Case study Chairs that are genetically bred by algorithm Paul A. Wu – ECA studio theories & contexts, Edinburgh 2015.
Abstract When it comes to product design, it is generally believed that a product should possess visual attraction, which is true to a certain extent, but the context should be viewed more holistically. Good design should contain both beauty and purpose. A product with strong purpose creates inspiration, and by purpose it means the product’s aims and reason for its form to exist. Most designs nowadays are more about illustrations of some objects. Their lack of purpose becomes the reason of them being less inspiring. To achieve strong purpose, a proper design methodology is needed, and one of them is biomimetics as problem-solving, creativity and innovation tool. This paper discusses a case study for two great seating elements that take into account aesthetics as well as aspects of science, engineering and technology within an integrative design approach to create the harmony of purpose and form for a piece of design. Keywords: Biomimetics; Biomimicry; Computational design; Parametric design; Topology optimization; Finite element method; Homological approach; Form-giving; Form-finding; Biomechanics; Numerical analysis; Structural engineering; Generative manufacturing technology; Additive manufacturing technology; Morphogenetic process; Local gradient; Image gradient; Deformation profile; Fused deposition modeling
Introduction As most designers believe, the way something looks should be determined by its purpose. Good product design ensures both form and function. It is never easy to keep the two in balance, which is why good design deserves respect and praise. By form it means the aesthetics of the artifact that creates captivating visual stimulation to the audience. By function it means the purpose of the form of the artifact. This brings up the debate of whether or not form should follow function in design. In light of the argument, this case study is focused on two designers’ works and how they support my perspectives regarding whether or not form should follow function. The first case is about the work of Joris Laarman, a young Dutch designer who stumbled upon a genetic algorithm that was aimed at maximizing strength while completely eliminating waste of material. Laarman took advantage of the algorithm, applied it to his furniture design and introduced his “Bone chair” in 2006. The second case is about the work of Marco Hemmerling and Ulrich Nether, the two German architects specializing in computational design, and those who made a further investigation in topology optimization and introduced their “Generico chair” in 2014. Both cases are practiced similarly but with the Generico chair being slightly different due to having more design drivers developed compared with Laarman’s Bone chair. Both chairs, however, met the same design requirement – to challenge traditions and create new ways of doing things by the inspiration of biomimicry. The works of Laarman, Hemmerling and Nether inspired my postgraduate research work and helped me come to an understanding that form may follow function to achieve purpose; however, the results vary depending on the purposes designers make. Nature has always provided us with a vast source of inspiration. This is not without its reasons as all living organisms are both image and result of evolution that their forms being the diagrams of invisible forces of nature, as concluded by the Scottish mathematical biologist D'Arcy Thompson (1829–1902). Albeit nature has opened the eyes of designers, a limited set of nature-inspired works are introduced to us in this creative discipline, biomimicry. The problem, however, is not about quantity but quality. "Everyone is
案例研究 基於遺傳算法所衍生出的座椅 吳祖諺 – 愛丁堡大學設計學院之研究室理論與述論, 愛丁堡 2015.
