2 )Δδ 2 − K 4 ⋅ cos(δ *2 )Δδ 2 − T2 S 2 − dt K 3 cos(δ *1 − δ *2 )Δδ 2 . veqtoruli
saxiT
( S1 , Δδ 1 , S 2 , Δδ 2 ) -Tan
mimarTebaSi
sistema Caiwereba Semdegi saxiT:
⎡ S1 ⎤ ⎡−T −K(δ −δ )+K cos(δ ) 1 *1 *2 2 *1 ⎢Δδ ⎥ ⎢ 1 0 ⎢ 1⎥ ⎢ 1 ⎢ S2 ⎥ =⎢−T K3(δ*1 −δ*2) ⎢ ⎥ ⎢ 2 ⎢Δδ ⎥ ⎣ 0 1 ⎣ 2⎦
K3(δ*1 −δ*2) ⎤ ⎡ S1 ⎤ ⎥ ⎢Δδ ⎥ 0 ⎥×⎢ 1⎥ 0 −K3(δ*1 −δ*2)+K4 cos(δ*2)⎥ ⎢ S2 ⎥ (2.16) ⎥ ⎢ ⎥ 0 0 ⎦ ⎢⎣Δδ2⎥⎦ 0 0
aqedan, maxasiaTebel gantolebas eqneba saxe:
K1 (δ*1 −δ*2 ) ⎡−T1 − λ − K1 (δ*1 −δ*2 ) + K2 cos(δ*1 ) 0 ⎤ ⎢ 1 ⎥ 0 0 0 ⎢ ⎥= − λ − K3 cos(δ*1 −δ*2 ) + K4 cos(δ*2 )⎥ K3 (δ*1 −δ*2 ) ⎢−T2 − λ ⎢ ⎥ −λ 1 1 ⎣ 0 ⎦
⎡− T1 − λ ⎢ 1 = −λ × ⎢ ⎢ − T2 ⎢ ⎣
− K 1 (δ *1 − δ *2 ) + K 2 cos(δ *1 ) 0 −λ 0 −λ K 3 (δ *1 − δ *2 )
65
⎤ ⎥ ⎥− ⎥ ⎥ ⎦
−T1 −λ −K1 cos( δ*1 −δ*2 ) +K2 cos(δ*1) − 1 −T2 3× 3
−λ K3 cos( δ*1 −δ*2 )
δ*1 −δ*2 ) K1 cos( 0
(2.17)
−K3 cos( δ*1 −δ*2 ) −K4 cos(δ*2 )
determinantis amoxsniT da gamartivebiT miviRebT:
λ4 + T1λ3 + λ2 ( K 1 cos(δ *1 − δ *2 )) + K 2 cos(δ *1 ) + K 3 cos(δ *1 − δ *2 ) − − K 4 cos(δ *2 ) + λ (T1 + K 3 cos(δ *1 − δ *2 ) + T2 cos(δ *1 − δ *2 )) − − K 3 cos(δ *1 − δ *2 ) ⋅ K 1 cos(δ *1 − δ *2 ) + ( K 1 cos(δ *1 − δ *2 )) + + K2 cos(δ *1 ) ⋅ (K3 cos(δ *1 − δ *2 ) + K4 cos(δ *2 )) = 0
(2.18)
Tu miRebuli maxasiaTebeli gantolebis amoxsnis Sedegad K 1 , K 2 , K 3 , K 4 , mniSvnelobebs aRmoaCndaT wyvili SeuRlebuli kompleqsuri fesvebi, sistemaSi adgili eqneba hopfis bifurkacias, e.i. egm-ze modelirebiT fazur sibrtyeze miviRebT zRvrul ciklebs, romelTac fazur sivrceSi Seesabameba tori (nax. 8). upirvelesad ganvixiloT mTlianad es sistema analizurad. gavarkvioT, parametrebis mocemuli mniSvnelobebis dros maxasiaTebeli gantoleba iZleva Tu ara kompleqsur fesvebs. Semdgom is amovxsnaT egm-is saSualebiT da miviRoT fazuri portreti:
dS 2 = − XΔδ 1 + X 2 Δδ X 2 − T1 S1 + X 1 Δδ 2 ; dt
d (Δδ 1 ) = S1 ; (2.19) dt
d ( Δδ 2 ) dS 2 = S2 . = − X 3 Δδ 1 − X 4 ΔδX 2 − T2 S 2 + X 1 Δδ 2 ; dt dt 66
sadac
X 1 = K 1 cos(δ *1 − δ *2 ); X1 = K 2 cos(δ*1 ); X 3 = K 3 cos(δ *1 − δ *2 ); X 4 = K 4 cos(δ *2 );
⎡ S1 ⎤ ⎡− T ⎢ Δδ ⎥ ⎢ 1 ⎢ 1⎥ ⎢ 1 ⎢S2 ⎥ = ⎢ 0 ⎢Δδ 2 ⎥ ⎢ ⎢ ⎥ ⎣ 0 ⎣ ⎦ ⎡ −T − λ ⎢ 1 ⎢ ⎢ 0 ⎢ ⎣ 0
− X1 − X 2 0 X3 0
−( X 1 − X 2 )
0
−λ X3
0 −T2 − X
0
1
S X1 0 ⎤ ⎡ 1 ⎤ ⎥ ⎢ Δδ1 ⎥ O( −T2 ) 0 ⎥ × ⎢S2 ⎥ ⎥ − T2 − X3 − X4⎥ ⎢ ⎥ ⎢Δδ 2 ⎥ 1 0 ⎥ ⎦ ⎢⎣ ⎦ ⎤ ⎥ 0 ⎥ = 0, ⎥ ( X X ) − 3− 4 ⎥ −λ ⎦ X1
0 ⎡− (T1 + λ ) − ( X 1 + X 2 ) ⎢ −λ 1 0 ⎢ −λ − (T2 − λ ) X3 ⎢ 0 ⎢ ⎣ ⎡T1 + λ ⎢ 1 −⎢ ⎢ 0 ⎢ ⎣
(2.20)
− (X1 + X 2 ) X1 −λ 0 X3 − (X 3 + X 4 )
⎤ ⎥ ⎥− ⎥ ⎥ ⎦ ⎤ ⎥ ⎥=0 ⎥ ⎥ ⎦
λ [λ (T1 + λ )(T2 + λ ) + ( X 1 + X 2 )(T1 + λ )] + + λ (T1 + λ )( X 3 + X 4 ) − X 1 X 3 + ( X 1 + X 2 )( X 3 + X 4 )
λ 4 + bλ 3 + C λ 2 + dλ + e = 0 b = T1 + T2
(2.21)
c = T1 + T2 + X 1 + X 2 + X 3 + X 4 67
d = ( X 1 + X 2 )T2 + ( X 3 + X 4 )T1
e = X1X 4 + X 2 (X 3 + X 4 )
nax. 8 orgeneratoriani sistemis fazuri tori
mivaniWoT parametrebs mniSvnelobebi, CaTvaloT, rom
T1 = 10 da T2 = 5 da amovxsnaT miRebuli maxasiaTebeli gantoleba:
X 1 = K 1 cos(δ *1 − δ *2 ) = 0,3 ⋅ 0,9801 = 0,2940
X 2 = K 2 cos(δ *1 ) = 0,44 ⋅ 0,6216 = 0,2735 X 3 = K 3 cos(δ *1 − δ *2 ) = 0,4 ⋅ 0,9801 = 0,3920 X 4 = K 4 cos(δ *2 ) = 0,66 ⋅ 0,7648 = 0,5048 b=15; C=50+0,2940+0,2735+0,3920+0,5048=1,4643
d = (0,2940 + 0,2735) ⋅ 5 + (0,3920 + 0,5048) ⋅ 10 = 11,8055 e = 0,2940 ⋅ 0,5048 + 0,2735 ⋅ (0,3920 + 0,5048) ⋅ 0,3937 (2.9) gantolebis fesvebi emTxveva 68
bY − d λ λ2 + (b + a ) + Y1 + =0 2
(2.22)
a
kvadratuli gantolebis fesvebs, sadac
a = ± 8Y1 + b 2 − 4c
(2.23)
xolo Y1 akmayofilebs gantolebas:
8Y13 − 4Cy 2 + (2bd − 8e)Y1 + e(4C − b 2 ) − d 2 = 0 da es gantoleba kuburi gantolebis namdvili fesvia. (2.22) ase gadavweroT:
(2.24) romelime
a0 X 3 + b0 X 2 + C 0 X + d 0 = 0
sadac
X = Y1 ;
a0 = 8 ;
(2.25)
b0 = −4C = −205,86 ;
C 0 = 2bd − 8e = 351,015 ; d 0 = e(4C − b 2 ) − d 2 = −146,9052 . Tu
(2.25)-s
gavyofT
a0 -ze
da
SemovitanT
axal
cvladebs Semdegi saxiT:
Y=X+
b0 = Y1 − 8,5775 , 3a0
(2.26)
miviRebT Semdegi saxis kubur gantolebas:
Y 3 + 3PY + 2q = 0
(2.27)
sadac
C0 b02 P= − 2 = −58 = 9485 3a 0 9d 0 b03 b0 C 0 d 0 q= − + = 451,9653 27 a 03 6a03 2a0 (2.27)
gantolebis
diskriminanti
D = q + p = −1075 <0.
radgan D<0, amitom mocemul gantolebas sami namdvili fesvi aqvs. erT-erTi maTgani Semdegi saxisaa: 69
ϕ
Y = 2r cos , 3 sadac r = −
cos ϕ = cos
ϕ 3
(2.28)
p = − 58,9485 − 7,6778;
q − 451,9653 = = 0,9977; r 3 − 452,9902
= cos10 20 ' = 0,9977;
ϕ = arccos 0,9977 = 4 0 ,
Y = 2 ⋅ 7,6778 ⋅ 0,9977 = 15,351
(2.26)-is Tanaxmad
Y1 = Y + 8,5775 = 15,351 + 8,5775 = 23,9285 (2.25)-is mixedviT
a = ± 191,428 + 225 − 205,86 = 14,511;
b + a1 = 14,7555 , 2
b + a2 = 14,7555 2
(2.29)
Y1 +
br − d = 47,8498 , a1
Y1 +
br − d = 0,037 a2
(2.20)-sa da (2.25)-is Tanaxmad gvaqvs ori gantoleba:
λ2 + 14,7555λ + 47,8498 = 0
(2.30)
λ2 + 0,2445λ + 0,0370 = 0
(2.31)
(2.30)-Tvis miviRebT:
λ1, 2 = −7,3778 ± 2,5655 xolo (2.31)-Tvis
λ3, 4 = −0,1223 ± i × 0,1483 amgvarad miviRebT Semdeg mniSvnelobebs: 70
λ1 = −4,8123; λ2 = −9,9433; λ3 = −0,1223 + 0,1483i; λ4 = −0,1223 − 0,1483i; zogadi amonaxsni romelime cvladi sididisaTvis Caiwereba Semdegnairad: ξ = ξ1eλ t + ξ1e λ t + ξ1e λ t + ξ1eλ t = 1
2
3
4
= ξ1e 0 , 0012 t ⋅ ξ1e −50 , 0044 t ⋅ ξ1e −0 , 0034 t ⋅ ξ1e −0 , 0034 t ⋅ ξ1e −1, 064 it = = ξ1e −0 , 0012t + ξ1e −50 , 0044t + ξ1e −0 , 003425t ⋅ (cos1,064t + i sin 1,0641t ) +
+ ξ 1 e −0 , 0034 t (cos1,0641 − i sin 1,064t ) t=0
(2.32)
momentSi miviRebT Semdeg gantolebebs:
ξ = X1;
dξ = X 2; dt
d 2ξ = X 3; dt
dξ = X 4. dt 3
(2.33)
amrigad, roca sistemis maxasiaTebel gantolebas namdvil fesvebTan erTad aqvs kompleqsuric, maSin masSi mosalodnelia harmoniuli rxevebis arsebobac, romlebsac fazur sivrceSi zRvruli zedapiri anu ciklebi Seesabameba. analiზუri gamokvlevebidan Cans, rom am dros orgeneratorian sistemaSi miiReba hopfis bifurkacia.
71
2.5 hopfis bifurkacia samgeneratoriani sistemisaTvis imisaTvis,
rom
bifurkaciis
vaCvenoT
Teorema
sixSiruli
mZlavri
areebis
hopfis
eleqtrosistemebisaTvis,
gamoviyenoT igi samgeneratoriani sistemisaTvis. gantolebebi gadavweroT Semdegi saxiT:
1 + 2D12 sin(θ1 ) + D23 sin(θ1 −θ2 ) + D13 sin(θ2 ) + Q
(1)
C23 cos(θ1 −θ2 ) −C13 cos(θ2 ) = ΔP1
(2.34)
1 + 2D13 sin(θ2 ) + D23 sin(θ2 −θ1 ) + D12 sin(θ1 ) + Q
()
C23 cos(θ 2 − θ1 ) − C12 cos(θ1 ) = ΔP2 sadac
P1
da
(2.35)
θ1 = δ 2 − δ 1 ;θ 2 = δ 3 − δ 1 ; ΔP1 = P2 − P1 ; ΔP2 = P3 − P1 ; Sesabamisad
aRniSnavs
manqanur
kuTxes
δ1 da
simZlavres. SeiZleba
ganisazRvros
parametrebis
mniSvnelo-
bebis jgufi, romlebic Seesabameba bifurkaciis wertilebs konservatiul sistemaSi da miiReba hopfis bifurkaciis indikatori. bifurkaciis am wertilisaTvis parametrebis mniSvnelobebi mocemulia cxrilSi: Dcxrili C12 C13 C
D12 D23
0
1
0
2
D13
ΔP1
ΔP2
P1
θ1
θ2
0,577 0,577 4,042 2,887 -1,155 1,047 0,523
dempfirebis damatebis Semdeg (2.34), (2.35) gantolebebi daiyvaneba I rigis gantolebaze, sadac 72
I ⎤ ⎡θ ⎤ ⎡0 ⎡0 ⎤ X = ⎢ ⎥; A = ⎢ ; ; C = [I B = ⎥ ⎢ ⎥ ⎣θ ⎦ ⎣0 − λI ⎦ ⎣I ⎦
0],
⎡P −η − 2D12 sin(θ1 ) − D23 sin(θ1 −θ2 ) − D13 sin(θ2 ) − C23 cos(θ1 −θ2 ) + C13 sin(θ2 )⎤ g(x,η) = ⎢ 2 ⎥ ⎣P3 −η − 2D13 sin(θ2 ) − D23 sin(θ2 −θ1 ) − D23 sin(θ1 ) − C23 cos(θ2 −θ1 ) + C13 sin(θ1 )⎦
η = P1
(2.36) (2.34), (2.35) unda gardavqmnaT ukugadacemis eqvivalentur sistemad:
X = AX + BRY + B[( g ,η ) − RY ]; Y=CX
(2.37)
sadac
L(e) = G ( S ,η ) ⋅ L(U ) G ( S ,η ) = C [SI − ( A + BRC )] β −1
(2.38)
u = ƒ (e,η ) = g (−e,η ) − RY Tu R=1, raTa ar iyos naikvistis konturze erTgvarovneba, maSin miviRebT:
1 ⎡ ⎤ 0 ⎢ 2 ⎥ G ( S ) = ⎢ S + YS − 1 ⎥ 1 0 ⎢ ⎥ ⎣ S 2 + YS − 1⎦
f (e,η ) = g (−e,η ) + e iakobiani J=Detƒ iqneba:
⎡γ + z Detf = ⎢ ⎣β − Y
β +Y⎤ γ − z ⎥⎦
γ = D12 cos(e1 ) + D13 cos(e2 ) + D23 cos(e1 − e2 ) + 1; 73
(2.39)
Z = D12 cos(e1 ) + D13 cos(e2 ) + D23 sin(e1 − e2 ),
(2.40)
β = − D23 cos(e1 − e2 ) + [ D12 cos(e1 ) + D12 cos(e2 )] 2 + [C12 sin(e1 ) + C13 (e2 )] 2; Y = [ D13 cos(e2 ) − D12 cos(e1 )] 2 + C13 sin(e1 − e2 ) + [ −C12 sin(e1 ) + C13 (e2 )] 2. (2.41)
amgvarad,
⎡α + z 1 G(S ) ⋅ J = 2 S + YS − 1 ⎣⎢ β − Y G ( jϖ ) ⋅ J
β +Y⎤ α − z ⎥⎦
(2.42)
funqciis maxasiaTebeli gantoleba iqneba:
(ϖ 2 + 1) + JϖY λ ( jϖ ) = − α ± z + β − y 4 ϖ (2 + Y )ϖ 2 + 1
[
]
(2.43)
naTelia, rom naxevarnormaluri polusi gansazRvruli smit-makmilanis [S] formiT, aris gaxsnil maryuJze gadaadgilebis funqcia. G ( S ) ⋅ J matrica iqneba [34]:
P ( S ) = ( S 2 + TS − 1)
(2.44)
Tu CavsvavT parametrebis mniSvnelobebs cxrilidan, roca Y=0,05, es sakmarisi iqneba saangariSod da egm-ze modelirebisaTvis, radgan bifurkaciis parametri P1 icvleba misi kritikuli mniSvnelobisas. roca dempfirebis
mniSvneloba
Y=0,05 da P1-is
kritikuli
mniSvneloba daZrulia – 1,1551-dan daaxloebiT – 1,146mde.
