
5 minute read
1.9 Resolviendo Problemas en Física
Las habilidades para la resolución de problemas son claramente esenciales para el éxito en un curso cuantitativo de física. Lo que es más importante, la capacidad de aplicar principios físicos amplios generalmente representados por ecuaciones- a situaciones específicas, es una forma muy poderosa de conocimiento. Es mucho más poderoso que memorizar una lista de hechos. Las habilidades analíticas y las habilidades para resolver problemas se pueden aplicar a situaciones nuevas, mientras que una lista de hechos no se puede hacer lo suficiente como para contener todas las circunstancias posibles. Dichas habilidades analíticas son útiles tanto para resolver problemas en este texto, como para aplicar la física en la vida cotidiana. Como probablemente ya sepas, se requiere de cierta cantidad de creatividad y conocimiento para resolver problemas. Ningún procedimiento rígido funciona todo el tiempo. La creatividad y la visión crecen con la experiencia.
Figura 1.13. Las habilidades para resolver problemas son esenciales para tu éxito en física. (crédito: "scui3asteveo" / Flickr)
Advertisement
Con la práctica, los conceptos básicos para la resolución de problemas se vuelven casi automáticos. Una forma de obtener práctica es resolver los ejemplos del texto mientras lees. Otra, es resolver tantos problemas, al final de la sección, como sea posible, comenzando con los más fáciles para generar confianza y, luego, avanzando hacia los más complejos. Después de involucrarte en la Física, verás a tu alrededor y podrás comenzar a aplicarla a situaciones que encuentres fuera del aula, tal como se hace en muchas de las aplicaciones de este texto.
Aunque no existe un simple método paso a paso, que funcione para cada problema, el siguiente proceso de tres etapas facilita la resolución de problemas y lo hace más significativo. Las tres etapas son estrategia, solución y verificación. Este proceso se usa en ejemplos a lo largo del libro. Estrategia La estrategia es la etapa inicial para resolver un problema. La idea es descubrir exactamente cuál es el problema y luego desarrollar una estrategia para resolverlo. Algunos consejos generales para esta etapa son los siguientes:
Examina la situación para determinar qué principios físicos están involucrados. A menudo, es útil dibujar un boceto simple al principio. Necesitas decidir qué dirección es positiva y anotar eso en tu boceto. Cuando hayas identificado los principios físicos, es mucho más fácil encontrar y aplicar las ecuaciones que representan esos principios. Aunque encontrar la ecuación correcta es esencial, ten en cuenta que las ecuaciones representan principios físicos, leyes de la naturaleza y relaciones entre cantidades físicas. Sin una comprensión conceptual de un problema, una solución numérica no tiene sentido.
Haz una lista de lo que se da o se puede deducir del problema tal como se establece (identifica los "datos dados").
Muchos problemas se expresan de manera muy sucinta y requieren una cierta inspección para determinar lo que se conoce. Dibujar un boceto puede ser muy útil en este punto también. Formalmente, identificar los conocimientos es de particular importancia en la aplicación de la física a situaciones del mundo real. Por ejemplo, la palabra "parar" significa que la velocidad es cero en ese instante. Además, a menudo podemos tomar el tiempo inicial y la posición como cero mediante la elección adecuada del sistema de coordenadas.
Identifica exactamente qué debe determinarse en el problema (identifica las incógnitas). En problemas complejos, especialmente, no siempre es obvio lo que se necesita encontrar o en qué secuencia. Hacer una lista puede ayudar a identificar las incógnitas.
Determina qué principios físicos pueden ayudarte a resolver el problema. Dado que los principios físicos tienden a expresarse en forma de ecuaciones matemáticas, una lista de datos e incógnitas puede ayudar aquí. Es más fácil si puedes encontrar ecuaciones que contienen solo un dato desconocido, es decir, todas las demás variables son conocidas, de modo que puedes resolver fácilmente lo desconocido. Si la ecuación contiene más de una variable desconocida, entonces se necesitan ecuaciones adicionales para resolver el problema. En algunos problemas, se deben determinar varias incógnitas para llegar a la que más se necesita. En tales problemas, es especialmente importante tener en cuenta los principios físicos para evitar perder el rumbo en un mar de ecuaciones. Puede que tengas que usar dos (o más) ecuaciones diferentes para obtener la respuesta final.
La etapa de solución es cuando haces los cálculos. Sustituye los datos (junto con sus unidades) en la ecuación apropiada y obten soluciones numéricas completas con unidades. Es decir, haz el álgebra, el cálculo, la geometría o la aritmética necesarios para encontrar los datos desconocidos a partir de los conocidos, asegurándote de llevar las unidades a través de los cálculos. Este paso es claramente importante porque produce la respuesta numérica, junto con sus unidades. Sin embargo, ten en cuenta que esta etapa es solo un tercio del proceso general de resolución de problemas. Verificación Después de haber hecho los cálculos en la etapa de solución de la resolución de problemas, es tentador pensar que ya terminaste. Pero recuerda siempre que la física no es matemática. Más bien, al hacer física, utilizamos las matemáticas como una herramienta para ayudarnos a comprender la naturaleza. Entonces, después de obtener una respuesta numérica, siempre debes evaluar su significado:
Verifica tus unidades. Si las unidades de la respuesta son incorrectas, se ha producido un error y debes volver sobre tus pasos anteriores para encontrarlo. Una forma de encontrar el error es verificar todas las ecuaciones que obtuviste para la consistencia dimensional. Sin embargo, ten en cuenta que las unidades correctas no garantizan que la parte numérica de la respuesta también sea correcta. Verifica la respuesta para ver si es razonable. ¿Tiene sentido? Este paso es extremadamente importante: el objetivo de la física es describir la naturaleza con precisión.
Para determinar si la respuesta es razonable, verifica tanto su magnitud como su signo, además de sus unidades. La magnitud debe ser consistente con una estimación aproximada de lo que debería ser. También debes comparar, razonablemente, con magnitudes de otras cantidades del mismo tipo. El letrero generalmente te informa sobre la dirección y debe ser consistente con tus expectativas previas. Tu juicio mejorará a medida que resuelvas más problemas de física, y te será posible hacer juicios más precisos con respecto a si la naturaleza describe adecuadamente la respuesta a un problema. Este paso devuelve el problema a su significado conceptual. Si puedes juzgar si la respuesta es razonable, tienes una comprensión más profunda de la física que ser capaz de resolver un problema mecánicamente.
Verifica si la respuesta te dice algo interesante. ¿Qué significa eso? Esta es la otra cara de la pregunta: ¿Tiene sentido? En definitiva, la física trata de comprender la naturaleza y resolvemos los problemas de física para aprender algo sobre cómo funciona la naturaleza. Por lo tanto, suponiendo que la respuesta tiene sentido, siempre debes tomarte un momento para ver si te dice algo sobre el mundo que te parece interesante. Incluso si la respuesta a este problema en particular no es muy interesante para ti, ¿qué pasa con el método que utilizaste para resolverlo? ¿Podría el método adaptarse para responder a una pregunta que te parezca interesante? En muchos sentidos, es al responder preguntas como éstas que la ciencia progresa.