Derivadas 3

Page 1

1. Determine, si existe, la derivada de f en x = 2 de la funci´ on f definida por  2 , −2 ≤ x < 1,  5−x f (x) = 6 − 2x , 1 ≤ x < 2,  2x − 2 , 2 ≤ x ≤ 4.

Soluci´ on

l´ım−

h→0

=

f (2 + h) − f (2) = h

l´ım

h→0−

h→0−

=

h

l´ım

h→0+

=

h→0

(2(2 + h) − 2) − (2 · 2 − 2) h

h→0+

(2 + 2h) − (2) h

= l´ım

2h = 2 h

como:

l´ım

h→0+

l´ım

h→0

−2

f (2 + h) − f (2) = h

l´ım+

(6 − 2(2 + h)) − (2 · 2 − 2) h

(2 − 2h) − (2) h −2h

= l´ım

l´ım−

h→0−

f (2 + h) − f (2) 6= h

l´ım

h→0+

f (2 + h) − f (2) h

la derivada no existe en x0 = 2


Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.