P1<-1,146 –
Tvis
maxasiaTebeli 74
Semowers
(-1,50)
wertils
orjer
da
aRwevs
mdgrad
mdgomareobas.
Tavidan ki grafiki miiswrafis am wertilisaken, e.i. sistema
konvergirebs
wonasworobisaken,
rxevebis
sixSiriT 1,2 rad/wm. (nax.9)
nax.9 samgeneratoriani sistemis moZraoba wonasworobisken
Tu
P1 gadis
kritikul
mniSvnelobas,
traeqtoria
gaivlis (-1,50) wertilze, magram ar emTxveva mas, e.i. aRwers aramdgrad sistemas. es aris is SemTxveva, roca
75
nax.10 gardamavali procesis grafiki samgeneratoriani sistemisTvis
nax.11 samgeneratoriani sistemis saxe fazur sibrtyeze
76
fesvebi kveTen warmosaxviT RerZebs. sistemaSi adgili aqvs hopfis bifurkacias.
nax.12 n â&#x20AC;&#x201C; ganzomilebiani tori
roca
P1=-1,144,
maSin
sistema
miiswrafis
wonas-
worobisaken. Tu P1=-1,145, maSin sistema aRwevs wonasworobas da sabolood, roca P1=-1,146, sistemaSi aqac adgili aqvs hopfis bifurkacias. am eqsperimentis gardamavali procesis grafiki da fazur
sibrtyeze
misi
(nax.11), xolo (nax.12)-ze
saxe
mocemulia
(nax.10)
da
ki - eqsperimentis saboloo
Sedegebi: n-ganzomilebiani tori. 77
3. qaosi energosistemebSi 3.1 saerTo cnobebi qaosis Sesaxeb qaosi dinamikur sistemebSi â&#x20AC;&#x201C; es aris erT-erTi ZiriTadi problema rxevebis arawrfivi Teoriisa. kvlevebi am mimarTulebiT mimdinareobs rogorc ricxviTi, aseve naturaluri eqsperimentebiT. rxeviT sistemaSi moZraobis xasiaTis Sesaswavlad da
atraqtoris
arsebobis
dasadgenad
gamoiyeneba
Semdegi meTodebi; 1) gamosakvlevi diferencialuri gantolebis ricxviTi integrireba gardamavali procesis uaryofiT.
nax. 13. atraqtoris reJimSi momuSave arawrfivi generatoris gardamavali procesi
78
inerciuli
Sedegad vRebulobT erT an ramdenime X(t) fazuri cvladis droSi cvlilebis suraTs. (nax. 13.)-ze mocemulia atraqtoris reJimSi momuSave arawrfivi inerciuli generatorisaTvis zemoT aRniSnuli droiTi realizacia [34]: 2) furies gamokvleva. xorcieldeba miRebuli rxevebis speqtrebiT, an naturalur eqsperimentebSi speqtr-analizatoris gamoyenebiT, an kidev gantolebis integrirebiT egm-ze specialuri programiT da furies swrafi gardaqmniT. sistemaSi
rxevebis
evoluciisas
periodulidan
qaosurisaken, erTi an ramodenime mmarTveli parametris cvlilebisas, speqtrSi SeiZleba davakvirdeT harmonikebis doneebis zrdas, Semdeg ki subharmonikebis warmoSobas (rxevebis periodis bifurkacia) da qaosis dros Cndeba sruli speqtri, romelSic Cans sistemis maxasiaTeblebi. 3) qaosuri rxevebis korelaciuri funqciis kvleva. viner-xinCinis arsebobisas,
Teoremis
nebismieri
ZaliT
sruli
cvladisaTvis
speqtris miiReba
korelaciis funqciis daRmavali xasiaTi [34]. 4) dadebiTi entropia dinamikur sestemebSi. igi
iTvleba
qaosis
erT-erT
kriteriumad,
romelic axasiaTebs fazuri traeqtoriebis saSualo siCqares atraqtorSi: 79
K = lim lim ε →0 t →∞
M (ε , t ) , t
(3.1)
sadac, ε - gazomvis cdomilebaa, t – dakvirvebis dro, M – traeqtoriebis maqsimaluri ricxvi, romelTa Soris manZilic metia K-ze. e.i. Tu traeqtoriebi mdgradia liapunovis mixedviT, anu axlo mdebare sawyisi gamomsaxvelebi ar Sordebian erTmaneTs, maSin K=0. 5) dispersiis D = ( X − X ) 2
2
gansazRvra da histogra-
mebis ageba. es xorcieldeba, maSin, roca atraqtori ikveTeba sibrtyesTan, romelsac puankares sibrtye ewodeba. am dros
mmarTveli
fazuri rxevebis
parametris
sivrcis
zomebis
evoluciis
cvlilebisas
1-iT
suraTis
Semcireba miReba
SeiZleba da
masze
periodulidan
qaosuramde. am dros SeiZleba sivrculi da droiTi diskretizaciis ganxorcieleba [1,5,26,34]. winamdebare samuSaoSi gamoyenebuli maqvs droiTi diskretizacia, radgan is sivrculi diskretizaciisagan
gansxvavebiT
amartivebs
dasmuli
problemis
gadaWras. ganvixiloT
ε
droiTi diskretizacia, rodesac
xdeba gadasvla uwyveti droiTi dinamikuri sistemidan: X=F(X), F : R → R , F ∈ C ( R ) d
gardasaxvaze
d
2
d
(3.2)
f ∈: R d . sainteresoa, Tu ramdenad inar-
Cunebs mocemuli (3.2) sistema Tavis ZiriTad maxasi80
aTeblebs sakmaod mcire diskretizaciis dros. kargadaa cnobili diferencialuri gantolebebidan asaxvaze
gadasvlis
zusti
meTodebi:
esaa
ε
droiT
traeqtoriaze Zvris operatori da puankares asaxva raRac zedapiris mimarT, romelic transversaluria sistemis traeqtoriebTan. praqtikaSi gamoyenebulia droiTi diskretizaciis Semdegi miaxloebiTi meTodebi: eileris, centraluri sxvaobebis, Stermeris meTodebi da a. S. sivrculi diskretizaciisagan gansxvavebiT, sadac tipiur efeqts warmoadgens aramdgradi ciklebis stabilizacia-stoqastikurobis daSla, droiTi diskretizaciisas SesaZlebelia qaosurobis gaCena. davuSvaT, (3.2) sistemas aqvs ori gadaugvarebeli uZravi wertili, romelTa Sorisac erT-erTi aramdgradia. maSin eileris meTodiT diskretizaciisas anu
fε ( X ) = X + εF ( X ) iseTi
ε0 > 0 ,
rom
asaxvaze
gadasvlisas,
ε > ε0
yvela
moiZebneba
diskretizirebuli
sistema qaosuria li-iorkes mixedveT. erT-erT warmogvidgeba zaciis ε
ZiriTad is,
rom
naklovanebad
am
qaosuroba
Cndeba
SemTxvevaSi diskreti-
parametris mxolod sakmaod didi mniSvne-
lobisas, romlis drosac gansakuTrebuli wertilebis tipi SeiZleba gansxvavdebodes sawyisi sistemisagan. am
81
naklovanebis
nawilobrivi
acileba
SeiZleba
Semdegnairad: vTqvaT
d=1,
F(X)=X(1-X),
maSin
centraluri
sxvaobebiT diskretizaciis dros, e.i. organzomilebian asaxvaze f (ε (U , V )) = (V + 2εF (U ), U ) gadasvlisas, nebismieri ε > 0 -Tvis, diskretizirebuli sistema qaosuria li-iorkes mixedviT. geometriuli TvalsazrisiT, am dros nebismieri
ε > 0 -Tvis (1,1) wertilis mdgradi da aramdgradi mravalsaxeobebi transversalurad ikveTebian Sesabamisad aramdgrad
da
mdgrad
(0,0)
wertilis
mravalsaxeo-
bebTan, rac iwvevs qaoss. magram am dros diskretul droiTi sistema mniSvnelovnad gansxvavdeba sawyisi sistemisagan sevrcis
ZiriTadi
ganzomileba,
maxasiaTeblebiT gansakuTrebuli
(fazuri
wertilebis
tipi a.S.) egm-ze modelirebiT SeiZleba gamovikvlioT qaosis Casaxva energosistemebSi. ricxviT analizs safuZvlad udevs sxvadasxva sqemebi, amitom es gvaiZulebs diferencialuri gantolebebidan gadavideT sxvaobiTi saxis
gantolebebze.
sistemis
moZraobis
diskretuli
gantoleba iZens stoqastikurobas nebismieri diskretizaciisas, roca ki sawyisi gantoleba zustad integrirdeba. es niSnavs, rom diskretul gantolebebze
82
gadasvla
eqvivalenturia
gareSe
perioduli
Zalis
damatebisa. ganvixiloT energosistemebSi qaosis Casaxva da ganviTarebis procesi. qaosuri moZraoba ganvixiloT, rogorc
fazuri
traeqtoriebi
sibrtyeze,
romlis
RerZebad arCeulia: dadgenili reJimebidan gadaxris kuTxe
da
Sesabamisi
sriali.
es
traeqtoriebi
miRebulia samganzomilebiani sivrcis kveTiT, romlis mesame RerZad miRebulia integrirebis
bijis sidide.
es ukanaskneli asrulebs gareSe perioduli Zalis da mmarTveli parametris rols. n-generatorebisaTvis
kvlevis
obieqti
Caiwereba
Semdegi saxiT: n dS i Ii = −∑ Ei E j Yij cos(δ *i − δ * j ) ⋅ sin( Δδ i − Δδ j ) + j =1 dt j ≠1 n
+ ∑ Ei E j Yij sin(δ *i − δ * j ) × [1 − cos(Δδ i − Δδ j )], j =1 j ≠1
dΔδ i = Si dt
(3.3)
sadac I – eleqtruli manqanis inerciis mudvivaa; δ * mocemul
reJimSi
kvanZis
sididea;
Δδ
-
mocemuli
mniSvnelobebidan gadaxris kuTxis sididea; E – generatorebis emZ; Y – ganStoebebis urTierTgamtaroba; S – sriali.
83
ganvixiloT usasrulo
erTgeneratoriani
simZlavris
salte”,
_
“generatori-
orgeneratoriani
da
samgeneratoriani sistemebi.
3.2 qaosi erTgeneratorian energosistemaSi erTgeneratoriani sistemebisaTvis moZraobis gantolebas sistemaSi `generatori-usasrulo simZlavris salte” konservatiuli idealizaciisaTvis eqneba saxe (nax. 14):
I
dS = − EUY cos δ * sin Δδ + EUY sin δ * (1 − cos Δδ ). dt
(3.4)
nax. 14 `generatori-usasrulo simZlavris salte~ -s bloksqema mocemuli modelisaTvis liapunovis funqcias eqneba saxe [34]:
1 V = IS 2 + EUY cosδ * (1 − cos Δδ ) − EUY sinδ * (1 − cos Δδ ) 2 84
(3.5)
sistemaSi `generatori-usasrulo simZlavris salte” SemovitanoT aRniSvna: EUY=A SeSfoTebaze
miRebuli
(3.6)
SezRudvis
gaTvaliswinebiT
miviRoT, rom S=0, saidanac,
V = A cos δ* (1 − cos Δδ ) − A sin δ* (Δδ − cos Δδ ) qaosis
Sesaswavlad
erTgeneratorian
sistemaSi,
gardavqmnaT (3.4), miviRebT:
dS EUY = (sin δ * − sin(δ * + Δδ )) . dt I (3.7)-is debiT,
amonaxsni
droisa
da
ganvixiloT fazuri
(3.7)
grafikuli
parametrebis
meTo-
damokide-
bulebaSi. am dros unda dadgindes mdgradobis sazRvrebi
kuTxis
maCvenebliT,
zRvruli
ciklebisa
da
romelic
atraqtorebis
dgindeba
bifurkaciis
ierarqiiT. (3.7) warmovadginoT Semdegi saxiT: dS EUY EUY = (− cos δ * sin Δδ + sin δ * − sin δ * sin Δδ ) = (sin δ * − sin(δ * + Δδ )); dt I I
δ * =DD;
EUY =K; Δt =T; I
Δδ =D;
Sn +1 − Sn EUY = (sin δ* − sin(δ* + Δδ n )); Δt I
S n +1 = S n + Δt
EUY (sin δ * − sin(δ * + Δδ n )); I
S n +1 = S n + TK
EUY (sin δ * − sin(δ * + Δδ n )); I 85
(3.8)
Δδ n +1 + Δδ n = Sn +1. Δt
Δδ n +1 = Δδ n + TSn +1 ; S n +1 = S n + TK (sin δ * − sin(δ * + Δδ n ));
(3.9)
gantoleba
mixedviTac
avage
warmoadgens fazuri
algoriTms,
portreti
(3.9) romlis
amocanis
dis-
kretizaciiT. programa uzrunvelyofs fazuri portretebis agebas sawyisi pirobebis cvlilebisas. sawyisi pirobebi programis tanSi icvlebian ciklSi (nax. 15). fazuri portretebidan Cans, rom sistemis moZraobis diskretuli analogi iZens stoxasturobis ubans T(s) diskretizaciis nebismier bijze. am dros sawyisi gantoleba zustad integrirdeba. es niSnavs, rom gadasvla moZraobis diskretul gantolebebze (3.9), eqvivalenturia gare perioduli Zalis damatebisa, romelic ganpirobebulia diskretizaciiT. nax. 15-18 naCvenebia, Tu sad Cndeba qaosi sistemaSi `erTi generatori-usasrulo energiis salte” sxvadasxva parametrebis dros. aRwerili
dinamikuri
sistemis
konservatuloba
aRniSnavs, rom winaswari iteraciuli cikli Sualeduri mniSvnelobebis gamosaricxad, gardamaval reJimSi SeiZleba gamoitovos. yoveli gamoTvlili sistema warmoadgens Tavis sakuTar atraqtors. 86
EUY I
parametris nebismieri mniSvnelobis cvlile-
bebis Sedegad sistemas aqvs bevri orbita da konservatulobis Tvisebis Tanaxmad nebismieri sawyisi mniSvnelobebis wyvili S da
Δδ
iqneba wertilis warmom-
dgeni, romelicmdebareobs erT-erT orbitaze.
nax.15 qaosi sistemaSi - `erTi generatori-usasrulo energiis salte” (pirveli cikli)
87
nax.16 qaosi sistemaSi - `erTi generatori-usasrulo energiis salteâ&#x20AC;? (meore cikli)
nax.17 qaosi sistemaSi - `erTi generatori-usasrulo energiis salteâ&#x20AC;? (mesame cikli)
88
nax.18 qaosi sistemaSi - `erTi generatori-usasrulo energiis salteâ&#x20AC;? (meoTxe cikli)
aqedan
gamomdinare,
miziduloba
icvleba
myisi-
erad. parametrebis yoveli axali mniSvneloba iZleva axal sistemas. naxazebze 15 á 18 naCvenebia orbitebis mimdevroba, romelic agebulia (3.7) asaxvis gantolebiT, romlebsac aqvT Semdegi mniSvnelobebi: d=0,5; centridan
TandaTan
EUY I
=1; d*=0,5; T=0,8.
daSorebisas
Cans,
Tu
rogor
qmnian orbitebi budeebs Cakitili traeqtoriebiT. Semdeg uecrad Cndebian patara `kunZulebi~ _ calke or89
bitebi, romlebic arian did orbitebs Soris. centridan kidev ufro daSorebisas vnaxavT Tu rogor monacvleoben aseTi orbitis mqone ubnebi.
