´ ☞ Teorema (Algebra de Derivadas)
☞ Definici´on: f ′ (x) = lim
h→0
f (x + h) − f (x) h
✎
d (f (x) + g(x)) = f ′ (x) + g ′ (x) dx
d (f (x)g(x)) = f ′ (x)g(x) + f (x)g ′ (x) dx f ′ (x)g(x) − f (x)g ′ (x) d f (x) = ✎ dx g(x) [g(x)]2
✎
☞ Notaci´on:
d f (x) = f 8 (x) dx
☞ Definici´on: f es derivable en x0 si f 8 (x0 ) = lim
x→x0
f (x) − f (x0 ) x − x0
existe.
☞ Algunas derivadas de funciones ✎
d (c) = 0, c ∈ R dx
d ✎ (x) = 1 dx
✎
d m (x ) = mxm−1 , m ∈ Q dx
✎
d √ 1 ( x) = √ dx 2 x
✎
d 1 (ln x) = dx x
✎
d 1 (loga x) = dx x ln a
d x (e ) = ex ✎ dx
☞ Observaciones d (kf (x)) = kf ′ (x), k ∈ R dx f ′ (x) 1 d =− 2 ✎ dx f (x) f (x)
✎
☞ Recta Tangente: Sea f derivable en x0 entonces la recta tangente a f en (x0 , ) es T : y − y0 = f 8 (x0 )(x − x0 )
☞ Recta Normal: Sea f derivable en x0 entonces la recta normal a f en (x0 , y0 ) es N : y − y0 = −
1 (x − x0 ) f 8 (x0 )
☞ Regla de la cadena g◦f bien definida, g y f derivable en f (x0 ) y x0 , respectivamente entonces d (g ◦ f )(x) = g 8 (f (x))f ′ (x) dx