摘要 在產品設計領域内,人們普遍認為產品應該具有視覺吸引力。這在某種程度上是正確的,然而應該 更全面的去了解其設計背後的故事與内容。 好設計應該包含著視覺美感與概念原由。 具有出色的 設計概念的產品可助於創作靈感,此時的概念指的是該產品的創作目的與其存在因素。 現今普遍 大多數的設計都較偏向於形態上的模仿。它們由於缺乏目的性因而使它們無法成為鼓舞人心之作。 為了讓產品達到擁有强烈的目的性,使用適當的設計方法是必要的,而其中的方法就是用來解決問 題及提供創新的「仿生學」。本文主要探討兩大座椅的案例研究。其中考慮到了如何應用基於美 學、科學、工程和技術的綜合設計法來為產品創造出充滿和諧感,並同時兼備概念與形態的設計之 作。
關鍵詞:仿生; 仿生學; 計算設計; 參數化設計; 拓撲優化; 有限元素法; 仿型法; 找型; 給型; 生物力 學; 數值分析; 結構工程; 衍生製造技術; 積層製造技術; 型態過程; 局部漸變; 圖像漸變/影像梯度; 變 形剖面; 熔融層積成型
導讀 正如大多數設計師所認同的,機能決定形式。好的產品設計會確保形式與機能之間的密不可分性。 要使兩者保持平衡絕非易事,這也同時給與了「好設計值得被尊重與讚美」的説法。在此所謂的形 式是指物品在視覺上所散發出能勾起大衆好奇心的美感,為觀眾帶來視覺上的刺激感。機能即為物 品所散發出的美感之因。這也引發了關於形式是否應該遵循機能的爭論。根據這一論點,本案例研 究主要探討兩位傑出設計師的作品以及他們如何在我的研究論文中幫助我對「形態是否該追隨功 能」有更深層次的看法。第一個案例是關於一名年輕荷蘭設計師 – 約里斯•拉曼 – 如何在偶然的機 遇下接觸到了一款既能完全做到省材且也能强化結構效能的遺傳演算法。拉曼利用此算法將其應用 於他的家具設計並在 2006 年推出了他的「骨椅」。第二個案例是關於馬可•哈默林,和烏爾里奇• 耐瑟的工作。兩位皆為專門研究算法輔助設計的德國建築師,且也在拓撲優化方面做出了進一步的 研究,並於 2014 年推出了他們的「衍生椅」。兩種座椅都有類似的設計與製成方式。然而與拉曼 的骨椅相較之下略有所不同乃因衍生椅擁有更多的設計參變量。盡管如此,這兩把座椅都符合相同 的設計要求:通過仿生學獲得靈感、挑戰傳統、在製成上做出了創新與突破。拉曼,哈默林及耐瑟 的作品激發了我的研究目的,並助我理解了形式可追隨機能而達到最終目的。當然,結果仍取決於 設計者本身的設計心態。
trying to jump on the biomimic bandwagon, but a cork floor is not biomimicry. Neither is using bacteria to clean water. Biomimicry is the process of learning from nature and adapting that knowledge to a new situation or technology. It takes effort and science. And it's not easy." Says the biomimicry expert Janine Benyus who basically points out the mistake that is often made in the field of biomimicry design. Many existing product designs have been inspired by nature, yet most of them are practiced by using direct homological approach, mimicking forms in nature merely to achieve aesthetic potential without actually putting nature to work to achieve functionality. Such misguidance not only happens in architecture but also in industrial design. What we must understand is that instead of mimicking forms in nature, we should rather design like nature so that the impractical “form-giving” activity will eventually transmute into a “form-finding” strategy benefiting from the natural sciences.
The Bone chair “Fascination and inspiration from nature is one thing, putting nature to work yet another.” – [Putting nature to work by Innovativ Kultur]. The priority of this research study is to understand how biomimicry design approach is properly applied to make natural processes accessible in product design. The goal is to explore formal aesthetic concerns and discover how natural processes can be integrated with the help of digital fabrication technologies. “Trees and bones are constantly reforming themselves along lines of stress. This algorithm has been put into a software program that's now being used to make bridges lightweight, to make building beams lightweight.” Says Janine Benyus. Joris Laarman’s exquisite “Bone” furniture, which has been critically acclaimed, is a good union of art and science. It is unanimously acclaimed as one of the
Fig 1. Final prototype of the bone chair in 1:1 scale most influential designs over the last two decades that illuminates the future with beauty and purpose by using a digital algorithm to translate the complexity, proportion and functionality of human bone and tree growth into a chair form. The design of the Bone chair began in the late 90’s inspired by the work of German physicists Claus Mattheck and Lothar Hartzheim, with Mattheck specializing in biomechanics and Hartzheim specializing in numerical analysis and structural engineering. The two physicists were initially intrigued by the ability of bones and trees to adapt and even optimize their growth - adding material only where needed and removing it where unnecessary. They believe that a bionic approach is when principles of nature are deciphered and applied to a technical or structural process. Their primary motivation is to apply both bionics and mathematical algorithms to their work on a daily basis to build parts that are both sturdy and lightweight.