3.3. qaosi orgeneratorian energosistemaSi
ganvixiloT
orgeneratoriani
sistema
Jdanovis
modelis magaliTze. diferencialur gantolebas aseTi sistemisaTvis aqvs Semdegi saxe: 2 ⎤ Eq1 Eq2 dω1 1 3 ⎡ Eq1 J1 sin(δ12 − α12 )⎥ ; = TT1 − ⎢ sin α11 + dt Z12 ω1 2 ⎢⎣ Z11 ⎥⎦
2 ⎤ Eq1 Eq2 1 3 ⎡ Eq2 dω2 = TT 2 − + − sin α sin( δ α ) J2 ⎢ 22 12 12 ⎥ ; ω2 2 ⎢⎣ Z 22 dt Z12 ⎥⎦
() (3.10)
dδ12 = ω1 − ω2 . dt am modelis algoriTms eqneba Semdegi saxe: 2 ⎤⎤ Eq1 Eq2 T ⎡ 1 3 ⎡ Eq1 + − ω1i +1 = ω1i + ⎢TT 1 − α δ α sin sin( ) ⎢ 11 12 i 12 ⎥ ⎥ ; ω1i 2 ⎣⎢ Z11 J1 ⎢⎣ Z12 ⎦⎥ ⎥⎦
2 ⎤⎤ Eq1 Eq2 1 3 ⎡ Eq2 T ⎡ sin α22 + sin(δ 21i − α21 )⎥ ⎥ . ω2i +1 = ω2i + ⎢TT 2 − ⎢ J 2 ⎢⎣ Z21 ω2i 2 ⎢⎣ Z22 ⎥⎦ ⎥⎦
90
(3.11)
egm-is gamoyenebiT movaxdinoT (3.11)-is modelireba. am modelSi cvladebad aviRebT
ω , δ 12 , δ 21 . modelirebis
rezultatebidan Cans, rom fazuri portreti (nax. 19) gansxvavdeba liapunovis modelisagan. orgeneratorian sistemas miekuTvneba agreTve modeli, romelic
iyenebs
erTsixSirian
denebs
da
Zabvas
manqanis kvanZebsa da qselSi. diskretul - diferencialur gantolebas am modelisaTvis
aqvs
Semdegi
n d 2δ1n 2 T ji = PTi − Ei YijЭκ sin α ijЭκ − ∑ Ei E jYijЭκ sin(δ ij − α ijЭκ ) . dt 2 j =1
saxe: (3.12)
am gantolebas ori generatorisaTvis eqneba saxe:
d 2δ1n 2 T j1 P E = − 1 Y11Эκ sin α11Эk − E1 E2Y12 Эκ sin(δ12 − α12 Эk ) ; Ti 2 dt d 2δ1n Tj 2 = PT2 − E22Y22 Эκ sin α 22 Эk − E1 E2Y21Эκ sin(δ 21 − α 21Эk ) . (3.13) 2 dt am modelis modelirebis Sedegi mocemulia (nax. 20) – ze.
91
a)
b) nax. 19 orgeneratoriani energosistemis qaosis fazuri
portreti 92
a)
b) nax. 20 orgeneratoriani energosistemis qaosuri moZraobis moderirebis Sedegi kvanZebisa da qselisTvis
93
3.4. qaosi samgeneratorian energosistemaSi samgeneratorian sistemas agreTve uwodeben `ori generatori-usasrulo energiis salteebi” (nax. 21). gardamavali procesebi rTul eleqtromeqanikur sistemebSi mniSvnelovnad gansxvavdebian moZraobisagan erTgeneratorian sistemaSi. amitom zemoT miRebuli Sedegebi
SevamowmoT
garTulebul
samgeneratorian
sistemaze.
nax. 21 `ori generatori-usasrulo energiis salte” –is blok-sqema es sistema SemTxveviT ar agvirCevia. energosistemebis analizis praqtikaSi es sistema ikavebs gansakuTrebul adgils. bevri mkvlevari Tavis ideebs cdis swored am modelze. es gamowveulia imiT, rom sammanqaniani sistema Seicavs bevr iseT Tvisebas, romelic axasiaTebs realur rTul sistemebs. amitom kvle94
vebi generatorebis nebismieri raodenobiani sistemebisTvis SeiZleba Catardes am sistemaze [34]. samgeneratorian sistemaSi moZraobis aRweris diferencialur gantodebas aqvs saxe [26]:
I1
dS1 = − E1 E2Y12 cos(δ *1 − δ *2 ) sin(Δδ1 − Δδ 2 ) − dt − E1UY1U cos δ *1 sin Δδ1 + E1 E2Y12 sin(δ *1 − δ *2 ) ×
(3.14)
× [1 − cos(Δδ1 − Δδ 2 ) ] + E1UY1U sin δ * (1 − cos Δδ1 ) − T1
d Δδ 1 ; dt
dS 2 = E1 E2Y12 cos(δ *1 − δ *2 ) sin(Δδ1 − Δδ 2 ) − dt − E2UY2U cos δ *2 sin Δδ 2 − E1 E2Y12 sin(δ *1 − δ *2 ) × I2
× [1 − cos(Δδ1 − Δδ 2 ) ] + E1UY2 sin δ *2 (1 − cos Δδ 2 ) − T2
d Δδ 2 ; dt
dΔδ 2 dΔδ 1 = S1 = S2 ; dt dt (3.14)-is Sesabamis liapunovis funqcias aqvs saxe [26]:
V = E1UY1U [cosδ *1 (1 − cos Δδ 1 ) − sin δ *1 (Δδ 1 − sin Δδ 1 )] + + E2UY2U [cosδ *2 (1 − cos Δδ 2 ) − sin δ *2 (Δδ 2 − sin Δδ 2 )] +
+ E1 E2Y12 [cos(δ *1 − δ *2 )[1 − [cos(Δδ 1 − Δδ 2 )] − sin(δ *1 − δ *2 ) ×
(3.15)
× [Δδ 1 − Δδ 2 − sin(Δδ 1 − Δδ 2 )]] samgeneratorian
sistemaSi
qaosis
Sesaswavlad
visargebloT (3.15) moZraobis gantolebiT. gardavqmnaT is Semdeg saxeSi:
dS1 = E1E2Y12 sin(δ*1 − δ*2 ) − sin(δ*1 + Δδ1 − δ*2 − Δδ 2 ) + dt + E1UY1U (sin δ*1 − sin(δ*1 − Δδ1 ) − T1S1; I1
95
dS 2 = E1 E2Y12 sin(δ *1 + Δδ1 − δ *2 − Δδ 2 ) − (sin(δ *1 − δ *2 )) + dt + E2UY2U (sin δ *2 − sin(δ*2 + Δδ 2 )) − T2 S2 ; I2
dΔδ 2 dΔδ 1 = S1 , = S2 . dt dt uwyveti (3.16) gantolebidan gadavideT diskretulze: S1i +1 = S11 +
Δt [ E1 E2Y12 sin(δ *1 − δ *2 ) − sin(δ *1 + Δδ12 − δ *2 − Δδ 21 )] + I1
+ E1UY1U (sin δ *1 − sin(δ *1 − Δδ1i )) − T1S 21 ;
S 2i +1 = S 21 +
Δt [ E1 E2Y12 sin(δ *1 + Δδ12 − δ *2 − Δδ 21 ) − sin(δ *1 − δ *2 )] + I2
+ E2UY2U (sin δ *2 − sin(δ *2 + Δδ 21 )) − T2 S 21 ;
Δδ 1i +1 = Δδ 1i + ΔtS11 , Δδ 21+1 = Δδ 21 + ΔtS 21 .
(3.17)
(3.17) gantolebebi warmoadgens qaosis Seswavlis algoriTms. fazuri portretis agebis programa iZleva saSualebas
aigos
fazuri
traeqtoriebi
sawyisi
pirobebis cvlilebisas. nax.22 ÷ nax24-ze mocemulia fazuri portretebi, saidanac Cans, rom sistemis moZraobis (3.17) diskretuli analogi iZens stoqasturobis ubnebs diskretizaciis nebismier T bijze, am dros (3.15) sawyisi gantoleba zustad integrirdeba. mocemul naxazze naCvenebia Tu sad Cndeba qaosi. am
paragrafSi,
rxevebis
Teoriis
safuZvelze,
gamokvleulia qaosis aRZvra arawrfiv sistemebSi.
96
a)
b) nax. 22 fazuri portreti (pirveli biji)
97
a)
b) nax. 23 fazuri portreti (meore biji)
98
a)
b) nax. 24 fazuri portreti (mesame biji)
99
ganvixileT erTgeneratoriani, orgeneratoriani da samgeneratoriani sistemebi. gadaiWra energosistemebSi qaosis
warmoSobis
amocana,
mmarTveli
parametris
cvlilebaze damokidebulebebiT. energosistemebis modelebad warmovadgineT Jdanovis modeli, liapunovis modeli da modeli, romelic iyenebs erTtaqta denebs da daZabulobas generatorebis kvanZebsa da qselSi. energosistemebis modelebis dayvana algoriTmze movaxdine liapunovis funqciis saSualebiT. erTgeneratorian, orgeneratorian da samgeneratorian sistemebSi qaosis warmoSoba da ganviTareba modelirebuli maqvs personalur kompiuterze. kvlevis Sedegebma aCvena, rom qaosi warmoiSoba integrirebis bijis cvlilebisas, roca uwyveti sistemebi gadadian diskretul sistemebSi da amocanis gadasaWrelad gamoyenebuli maqvs droiTi diskretizacia.
100
3.5. dinamikuri qaosis kriteriumebi energosistemaSi da liapunovis maxasiaTebeli dinamikuri qaosis kriteriumebad miRebulia: 1) liapunovis maCveneblebi anu maxasiaTeblebi; 2) korelaciuri funqciis Tvisebebi; 3) speqtraluri simkvrivis Tvisebebi; 4) puankares gardasaxvebi; 5) fraqtaluri ganzomilebani. maT Soris yvelaze xSirad qaosis kriteriumebad gamoiyenebian liapunovis maCveneblebi da fraqtaluri ganzomilebani. zogadad liapunovis dadebiTi maCvenebeli migviTiTebs qaosur dinamikaze, aseve fazur sivrceSi orbitis fraqtaluri struqtura migvaniSnebs ucnauri atraqtorebis arsebobaze. ucnauri atraqtorebis TiTqmis yvela fizikuri magaliTi aRmoCnda qaosuri, e.i. ucnauri atraqtori qaosis kriteriumia. Cemi amocanaa, ganvixilo liapunovis maCveneblebi, rogorc energosistemebSi dinamikuri qaosis Casaxvisa da ganviTarebis kriteriumi. mgrZnobiaroba sawyis aris
pirobebSi gadamwyveti
mcire
fluqtuaciebisadmi,
arsebuli
raRac
dinamikuri
sistemis
anu
ganuzRvreloba, dasaxasiaTeb-
lad. am dros sawyisi ganuzRvreloba aris eqsponencialurad mzardi drois mixedviT manam, sanam sistemis Semdegi mdgomareoba ar gaxdeba ganuzRvreli. infor101
macia sawyisi mdgomareobis Sesaxeb ikargeba sasruli drois
Semdeg.
swored
am
drois
gavlis
Semdeg
sistemis mdgomareobis winaswarmetyveleba SeuZlebeli xdeba. sawyisi pirobebisadmi mgrZnobiaroba warmoadgens qaosis erT-erT ZiriTad maxasiaTebels. parametri, riTac SeiZleba vimsjeloT saSualo lokalur mdgradobaze an siCqareze, romliTac Cndeba axali informacia nakadis saSualebiT an piriqiT, gvaZlevs informacias sawyis pirobebze da warmoadgens liapunovis maxasiaTebels -
位 -s. igi ar aris xaris-
xobrivi xasiaTis, romelsac damkvirveblis didi gamocdileba sWirdeba, aramed is aris raodenobrivi maxasiaTebeli
da
misi
gamoyeneba
didi
warmatebiT
SeiZleba. liapunovis
maxasiaTeblis
gamoyeneba
SeiZleba
rogorc disipatiur, aseve aradisipatiur (konservatiul) sistemebSi, fraqtaluri ganzomilebani ki mxolod disipatiurSi gamoiyeneba. liapunovis
maxasiaTeblis
saSualebiT
mowmdeba
sistemis mgrZnobiaroba sawyisi monacemebis variaciis dros. idea mdgomareobs SemdegSi: warmosaxviT fazur sivrceSi gamoiyos mcire sfero, romelSic Tavmoyrili iqneba traeqtoriis sawyisi wertilebi da yuradReba mivaqcioT, Tu rogor moxdeba misi deformacia elifsoidSi sistemis dinamikuri evoluciis procesSi. Tu d aris elifsoidis maqsimaluri zoma, d0_sa102
wyisi pirobebis sferos sawyisi zomaa, maSin liapunovis maxasiaTebeli
λ gamoiTvleba formulidan: d = d 0 2 λ ( t −t ) . 0
(3.18)
amasTan, erTjeradi gazomvebi arasakmarisia, amitom gazomvebis
Sedegi
unda
avirCioT
fazuri
sivrcis
sxvadasxva monakveTze da Semdeg gavasaSualoT: λ = lim N →∞
d 1 N 1 log 2 i . ∑ N i =1 (t i − t 0 i ) d 0i
(3.19)
(3.19)-dan erTjeradi gazomvebiT miviRebT:
λ = log 2 Tu
sistema
aRiwereba
d 1 . d 0 (t − t 0 )
sxvaobiTi
(3.20) gantolebebiT
da
asaxviT - d n = d 0 2 ΔL , maSin unda aRiniSnos, rom algoriTmis maCvenebeli SeiZleba avirCioT nebismierad. qaosuri traeqtoriebis eqsponencialuri ganSladoba anda iyos lokaluri. Tu sistema SezRudulia, (umetesad
ki
asea),
maSin
d(T)
usasrulod
ver
gaizrdeba. amitom, imisaTvis, rom avirCioT traeqtoriebis ganSladobis zoma, unda movaxdinoT eqsponencialuri
zrdis
gasaSualeba
traeqtoriis
gaswvriv
yvela wertilze (nax. 25 da 26) [34]. liapunovis maxasiaTeblis gamoTvla iwyeba sayrdeni traeqtoriis arCeviT (nax. 25), mezobel traeqtoriaze wertilis arCeviT da d (t ) d 0
sididis gamoT-
vliT. roca d(t) manZili izrdeba Zalian, unda movZeb103
noT sxva traeqtoria da viangariSoT axali sawyisi d0(t) manZili. liapunovis maxasiaTebeli SeiZleba asec Caiweros:
1 λ= t N − t0
N
∑ log K =1
2
d (t K ) d 0 − (t K −1 ) .
(3.21)
sabolood davadgineT, rom liapunovis maxasiaTebeli aris sistemis axlo traeqtoriebis gaSlis siCqaris zoma. F(x) – funqciiT mocemuli asaxvisas, erTi iteraciis dros sistemis Sesaxeb informaciis cvlileba dF dx warmoebuliT warmogvidgeba formuliT:
dF . dx
I = log 2
(3.22)
Tu | dF dx |< 1, maSin mocemul wertilSi gardasaxva
moqmedebs,
rogorc
informaciis
mimRebi.
Tu
| dF dx |> 1 _ rogorc informaciis wyaro. Tu P(x) mocemuli sawyisi parametris dros traeqtoriebis albaTobebis asimptoturi ganawilebaa, maSin < I > informaciis raodenobis saSualo cvlilebaa liapunovis maxasiaTeblis maCvenebeli mmarTveli parametris mocemuli mniSvnelobisas:
104
a)
b) nax. 25 qaosuri traeqtoriis eqsponencialuri ganSladoba
105
1
< I >= λ (a) = ∫ P( x) log 2 0
dF dx ; dx
(3.23)
Tu atraqtoris SigniT traeqtoriis qceva ergodikulia,
maSin
arsebobs
liapunovis
maxasiaTeblis
alternatiuli forma: 1 λ (a ) = lim N →∞ N
N
∑ log 2 i =1
dF ( x, a ) ( dx) X i , dx
(3.24)
sadac N iteraciebis ricxvia, romelsac traeqtoria ganicdis gardasaxvisas. maSasadame, liapunovis maxasiaTeblis zemoT moyvanili gansazRvrebis Tanaxmad Cans, rom rodesac
λ (a ) < 0 ,
traeqtoria mdgradi da araperiodulia. gvaqvs regularuli moZraoba da qaoss adgili ara aqvs. (iteraciuli procesi moqmedebs rogorc sistemis Sesaxeb informaciis Semkrebi).
