2. razred
POPRAVNI ISPIT 2011
Stranica 1
1. Odredi x i y iz jednakosti 2x + y – yi = 1 + i. 2. Zadan je kompleksni broj z = –1 – 3i. a) prikaŞi z u kompleksnoj ravnini, b) odredi |z|, c) odredi –z, d) odredi z . 3. Rijeťi jednadŞbu: a)
+5=0
b) x = x
d) x − 8 = 0 g) x + y = 5 x + y = 0
c)
e) x + 3x + 2 = 0
+
+1=0
f) √2x − x + 4 = 0
4. Dana je jednadĹžba 2 px − 1 = p 2x − 1 p ≠0 odredi p ako je: a) korijeni su jednaki, b) jedan korijen je jednak 0, c) rjeĹĄenja nisu realna d) zbroj rjeĹĄenja jednadĹžbe jednak je 1. 5. NapiĹĄi kvadratnu jednadĹžbu ako je zadano rjeĹĄenje x = −2 − 3 . 6. Skrati razlomak
.
7. Nacrtaj graf funkcije ! = −x + x + 2 i ispitaj tijek. 8. RijeĹĄi nejednadĹžbe: a) 4x ≤ 1
b) −x ≼ x
c) 4x − x > 0 4x − 9 ≤ 0 .
9. Nacrtaj grafova funkcija: a) x = 3 b) f x = log x 10. RijeĹĄi jednadĹžbu: a) c) e) g)
2 = 20 5 . − 5 = 24 log x + log / x + 4 = 0 log 2 − 7 = 3 .
, • ) *
-
b) ) * = d) log x + log x − 3 = 1 f) log03 + 2 log x + 1 1 = 0
11. RijeĹĄi nejednadĹžbe: 3
,
a) ) *
< 16 â&#x20AC;˘ 2
b) log 3 6
â&#x2030;Ľ0
12. Duljina osnovnih bridova uspravne prizme u omjeru su 9:10:17, njezina visina je 10 cm, oploĹĄje je 2.392 cm2. Odredi obujam. 13. IzraÄ?unaj obujam pravilne Ä?etverostrane piramide kojoj je duljina brida 10 cm, a duljina boÄ?nog brida 15 cm.
Za pomoÄ&#x2021; u matematici zdravko.lezai@inet.hr
2. razred
POPRAVNI ISPIT 2011
1.
2x + y â&#x20AC;&#x201C; yi = 1 + i 2x + y = 1 â&#x20AC;&#x201C;y = 1 â&#x20AC;&#x201C;y = 1 /: (â&#x20AC;&#x201C;1) y = â&#x20AC;&#x201C;1 2x â&#x20AC;&#x201C; 1 = 1 2x = 1 + 1 2x = 2 /: 2 x=1
2.
z = â&#x20AC;&#x201C;1 â&#x20AC;&#x201C; 3i a)
Stranica 2
b) |z| = 7â&#x20AC;&#x201C; 1 â&#x20AC;&#x201C; 3 77 = > â&#x2C6;&#x2019;1 + â&#x2C6;&#x2019;3 = â&#x2C6;&#x161;1 + 9 = â&#x2C6;&#x161;10 c) â&#x20AC;&#x201C;z = â&#x20AC;&#x201C; 9â&#x20AC;&#x201C; 1 â&#x20AC;&#x201C; 3 :: = 1 + 3 d) z = â&#x2C6;&#x2019;1 â&#x2C6;&#x2019; 3 = 1 + 6 â&#x2C6;&#x2019; 9 = â&#x2C6;&#x2019;8 + 6 3.