大自然一直為我們提供出廣泛的靈感來源。這不是沒有它的原因。就如蘇格蘭生物數學家 約翰•湯姆生(1829-1902)所説的:「所有生物的形態皆為大自然歷經演化後所進化而成的形像與 結果。」即使大自然已經打開了設計師的眾眼,想看到因仿生學而被啓發的設計之作仍然有少許困 難。然而問題不在於數量,而在於質量。仿生大師珍妮•班亞斯曾提及:「每個人都試圖想搭上仿 生潮流的車,但使用軟木地板並非仿生,就連用細菌來清潔水也并非仿生。仿生學是一種過程。此 過程是向大自然學習並使這些知識應用於新的環境與技術。它需要冷峻嚴謹的科學和殫精竭慮的嘗 試,但這並非容易事。」她基本上指出了在仿生設計領域中經常會犯的錯誤。許多現有的產品設計 都受到了大自然的啟發,但其中大部分都是通過視覺上的模仿而得到的結果。模仿自然界的形式只 是為了增强在美感上的潛力,並非實際地將自然應用於問題。這種誤導不僅發生在建築設計中,同 時在工業設計中也看得到。必須理解到的是,我們不應該在自然界中模仿自然界的形態,而是應該 像大自然一樣進行設計,使得不切實際的「給型上之行為」最終被轉化為受益於自然科學的「找型 上之策略」。
骨椅 從自然界中取得魅力和靈感是一回事,汲取大自然靈感並加以應用又是另一回事。– [Putting nature to work by Innovativ Kultur] 本研究的重點是了解如何正確地應用仿生設計法並使其過程能 被融入於產品設計。研究的目標主要是探索美學上的正式問題,並找出如何在數位製造技術的輔助 下使自然過程融入於設計的方法。珍妮•班亞斯説:「樹和骨骼會不斷地隨著壓力的改變而發生生 長變化。該演算法已被寫進一款現用於使橋樑與築梁輕量化的軟體程式。」約里斯•拉曼精緻的 「骨骼家具」由於被公認為是藝術與科學的完美結合因而受到廣泛好評。它被一致稱讚為是過去二 十年當中最具有影響力的設計作品之一,通過使用電腦演算法將人體骨骼和樹木生長的複雜性比例
Fig 1. 骨椅的 1:1 最終原型比例 和功能轉化成座椅的外型,以其强烈的美感與設計概念照亮未來新世代。骨椅的設計開發於九零年 代後期,受到德國物理學家克勞斯•馬特赫克與洛泰爾•哈茨海姆的啟發。馬特赫克專注於生物力 學,哈茨海姆則專注於數值分析跟結構工程。兩位物理學家起初對於骨骼與樹木對外界或內在的刺 激所產生的自然變化反應及其在結構上的優化能力感到非常大的興趣。其優化過程為只在需要的地 方添加材料並在不必要的地方將其移除。他們認為仿生法就是將自然界生物的特性背後包含的原理 或機制類推應用致工藝及結構過程上,主要研究動機是經常地將仿生法與數學演算法應用於他們的 工作來構建堅固兼輕巧的零件組。
Fig 2. Bone growth Both Mattheck and Hartzheim developed a genetic algorithm that mimicked bone growth. In 1998, the German car manufacturer Adam Opel GmbH used the research of Mattheck and Hartzheim to design a 3D optimization software for manufacturing efficient engine mounts. In 2004, Laarman stumbled upon the work of Mattheck and Hartzheim. He applied the software developed by Adam Opel in his “Bone Furniture� project, simulating the stress applied to pressure points of the chair using a virtual 3D model. The image given below illustrates how the software, starting from a block, chipped away at the structure, removing material from where stress was not applied or transmitted. Once the design was complete, the 3D printing technique was used by Laarman to create plaster forms in ceramics. Finally, the final prototype
Fig 3. Form-finding process through topology optimization was hand-cast in hollow aluminum, which came as a result of the fact that the chair uses the absolute minimum of materials, for which can hold many more times its own weight than other cast-aluminum chairs. The cast-offs from the process, both the plaster and the aluminum trimmings, can also be recycled. The design of Laarman’s bone chair is largely dictated by function rather than form, with the size and placement of its distinctive branching struts determined by the strength needed to support its elongated
Fig 2. 骨骼生長 馬特赫克和哈茨海姆都開發了一種模擬骨骼生長的遺傳算法。 一九九八年間,德國汽車製 造商歐寶利用馬特赫克和哈茨海姆的研究成果設計出了一款用於製造高效穩定發動機支架的三維優 化軟體。拉曼在二零零四年時偶然發現了馬特赫克跟哈茨海姆的工作,將歐寶開發的軟體應用於他 的「骨骼家具」項目,使用虛擬三維模型來對椅座上的施壓點所施加的應力進行模擬。下面給出的 圖像説明了該軟體如何從塊狀中開始成型,從結構處開始移除,再從未施加應力或傳輸應力的位置 對材料做移除的運算。設計完成後,拉曼使用三維列印技術將陶瓷用來製出石膏外型。最終的原型 是采用空心鋁由手工鑄造的。這樣的座椅基於在使用最少材料的條件下,仍然比其他鋁鑄座椅更能 承受比自己本身重好幾倍的重量。該工藝的廢棄物像是切割下來多餘的石膏和鋁也都可回收利用。
Fig 3. 通過拓撲優化進行表單查找之運算分析過程 拉曼骨椅的設計在大程度上取決於產品内部機能而非外觀型式。其獨特分支支柱的生長尺寸和位置 主要是由座椅所需承受的力之強度來決定。拉曼的設計基本上是以自然生長原理為基礎所構建的, 而非將自然當作是一種純粹的視覺參考。
seat. Instead of using nature as a purely visual reference, Laarman's design is fundamentally structured by natural growth principles. The diversity in the Joris Laarman Lab brings versatility to their work as it is gathered by designers, architects, scientists, programmers and engineers in various fields. Laarman wrote "I call my work environment a lab because my team and I are always investigating. We try to study and shape the future of design in collaboration with scientists, engineers, craftsmen and many other people. We experiment with new materials, production processes and concepts that can be precedents for the design of the future. You could say we make a sort of science fiction and then translate it into the real."