λ ( a ) = 0 traeqtoria neitralurad mdgradia, e.i. informacia arc ikribeba da arc ixarjeba (am dros xdeba periodis gaormagebis `SexebiTi” bifurkaciebi anu
traeqtoriam
unda
gaiaros
neitralur
mdgrad
atraqtorze). roca λ ( a ) > 0 traeqtoria lokalurad aramdgradia
da
sistema
qaosuria
(iteraciuli
procesi
moqmedebs, rogorc informaciis wyaro). erTganzomilebian sistemaSi, romelSic atraqtorebi SeiZleba iyos mdgradi gansakuTrebuli werti106
lebi, arsebobs mxolod erTi liapunovis maxasiaTebeli (-). organzomilebiani SeiZleba iyos ori saxis atraqtori: esaa mdgradi saxis stacionaluri wertilebi da zRvruli ciklebi. Tu orive maxasiaTebeli uaryofiTia ( λ1 < 0 ,
λ2 < 0 ), e.i. (-,-), maSin cxdia, rom aseTi
sistema mdgradia. Tu (λ1 , λ2 ) = (−,0) , maSin atraqtori aris zRvrul cikli. samganzomilebian sivrveSi stacionarul mdgomareobas aqvs liapunovis sami maxasiaTebeli da samive uaryofiTi (-,-,-). zRvrul ciklsac sami maxasiaTebeli, maTgan ori – uaryofiTi da erTi (nakadis gaswvriv) nulia anu (-,,0). `ucnauri”
atraqtoric
sammaCvenebeliania
(+,0,_),
anu erTi dadebiTi λ+ maCvenebeli, erTi nulovani
λ0
liapunovis maCvenebliT da erTi uaryofiTi λ− , e.i. `ucnauri” atraqtori erTi mimarTulebiT qmnis sistemis Sesaxeb informacias, meore mimarTulebiT _ kumSavs. nakadis mimarTulebiT _ ki l.m. nulis tolia. (+,0,_) warmoadgens signaturas, rac niSnavs Tu rogori
namdvili
nawili
aqvs
liapunovis
maxasiaTebels: dadebiTi, nulovani Tu uaryofiTi. samganzomilebiani
sevrcisaTvis
(invariantuli
tori) sabolood 4 SemTxveva ase Camoyalibdeba. 107
( λ1 , λ2 , λ3 )=(-,-,-)
–
stacionaluri
mdgomareoba
(mdgradi fokusi an kvanZi); ( λ1 , λ2 , λ3 )=(-,-,0) – mdgradobis zRvruli cikli; ( λ1 , λ2 , λ3 )=(-,0,0) – mdgradi tori; ( λ1 , λ2 , λ3 )=(-,0,+) – `ucnauri” atraqtori. unda aRiniSnos, rom roca
λ > 0 , e.i. aris qaosi,
mezobeli traeqtoriebi ganiSlebian, roca ar aris qaosi – isini ikvrebian.
108
λ < 0 , e.i.
4. sinqronizacia energosistemebSi 4.1 sinqronizaciis problemebi marTvadi sinqronizaciis problemebi imaSi mdgomareobs, rom or an met (xSirad periodul) yj(t) dinamikur process unda hqondes erTnairi ganviTarebis struqtura. kontrolirebadi sistemis sxvadasxva nawilebis qcevis msgavsebis saWiro damTxveva analitikurad gamoxatulia sinqronizaciis pirobebiT, romlebic
SeiZleba
mocemuli
iyos
cxadi
an
diferen-
cialuri saWiro _ y dj (t ) perioduli amonaxsnebis aR-
y1 = y2 = ... = ym procesiis ganviTarebis identu-
weriT,
robiT an ufro zogadi wrfivi da arawrfivi ho-
Ď&#x2022; ( y1 , y2 ,..., ym ) = 0
lonomiuri duli
orbitebis
miCneulia
kavSirebiT,
analitikuri
aratrevialuri
aseve
aRweriT,
sistemis
perio-
romlebic
atraqtorebad
[34,35,36,37,38,39,40]. marTvadi
sistemis
SemoTavazebuli rxevebis
modelze
sxvadasxva
analizisaTvis.
dayrdnobiT
midgomebi.
isini
Seicaven
iyo
sinqronuli liapunovis
stabilizaciis klasikur meTodebs, gadamkveTi ukukavSirebis arawrfivi
sinqronizirebis meTodebis
koncefcias,
SeTanxmebul
wrfivi
da
kontrols,
orbitebis da atraqtorebis stabilizacias [41,42,43,44]. 109
sinqronzacias, orbitaluri moZraobis momzadebis saSualebiT, gaaCnia gamokveTilad geometriuli xasiaTi.
es
dakavSirebulia
meqanikis
ZiriTad
proble-
mebTan. materialuri wertilis moZraoba gluv mrudebze (niutonis, bertrandis da suslovis klasikuri problemebi) aseve Tanamedrove mimarTulebaa arawrfiv marTvaSi [45,46,47]. aq Cven vixilavT lagranJis sistemis oscilaturi qcevis analizs, sinqronizaciis mTavari problema warmodgenilia sistemis gamosavalis cvladebis holonomialuri damikidebulebiT. Sesaferisi diagramebis koordinatebis gamoyeneba yvelaze metad SeTavsebadia sinqronizaciis sistemis mtkicebasTan. moZravi CarCos Tvisebebi, romlebic dakavSirebulia atraqtorTan, iseve, rogorc nawilobrivi
wrfivi
tasTan
sistemis
axlos,
modelis
saSualebas
aproqsimacia
gvaZlevs
orbi-
gamovavlinoT
problemis mTavari geometriuli da dinamikuri specifikuri Tvisebebi da SemovTavazoT arawrfivi marTvis Sesaferisi kanonebi. Cven SeviswavleT gansakuTrebuli SemTxvevebi, dakavSirebuli orkavSiriani lagranJis sistemis organzomilebian rxevebTan da Segegebi warmodgenilia midgomis Tvisebebis gamosavlenad.
110
Cven
vixilavT
sistemas,
dakavSurebuls
Ria
sivrceSi, romelic aRwerilia lagranJis gantolebiT [40,48,49,50]:
A ( y ) y + b ( y , y ) = u sadac
u = {u j }, y = { y j }
_
marTvis
(4.1) (Sesavali)
da
gamosavalis cvladebis m-ganzomilebiani veqtorebia,
A = {a jk } invertirebadi matricaa da a jk , b j funqciebi gluvia. (4.1) modeli SeiZleba warmodgenili iqnas, rogorc m _ arawrfivi interaqtiuli SISO qvesistemebis erToblioba. sinqronizaciis martivi problemaa, ganvsazRvroT (4.1) sistemis gaSualebuli moZraobis cvladebi:
y=
1 ∑ yj m
(4.2)
da moviyvanoT m-1 sinqronizaciis pirobebi:
y1 = y2 = ... = ym
(4.3)
sistemuri rxevebis modeli mocemulia gaSualebuli moZraobis modelis saSualebiT:
y + 2ξωy + ω 2 y = 0 sadac
ω
_
rxevebis
sixSirea
da
(4.4) ξ
demfirebis
damokidebulebaa -1< ξ <1. maSin, (4.3)-is gaTvaliswinebiT
y j = y (t ) da sistemis yvela cvladi viTardeba (4.4) gantolebis perioduli amoxsnis Sesabamisad.
111
rom
ganvsazRvroT
sinqronuli
reJimisagan
gadaxra, Cven vixilavT Secdomebs:
ε j = y j − y j −1
(4.5)
romlebic unda SevamciroT sistemuri sinqronizaciis procesSi.
maSin
sinqronizaciis
martivi
problema
Semdegnairad Camoyalibdeba: unda moiZebnos iseTi marTva u = U ( y ) , rom yoveli
y ∈ Y -Tvis pirobebis
uzrunvelyofil mxardaWera
(an
iqnas
sinqronizaciis
Secdomebis
asimptoturi
ganuleba) da mocemuli gaSualebuli rxevebi y (t ) (4.4) gantolebidan. mivaqcioT gantolebebi
yuradReba
imas,
ganisazRvreba
Rm
rom
m-1
(4.3)
erTganzomilebian
qvesivrceSi S (wrfe) aRWurvili y Sida koordinatiT. problema iRebs aSkara geometriul formas, dakavSirebuls invariantulobis da atraqtivobis aratrivialuri sivrculi obieqtebis koncefciasTan. sinqronizaciis ganzogadebul problemebSi SeiZleba vigulisxmoT is, rom SegviZlia ganvsazRvroT sinqronuli
rxevebis
(1-sixSiriT)
saerTo
reJimis
ufro meti raodenoba
y j cvladebis wrfivi damoki-
debulebis
romlebic
amorCeviT,
iqnebian
eqvivale-
nturi calkeuli rxevebis amplitudebis ranJirebisa.
112
y gaSualebuli moZraobis arawrfivi damokidebuleba
da
ufro
rTuli
gansazRvra
saSualebas
mogvcems, ganvsazRvroT moTxovnebi arawrfivi rxevebis Tavisufali formebisadmi. Y Ria
simravleSi
ganxilvisas
Cven
(4.1)
sistemis
ganvsazRvravT
moZraobis gaSualebuli
moZraobis cvlads [51,52]:
y = ϕ ( y)
(4.6)
da CavweroT m-1 sinqronizaciis pirobebi veqtorul formaSi:
ϕ sadac
ϕ
da
ε
(y ) =
0
ϕ ε j , j ∈ [1, m − 1 ]
(4.7) _
mudmivi
gluvi
funqciebia. bolo gantoleba Semoxazavs gluv rkals
S ⊂ Rm,
parametruli
Y unda
iyos
Secdomebis
y ∈ Y ⊂ R1
dakavSirebuli veqtori
cvladebiT, Ria
sadac
simravlesTan.
ε = {ε j }( j ∈ [1, m − 1]) miiRebs
Semdeg saxes:
ε = ϕε ( y)
(4.8)
(4.8) dakavSirebulia sisitemis ganiv moZraobasTan. axla Cven SegviZlia ganvixiloT col ( y , ε 1 ,...., ε m −1 ) veqtori, veqtori.
rogorc
(4.1)
Sesaferis
sistemis
axali
koordinatul
gamosavali gardaqmnas,
warmodgenils (4.6), (4.8) gantolebebiT, gaaCnia iakobis matrica: 113
Φ = daSveba
1.
nebismieri
Φ Φε
∂ϕ / ∂y
=
∂ϕ ε / ∂y
y ∈ S -saTvis, roca
Φ
y ∈Y ,
matrica invertirebadia da metic det Φ > δ > 0 . aqedan gamomdinereobs, rom gaxsnili mrudi S erTganzomilebiani gluvi koleqtoria, y ∈ Y lokaluri koordinatiT mrudis garSemo, e.i misi mezoblobiT:
Yε = { y : dist ( y , S ) < ε 0 y ∈ Y } sadac ε 0 > 0
mcire ricxvia. iq arsebobs
y = y( y, ε )
inversiis gluvi asaxva da saTanado iakobis matrica:
J = Φ −1 = J J ε . maSin
marTvadi
sinqronizaciis
saerTo
problema
Semdegnairad JRers: problema1. vipovoT iseTi marTva
u = U ( y) ,
rom nebismieri
y = Y ε -saTvis uzrunvelyofil iqnas (4.7) pirobis sinqronizacia stabiluroba)
ε = 0 amonaxsnis
(an da
mocemuli
asimptoturi
gaSualebuli
rxevebi
y (t ) ∈ Y , gaTvaliswinebuli (4.4)-Si. orbitaluri sinqronizaciis problemebi mdgomareobs SemdegSi: sinqronuli procesebis farTo klasi Seesabameba
moZraobas
periodul
xiloT gluvi rkali Y ∈ R
m
orbitebze.
ganvi-
Ria dakavSirebul siv-
rceSi, rogorc erTcvladiani koleqtori:
S : φε ( y ) = 0 114
(4.9)
romelic
{S i , ϕ εi }, i = 1,2,....,
aRWurvilia
diagramebiT,
sadac
ϕ ε ,ϕ
εj ,
-
gluvi
saerTo
regularuli
funqciebia da ∪ S = S . rom warmovadginoT S, rogorc i
Sekruli orbita, Cven virCevT ϕ ε = ϕ ε + (i − 1) s , sadac 0
j
0
ϕ ε0 _ gluvia, s 0 _ orbitis periodia, maSin SegviZlia ganvsazRvroT
koleqtoris
diagramis
koordinatebi
s i ∈ S *i ⊂ R 1 ,
sadac
adgilobrivi
∪ S *i = S * _
Ria
sivrcea, dakavSirebuli Semdegi gantolebiT:
s i = ϕεi = ϕε0 + (i − 1) s 0
(4.10)
S rkalis mimarT sistemis qcevis gaanalizebiT, Cven gavarCevT
gaswvriv
moZraobas,
romeluc
aRwerilia
s (t ) = s i (t ) cvladebiT da mkveTi moZraobiT, romelic dakavSirebulia Secdomis
(4.8)
veqtorTan.
gantolebiT (4.9)
piroba
gansazRvrul da
ε (t )
ε (t ) = 0 iden-
turoba ayeneben pirobebs y j (t ) calkeuli perioduli amonaxsnebis koordinirebisaTvis da Seesabamebian y (t ) sistemur traeqtoriebs, romlebic mTlianad ganlagebulia S rkalze. aseTi sistemuri ganviTarebis stabilizacia warmoadgens gaTvaliswinebul marTvis mTavar amocanas proporciuli an cvladi kursiT moZraoba rkalze, romelic xasiaTdeba s cvladiT, adgens procesebis drois masStabs. es SeiZleba gaTvaliswinebuli iyos Sesabamisad s = const , an s = v d (t ) pirobebiT. 115
(4.8) da (4.10) gantolebebi warmoadgenen arawrfiv koordinatul gardaqmnas Φ ( y) = romelic,
rogorc
daSvebas.
maSin
irgvliv
Φs Φε
igulisxmeba,
adgilobriv
romelic,
iakobis matriciT, akmayofilebs
masStabebSi
ganisazRvreba, arsebobs
gluvi
gluvi
amis
garda,
rkalis rogorc
Yε = { y : dist ( y , S ) < ε 0 , s ∈ S * } , ukuasaxva,
(4.1)
y = y ( s, ε )
rkalebisTvis
SeiZleba moiZebnos S-is adgilobrivi orTogonaluri warmodgena, iseTi, rom Semdeg daSvebas eqneba adgili. daSveba 2. yvela naluria, iakobis
e.i:
y ∈ S -saTvis,
ΦΦ T = I .
matrica
Φ
matrica orTogo-
warmovidginoT
nominaluri
Φ * ( s ) = {Φ *jT ( s )} = Φ ( y ( s , 0 )) .
daSvebis gaTvaliswinebiT, Φ j
*T
(4.2)
svetebi gansazRvraven
frenetis moZrav CarCos, dakavSirebuls y = y ( s,0) ∈ S wertilebTan.