a)
c)
+ 5 = 0 /â&#x20AC;˘ 5 x + 25 = 0 x = â&#x2C6;&#x2019;25 x , = =â&#x2C6;&#x161;â&#x2C6;&#x2019;25 25 x , = =5
+
b) x = x x â&#x2C6;&#x2019; x = 0 x x â&#x2C6;&#x2019; 1 = 0 x = 0
+ 1 = 0 //â&#x20AC;˘ y â&#x2C6;&#x2019; 2 y â&#x2C6;&#x2019; 3
uvjeti:
2 y â&#x2C6;&#x2019; 3 + 3 y â&#x2C6;&#x2019; 2 + y â&#x2C6;&#x2019; 2 y â&#x2C6;&#x2019; 3 = 0 2y â&#x2C6;&#x2019; 6 + 3y â&#x2C6;&#x2019; 6 + y â&#x2C6;&#x2019; 2y â&#x2C6;&#x2019; 3y + 6 = 0 y + 6 = 0 y = â&#x2C6;&#x2019;6 y , = =â&#x2C6;&#x161;â&#x2C6;&#x2019;6 y , = = â&#x2C6;&#x161;6
x â&#x2C6;&#x2019; 1 = 0 x = 1 yâ&#x20AC;&#x201C;2â&#x2030; 0 yâ&#x2030; 2 yâ&#x20AC;&#x201C;3â&#x2030; 0 yâ&#x2030; 3
Za pomoÄ&#x2021; u matematici zdravko.lezai@inet.hr
2. razred
POPRAVNI ISPIT 2011
Stranica 3
?@ â&#x2C6;&#x2019; A@ = ? â&#x2C6;&#x2019; A ?B + ?A + AB
d) x â&#x2C6;&#x2019; 8 = 0 x â&#x2C6;&#x2019; 2 x + 2x + 4 = 0 xâ&#x20AC;&#x201C;2=0
x + 2x + 4 = 0
x = 2
x , = x , =
x , = x , =
x , = x , =
x , =
C=â&#x2C6;&#x161;C DE D =â&#x2C6;&#x161; =â&#x2C6;&#x161; =F â&#x2C6;&#x161; =F â&#x2C6;&#x161; â&#x20AC;˘ = F â&#x2C6;&#x161;
9 =F â&#x2C6;&#x161; :
x , = â&#x2C6;&#x2019;1 = â&#x2C6;&#x161;3 e) x + 3x + 2 = 0 t + 3t + 2 = 0 t , = t , = t , =
t , =
x = t
C=â&#x2C6;&#x161;C DE D =â&#x2C6;&#x161; H =â&#x2C6;&#x161; =
.
t = t = â&#x2C6;&#x2019;1 t =
t = â&#x2C6;&#x2019;2
f) â&#x2C6;&#x161;2x â&#x2C6;&#x2019; x + 4 = 0 â&#x2C6;&#x161;2x = x â&#x2C6;&#x2019; 4 /2 9â&#x2C6;&#x161;2x: = x â&#x2C6;&#x2019; 4 2x = x â&#x2C6;&#x2019; 8x + 16 x â&#x2C6;&#x2019; 8x + 16 â&#x2C6;&#x2019; 2x = 0 x â&#x2C6;&#x2019; 10x + 16 = 0 x , = x , = x , = x , =
C=â&#x2C6;&#x161;C DE D I=â&#x2C6;&#x161; II - I=â&#x2C6;&#x161; I=
x = â&#x2C6;&#x2019;1
x , = =â&#x2C6;&#x161;â&#x2C6;&#x2019;1
x , = = x = â&#x2C6;&#x2019;2 x , = =â&#x2C6;&#x161;â&#x2C6;&#x2019;2 x , = = â&#x2C6;&#x161;2
x =
I.-
x =
I -
x = 8
x = 2
Za pomoÄ&#x2021; u matematici zdravko.lezai@inet.hr
2. razred
POPRAVNI ISPIT 2011
Stranica 4
g) x + y = 5 => y = –x + 5 x + y = 0 x + −x + 5 = 0 x + x − 10x + 25 = 0 2x − 10x + 25 = 0 x , =
C=√C DE
D I=√ II II
x , = x , = 5 y = –x + 5 y = –5 + 5 y , = 0 4,
2 px − 1 = p 2x − 1 p ≠ 0 2px − 2 = p 4x − 4x + 1 2px − 2 = 4px − 4px + p 4px − 4px + p − 2px + 2 = 0
4px − 6px + p + 2 = 0
a = 4p b = –6p c = p + 2 a) D = 0 diskriminanta J = AB − K?L −6p − 4 • 4p • p + 2 = 0 36p − 16p − 32p = 0 20p − 32p = 0 4p 5p − 8 = 0 4p = 0 nije rješenje zbog uvjeta p ≠ 0 5p – 8 = 0 5p = 8 /: 8 H p= b) x = 0 4 • p • 0 − 6 • p • 0 + p + 2 = 0 p+2=0 p = –2 c) D < 0 −6p − 4 • 4p • p + 2 < 0 36p − 16p − 32p < 0 20p − 32p < 0 4p 5p − 8 < 0 – ∞ 4p 5p - 8
H
0 – – +
+ – –
+∞ + + +
H
p ∊ 〈 0, 〉
Za pomoć u matematici zdravko.lezai@inet.hr
2. razred
5. 6.