Fig 4. Final prototype of the bone chair
Fig 5. Early design process of bone chair
Fig 6. The Joris Laarman Lab team
在創作上,約里斯•拉曼實驗室的衆多人才為其工作帶來了多樣性,主要原因乃它是由各個 領域的設計師,建築師,科學家,程式員和工程師所聚集而成的。 拉曼寫道:「我之所以將我的
工作環境稱為實驗室是因為我和我的團隊一直以來都不斷的在研究。我們嘗試與科學家,工程師, 手工藝人和許多其他領域的專業人員合作,來研究與塑造設計未來。我們嘗試新材質及生產工藝和 設計新概念,使這些嘗試成為未來設計的典範。也可以説我們試圖將自己製作的科幻小説翻譯成實 際可用之作。」
Fig 4. 骨椅的最終原型
Fig 5.早期的骨椅設計過程
Fig 6. 約里斯•拉曼實驗室團隊
The Generico chair In contrast to Laarman’s bone furniture, the Generico chair – the work of the German architects Marco Hemmerling, Ulrich Nether and Philipp Meise – is not only developed from an algorithm that brings optimization, but based upon a holistic approach taking also into account ergonomics, such as changing positions, movement and sitting comfort as well as aspects of structural performance, material properties and production parameters within an integrative design approach. The Generico chair is developed out of the demands, conditions and constraints of sitting, e.g. smoothness of surface, user comfort, load forces, contact zones. It is not an exaggeration to say that the Generico chair introduces a brand new way of design thinking, based upon generative and additive manufacturing technologies by following parametric design techniques, using topology optimization for material reduction and finite element method for structural analysis to create not only a lightweight but also structurally stabilized chair. In a first step of the Generico chair development, the constraints for the form generation were defined in a parametrical 3Dmodel. Next to define design drivers relevant to ergonomics - such as seating height, position and angle of the backrest as well as direction of motion - structural parameters were integrated in the modeling strategy. The loads and the positions for the supports were defined as “boundary constraints” for a topological form - finding calculation, using SolidThinking Inspire, which allows product designers and engineers to investigate structurally efficient concepts quickly and easily. Topology optimization is often
Fig 7. 3D-printed Generico chair in scale 1:1 used in mechanical engineering at the concept level of the design process. It is a morphogenetic process and a method that helps distribute a limited amount of material in a design space. The method generated an ideal material layout for the given conditions while also reducing local stresses and maintaining structural stiffness for the design. The calculation in an iterative process resulted in a reduction of the necessary material to meet the performance requirements.
Fig 8. Form-finding process through topology optimization
衍生椅 與拉曼的骨骼家具相較之下,德國建築師馬可•哈默林、烏爾里奇•耐瑟和飛利浦•梅瑟的作品「衍 生椅」不僅是通過一種優化算法而開發出來的概念,且也是基於整體的考量下涉及了人體工學。例 如在一體化設計法的框架下為物品的位置、移動、坐姿舒適度以及結構性能、材料特性和生產參數 等變量做變化。像是物品的表面光滑度、使用者舒適度、負載力和接觸區域:衍生椅是根據以上提 及的使用者坐姿要求和條件及限製而開發的。可以毫不誇飾地説,衍生椅的誕生引入了一種全新的 設計思維方式:例如基於衍生與積層製造技術、遵循參數化設計技術、采用拓撲優化來省材、使用 有限元素法來分析結構,如此不僅能輕巧化也能强化椅子結構的穩定性。在開發衍生椅的第一步 中,形態生成的限制因素就已在建立參數模型中被定義完成。次階段乃對人體工學方面之需求為參 變量給出定義:例如座椅之高度,靠背之位置和角度以及運動方向等結構參變量都將被整合到建模 策略中。針對拓撲形態而被定義為「邊界限制」的載荷與支撐位置主要是通過 SolidThinking Inspire 這款結構優化軟體來尋找出計算結果。該軟體使產品設計師和工程師能快速和輕鬆地探索 和生成高效的結構基礎概念。拓撲優化多應用於概念設計階段中的工程機械配件。它是一種形態發
Fig 7. 三維列印出的1:1衍生椅 生過程及一種將限量的材料於設計空間內做最佳分配的概念設計法。該方法在滿足限制條件下對衍 生椅做了最理想的材料分配,並同時減低了局部應力及維持了該設計的結構剛性。 在疊代過程 中,電腦通過了運算來減少必要的材料量以滿足性能要求。
Fig 8. 通過拓撲優化的找型過程
For final form-finding, the project was remodeled by using Rhinoceros and 3Dsmax for a final shape optimization with a subdivision calculation to smoothen the polygon mesh for the 3D model. In order to verify and optimize the structural performance of the chair design and the material concept again, the model was analyzed with the structural engineering software ANSYS. After meshing the geometry, the boundary conditions for “three load cases� were defined and calculated by the finite element method that normally provides numerical solutions to systems of partial differential equations with known constraints and conditions:
Fig 9. FEM-analysis: stress and deformation profile In a further optimization process the local gradients of the chair caused by stress were used to expand or shrink the profile geometry accordingly (an image gradient is a directional change in the intensity or color in an image). In a final design step prior to production, all findings were integrated into a definitive 3Dmodel by Rhinoceros. Throughout the entire design phase, various prototypes were 3D-printed in scales 1:10 to 1:3, using different printing technologies and materials to test and verify the findings from the digital form-finding and optimization process. Some materials, however, such as Objet VeroBlue (RGD840) available for the Stratasys J750 / J735, proved to be heat sensitive and showed very-low-mechanical resistance. Finally, Acrylonitrile Butadiene Styrene material in combination with a Fused Deposition Modeling printing technology was chosen for the 3D-print in full scale. As a result, the physical performance of the chair matched the envisioned result. The prototype retains its shape under load and with a weight of a 2.2 kilogram it is remarkably light. The materials shall be adapted even more to comfort and functionality in a further development. Acknowledgement-wise, Hemmerling and Nether developed the concept and design of the Generico chair. Matthias Michel, the structural engineer, conducted the finite element method calculation. All prototypes and 1:1 products have been 3D-printed by Stratasys.