Φ*
matricis
dinamika
eqvemdebareba
frenetis magvar gantolebas:
Φ * = s H ( s ) ⋅ Φ * sadac
H
_
rkalis
geometriuli
(4.11) invariantebis
damaxinjebuli simetriuli matricaa. amis garda, aseTi gardaqmna (4.8), (4.10) inarCunebs metrikul sivrces da
ε j koordinatebi gansazRvraven S-sagan gadaxras, roca s adgilobrivi koordinata dakavSirebulia S rkalis
116
sigrZesTan. Yε -Si Φ ( y ) matrica gamovTvaleT wrfivi aproqsimaciis gamoyenebiT:
Φ = Φ * ( s ) + ∑ Φ εj ( s )ε
(4.12)
sadac Φ εj = ∂Φ / ∂ε , roca ε = 0 . orbitaluri sinqronizaciis adgilobrivi problema Semdegnairad JRers: problema 2. unda moiZebnos iseTi marTva u = U ( y ) , rom mebismieri
y ∈ Yε -saTvis
uzrunvelyofili
Yε -is
(an
atraqtuloba
axlos
ε =0
S-is
iqnas
amonaxsnis
asimtoturi stabiluroba) CamovayaliboT `sakontrolo~ versia. ganvixiloT K-dinamikuri sistema:
∑ = {T ,U , X , Y , Φ , h } , i = 1,...., K i
i
i
i
i
(4.13)
i
sadac T aris drois mudmivebis saerTo jgufi; Ui, Xi, Yi _
Sesasvlelis,
jgufi;
mdgomareobis
Φ i : TxX i xU i → X i
_
da
gamosasvlelis
gardamavali
reJimebi,
hi : TxX i xU i → yi _ gamosasvlelebis reJimebi. (aq Cven viyenebT dinamikuri sistemebis erT-erT standartul gansazRvrebas). Tavdapirvelad ganvixiloT SemTxveva, roca yvela Ui aris ubralod erTeulovani, e.i ar gvaqvs
Sesasvlelebi
gamotovebul
Yi _aris
yvela
formirebisas
SeiZleba
mocemulia
i _
g j : Y1 xY2 x...xYk xT → IR 1 , j = 1,..., i .
aq
iqnan.
funqcionalebi:
da
davuSvaT,
funqciis
rom
jgufi 117
T -dan
Yi -Si,
e.i
Yi = { y : T → Yi } . Semdeg viRebT T-s, rogorc droTa jgufs
aseve
T = IR ≥ 0
(gaxangrZlivebuli
dro)
an
T = Z ≥ 0 (diskretuli dro). nebismieri romelime J ∈ T sTvis Cven ganvsazRvravT σ τ − 1, rogorc wanacvlebis operators,
σ τ : Yi → Yi
e.i
mocemulia,
rogorc
(σ τ y )(t ) = y (t + Γ) yvela y ∈ Yi -sTvis da yoveli t ∈ T sTvis. Tu Cven Tavs vuyriT yvela amonaxns x1 (⋅),..., x k (⋅) sistemisa ∑ 1 ,..., ∑ k
sawyisi mniSvnelobiT x1 (0),..., x k (0) ,
romelebic sinqronizirebulni arian g 1 ,...g i funqcionalebTan TanafardobiT, maSin
g j (σ Γ1Y1 (⋅),..., σ Γk Yk (⋅), t ) ≡ 0, j = 1,..., i (4.14) gantolebas aqvs mniSvnelobebi yvela t ∈ T -sTvis da J1 ,..., J k ∈ T -sTvis,
zogierTi sistemis
gamosasvlel
Yi (⋅)
sadac
funqcias
aRniSnavs
∑ : y (t ) = h( x (t ), t ), i
i
i
t ∈ T , i = 1,..., K . Cven vambobT, rom amonaxsni x1 (⋅);..., x k (⋅) ∑
_
1
,..., ∑ k
x1 (0),..., xk (0)
sistemisa daaxloebis
sawyisi
mniSvnelobebiT
sinqronizebulia
g 1 ,..., g k
funqcionalebTan mimarTulebaSi, Tu gvaqvs ε > 0 da
Γ1 ...Γk ∈ T , ase rom
g j (σ Γ1 y1 (⋅),..., σ Tk y k (⋅), t ) ≤ ε , j = 1,..., i yvela
t ∈ T -sTvis. amonaxsnebi
∑ ,...., ∑ 1
k
sawyisi
x1 (⋅),...., x k (⋅) sistemisa
mniSvnelobebiT 118
(4.15)
asimptoturad
g 1 ,..., g j
sinqronizebul
funqcionalebis
mimarT,
zogierTi Γ1 ,...,Γ k ∈ T -sTvis gvaqvs:
(g j (σ Γ1 y1 (⋅),...,σ Γk y k (⋅), t )) = 0 , j = 1,.., i lim t →∞
(4.16)
Tu sinqronizaciis movlena miRweulia yvela sawyisi mniSvnelobebisaTvis x1 (0),..., x k (0) , maSin SesaZlebelia vTqvaT,
rom
(mocemul
sistemebi
∑ ,...., ∑ k
sinqronizebadia
1
funqcionalebTan
mimarTebaSi
Sesabamisi
gagebiT). asimptoturi sinqronizaciis SemTxvevaSi SesaZlebelia
ganisazRvros
iseTi
sawyisi
mniSvnelobebi,
romelsac mivyavarT sinqronizaciamde. SemdgomSi Cven ganvixilavT mxolod SemTxvevas, sadac sinqronizacia miRweulia mxolod yvela sawyisi mniSvnelobisaTvis. miuxedavad imisa, rom es gansazRvreba zogadia, is SeiZleba ganzogadebul iqnas SemdgomSi. magaliTad, bevr
praqtikul
problemebSi
droiTi
Zvrebi
Γi , i = 1,..., k ar aris mudmivi, magram miiswrafian mudmivi mniSvnelobebisken, e.w. `asimptoturi fazebisaken~. am SemTxvevaSi Zvris operatoris magier yvela gamosasvleli
funqciisTvis
ganvixiloT
droSi
y 2 (⋅) , daSladi
ufro Zvris
xelsayrelia operatori,
romelic gansazRvrulia Semdegi saxiT:
(σ ) y(t ) = y(t (t )) '
Γi
119
i
(4.17)
t i' : T → T , i = 1,..., k
sadac
(xangrZlivi
_
funqciebi,
aris
romelTac
homomorfizmebi aqvT
xangrZlivi
inversiebi), ase, rom
lim t→ ∞
(t (t ) − '
i
t
)= ε
(4.18)
i
SevniSnoT, rom funqcionalebis jgufis nacvlad yovelTvis SesaZlebelia aviRoT erTi funqcionali, romelic asaxavs sinqronizaciis aseTive gamovlinebas. magaliTad, SeiZleba avirCioT funqcionali G, saidanac: G ( y 1 (⋅ ),..., y k (⋅ ), t ) = ∑ g l
j =1
sinqronizaciis moTxovna,
rom
2 j
( y (⋅ ),...,
gamoyenebisas
(4.14)
_
y k (⋅ ), t )
1
(4.16)
(4.19)
aucilebelia
pirobebi
ar
is
iqnas
darRveuli (an darRveuli iqnas umniSvnelod), roca sistemis
zogierTi parametri
gansxvavdeba
zogierT
sferoSi. sxva sityvebiT (4.14) _ (4.16) Tviseba unda iyos myari, magram am SemTxvevaSi fazuri Zvrebi SeiZleba iyos
mudmivi
da
arc
ki
miiswrafodes
mudmivi
mniSvnelobisaken, Tumca, Semdegi piroba: lim
t → ∞
t i' ( t ) − t
≤ r
j
(4.20)
SeiZleba warmodgenili iyos (4.18)-is nacvlad. bevr SemTxvevaSi U i , X i , Yi
_ jgufebi _ sivrcis
veqtorebia da ∑ i sistemebi SeiZleba aRwerili iqnas ubralo diferencialuri gantolebebiT.
120
4.2 sinqronuli generatorebis paralelur muSaobaSi avtomaturi CarTva generatoris aucilebelia, CarTvis
qselSi
rom
warmatebiT
mawonasworebeli
momentSi
ar
CarTvisaTvis denis
aRematebodes
biZgi
dasaSveb
mniSvnelobas, xolo CasarTavi generatoris rotori CaerTos sinqronulad xangrZlivi rxevis gareSe. am pirobebis
Sesasruleblad
aucilebelia
winaswar
davareguliroT generatoris brunvis sixSire ise, rom igi
axlos
iyos
sinqronulTan,
gamosasvlelebze
(Tu
xolo
generatori
Zabva
mis
aRgznebulia)
mivuaxlovoT an gavutoloT energosistemis Zabvas da SevarCioT CarTva-gamorTvis brZanebis micemis momenti. brunvis sixSirisa da Zabvis gaTanabrebis am procesis da
generatoris
ewodeba
qselSi
sinqronizacia.
CarTvis
momentis
eqspluataciaSi
SerCevas
gamoiyeneba
energosistemasTan generatoris paraleluri muSaobaSi CarTvis ori ZiriTadi meTodi: zusti sinqronizacia da TviTsinqronizacia. zusti generatori
sinqronizaciiT brundeba
CarTvis
meTodisas
sinqronulTan
miaxloebul
sixSiremde da aRegzneba. Semdeg xeliT an avtomatikis saSualebiT Tanabrdeba sinqronizebuli generatorisa da qselis sixSireebi da Zabva. amis Semdeg miecema generatoris qselSi CarTvis brZaneba. imisaTvis, rom 121
CarTvis
momentis
aRematebodes
gawonasworebuli
dasaSveb
sidides,
denis
xolo
biZgi
ar
generatoris
rotoris rxevebi swrafad Caqres, aucilebelia Zalian zustad
iqnas
qselis
gawonasworebuli
sixSireebi
da
Zabva.
generatorisa
aucilebelia
da
SeirCes
generatoris CarTvisa da gamorTvis Sesabamisi momenti. TviTsinqronizaciisas
generatori
brundeba
sin-
qronulTan miaxloebul sixSiremde da qselSi irTveba aRugzneblad. aRgznebis deni miewodeba rotoris xviebs CamrTvelis CarTvisTanave. e.m.Z.-isa
da
denis
zrda,
Semdeg xdeba rotoris genertori
ki
irTveba
sinqronizmSi. sinqronizaciis ZiriTad Rirsebad iTvleba sinqronizaciis pricesis daCqareba da misi SedarebiT ubraloeba,
ris
gamoc
avtomatizirebuli. gansakuTrebiT
igi
SeiZleba
advilad
TviTsinqronizaciis
mniSvnelovania
iqnes
upiratesoba
avariul
pirobebSi,
energosistemebSi sixSirisa da Zabvis mniSvnelovani meryeobis dros. TviTsinqronizaciis meTodis uaryofiT Tvisebad SeiZleba CaiTvalos CarTvis momentSi denis
SedarebiT
didi
biZgebi,
ris
gamoc
iwveba
CamrTvelis kontaqtebi da saWiro xdeba generatoris da transformatorebis mwyobrSi moyvanisTvis garkveuli damatebiTi Zalisxmeva. zusti
sinqronizaciis
upiratesoba
mdgomareobs
imaSi, rom generatoris CarTvas, rogorc wesi Tan ar 122
axlavs denis didi biZgebi da xangrZlivi rxevebi. amasTanave zusti sinqronizaciisadmi wayenebuli mkacri moTxovnebi mas xdian SedarebiT rTul da xangrZliv operaciad. gansakuTrebiT es exeba avariul pirobas,
roca
soxSirisa
da
Zabvis
sxvadasxva
meryeobisas praqtikulad SeuZlebeli xdeba sinqronizebuli
generatorisa
da
qselis
sixSireebisa
da
Zabvis gawonasworeba. generatorebis
sinqronizacia
Zalian
mniSvnelo-
vani operaciaa, romelic morige persinalisagan moiTxovs muSaobis did gamocdilebas. am operaciis avtomatizacia amsubuqebs operatiuli personalis SromiT pirobebs da saSualebas iZleva, raTa swrafad iqnes CarTuli generatori qselSi, rac avariul pirobebSi Zalze mniSvnelovania. ansxvaveben xelis, avtomatiur da naxevrad avtomatur sinqronizacias. Sesabamisad amisa avtomatikis mowyobilobebi iyofian avtomatikur da naxevrad avtomaturebad. avtomaturi sinqronizacias generatoris qselSi CarTvis mTeli procesi sruldeba avtomaturad, morige personalis Carevis gareSe. ase magaliTad: avtomaturi zusti sinqronizatori axorcielebs sinqronizebuli generatoris brunvis sixSirisa da Zabvis regulirebas, akontrolebs CarTvisaTvis sixSirisa da Zabvis dasaSveb sxvaobas, iZleva impulss CarTvaze, im 123
momentSi
roca
sruldeba
zusti
sinqronizaciis
piroba. naxevradavtomatur
sinqronizaciisas
avtomaturi
mowyobilobebi asruleben damxmare rols, isini exmarebian morige Si.
ase
personals generatoris sinqronizacia-
magaliTad:
TviTsinqronizaciis
naxevradav-
tomaturi mowyobiloba akontrolebs sixSireTa sxvaobas da iZleva CarTvis impulss, roca igi gaxdeba dasaSvebi CarTvisaTvis. sinqronizebuli generatoris brunvis sixSiris regulireba am dros ekisreba morige personals.
rig
SemTxvevaSi
zusti
sinqronizaciis
naxevradavtomaturi mowyobilobebi gamoiyeneba blokirebis saxiT, sinqronizaciisaTvis saWiro pirobebSi generatoris CarTvis nebarTviT. eqspluataciaSi
gamoiyeneba
ori
tipis
sinqro-
nizatorebi: waswrebis mudmivi kuTxiT da waswrebis mudmivi droiT. Tu miviRebT, rom CamrTvelis CarTvisas mudmivi rCeba ara arakuTxuri sixSiris curva, aramed kuTxuri aCqareba,
maSin
qronizatoris
winswrebis amoqmedeba
kuTxis xdeba
im
SerCeva
da
momentSi,
sinroca
sruldeba Semdegi toloba:
dδ d 2δ t 2 δ + δ on = δ + t b + 2 = 2π dt 2 dt sadac
(4.21)
t B - winswrebis droa da tolia CamrTvelis
CarTvis droisa. 124
Uδ
δ
da
gamomdinare
_
Soris
wrfivi
sinqronizatoris
damikidebulebidan
amoqmedeba
Rebulobs
Semdeg saxes:
dU δ d 2U δ t B2 Uδ + tB + = U 2π , dt dt 2 2
(4.22)
sadac U 2π aris U δ -is mniSvneloba 2π kuTxisas. daCqarebis kuTxuri
as =
gaTvaliswinebiT
sixSire
CamrTvelis
dws dt
kontaqtebis
curvis mokle
CarTvis momentSi ω s ,b = ω s ,c + a s t B , sadac ω s ,b _ curvis kuTxuri
sixSirea
momentSi.
Sesabamisad
sinqronizatoris
amoqmedebis
winswrebis
gamoisaxeba
kuTxe
Semdegnairad:
t B2 δ on = ω s ,c t B + a s 2 sinqronizatorSi
kontroldeba
(4.23) maqsimalurad
dasaSvebi curva ω s ,max,D CamrTvelis kontraqtebis mokle CarTvis momentSi. roca ω s ,b > ω s ,max, D , maSin moqmedebis akrZalvisTvis, curvis mniSvnelobis makontrolebeli elementisaTvis daismis piroba:
δ oπ ,max,D = ωs ,max,Dt B ,
(4.24)
romelSic sinqronizators avtomaturad Seaqvs Sesworeba da am SemTxvevaSi winswrebis dasaSvebi kuTxe gamoisaxeba Semdegnairad: 125
δ oπ ,max,D
t b2 t b2 = (ω s ,c + a s t B )max,D t B − a s = ω s ,max,d t B − a s 2 2
0 SerCeva δ on > 120 avtomaturad ikrZaleba.
4.3 avariuli situaciebis analizi
4.3.1 asinqronuli reJimebis likvidacia. resinqronizacia energosistemaSi avariuli situaciebis analizi da avariasawinaaRmdego RonisZiebebis SerCeva (zemoqmedebis meTodi) muSaobis normaluri reJimis aRsadgenad, win uswrebs teqnikur saSualebaTa damuSavebas. aseTi analizis safuZvels Seadgens energosistemis paraleluri muSaobis mdgomareobis gaangariSeba, romelic sruldeba
gardamaval
procesebze
zemoqmedebis
gaTvaliswinebiT. energosistemis moZraobis gantoleba, Tu ugulebelvyofT xazebSi danakargebs da TviTregulirebis Taviseburebebs (generatoris asinqronuli momentebiT da
datvirTvis
regulirebis
Caiweros Semegi saxiT:
126
efeqtiT),
SeiZleba
T j ,∋k d 2δ 1, 2 + P1, 2 S inδ 1, 2 = ΔP Whom dt 2
sadac
δ1,2 _ e.m.Z-ebis,
(4.25)
E1 -is da E2 -is, generato-
rebis fazebs Soris Zvris kuTxea, ΔP _ warmoqmnili deficiti
an
simZlavris
danakargia,
T j ,∋ k _
energo-
sistemaSi mbrunavi masebis inerciis drois eqvivalenturi mudmivaa.
T j ,∋k = T j ,1T j , 2 / T j ,1 + T j , 2 aq
T j ,1 , T j , 2
_
eqvivalenturi
(4.26)
operatorebis
inerciis
droiTi mudmivebia.
ΔP -s
mniSvneloba
SeiZleba
ganvsazRvroT
Semdegnairad:
ΔP = sadac
PT ,1 − PH ,1 P − PH , 2 Tj,2 − T ,2 T j ,1 T j ,1 + T j , 2 T j ,1 + T j , 2
PT ,1 , PT , 2 _
pirveli
da
meore
(4.27) eleqtro-
sadguris turbinebis sinZlavreebia; PH ,1 , PH , 2 _ eleqtrosadgurebis eleqtruli simZlavris datvirTvebia. (4.25) da
(4.27)
nalizoT
gantolebebis ufro
metad
daxmarebiT
SeiZleba
damaxasiaTebeli
gavaa-
avariuli
situaciebi: gadamcem nawilebSi simZlavris danakargi, mimReb nawilSi simZlavris deficiti da gadacemis Sesusteba.
