Derivadas 3

Page 1

1. Determine, si existe, la derivada de f en x = 2 de la funci´ on f definida por  2 , −2 ≤ x < 1,  5−x f (x) = 6 − 2x , 1 ≤ x < 2,  2x − 2 , 2 ≤ x ≤ 4.

Soluci´ on

l´ım−

h→0

=

f (2 + h) − f (2) = h

l´ım

h→0−

h→0−

=

h

l´ım

h→0+

=

h→0

(2(2 + h) − 2) − (2 · 2 − 2) h

h→0+

(2 + 2h) − (2) h

= l´ım

2h = 2 h

como:

l´ım

h→0+

l´ım

h→0

−2

f (2 + h) − f (2) = h

l´ım+

(6 − 2(2 + h)) − (2 · 2 − 2) h

(2 − 2h) − (2) h −2h

= l´ım

l´ım−

h→0−

f (2 + h) − f (2) 6= h

l´ım

h→0+

f (2 + h) − f (2) h

la derivada no existe en x0 = 2


2. Determine la derivada de las siguientes funciones: 2.1) f (x) =

ln(sen(x + 1)) √ x−1

Soluci´ on ′

f (x) =

=

ln(sen(x + 1)) √ x−1

√ √ (ln(sen(x + 1)))′ · ( x − 1) − (ln(sen(x + 1))) · ( x − 1)′ √ ( x − 1)2

=

1 sen(x+1)

=

1 sen(x+1)

· (sen(x + 1))

√ · ( x − 1) − (ln(sen(x + 1))) · √ ( x − 1)2

√ · (cos(x + 1)) · ( x − 1) − (ln(sen(x + 1))) · √ ( x − 1)2

1 √ 2 x

2.2) f (x) = (x2 − 1)(x + 5)3 Soluci´ on

f ′ (x) = (x2 − 1)′ · (x + 5)3 + (x2 − 1) · ((x + 5)3 )′ =

(2x) · (x + 5)3 + (x2 − 1) · (3(x + 5)2 )(x + 5)′

= 2x(x + 5)3 + 3(x2 − 1)(x + 5)2 =

2x(x + 5) + 3(x2 − 1) (x + 5)2

=

5x2 + 10x − 3 (x + 5)2

1 √ 2 x


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.