Discussion As we may notice by now, the Generico chair is an ideal field of application for rapid prototyping technologies as it allows for an optimal distribution of materials. It fits both procedural and homological approaches to obtain both aesthetics and function for a chair as a pioneering example of furniture making. Moreover, this brings us back to the position of the designer and their responsibility for design. The generative technologies support an individualized mass-customization, which could basically place every individual in the position of the designer and the maker at the same time without restriction. We are aware of the fact that interaction, communication and utility are coming increasingly to the fore as the objects themselves become subordinated to the effect that they achieve. In this way, spaces and objects which derived from digital processes will develop a self-supporting quality founded on user orientation and user interface adaptivity, suitability of materials and production technique, and effective sustainability. In addition, it all comes down to choice whether we want to let computer or user dictate the design outcome. After all, the Generico project becomes rather important in the design field as it explores ways of adapting digital design methods and computer-aided manufacturing methods to human needs.
對於最終的找型結果,該項目使用了羅伯特•麥克尼爾公司開發的犀牛三維造型軟體和歐特 克公司開發的三維建模軟體 3Ds Max 進行了改建。 這些三維建模軟體用於最終外形的優化。其優 化做法是使用細分計算來對多邊形網格模型做平滑處理。在對座椅設計的結構性能和材質概念又做 一次最佳化的處理時使用了可對模型結構做進一步分析的工程軟件 ANSYS。 在對該設計的幾何體 進行網格劃分後,使用了有限元方法對最主要的「三個載荷點」的邊界條件做出了定義與計算。 該方法通常用來處理數學上具有已知限制和條件的偏微分方程組,為其提供數值解:
Fig 9. 有限元分析:應力與變形剖面 在進一步的優化過程中,由應力引起在椅座上的局部漸變相應地用於收縮與擴展幾何圖形的輪廓 (圖像漸變,又稱影像梯度,是影像中強度或顏色在方向上的變化。更進一步地説明就是一個自然 影像上面會有漸進的亮度變化,計算這個變化量就是吾人所稱的「梯度」)。在生產前的最終設計 步驟中,所有的已得數據都被犀牛軟體整合到一個明確的三維模型中。在整個設計階段,各種原型 都以1:10到1:3的比例進行三維列印,使用不同的打印技術和材質來測試和驗證在找型與優化過程中 所得到的數據。然而某些材料,像是可用美國增材制造供應商斯特塔西的 J750 / J735 來打印的剛 性不透明藍色材料(RGD840),不但被證明指出其電阻受溫度影響較大,且也擁有較低的機械阻 力級數。最終還是選擇了使用 ABS 塑料(丙烯腈-丁二烯-苯乙烯共聚物)來結合於熔融層積成型 技術將全尺寸的模型打印出來。結果顯示座椅的物理性能與預想的結果相匹配。原型在負載下仍保 持其形狀。重量為2.2千克,非常輕巧。若想更進一步發展,該材料應更加適應於舒適度與功能 性。鳴謝方面,馬可•哈默林和烏爾里奇•耐瑟致力於衍生椅的主要概念與設計,而結構工程師馬提 亞斯•麥克則致力於有限元法之計算,與建模師飛利浦•梅瑟致力於三維模型製作。所有原型與一比 一的產物均由斯特塔西公司打印製造。
探討 正如我們目前所注意到的,由於最佳材料分配所帶來的優勢使衍生椅成為快速成型領域之最佳應用 典範。做為一個在家俱製作上的典範先驅,在方法上衍生椅可被列為既是「過程」也是「仿型」並 通過使用兩種方案來取得座椅的藝術美型與結構機能共存的亮點。再者,這讓我們回歸到了設計師 的本質與他們對設計的責任。衍生設計的技術在整體而言可提供使用者個人方面的大量化客制。這 基本上可讓每一個人在無限制的情況下同時置於設計師和製造者的身份,盡情的發揮各自的設計能 力。我們已知當物件本身低於其所得的效果時,互動與溝通和效用也就變得日益凸顯。通過此方 式,由數位過程中衍生出來的空間與物件將產生一種自供性質。 這種自供性質主要建立在使用者 導向和自適應使用者介面,材料的適用性和生產技術以及有效的可持續性的基礎上。此外,這一切
Both the Generico chair and the Bone chair motivated me to conduct a research study on generative design due to the potential of mathematical application involved in this creative discipline. For the second phase of my postgraduate research work, the focus was on building prototypes based upon the same research system conducted during the first phase of the study with the help of digital fabrication technologies – using parametric design tool to generate complex forms that follow function – to achieve both appearance and quality. My project however, is slightly different from the work of Joris Laarman and Marco Hemmerling despite the fact that we are all attempting to use algorithm to breed our product. My primary motivation is to find design inspiration in mathematics, hoping to find a way to make naturalmathematical morphologies accessible in product design. In fact, complex mathematical form generation methods have rarely been practiced in product design. This is mainly due to the multitude of constraints linked to the form-giving of products; surfaces are often functional, the artifacts are produced in several exemplars, namely, the product form must be modified to suit production systems; cost control is consequently important; finally, engineering constraints must also be respected. An additional obstacle may be the lack of educational initiation in product design. It is rather difficult to generate complex forms, and at the same time, meet functional, engineering and production constraints. The term “complex” is to be understood here in the sense that the form is virtually impossible to generate without computer aid.