127
energosistemebis pirvel
etapze
ganviTarebasa
asinqronuli
da
gaerTianebis
reJimebis
likvidacia
xorcieldeboda operatiuli personalis moqmedebebiT. SeiniSneboda SemTxvevebi
sinqronizmis dinamiuri
TviTneburi
mdgradobis
aRdgenis
darRvevis
dros,
magram ar arsebobda asinqronuli reJimebis daSvebis kriteriumebi da es reJimebi ganixileboda, rogorc mavneni,
ris
gamoc
eqvemdebarebodnen
swraf
likvi-
dacias. Semdgom daiwyo avariis likvidaciasTan dakavSirebuli sareJimo moTxovnebis gadasinjva, rac gamowveuli iyo mdgradebis darRveviT. formulirebuli iqna
asinqronuli
qronuli zRvroT
reJimebis
CarTvis
da
dasaSvebi
resinqronizaciis
mokle
drois
kriteriumebi.
piroba
_
sin-
ganvsa-
asinqronuli
reJimis procesis dros sinqronizmis aRdgenas ewodeba resinqronizacia.
resinqronizaciis
pirobas
aqvs
Semdegi saxe:
S
cp
â&#x2030;¤ S
cp , kp
sadac _ S cp _ damyarebuli saSualo curvaa
S cp ,kp _ damyarebuli saSualo curvis kritikuli mniSvnelobaa, romlis drosac resinqronizacia mimdinareobs sinqronuli momentis gavlenis qveS, rac iwvevs
mrvaljerad
curvis
ryevas
lobasTan axlos.
128
saSualo
mniSvne-
S cp ,kp ricxobrivi SefasebisaTvis Zlier da susti kavSirebisas Sesabamisad miviRoT: P12=1 da P12=0,05
P12
Scp ,kp = 0, 0565
τ j∋k
(4.28)
τ j∋k
τ j1τ j 2 = τ j1 + τ j 2
τ j1 ,τ j 2 _ meqanikuri inerciis mudmivebia; τ
j∋k
_ or-
manqanuri sistemis meqanikuri inerciis eqvivalenturi mumivaa;
P12
_
asinqronulad
momuSave
nawilebis
urTierT simZlavre fardobiT erTeulebSi, romelic gansazRvravs
simZlavris
ryevis
maqsimalur
ampli-
tudas asinqronuli reJimis xazze.
4.3.2 asinqronuli reJimis niSnebi paralelur
muSaobaze
CarTuli
generatorebi
normalur reJimSi muSaoben sinqronulad. sinqronuli reJimisaTvis generators
damaxasiaTebelia gaaCnia
erTnairi
is,
rom
yvela
da
aqedan
sixSire
gamomdinare, maTi veqtorebi brunaven erTnairi kuTxuri
siCqariT.
asinqronuli
reJimi
Tavs
iCens
Tu
dairRveva generatorebis an energosistemis paraleluri muSaobis mdgradoba. amis garda, asinqronuli 129
reJimi SeiZleba warmoiqmnas im xazebis arasinqronuli CarTvis dros, romlebic aerTeben eleqtrosadgurs energosistemasTan _ asinqronuli reJims Tan sdevs qvemoT warmodgenili movlenebis da niSnebis ganxilva: 1.
asinqronul
e.m.Z.-ebs
Soris
kuTxis
perioduli
cvalebadoba nulidan 3600-mde sixSiris curviT (curva ewodeba brunvis sixSireTa sxvaobas an eleqtruli sixSireTa sxvaobas)
ωs = ωr − ωc , fs = fr − fc , sadac
ωs
fs
da
sixSirea; ωr
da
_
curvis
(4.29) kuTxuri
siCqare
da
f r _ generatoris an eleqtrosad-
guris kuTxuri siCqare da sixSirea;
wc
da
fc
_
energosistemis
kuTxuri
siCqare
da
sixSirea. 2.
eleqtrogadacemis
yvela
wertilSi
perioduli
sixSiruli curva Zabvis cvlilebiT. 3.
sixSiruli
(rxeva)
yvela
curvis
denis
elementSi,
perioduli
cvlileba
romelic
akavSirebs
asinqronul manqanebs. zemoT
ganxilulidan
Cans,
rom
asinqronuli
reJimebs Tan axlavs Zabvis didi Semcireba, rxevis didi denebis gadineba da aqtiuri simZlavris ryevebi. yvelaferi es warmoadgens normalur reJimSi muSaobas 130
seriozuli darRvevas, saxifaToa mowyobilobebisaTvis da eleqtroenergiis momxmarebelTaTvis. amitom asinqronuli reJimi unda iyos SezRuduli 2-3 ciklamde. asinqronuli reJimis xangrZlivobis dasaSvebi zRvari warmoadgens 15-30 wm-s. am dros ganmavlobaSi unda iqnes miRebuli zomebi sinqronizmis aRsadgenad. arsebobs asinqronuli reJimis likvidaciis ori meTodi: resinqronizacia da energosistemis dayofa. es operaciebi rogorc wesi xorcieldeba, avtomaturad, asinqronuli reJimis likvidaciis avariasawinaaRmdego mowyobilobebis daxmarebiT, xolo iSviaTad (mowyobilobis mwyobridan gamosvlisas) _ operaciuli personalis saSualebiT.
4.4 sinqronizirebadi marTva (4.1) Jis
problemis gadawyvetisaTvis, Sekruli maryu-
marTva
unda
amovirCioT
ise,
rom
mivaRwioT
sasurveli sistemuri sivrcis ganviTrebas, romelic aRwerilia (4.4), (4.7) gantolebebiT. procedura iwyeba (4.1)
modelis
gantolebebis
Cveulebrivi
garadqmniT. (4.6) da (4.8)
diferencirebiT
asaxvebs: 131
Cven
viRebT
Semdeg
y = Φy ε
(4.30)
y y = Φ = Γ y + Γε ε ε −1
axal modeli
koordinatul advilad
(4.31)
diagramaSi
Sedgeba
(4.13)-is
maTematikuri diferencirebiT
drois mimarT da Secvlis Sedegad (4.1), (4.31) Semdeg formas miiRebs:
y y = ΦΓ + ΦA −1 (u − b) ε ε
(4.32)
samuSao proedura Seicavs `sivrcis gawrfivebas~:
u = b + Au~
(4.33)
sadac u~ = {u j }, j ∈ [1, m] _ axali Sesasvleli veqtoria, romelic moiZebneba Semdeg formaSi:
u~ = u~ ( yε )
(4.34)
maSin (4.32) Semdegnairad gadaiwereba:
y y − ΦΓ = Φu~ ε ε ganvixiloT
mdgradi
sinqronizaciis
(4.35) moZraoba,
romelic iRebs ε ≡ 0 da u~0 ( y ) = u~ ( y ,0) mniSvnelobebs. (4.35) Semdegnairad gadaiwereba:
(
)
u~0 = Γ − 2ξωΓ y − ω 2 Γ y
132
(4.36)
rom
gavaanalizoT
Cven
vixilavT
sinqronizaciis
mkveTi
moZraobis
procesebi
models,
Yε -Si,
miRebuls
(4.35) gantolebidan:
Tε Γε ε = Φ Tε Γ y + Φ Tε uˆ ε − Φ
(4.37)
amovirCioT
u~ = u~0 ( y ) − Γε ( K 1ε + K 2 ε )
(4.38)
sadac K1, K2 _ ukukavSiris gadidebis matricebia. problemis sistemaSi
gadawyvetisaTvis,
axali
mdgomareobis
moZraobis ( s, s ) da mkveTi
(ε , ε )
SemovitanoT
cvladebi,
(4.1)
gaswvrivi
cvladebi, romlebic
Semdegnairad gamoiTvlebian:
ϕ si ( y ) s = , = Φy ε ϕε ( y) s s
daSveba
(4.2)-is
gaTvaliswinebiT,
(4.39)
y = y ( s , e)
_
ukuasaxvis diferenciali iqneba:
y = Φ T
s s
(4.40)
sistemuri modeli axal koordinatul diagaramaSi Seqmnilia (4.39)-is diferencirebiT, Sesabamisi cvlilebebiT
da
(4.11),
(4.12)
gantolebebis
gamoyenebiT.
Yε
mcire midamoSi, is miiRebs Semdeg formas:
s
ε
− s H
s − a1ε − a 2 ε = ΦA −1 (u − b) ε
133
(4.41)
Seqmnis
procedura
Seicavs
mdgomareobis
sircis
gawrfivebas (4.33) da amocaniT orientirebuli gancalkevebisaTvis
sistemur
models,
u~j
Sesasvlelebis
gaTvaliswinebiT, wrfivi marTvis cvladis gardaqmna miiReba Semdegnairad:
u = ΦT
us
sadac
_
gaswvrivi
ganzomilebis
mkveTi
us uε
(4.42)
marTvaa
marTvis
da
veqtoria.
uε
_
m-1
maSin
(4.41)
gantoleba miiRebs Semdeg saxes:
u s s − s H − a1ε − a 2 ε = ( I + Δε ) s uε ε ε romelic
gansazRvravs
gaswvrivi
da
mkveTi
sustad dinamikis
(4.43) urTierTmoqmedi
modelebs.
isini
SeiZleba Semdegnairad gadavweroT:
T − a11 )ε − a12ε = us + (Δ1ε )uε s − ( sH s − ( s H + a 21 )ε − a 22 ε = u ε − s 2 h( s ) + ( Δ 2 ε )u s
sadac
0
hT
−h
H
= H _ mkveTi marTvaa.
uε = s 2 h( s ) − K 1ε − K 2 ε sadac
K1 , K2
gvaZlevs
(4.44)
_
ukukavSiris
miviRoT
TiTqmis
matricebi avtonomiuri
(4.45) saSualebas Secdomis
modeli:
− a21 )ε + ( K 2 − a22 )ε = 0 ε + ( K1 − sH 134
(4.46)
am modelis matricebis ukukavSiris aucilebeli SezRudvebis amorCeva gvaZlevs asimptoturi stabilurobis
garantias
orbitaluri
da
amis
stabiluroba,
Sedegad (4.9)
(4.1)
sistemis
atraqtoris
mimarT
gamoisaxeba Semdegnairad:
u s = v d + k s (vd − s ) sadac
(4.47)
k s _ ukukavSiris saTanado amorCeva uzrun-
velyofs vd − s normis Secdomis asimptotur ganulebas da sasurveli rxevebis gadidebas. Sedegad marTvis sistema Seicavs (4.33) gawrfivebis algoriTms,
(4.42)
marTvis
cvladis
gardaqmnas
da
nawilobrivad (4.45) da (4.47) marTvis kanonebs. SemoTavazebuli
midgomis
warmosadgenad
ganvi-
xiloT orkavSiriani rxeviTi sistemis sinqronizacia:
y + Wy = u
(4.48)
sadac dim y = 2 , W _ diagonaluri matricaa da (4.33) gantoleba miiRebs Semdegi saxis formas:
u = Wy + u~
(4.49)
ganvixiloT zemoT ganxiluli modelebis kerZo SemTxvevebi: 1.
wrfivi
sinqronizacia.
sinqronizaciis
piroba
mdgomareobs SemdegSi:
y1 − 2 ⋅ y 2 = 0 (4.50)
emTxveva
wrfis
gantolebas
cvladi amorCeulia Semdegi formiT: 135
(4.50) da
gaSualebuli
y2
y1
a)
s
b) nax. 26 wrfivi sinqronizacia
136
y = y1 + y 2
(4.51)
gaSualebuli moZraobis dinamika mocemulia (4.4) gantolebiT, sadac ξ = 0 , ω = 2 . maryuJis wrfivi sinqronizaciis gamoyenebisas iyo gamomuSavebuli mniSvnelovani marTvis mowyobiloba. wrfis
gaswvriv
sistemis
moZraobis
traeqtoriebi,
dawyebuli sxvadasxva Sida wertilebidan naCvenebia nax. 26-ze. 3. arawrfivi sinqronizacia. sinqronizaciis piroba mocemulia
kuburi
y 2 − 0.1 ⋅ y13 = 0 warmodgenilia,
parabolis
da
gantolebiT
gaSualebuli
rogorc
y = y1 .
rxevebi milevadia, roca ξ = −0.39 .
y2
a) 137
cvladi sasurveli
y1
b)
s
g) nax. 27 arawrfivi sinqronizacia
138
rogorc pirvel SemTxvevaSi, (4.36), (4.38) arawrfivi sinqronizirebadi gvaZlevs
maryuJebis
CamovayaliboT
gamoyeneba,
saSualebas
mniSvnelovani
marTvis
kanonebi. sxvadasxva
sawyisi
wertilebidan
dawyebuli,
parabolis gaswvriv sistemis moZraobis traeqtoriebi da
sistemis
gamosasvlelebis
droSi
amoqmedeba
mocemulia nax. 27-ze. 3.
sinqronizaci
sinqronizaciis
aelifsuri piroba
orbitis
mimarT.
mocemulia
elifsis
gantolebiT.
(0.87 y
+ 0.5 y 2 ) (0.5 y1 − 0.87 y 2 ) 1 + −1 = 0 16 4 2
2
(4.52)
gaswvrivi cvladi s warmodgenilia (4.10) gantolebiT, sadac s = 17.89 da ϕ 0
0
_ gamoTvlilia y1 / y 2 da y 2 / y1
invertuli trigonometriuli funqciebis saSualebiT. proporciuli
gaswvrivi
moZraoba
miRebulia
vd = 1
normirebuli sixSiris amorCeviT. marTvis kanoni iyo gamomuSavebuli (4.33), (4.42), (4.45),
(4.47)
orbitaze sistemis
gantolebebis sistemis
saSualebiT.
moZraobis
gamosasvlelebis
naCvenebia nax. 28-ze.
139
elifsur
traeqtoriebi
droze
da
damokidebuleba
y2
a)
b)
140
s
g) nax. 28 siqronizacia elifsuri orbitis mimarT
4.
sinqronizacia
spiralis
mimarT.
sinqronizaciis
piroba mocemulia gantolebiT:
exp s − y12 − y 22 = 0
(4.53)
gaswvrivi cvladi s warmodgenilia (4.10) gantolebiT. sasurveli faza da procesis drois skala mocemulia
vd = −1
normirebuli
sixSiriT.
sistemis
moZraobis traeqtoriebi naCvenebia nax. 29-ze.
141
spiralze
y2
a)
y1
b)
142
s
g) nax. 29 sinqronizacia spiralis mimarT
modelireba aCvenebs sistemis traeqtoriebis krebadobas sasurvel atraqtorebSi, gaswvrivi moZraobis mocemuli reJimebisaTvis, amitom sxvadasxva sinqronizaciis amocanebs savsebiT asrulebs.