POPRAVNI ISPIT 2011
d x + x = 1
[
Vietove formule: x + x = −
4px − 6px + p + 2 = 0 a = 4p b = –6p c = p + 2
Stranica 5 x • x =
]
\
\
[
− = 1
\ ^
−
= 1
-^
nema rješenja
x = −2 − 3 x = −2 + 3
? d − d e d − d B = f
9x − −2 − 3 :9x − −2 + 3 : = 0 x − 2 + 3 x − 2 − 3 = 0 9 x − 2 + 3 :9 x − 2 − 3 : = 0 x − 2 − 3 = 0 x − 4x + 4 + 9 = 0
razlika kvadrata a − b = a + b a − b
d B − Kd + e@ = f
=
4x − 1 = 2x − 1 2x + 1 2x − 9x − 5 = 0 x , = x , =
x , = x , =
x = x =
C=√C DE D =√H . I
=√ =
. I
x = 5
x =
=
x = −
x − 5 • 2 )x − * = 0 x − 5 2x − 1 = 0
2x−1 2x+1 x−5 2x−1
x = −
=
? d − d e d − d B = f
2x+1 x−5
Za pomoć u matematici zdravko.lezai@inet.hr
2. razred 7.
POPRAVNI ISPIT 2011
! = â&#x2C6;&#x2019;x + x + 2 Tjeme T xI , yI
xI = â&#x2C6;&#x2019; xI = â&#x2C6;&#x2019; xI =
T) , *
[
\
yI =
\] [
yI =
yI =
Stranica 6
\ H
Nul-toÄ?ke â&#x2C6;&#x2019;x + x + 2 = 0 x , =
x , = x , =
x , =
C=â&#x2C6;&#x161;C DE D =â&#x2C6;&#x161; .H =â&#x2C6;&#x161; =
.
x = x = â&#x2C6;&#x2019;1
x = x = 2
Tijek funkcije x â&#x20AC;&#x201C;â&#x2C6;&#x17E;
f(x)
+â&#x2C6;&#x17E;
4x â&#x2030;¤ 1 4x â&#x2C6;&#x2019; 1 â&#x2030;¤ 0 2x + 1 2x â&#x2C6;&#x2019; 1 â&#x2030;¤ 0 â&#x20AC;&#x201C;â&#x2C6;&#x17E; â&#x2C6;&#x2019; 2x + 1 â&#x20AC;&#x201C; + 2x â&#x20AC;&#x201C; 1 â&#x20AC;&#x201C; â&#x20AC;&#x201C; + â&#x20AC;&#x201C;
8.
a)
+â&#x2C6;&#x17E; + + +
x â&#x2C6;&#x160; iâ&#x2C6;&#x2019; , j
â&#x2C6;&#x2019;x â&#x2030;Ľ x â&#x2C6;&#x2019;x â&#x2C6;&#x2019; x â&#x2030;Ľ 0 â&#x2C6;&#x2019;x x + 1 â&#x2030;Ľ 0 â&#x20AC;&#x201C;â&#x2C6;&#x17E; â&#x20AC;&#x201C;11 x+1 â&#x20AC;&#x201C; â&#x20AC;&#x201C;x + â&#x20AC;&#x201C; x â&#x2C6;&#x160; 0â&#x2C6;&#x2019;1,01 b)
0 + + +
+ +â&#x2C6;&#x17E; + â&#x20AC;&#x201C; â&#x20AC;&#x201C;
Za pomoÄ&#x2021; u matematici zdravko.lezai@inet.hr
2. razred c)
POPRAVNI ISPIT 2011
Stranica 7
4x â&#x2C6;&#x2019; x > 0 4x â&#x2C6;&#x2019; 9 â&#x2030;¤ 0 4x â&#x2C6;&#x2019; x > 0 x(4 â&#x20AC;&#x201C; x ) > 0 â&#x20AC;&#x201C;â&#x2C6;&#x17E;
x 4â&#x20AC;&#x201C;x x1 â&#x2C6;&#x160; â&#x152;Š0,4â&#x152;Ş
0
4
â&#x20AC;&#x201C; + â&#x20AC;&#x201C;
+ + +
+ +â&#x2C6;&#x17E; + â&#x20AC;&#x201C; â&#x20AC;&#x201C;
4x â&#x2C6;&#x2019; 9 â&#x2030;¤ 0 2x + 3 2x â&#x2C6;&#x2019; 3 â&#x2030;¤ 0 â&#x2C6;&#x2019;
â&#x20AC;&#x201C;â&#x2C6;&#x17E; 2x + 3 2x â&#x20AC;&#x201C; 3
â&#x20AC;&#x201C; â&#x20AC;&#x201C; +
+ â&#x20AC;&#x201C; â&#x20AC;&#x201C;
+â&#x2C6;&#x17E; + + +
x â&#x2C6;&#x160; iâ&#x2C6;&#x2019; , j
x â&#x2C6;&#x160; i0, j
9.
a)
x f(x)
x = 3 â&#x20AC;&#x201C;2 1 9
â&#x20AC;&#x201C;1 1 3
0
1
2
3
1
3
9
27
.