Fig10. One of my digital prototypes involving 2 dimensional Voronoi patterns construction (Done by using Voronoi algorithm in Grasshopper to achieve balancing forces and tensions)
都取決於我們是否想讓電腦或是使用者來操控設計結果。歸根結底,由於衍生椅項目是關於探索如 何使數位設計法和電腦輔助製造法適應於人類需求,因而使它在設計領域占據了非常重要的位置。 衍生椅和骨椅之所以促使本人開始了衍生設計的研究是由於在這創造性的學科領域中涉及 了大量的數學應用。對於本人碩士研究項目的第二階段,主要是將重點放在模型製作上。同樣是以 前階段的研究系統框架下執行得出結果,再進一步的將數位製作技術帶入項目中,使用參數設計工 具在遵循追隨機能的理念下衍生出複雜幾何形態來取得美型與機能共存的特質。然而,儘管都是在 嘗試使用演算法來培育產品,本人的研究初衷與拉曼和哈默林的卻略有所不同。鄙人主張在數學形 態學中尋找設計靈感,並希望能發展出一種基於數學概念的設計方法論,使在自然界中的數學形態 能走入產品設計的創作裡。實際上,在產品設計中很少使用到數學形態學。這主要是跟產品外型相 關的許多限制因素有關。例如:產品的外型表面通常是有功能的、硬件是在多重規範下所生產的 (產品外型需經過修改來符合生產系統開發)、成本控制也因此而變得重要、最終還得必須慎重對 待工程技術上的約束。另一個障礙則是缺乏在產品設計上的教育初衷。要想衍生出複雜幾何型態并 且也符合功能與工程及製造上的約束是一件非常困難的事情。在此複雜一詞則是解讀為一種即在無 電腦輔助的情況下而無法被生成出的有機形態。
Fig10. 一個基於二維泰森多邊形結構的一個數位原型項目
(通過在蚱蜢參數軟件中使用泰森多邊形演算法來實現平衡力和張力)
Conclusion We may proudly say that both Bone Chair and Generico Chair are the prototypes for a new way of design thinking, developed with a holistic approach using latest 3-D printing technologies and offered openmindedness and inquisitiveness to architects and designers. What really sets these chairs apart from other chairs is how these designers used science and technology to create designs that were able to maximize strength while completely eliminating waste of material. This is where Laarman’s work gets the name “Bone Chair” due to the fact that it mimics the way bones grow, adding strength where it is needed and taking away everywhere else. The same for Hemmerling’s work where it gets the name “Generico” due to the way how the chair is bred by a genetic algorithm. Nevertheless, biomimicry is what truly inspired these designers. It offers a methodology and a strategy to re-design the human presence on Earth in a more sustainable way. It is still, however, in its very early stages. Albeit biomimicry is a relatively new field of research, the concept is ancient. “There are three types of biomimicry - one is copying form and shape, another is copying a process, like photosynthesis in a leaf, and the third is mimicking at an ecosystem's level, like building a nature-inspired city.” Says Janine Benyus. By studying the presented cases, what I find most valuable about the chairs in terms of their biomimetic application is that it is not simply a process of copying form and shape of nature. Instead, it is more rewarding designing products based on the natural principles leading to its growth and form. An intrinsic collaboration between physical science and design is also inevitable. Sometimes even mathematics plays an important role in biomimicry design. Therefore, in order to practice biomimicry design more correctly, understanding the knowledge of the mechanics of living organisms and how mathematics is used to describe natural behaviors is indispensable. As product designers, we think of sustainability as integral to good design. As technology arises and manufacture becomes cheaper, and the resources used to make things become more inadequate and expensive, the pressure will be on to create objects that maximize the efficiency of all our materials. A piece of furniture is an obvious place to start, but imagine automobiles, buildings, and even our roadways designed the way nature does it. Efficiency, ease of use, and arguably even beauty will be brought to every aspect of our lives. That is the reason why I am fascinated about the Bone Chair and the Generico Chair. They are just chairs, but the idea behind them captures the imagination and hints at a world completely transformed by design.