143
danarTi zRvruli cikli Private Sub Command1_Click( ) Y = InputBox("ENTER R=") Scale (0, 0)-(310, 200) Line (0, 0)-(309, 189), , B Print "1"; Print "0"; Print USING; "#. ##"; Y; Print "4"; For J = 0 To 307 X = 0.3: K = Y + (4 - Y) * J / 307 For I = 1 To 200 X = K * X * (1 - X) Next For I = 1 To 300 X = K * X * (1 - X) PSet (J, 187 * X), vbBlue Next Next End Sub
144
mdgradi kvanZi Private Sub Command1_Click( ) Dim S1(1 To 20), DD1(1 To 20), S2(1 To 20), DD2(1 To 20) Scale (0, 0)-(600, 400) Line (0, 0)-(640, 350), vbBlack, BF Line (120, 175)-(520, 175), vbRed Line (320, 50)-(320, 300), vbRed E1 = 200: E2 = 300 F = 0.01: G = 2000: DZ = 0.009 C1 = 1: C2 = 1 T1 = 0: T2 = 2: DT = 1 k = (E1 * E2 * F) / G L = Abs(Sqr(k * Cos(DZ))) L1 = -L: L2 = -L For i = 1 To 20 For C1 = -5 To 5 For C2 = -5 To 5 S1(i) = C2 * (1 / Exp(L1 * T1)) DD1(i) = C1 * (1 / Exp(L2 * T1)) + C2 * T1 * (1 / Exp(L2 * T1)) x = DD1(i) * 10 y = S1(i) * 10 PSet (320 + x, 175 - y), vbYellow For t = T1 + DT To T2 Step DT S1(i) = C2 * (1 / Exp(L1 * t)) DD1(i) = C1 * (1 / Exp(L2 * t)) + C2 * t * (1 / Exp(L2 * t)) x = DD1(i) * 10 y = S1(i) * 10 Line -(320 + x, 175 - y), vbYellow Next t Next C2 Next C1 Next i End Sub
145
aramdgradi mdgomareoba Private Sub Command1_Click( ) Dim S1(1 To 20), DD1(1 To 20), S2(1 To 20), DD2(1 To 20) Scale (0, 0)-(800, 500) Line (0, 0)-(640, 350), vbWhite, BF Line (120, 175)-(520, 175), vbBlack Line (320, 50)-(320, 300), vbBlack T1 = 0: T2 = 2: DT = 1 L = Abs(Sqr(k * Cos(DZ))) For i = 1 To 20 For C1 = -5 To 5 For C2 = -5 To 5 S1(i) = C2 DD1(i) = C1 + C2 * T1 x = DD1(i) * 10 y = S1(i) * 10 PSet (320 + x, 175 - y), vbBlue For t = T1 + DT To T2 Step DT S1(t) = C2 DD1(t) = C1 + C2 * t x = DD1(t) * 10 y = S1(t) * 10 Line -(320 + x, 175 - y), vbRed Next t Next C2 Next C1 Next i End Sub
146
neitralurad mdgradi mdgomareoba Private Sub Command1_Click() Dim S1(1 To 20), DD1(1 To 20), S2(1 To 20), DD2(1 To 20) Scale (0, 0)-(600, 400) Line (0, 0)-(640, 350), vbBlack, BF Line (120, 175)-(520, 175), vbRed Line (320, 50)-(320, 300), vbRed E1 = 200: E2 = 300 F = 0.01: G = 2000: DZ = 0.009 C1 = 1: C2 = 1 T1 = 0: T2 = 20: DT = 1 k = (E1 * E2 * F) / G L = Abs(Sqr(k * Cos(DZ))) PI = 3.14 T1 = -2 * PI: T2 = 2 * PI: DT = 1 Line (0, 0)-(640, 350), vbBlack, BF Line (80, 175)-(560, 175), vbWhite Line (320, 50)-(320, 300), vbWhite L1 = L: L2 = -L For i = 1 To 20 For C1 = -5 To 5 For C2 = -5 To 5 S1(i) = C2 * Cos(L1 * T1) DD1(i) = -C2 * Sin(L1 * T1) x = DD1(i) * 10 y = S1(i) * 10 PSet (320 + x, 175 - y), vbRed For t = T1 + DT To T2 Step DT S1(i) = C2 * Cos(L1 * t) DD1(i) = -C2 * Sin(L1 * t) x = DD1(i) * 10 y = S1(i) * 10 Line -(320 + x, 175 - y), vbRed Next t Next C2 Next C1 Next i End Sub 147
gadagvarebuli kvanZi anu aramdgradi wonasworoba Private Sub Command1_Click( ) Dim S1(1 To 20), DD1(1 To 20), S2(1 To 20), DD2(1 To 20) Scale (0, 0)-(600, 400) Line (0, 0)-(640, 350), vbBlack, BF Line (120, 175)-(520, 175), vbYellow Line (320, 50)-(320, 300), vbYellow E1 = 200: E2 = 300 F = 0.01: G = 2000: DZ = 0.009 C1 = 1: C2 = 1 T1 = 0: T2 = 20: DT = 1 k = (E1 * E2 * F) / G L = Abs(Sqr(k * Cos(DZ))) L1 = L: L2 = L For i = 1 To 20 For C1 = -20 To 55 Step 10 For C2 = -40 To 40 Step 10 S1(i) = C2 * (1 / Exp(L1 * T1)) DD1(i) = C1 * (1 / Exp(L2 * T1)) + C2 * T1 * (1 / Exp(L2 * T1)) x = DD1(i) y = S1(i) PSet (320 + x, 175 - y), vbRed For t = T1 + DT To T2 Step DT S1(i) = C2 * (1 / Exp(L1 * t)) DD1(i) = C1 * (1 / Exp(L2 * t)) + C2 * t * (1 / Exp(L2 * t)) x = DD1(i) y = S1(i) Line -(320 + x, 175 - y), vbRed Next t Next C2 Next C1 Next i End Sub
148
qaosuri atraqtorebi function qazl(action) if nargin<l, action='start'; end; global inertia_field global freq_field global eds_field global volt_field global conductivity_field global eds global volt global conductivity global freq global inertia if strcmp(action,'start'), elf reset; set(gcf,'Units','normalized','backingstore','off); %popup=uicontrol('Style','PopupVString','cosine|square|sawtooth|l 111|2222|3333|4444|',... % 'Position',[.03 .02 .2 .08],'Units','normalized',... % 'CallBack','qazl("redraw")'); inertia_text=uicontrol('Style','text7Position',[.03 .02 .13 .04],... 'Units', 'normalized','BackgroundColor','black',... 'ForegroundColor', 'white',' String', 'Inertia:',... 'HorizontalAlignment','right'); inertia_field=uicontrol('StyleVedit','Position',[.16 .02 .07 .04],... 'Units','normalized','BackgroundColor','blue','ForegroundColor','white','Str ing','1500',. 'CallBack','qazl("setinertia")'); version_text=uicontrol('StyleVtext','Position',[ 0 .96 .16 .04],... 'Units','normalized','BackgroundColor','black',... 'ForegroundColor','white','String','Version 1.0',... 'HorizontalAlignment','left'); freq_text=uicontrol('Style7text7Positiori,[.27 .02 .28 .04],... 'Units','normalized','BackgroundColor','black',.... 'ForegroundColorVwhite','StringVAngle(Gr):',... 'HorizontalAlignment','right'); freq_field=uicontrol('StyleVedit','Position',[.57 .02 .07 .04],... 'Units', 'normalized','B ackgroundColor','blue', 'ForegroundColor', 'white',' String',' 1.1',... 'CallBack','qazl("setfreq")'); eds_text=uicontrol('Style','text','Position',[.03 .88 .10 .04],... 'Units','normalized','BackgroundColor','black',... 'ForegroundColor', 'white','String','EMF(E):',... 'Horizontal Al ignment', 'right'); eds_field=uicontrol('Style','edit','Position',[.13 .88 .07 .04],... 'Units','normalized','BackgroundColor','blue','ForegroundColor','white','Str ing','300',... 'CallBack','qazl("seteds")'); 149
volt_text=uicontrol('Style','text','Position',[.22 .88 .28 .04],... 'Units','normalized','BackgroundColor','black',... 'ForegroundColor', 'white', 'String', 'Tension(Volt):',... 'HorizontalAlignmentVright'); volt_field=uicontrol('Style','edit','Position',[.51 .88 .07 .04],... , 'Units', normalized','BackgroundColor','blue','ForegroundColor','white','Str ing','220',... 'CallBack','qazl("setvolt")'); conductivity_text=uicontrol('Style';'text','Position',[.65 .88 .20 .04],... 'Units','normalized','BackgroundColor','black',... 'ForegroundColor','white','String','Conductivity(R):',... 'HorizontalAlignmentVright'); conductivity_field=uicontrol('Style','edit','Position',[.86 .88 .07 .04],... 'Units','normalized','BackgroundColor','blue','ForegroundColor','white','Stri ng','0.05',... 'CallBack','qazl("setconductivity")'); donejDutton=uicontrol('Style','Pushbutton','Position',[.85 .02... . 12 .08],'Units','normalized','Callback',... 'qazl("done")','StringVClose'); grid_button=uicontrol('StyleVPushbutton','Position',[.3 .02... .08 .06],'Units','norrnalized','Callback',... 'grid','String','Grid'); orbitjMton=uicontrol('Style','Pushbutton','Position',[.75 .02... .07 .05],'Units','normalized','Callback',... 'qazl("rorbit")','String','lef'); rorbit_button=uicontrol('Style','Pushbutton','Position',[.75 .08 ... .07.05]/Units','normalized','Callback',... 'qazl("rorbit")','String','right'); zorbit_button=uicontrol('Style','Pushbutton','Position',[.67 .02 ... .07.05],'Units','normalized','Callback,)... 'qazl(''zorbit'') ','String','up'); rzorbit_button=uicontrol('Style','Pushbutton','Position',[.67 .08 ... .07.05],'Units','normalized','Callback'... 'qazl(''rzorbit'')','String','down'); eds=300; volt=220; conductivity=0.05; freq=l.l; inertia=1500; az=0; el=90; axes(''Position''),[.16 .24 .7 .6]); elseif strcmp(action,'orbit'), [az el] = view; view([az+5 el]) drawnow elseif strcmp(action,'rorbit'), [az el] = view; view([az-5 el]) drawnow elseif strcmp(action'zorbit'), [az el] = view; view([az el+5]) drawnow 150
elseif strcmp(action,'rzorbit'), [az el] = view; view([az el-5]) drawnow elseif strcmp(action,'setfreq'), , freq=str2num(get(freq_fleld,'string )) qazl ('redraw'); elseif strcmp(action,'seteds'), eds=str2num(get(eds_field,'string')) qazl ('redraw'); elseif strcmp(action,'setvolt'), volt=str2num(get(volt_field,'string')) qazl ('redraw'); elseif strcmp(action,'setconductivity'), conductivity=str2num(get(conductivity_field,'string')) qazl ('redraw'); elseif strcmp(action,'setinertia'), inertia=str2num(get(inertia_field,'string')) qazl ('redraw'); elseif strcmp(action,'done'), clf reset; clear global inertia_field clear global freq_field clear global eds_field clear global volt_field clear global conductivity_field clear global eds clear global volt clear global conductivity clear global freq clear global inertia close; elseif strcmp(action,'redraw'), %t0 = 0; %tfmal =10; %x0 = [0 0.1]'; %hold off, %for i=0 : 0.1 : 0.79 % [t,x] = ode23(,vdpol',t0,tfinal,x0+i); % plot(x(:,l),x(:,2)); % hold on, % end [az el] = view; d = freq; k =(eds*volt*conductivity*240)/inertia; t =.06; hold off forj=.2:.2: .8 xl=j; 151
s=0; for i=l:150 plot3(xl,s,j); hold on s=s+t*k*(sin(d)-sin(d+xl)); xl=xl+t*s; end end %grid on axis([-l 1 -10 10 ]); view([az el]) %view([0 90]); xlabel ('d'); ylabel('S'); end function x = str2num(s) if ~isstr(s) | ndims(s)>2 error('Requires string or character array input.') end if isempty(s), x = []; return, end [m,n] = size(s); if m=l, x = protected_conversion(s); % Test flight if isempty(x), x = protected_conversion(['[' s ']']); % Try adding brackets end else semi =';'; space = "; if ~any(any(s == '[' | s == ']')), % String does not contain brackets o = ones(m-l,l); s = [['[';space(o)] s [semi(o) space(o);' ]']]'; elseif ~any(any(s(l:m-l,:) == semi)), % No ;'s in non-last rows s = [s,[semi(ones(m-l,l));space]]'; else, % Put ;'s where appropriate spost = space(ones(m,l)); for i= l:m-l, last = find(fliplr(s(i,:)) ~= space); if s(i,n-last(l)+l) ~= semi, spost(i) = semi; end end s = [s,spost]'; end 152
x = protected_conversion(s); end ifisstr(x) x=[]; end function STR2NUM_VaR = protected_conversion(STR2NUM_StR) STR2NUM_LaSTeRR = lasterr; STR2NUM_VaR = eval(STR2NUM_StR,'[]'); lasterr(STR2NUM_LaSTeRR) function [retl, ret2] = view(argl, arg2) fig = gcf; ax = gca; err = 0; if(nargin==0) if(nargout < 2) retl = get(ax,'xform'); else v = get(ax,'View'); retl = v(l); ret2 = v(2); end elseif (nargin == 1) [r,c] = size(argl); if(r=l)&(c = 2) set(ax,'View',argl); elseif((r==l)&(c==l)) ifargl==2 view(0,90); elseif argl == 3 view(-37.5,30); else error('Single scalar argument must be 2 or 3'); end elseif((r==4)&(c = 4)) set(ax,'xform',argl); elseif r*c == 3 % it's a direction vector unit = argl/norm(argl); az = atan2(unit(2),unit(l))* 180/pi; el = atan2(unit(3),sqrt(unit(l)A2+unit(2)A2))*l 80/pi; set(ax,'View',[az el]); else error('Argument must be scalar, two-vector, or 4-by-4 matrix'); end else [r,c] = size(argl); [r2,c2] = size(arg2); 153
if ((r == 1) & (c == 1) & (r2 = 1) & (c2 = 1)) set(ax,'View',[argl arg2]); else error('Arguments must be scalars'); end function c = strcmp(sl,s2) c = 0; if all(size(sl) == size(s2)) ifall(all(sl=s2)) c = l; end end function udvoenie() y=3.5; forj=0:.5:70, x=.3 ; k = y+(4-y)*j/70; for i=l : 30 x=k*x*(l-x); end for i=l :30, x=k*x*(l-x); plot(j,187*x); hold on end end
154
orgeneratoriani sistemisaTvis > j1=800;j2=700;eq1=1;eq2=5;z11=2.6;z22=7;a11=1.2; a12=0.9;a22=0.6;tt1=100;tt2=120; j1 = 800 j2 = 700 eq1 = 1 eq2 = 5 z11 = 2.6 z22 = 7 a11 = 1.2 a12 = 0.9 a22 = 0.6 tt1 = 100 tt2 = 120
> with(DEtools): > dif1:=diff(w1(t),t)=1/j1*(tt13/(2*w1(t))*(eq1^2/z11*sin(a11)+eq1*eq2/z12*sin( dt1(t)-a12))); eq1 2 sin( a11 ) eq1 eq2 sin( −dt1 ( t ) + a12 ) − z11 z12 3 tt1 − w1( t ) 2 d dif1 := w1( t ) = j1 dt
> dif2:=diff(w2(t),t)=1/j2*(tt23/(2*w2(t))*(eq2^2/z22*sin(a22)+eq1*eq2/z12*sin( dt1(t)-a12))); eq2 2 sin( a22 ) eq1 eq2 sin( −dt1 ( t ) + a12 ) − z22 z12 3 tt2 − w2( t ) 2 d dif2 := w2( t ) = j2 dt
> dif3:=diff(dt1(t),t)=w1(t)-w2(t); dif3 :=
d dt1( t ) = w1( t ) − w2( t ) dt
155
> autonomous({dif1,dif2,dif3},[w1(t),w2(t),dt1(t)] ,t); > true
> phaseportrait({dif1,dif2,dif3},[w1(t),w2(t),dt1( t)],t=4..4,[[w1(1)=1,w2[1]=1,dt1(1)=1],[w1(1)=2,w2[1]= 2,dt1(1)=2],[w1(1)=3,w2[1]=3,dt1(1)=3]],w1(t)=20..20,w2(t)=-20..20,dt1(t)=20..20,linecolor=black,scene=[w1(t),w2(t),dt1(t) ],color=black,stepsize=0.1); > samgeneratoriani sistema > 11=2000;i2=1500;e1=200;e2=300;u=220;y12=0.01;y1u =0.02;y2u=0.15;d1=0.9;d2=0.7;t1=10;t2=5; 11 = 2000 i2 = 1500 e1 = 200 e2 = 300 u = 220 y12 = 0.01 y1u = 0.02 y2u = 0.15 d1 = 0.9 d2 = 0.7