Za pomoÄ&#x2021; u matematici zdravko.lezai@inet.hr
2. razred
POPRAVNI ISPIT 2011
Stranica 8
b) f x = log x x f(x)
10. a)
1 9 â&#x20AC;&#x201C;2
1 3 â&#x20AC;&#x201C;1
1
3
9
0
1
2
2 = 20 x = log 20 x = 4,3219
b) ) *
, â&#x20AC;˘ ) *
â&#x20AC;˘
k) * l .
) *
â&#x20AC;˘
. . ,
) *
=
, ) *
, ) *
=) *
=) *
=) *
â&#x2C6;&#x2019;x + 1 + = 2 /â&#x20AC;˘â&#x20AC;˘ â&#x2C6;&#x2019;x
x â&#x2C6;&#x2019; x â&#x2C6;&#x2019; 2 = â&#x2C6;&#x2019;2xx
x â&#x2C6;&#x2019; x â&#x2C6;&#x2019; 2 + 2x = 0
x +xâ&#x2C6;&#x2019;2=0
x , = x , =
C=â&#x2C6;&#x161;C DE DE D =â&#x2C6;&#x161; .H
x , =
x , = x = x =
=â&#x2C6;&#x161; =
.
x = 1
x = x =
x = â&#x2C6;&#x2019;2
Za pomoÄ&#x2021; u matematici zdravko.lezai@inet.hr
2. razred c)
d)
POPRAVNI ISPIT 2011 5 . â&#x2C6;&#x2019; 5 = 24 5 â&#x20AC;˘ 5 â&#x2C6;&#x2019; â&#x20AC;˘ 5 = 24 /â&#x20AC;˘ 5 25 â&#x20AC;˘ 5 â&#x2C6;&#x2019; 5 = 120 24 â&#x20AC;˘ 5 = 120 /: 24 5 = 5 x=1 log x + log x â&#x2C6;&#x2019; 3 = 1 log x x â&#x2C6;&#x2019; 3 = log 10 x x â&#x2C6;&#x2019; 3 = 10 x â&#x2C6;&#x2019; 3x â&#x2C6;&#x2019; 10 = 0
x , = x , =
x , = x , =
C=â&#x2C6;&#x161;C DE D =â&#x2C6;&#x161; . I =â&#x2C6;&#x161; =/
./
/
x = x = 5 e)
Stranica 9
x = x = â&#x2C6;&#x2019;2
log x + log / x + 4 = 0 log x + log m x + 4 = 0 log x + log x + 4 = 0 /â&#x20AC;˘ 3 3 log x + log x + 12 = 0 4 log x + 12 = 0 /: 4 log x + 3 = 0 log x = â&#x2C6;&#x2019;3 log x = log 3 x = 3 x= /
f)
log03 + 2 log x + 1 1 = 0 log03 + 2 log x + 1 1 = log 1 3 + 2 log x + 1 = 1 2 log x + 1 = 1 â&#x2C6;&#x2019; 3 2 log x + 1 = â&#x2C6;&#x2019;2 /: 2 log x + 1 = â&#x2C6;&#x2019;1 log x + 1 = log 10 x + 1 = 0,1 x = 0,1 â&#x20AC;&#x201C; 1 x = â&#x20AC;&#x201C;0,9
Za pomoÄ&#x2021; u matematici zdravko.lezai@inet.hr
2. razred g)
POPRAVNI ISPIT 2011
Stranica 10
log 2 â&#x2C6;&#x2019; 7 = 3 2 â&#x2C6;&#x2019; 7 = 2 2 â&#x2C6;&#x2019; 7 = 8 2 = 8 + 7 2 = 15 x = log 15 x = 3,9069 3
,
11. a) ) *
< 16 â&#x20AC;˘ 2 3
2 , < 2 â&#x20AC;˘ 2
2, < 2 .