結論 我們可以自豪地説骨椅和衍生椅皆立基於新設計思維的概念框架下的產物,採用的是最新三維打印 技術以宏觀的角度來為建築師與設計師提供更開放的思想及求知欲。這些座椅與其他座椅的區別在 於這些設計師如何將科學跟技術用來創造出能夠在省材的條件下也能最大限度地强化其模型結構。 這是拉曼的作品被稱為「骨椅」的原因,正是因為它模仿了骨骼的生長方式 – 在需要施加應力的地 方增加了强度並在其他地方進行省材。 哈默林的工作同是如此,原因乃其座椅是由遺傳算法所設 計出來的,使其獲得「衍生椅」之稱。然而,仿生學正是激發這些設計師創作的靈感泉源。它以永 續的方式來提供新的設計方法與策略,為現代人重新設計一個新的生活方式。衍生設計技術目前仍 處於尚未成熟的階段中。 在衆人眼裡或許仿生學是一門相對較新的研究領域,然而其概念卻已存在許久。如仿生大 師珍妮•班亞斯所説:「仿生學分為三種:一種是仿形與型;另一種是仿過程,如葉片進行的光合 作用;第三種是在生態系統層面上進行模仿,如打造一個以大自然做為設計靈感的城市。」通過對 所提出的案例進行一番研究後,本人認為座椅在仿生應用方面最有價值的地方是它不單只是複制自 然界形與型的一個過程。反之,通過由自然原理而導出的生長與成形方式來進行產品設計會更有意 義。物質科學與設計之間的內在合作關係也是必要的。有時數學甚至在仿生設計中也起著重要作 用。因此,為了更準確地實踐仿生設計學,了解生物力學的知識以及如何用數學來描述大自然的現 象是絕對必要的。身為產品設計師,我們把永續視為做出好設計的元素之一。隨著科技的出現與製 造走向平價化,以及用來製造產品的資源逐漸變得不足且昂貴時,這樣的壓力會促使人類創造出能 提高材質效率的產品。一件家具就是最明顯的代表。然而設想一下若是我們的手機、高樓大廈、還 有公路都被仿生化了,這樣又會對我們的生活帶來什麽樣的影響。這意味著效率、易用性、甚至是 耐看度都將會被帶入到我們生活的方方面面。這正是為何骨椅和衍生椅如此迷人之處。雖然它們只 是椅子,但其背後的想法引發了在世上那些因設計而改變的想像與線索。
Bibliography URL/Images:
[01] Figure 1 – Bone chair http://www.nederlandsdesign.com/joris-laarman-bone-chair/ [02] Figure 2 – Bird bone http://www.sciencepartners.info/wp-content/uploads/2012/08/crosssec.jpg [03] Figure 3 – Topology optimization process of bone chair http://hellomaterialsblog.com/2012/08/22/biomimetics-as-a-tool-for-the-development-of-new-materials/ [04] Figure 4 – Final prototype of bone chair www.droog.com/droog/all/smart-deco-i/bone-chair-by-joris-laarman/ [05] Figure 5 – Early design process of bone chair http://www.jorislaarman.com/images/makingofpaperboneforweb.jpg [06] Figure 6 – The Joris Laarman Lab team: www.jorislaarman.com/images/collage_mid.jpg [07] Figure 7 – 3D-printed Generico chair in scale 1:1 www.arch2o.com/generico-chair-marco-hemmerling-and-ulrich-nether/ [08] Figure 8 – Form-finding process through topology optimization: www.designboom.com/design/ [09] Figure 9 – FEM-analysis: stress and deformation profile www.marcohemmerling.com/projects/product/generico.html [10] Form follows function http://www.guggenheim.org/new-york/education/school-educator-programs/teacher-resources/artscurriculum-online?view=item&catid=730&id=120 [11] Generico Chair, April 6, 2014 http://mocosubmit.com/generico-chair/ [12] Designboom – Architecture design art technology shop http://www.designboom.com/design/marco-hemmerling-ulrich-nether-additive-generico-chair-04-092014/
文獻 資訊網址/圖片:
[01] 圖 1 – 骨椅 http://www.nederlandsdesign.com/joris-laarman-bone-chair/ [02] 圖 2 – 鳥的骨骼 http://www.sciencepartners.info/wp-content/uploads/2012/08/crosssec.jpg [03] 圖 3 – 骨椅的拓撲優化過程 http://hellomaterialsblog.com/2012/08/22/biomimetics-as-a-tool-for-the-development-of-new-materials/ [04] 圖 4 – 骨椅的最終原型 www.droog.com/droog/all/smart-deco-i/bone-chair-by-joris-laarman/ [05] 圖 5 – 骨椅的初階設計過程 http://www.jorislaarman.com/images/makingofpaperboneforweb.jpg [06] 圖 6 – 拉曼實驗室團隊: www.jorislaarman.com/images/collage_mid.jpg [07] 圖 7 – 三維打印的 1:1 衍生椅 www.arch2o.com/generico-chair-marco-hemmerling-and-ulrich-nether/ [08] 圖 8 – 通過拓撲優化的找型過程 www.designboom.com/design/ [09] 圖 9 – 有限元分析:張力和變形剖面 www.marcohemmerling.com/projects/product/generico.html [10] 形隨機能 http://www.guggenheim.org/new-york/education/school-educator-programs/teacher-resources/artscurriculum-online?view=item&catid=730&id=120 [11] 衍生椅, 4/6/2014 http://mocosubmit.com/generico-chair/ [12] Designboom – 建築設計藝術工藝坊 http://www.designboom.com/design/marco-hemmerling-ulrich-nether-additive-generico-chair-04-092014/