t1=10 t2=5 > with(DEtools): 156
> dif1:=diff(s1(t),t)=1/i1*(-e1*e2*y12*cos(d1d2)*sin(dd1(t)-dd2(t))e1*u*y1u*cos(d1)*sin(dd1(t))+e1*e2*y12*sin(d1d2)*(1-cos(dd1(t)-dd2(t)))+e1*u*y12*sin(d1)*(1cos(dd1(t)))); d s1( t ) = ( −e1 e2 y12 cos( d1 − d2 ) sin( dd1( t ) − dd2( t ) ) dt − e1 u y1u cos( d1 ) sin( dd1( t ) ) + e1 e2 y12 sin( d1 − d2 ) ( 1 − cos( dd1( t ) − dd2( t ) ) ) + e1 u y12 sin( d1 ) ( 1 − cos( dd1( t ) ) ) )/i1
dif1 :=
> dif2:=diff(s2(t),t)=1/i2*(e1*e2*y12*cos(d1d2)*sin(dd1(t)-dd2(t))e1*u*y2u*cos(d2)*sin(dd2(t))-e1*e2*y12*sin(d1d2)*(1-cos(dd1(t)-dd2(t)))+e1*u*y2*sin(d2)*(1cos(dd2(t)))); d s2( t ) = ( e1 e2 y12 cos( d1 − d2 ) sin( dd1( t ) − dd2( t ) ) dt − e1 u y2u cos( d2 ) sin( dd2( t ) ) − e1 e2 y12 sin( d1 − d2 ) ( 1 − cos( dd1( t ) − dd2( t ) ) ) + e1 u y2 sin( d2 ) ( 1 − cos( dd2( t ) ) ) )/i2
dif2 :=
> dif3:=diff(dd1(t),t)=s1(t); dif3 :=
d dd1( t ) = s1( t ) dt
> dif4:=diff(dd2(t),t)=s2(t); > autonomous({dif1,dif2,dif3,dif4},[dd1(t),dd2(t), s11(t),s2(t)],t); 11=2000;i2=1500;e1=200;e2=300;u=220;y12=0.01;y1u =0.02;y2u=0.15;d1=0.9;d2=0.7;t1=20;t2=15; 11 = 2000 i2 = 1500 e1 = 200 e2 = 300 u = 220 y12 = 0.01 y1u = 0.02
157
y2u = 0.15 d1 = 0.9 d2 = 0.7
t1=20 t2=15 > with(DEtools): > dif1:=diff(s1(t),t)=1/i1*(-e1*e2*y12*cos(d1d2)*sin(dd1(t)-dd2(t))e1*u*y1u*cos(d1)*sin(dd1(t))+e1*e2*y12*sin(d1d2)*(1-cos(dd1(t)-dd2(t)))+e1*u*y12*sin(d1)*(1cos(dd1(t)))); d s1( t ) = ( −e1 e2 y12 cos( d1 − d2 ) sin( dd1( t ) − dd2( t ) ) dt − e1 u y1u cos( d1 ) sin( dd1( t ) ) + e1 e2 y12 sin( d1 − d2 ) ( 1 − cos( dd1( t ) − dd2( t ) ) ) + e1 u y12 sin( d1 ) ( 1 − cos( dd1( t ) ) ) )/i1
dif1 :=
> dif2:=diff(s2(t),t)=1/i2*(e1*e2*y12*cos(d1d2)*sin(dd1(t)-dd2(t))e1*u*y2u*cos(d2)*sin(dd2(t))-e1*e2*y12*sin(d1d2)*(1-cos(dd1(t)-dd2(t)))+e1*u*y2*sin(d2)*(1cos(dd2(t)))); d s2( t ) = ( e1 e2 y12 cos( d1 − d2 ) sin( dd1( t ) − dd2( t ) ) dt − e1 u y2u cos( d2 ) sin( dd2( t ) ) − e1 e2 y12 sin( d1 − d2 ) ( 1 − cos( dd1( t ) − dd2( t ) ) ) + e1 u y2 sin( d2 ) ( 1 − cos( dd2( t ) ) ) )/i2
dif2 :=
> dif3:=diff(dd1(t),t)=s1(t); dif3 :=
d dd1( t ) = s1( t ) dt
> dif4:=diff(dd2(t),t)=s2(t); > autonomous({dif1,dif2,dif3,dif4},[dd1(t),dd2(t), s11(t),s2(t)],t);
158
11=2000;i2=1500;e1=200;e2=300;u=220;y12=0.01;y1u =0.02;y2u=0.15;d1=0.9;d2=0.7;t1=50;t2=40; 11 = 2000 i2 = 1500 e1 = 200 e2 = 300 u = 220 y12 = 0.01 y1u = 0.02 y2u = 0.15 d1 = 0.9 d2 = 0.7
t1=50 t2=40 > with(DEtools): > dif1:=diff(s1(t),t)=1/i1*(-e1*e2*y12*cos(d1d2)*sin(dd1(t)-dd2(t))e1*u*y1u*cos(d1)*sin(dd1(t))+e1*e2*y12*sin(d1d2)*(1-cos(dd1(t)-dd2(t)))+e1*u*y12*sin(d1)*(1cos(dd1(t)))); d s1( t ) = ( −e1 e2 y12 cos( d1 − d2 ) sin( dd1( t ) − dd2( t ) ) dt − e1 u y1u cos( d1 ) sin( dd1( t ) ) + e1 e2 y12 sin( d1 − d2 ) ( 1 − cos( dd1( t ) − dd2( t ) ) ) + e1 u y12 sin( d1 ) ( 1 − cos( dd1( t ) ) ) )/i1
dif1 :=
> dif2:=diff(s2(t),t)=1/i2*(e1*e2*y12*cos(d1d2)*sin(dd1(t)-dd2(t))e1*u*y2u*cos(d2)*sin(dd2(t))-e1*e2*y12*sin(d1d2)*(1-cos(dd1(t)-dd2(t)))+e1*u*y2*sin(d2)*(1cos(dd2(t))));
159
d s2( t ) = ( e1 e2 y12 cos( d1 − d2 ) sin( dd1( t ) − dd2( t ) ) dt − e1 u y2u cos( d2 ) sin( dd2( t ) ) − e1 e2 y12 sin( d1 − d2 ) ( 1 − cos( dd1( t ) − dd2( t ) ) ) + e1 u y2 sin( d2 ) ( 1 − cos( dd2( t ) ) ) )/i2
dif2 :=
> dif3:=diff(dd1(t),t)=s1(t); dif3 :=
d dd1( t ) = s1( t ) dt
> dif4:=diff(dd2(t),t)=s2(t); > autonomous({dif1,dif2,dif3,dif4},[dd1(t),dd2(t), s11(t),s2(t)],t);
wrfivi sinqronizacia > with(DEtools): > phaseportrait(y1(t)2*y2(t)=0,[y1(t),y2(t)],t=1..7, linecolor=blue,method=classical[foreuler],stepsi ze=.2);
arawrfivi sinqronizacia > with(DEtools): > phaseportrait(y2(t)0.1*y1(t)^3=0,[y1(t),y2(t)],t=1..7, linecolor=blue,method=classical[foreuler],stepsi ze=.2);
sinqronizacia elifsuri orbitis mimarT > with(DEtools): > phaseportrait((0.87*y1(t)+0.5*y2(t))^2/16+(0.5*y 1(t)-0.87*y2(t))^2/4-1=0,[y1(t),y2(t)],t=1..7, 160
linecolor=blue,method=classical[foreuler],stepsi ze=.2); sinqronizacia spiralis mimarT > with(DEtools): > phaseportrait((exp(s)-y1(t)^2y2(t)^2=0,[y1(t),y2(t)],t=1..7, linecolor=blue,method=classical[foreuler],stepsi ze=.2);
161
gamoyenebuli literatura 1. Баринов В. А., Совалов С. А. Режимы энергосистем. Методы анализа и управления. -М.: Энергоатомиздат. 1990. 2. Афанасьев В. Н., Колмановский В. Б., Носов В. Р. Математическая теория конструирования систем управления. - М.: Высшая школа, 1998. - 574с. 3. Арнольд В. И., Авец А. Эргодические проблемы классической механики. -Ижевск.: Ижевская республиканская типография. 1999.-281с. 4. Арнольд В. И. Математические методы классической механики. - М.: Наука. 1989.-472с. 5. Бернас С, Цёк 3. Математические модели элементов электроэнергетических систем. - М : Энергоатомиздат, 1982, 6. Арнольд В. И. Геометрические методы в теории обыкновенных дифференциальных уравнении. -Ижевск.: Удмуртский государственный университет. 2000.-399с. 7. Веников В. А. Переходные электромеханические процессы в электрических системах. - М.: Высшая школа. 1985, - с. 8. Веников В. А., Журавлев В. Г., Филипова Т. А. Оптимизация режимов электростанции и энергосистем. - М.: Энергоатомиздат, 1990.-352с. 9. Визгин В. П. Развитие взаимосвязи принципов инвариантности с законами сохранения в классической физике. - М.: Наука, 1972.240с. 10. Гугушвили А., Сесадзе В., Далакишвили Г. Оптимальное управление в гамильтоновых системах. saqarTvelos teqnikuri universiteti, Sromebi, #4(437), 85-87 gv. 11. Ибрагимов Н. X. Групповой анализ обыкновенных дифференциальных уравнений и принцип инвариантности в математической физике. -Успехи математических наук. 1992, т.47, вып. 4(286). 83-144с. 12. Ибрагимов Н. X. Группы Ли в некоторых вопросах математической физики. -Новосибирск.: НГУ, 1972.-159с. 13. Костенко Е. С. О групповых свойствах обыкновенных линейных дифференциальных уравнений второго порядка. Дифференцияльные уравнения, T.VIII, №4, 1972.-727-730с. 162
14. Кухтенко А. И. Основные задачи теории управления сложными системами. - В кн.: Сложные системы управления. Вып. I, -Киев.: Изд-во института кибернетики АН УССР, 1968. -3-37с. 15. Можаев Г. В. Об использовании симметрии в линейных задачах оптимального управления с квадратичным критерием качества. -А и Т. №6. 1975.-2-29с. 16. Мозер Ю. Интегрируемые гамильтоновые системы и спектральная теория. Ижевск.: Ижевская республиканская типография. 1999. -239с. 17. Гугушвили А., Далакишвили Г., Мамукелашвили И. Теорема Нетер и принцип максимума Понтрягина. saqarTvelos teqnikuri universiteti, Sromebi, #4(437), 81-84 gv. 18.Овсянников Л. В. Лекции по теории группоых свойств дифференциальных уравнении. -Новосибирск.: изд-во НГУ, 1966. -131с. 19.Овсянников Л. В. Групповой анлиз дифференциальных уравнении. - М.:Наука. 1978. -399с. 20. Олвер П. Приложения групп Ли к дифференциальным уравнениям.- М.:Мир. 1989. -639с. 21. Полак В. Вариационные принципы механики. -М.:Физматгиз, 1960 -599с. 22. Понтрягин Л. С. и др. Математическая теория оптимальных процессов. -М.:Наука, 1961. -392с. 23. dalaqiSvili g. hopfis bifurkacia samgeneratoriani sistemisaTvis. saqarTvelos teqnikuri universiteti, marTvis avtomatizebuli sistemebi, #1(4), 2008. 200-205 24.Борецкий И. Ф., Павлов В. Г. Теоретико-групповая интерпретация некоторых свойств линейной динамической системы. - А и Т. №2, 1963.-12-15с. 24. Вариационные принципы механики. Под. ред. Полака В. -М.: Физматгиз. 1959.-932с. 25. Зубов В. И. Аналитическая построение функции Ляпунова. //Доклада РАН. 1994, т.335,№6, 688-690с. 26. Экспериментальные исследования режимов энергосистем. Под редакцией С. А. Совалова. - М.: Энергоатомиздат, 1985.-448с. 27.Электрические системы: Управление переходными режимами электроэнергетических систем. Под ред. В. А. Веникова. -М: Высшая школа. 1982.-247с. 28. Arnold L Schmalfuss В. Lyapiinovs Second Method for Random Dynamical Systems. Preprint. 2000.-l-28p. 163
29. Askenazy P. Conservation laws and optimal control. Preprint, Preimary, September 1999. 1-12p. 30. Cadenillas A.. Karatzas I. The stochastic maximum principle linear, convex optimal control with random coefficients. "SLAM J. Control and Optimization", 1995, 33, № 2, 590-624p. 31. Djukic D. S. Noethers theorem'for optimum Control systems. Int. Control. 1973, 18. №3, 667-672p. 32.Sussmann H. J. A strong version of the Lojasiewicz Maximum Principle. In: OptimalControl of differenttial equation, Ed. N. H. Pavel, M. Dekker Inc. 1994.-1-17p. 33. Lax P.D. Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math. 1968. 21, 467-490p. (Имеется русский перевод: Лаке П. Интегралы нелинейных эволюционных уравнений и уединенные волны. Математика, №13, т.5. -М.: Мир, 1969г., -125-150с. 34. marTvis Teoria. sinergetika. wigni 3. – Tbilisi, stu-s gamomcemloba. 2000. – 869 gv. 35. А.А. Андронов, Е.А. Леонтович, И.И. Гордон, А.Г. Майер. ” Теория Бифуркаций динамических систем на плоскости”. Издательство Наука. М.Москва 1967.-488 стр. 36. Вигнер Е. Этюды о симметрии. - М.: Мир, 1971, -31 8с. 37. Гугушвили А. Ш. Принцип симметрии в идентификации нелинейных объектов управления. - В кн.: Труды IX Всесоюзной школы семинара по адаптивным система. - Алма-ата. 1979, -65-69с. 38. Попов Е. П., Крутько П. Д. Симметрия в системах автоматического управления. -ДАН ССР. т.244, №4, 1979-842-845с. 39. Принцип симметрии. Под. ред. Б. А. Кедрова, Н. Ф. Овчинникова. -М.:Наука. 1978.-398с. 40. Принцип симметрии в идентификации нелинейных объектов управления. Под ред Гугушвили А. Ш. -Тбилиси.:Грузинский технический университет. Изд-во "Цисарткела", 1998.-272с. 41. Симметрии и законы сохранения управлении математической физики. Под ред. А. Ш. Виноградова и И. С. Красильщика. М.:Факториал. 1997.-461с. 42.valida sesaZe, vladimer kekenaZe, goCa dalaqiSvili. ganzogadebuli simetriuli konfiguraciebi, mesrebi da koordinatizacia. saqarTvelos mecnierebisa da
164
sazogadoebis ganviTarebis fondi, perioduli samecniero Jurnali “inteleqti” #2(22), 2005, 58-61g. 43. almasxan guguSvili, valida sesaZe, goCa dalaqiSvili. sinqronizaciis problema da simetriebis principi. saqarTvelos mecnierebisa da sazogadoebis ganviTarebis fondi, perioduli samecniero Jurnali “inteleqti” #2(16), 2003, 63-66g. 44. kekenaZe v., sesaZe v., dalaqiSvili g. gamosaxulebis modelireba fraqtalebis saSualebiT. “’saqarTvelos navTobi da gazi ” №10, 2004, 117-120 g. 45. Гугушвили А., Сесадзе В., Хуцишвили О. Гугутишвили Е. Принцип симметрии в оптимальном управлении. Научный Журнал "Нефть и Газ Грузии" №3.2001.-100-105с. ' 46. Шайкин М. Е. Теоретико-групповые методы декомпозиции симметрических многосвязных динамических систем. - А и Т, № 9, 1973.-22-23с. 47. Шубников А. В., Копцик В. А. Симметрия в науке и искустве.М.:Наука. 1972.-339с. 48. Sussmann H. J. Symmetries and Integrals of Motion in Optimal Control. In: Geometry in Nonlinear Control and Differential Inclusions. Banach Center Publications, vol 32. Mathematics Institute of the Polish Academy of Seiences. Warsava, Poland, 1995. Peprmt. 379-393p. 49. Sussmann H. J. The Brachistochrone problem and modern control theory. (coauthored with Jan C. Willems). To appear in Contemporary trends in nonlinear geometric control theory and its applications (proceedings of the conference on "Geometric Control Theory and Applications" held in Mexico City on September 4-6, 2000, to celebrate the 60th anniversary of Velimir Jurdjevic); A. Anzaldo-Meneses, B.Bonnard, J.-P. Gauthier, and F. Monroy-Perez Eds: World Scientific Publishers, Singapore. The paper is 40 pages long. 50. guguSvili a., saluqvaZe m., WiWinaZe v. optimaluri da adapturi sistemebi. Tbilisi.: stu-s gamocemloba 1997. wigni 2.-437 gv. 51. Узоры симметрии. Под редакцией Сенешель и Дж. Флека, М.:Мир, 1980- 271с. 52. Урманцев Ю. А. Симметрия природы и природа симметрии. М.:Мысль, 1974.-229с.
165
ibeWdeba avtorTa mier warmodgenili saxiT
gadaeca warmoebas 26.02.2009. xelmowerilia dasabeWdad 26.03.2009. qaRaldis zoma 60X84 1/8. pirobiTi nabeWdi Tabaxi 10. tiraJi 100 egz.
sagamomcemlo saxli `teqnikuri universiteti~, Tbilisi, kostavas 77
i.m. `goCa dalaqiSvili~, q. Tbilisi, varkeTili 3, korp. 333, bina 38