2, < 2 . â&#x2C6;&#x2019; 2 < 2! + 1
â&#x2C6;&#x2019; 2 â&#x2C6;&#x2019; 2x â&#x2C6;&#x2019; 1 < 0 /â&#x20AC;˘ ! 2 â&#x2C6;&#x2019; 2x â&#x2C6;&#x2019; 2x â&#x2C6;&#x2019; x < 0 â&#x2C6;&#x2019;2x â&#x2C6;&#x2019; 3x + 2 < 0
C=â&#x2C6;&#x161;C DE
x , =
D =â&#x2C6;&#x161; . =â&#x2C6;&#x161;
x , =
x , =
=
x , =
x =
.
x =
x = â&#x2C6;&#x2019;2 b)
log 3 6
log 3 6
n n
n n
â&#x2030;¤1
x = â&#x2030;Ľ0
uvjet: 1 â&#x20AC;&#x201C; 2x >0
â&#x2030;Ľ log 3 1 6
â&#x2C6;&#x2019;1â&#x2030;¤0
n
â&#x20AC;&#x201C;2x > â&#x20AC;&#x201C;1 /: â&#x2C6;&#x2019;2 x<
â&#x2030;¤0
â&#x2030;¤0 â&#x2C6;&#x2019;2x â&#x2C6;&#x2019; 3 â&#x2030;¤ 0 â&#x20AC;&#x201C;2x â&#x2030;¤ 3 /: â&#x2C6;&#x2019;2 xâ&#x2030;Ľâ&#x2C6;&#x2019;
x â&#x2C6;&#x160; iâ&#x2C6;&#x2019; , o â&#x152;Şo
Za pomoÄ&#x2021; u matematici zdravko.lezai@inet.hr
2. razred
POPRAVNI ISPIT 2011
Stranica 11
12. a : b : c = 9 : 10 : 17 c = 10 cm O = 2.592 cm2 V=? a = 9k b = 10k c = 17k O = 2B + P \.[.] q. Iq. /q q -q = = = 18k s=
sâ&#x2C6;&#x2019; c B = >s sâ&#x2C6;&#x2019; a sâ&#x2C6;&#x2019; b 18k â&#x2C6;&#x2019; 10k 18k â&#x2C6;&#x2019; 17k B = >18k 18k â&#x2C6;&#x2019; 9k B = â&#x2C6;&#x161;18k â&#x20AC;˘ 9k â&#x20AC;˘ 8k â&#x20AC;˘ k B = â&#x2C6;&#x161;1296k B = 36k P = a + b + c â&#x20AC;˘ u P = 9k + 10k + 17k â&#x20AC;˘ 10 P = 36k â&#x20AC;˘ 10 P = 360k 2B + P = O 2 â&#x20AC;˘ 36k + 360k = 2.592 592 72k + 360k â&#x2C6;&#x2019; 2.592 = 0 k + 5k â&#x2C6;&#x2019; 36 = 0 k , =
k , = k , =
k , =
C=â&#x2C6;&#x161;C DE
D =â&#x2C6;&#x161; . =â&#x2C6;&#x161; - =
.
k = k = 4
a=9â&#x20AC;˘4 a = 36 cm b = 10 â&#x20AC;˘ 4 b = 40 cm c = 17 â&#x20AC;˘ 4 c = 68 cm B = 36 â&#x20AC;˘ 4 B = 144 cm2
k = k = â&#x2C6;&#x2019;9 ne vrijedi
V=Bâ&#x20AC;˘v V = 144 â&#x20AC;˘ 10 V = 1.440 cm3
Za pomoÄ&#x2021; u matematici zdravko.lezai@inet.hr
2. razred
POPRAVNI ISPIT 2011
13. a = 10 cm b = 15 cm V=? d = aâ&#x2C6;&#x161;2
v
u = b â&#x2C6;&#x2019; ) * \â&#x2C6;&#x161;
u =b â&#x2C6;&#x2019;)
u = b â&#x2C6;&#x2019;
Stranica 12
\
*
\
u =b â&#x2C6;&#x2019; u = 225 â&#x2C6;&#x2019; 50 u = 175 u = 5â&#x2C6;&#x161;7 cm
V=
wâ&#x20AC;˘x
V=
IIâ&#x20AC;˘ â&#x2C6;&#x161;/
V= V=
\ â&#x20AC;˘x
IIâ&#x2C6;&#x161;/
cm3
Za pomoÄ&#x2021; u matematici zdravko.lezai@inet.hr