Papers/Literatures:
[13] Hopf, A., 2009, "Renaissance 2.0 – Expanding the morphologic repertoire in design", 23rd Cumulus Conference 23/09, November 12-14 2009, accepted. [14] Nordin, A., Hopf, A., Motte, D., Bjärnemo, R., Eckhardt, C., 2009, "Using Genetic Algorithms and Voronoi-diagrams in Product Design", Journal of Computing and Information Science in Engineering – JCISE, submitted. [15] Nordin, A., Motte, D., Hopf, A., Bjärnemo, R., Eckhardt, C., 2010, ” Complex product form generation in industrial design: A bookshelf based on Voronoi diagrams”, Design Computing and Cognition DCC’10 [16] Burkhardt L., Höger H. (1995). Design ist unsichtbar/Design is invisible. Ostfildern: Verlag Hatje Cantz [17] Smythe, J. S. (ed.): 1990, Applications of Artificial Intelligence to Communication, CMP and SpringerVerlag, Berlin. [18] Gramzio F., Kohler M., (2007). Digital Materiality in Architecture. Baden: Lars Müller Publishers [19] Hemmerling M., (2013). Simple Complexities – A rule-basedapproach to architectural design, in: Proceedings of the 17thSIGraDI Conference, Valparaiso, Chile [20] Laarman, J., (2006). Bone chair: http://www.jorislaarman.com/bone-furniture.htmlOxman N., 2010. Structuring Materiality in: AD Magazine - TheNew Structuralism, Hoboken (NJ): Wiley & Sons [21] Oxman N., 2010. Structuring Materiality in: AD Magazine - TheNew Structuralism, Hoboken (NJ): Wiley & Sons. [22] Pearce, P., 1978, Structure in Nature is a Strategy for Design, MIT Press, Cambridge, MA. [23] Putting nature to work – [Innovativ Kultur]: http://www.innovativkultur.se/sv/projekt
論文/書籍:
[13] Hopf, A., 2009, “Renaissance 2.0 – 擴展在設計領域中關於形態的所有作品”, 23rd Cumulus Conference 23/09, November 12-14 2009, accepted. [14] Nordin, A., Hopf, A., Motte, D., Bjärnemo, R., Eckhardt, C., 2009, “產品設計内關於遺傳算法和泰森多 邊形的使用”, Journal of Computing and Information Science in Engineering – JCISE, submitted. [15] Nordin, A., Motte, D., Hopf, A., Bjärnemo, R., Eckhardt, C., 2010, “工業設計中的複雜產品外型之生 成:基於泰森多邊形的書櫃”, Design Computing and Cognition DCC’10 [16] Burkhardt L., Höger H. (1995). “設計是看不見的”, Ostfildern: Verlag Hatje Cantz [17] Smythe, J. S. (ed.): 1990, “人工智能在通信領域中的應用”, CMP and Springer-Verlag, Berlin. [18] Gramzio F., Kohler M., (2007). “建築中的數位物質性”. Baden: Lars Müller Publishers [19] Hemmerling M., (2013). “簡單複雜度 – 針對建築設計所用的一種規範基準方法”, in: Proceedings of the 17thSIGraDI Conference, Valparaiso, Chile [20] Laarman, J., (2006). 骨椅: http://www.jorislaarman.com/bone-furniture.htmlOxman N., 2010. Structuring Materiality in: AD Magazine – The New Structuralism, Hoboken (NJ): Wiley & Sons [21] Oxman N., 2010. Structuring Materiality in: AD 建築紀要月刊 – “新的結構主義”, Hoboken (NJ): Wiley & Sons. [22] Pearce, P., 1978, “自然界中的結構是一種設計策略”, MIT Press, Cambridge, MA. [23] Putting Nature to Work – [創新文化], 瑞典斯德哥爾摩市文化委員會: http://www.innovativkultur.se/sv/projekt